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Abstract. We provide a convenient mathematical framework that es-
sentially encompasses all known pairing functions based on the Tate pair-
ing. We prove non-degeneracy and bounds on the lowest possible degree
of these pairing functions and show how efficient endomorphisms can be
used to achieve a further degree reduction.

1 Introduction

The cryptographic importance of efficiently computable, bilinear and non-
degenerate pairings that are hard to invert in various ways has been amply
demonstrated. The currently only known instantiations of pairings suit-
able for cryptography are the Weil and Tate pairings on elliptic curves or
on Jacobians of more general algebraic curves. In view of the applications,
efficient algorithms for computing these pairings are of great importance.

Let E be an elliptic curve over Fq and let G1, G2 be two subgroups
of E(Fq) of prime order r satisfying r | (q − 1). Let µr be the subgroup
of r-th roots of unity of F×q . Then we can in principle define a pairing
e : G1 × G2 → µr by taking any generator of µr as the pairing value of
a generator of G1 and a generator of G2 and by extending via linearity.
Since the computation of pairing values would then require taking discrete
logarithms, this is not a practical approach.

A different approach avoiding the problem with the discrete loga-
rithms would be to use an algebraic representation of e such that pairing
values are obtained by substituting the coordinates of the input points
with respect to a short Weierstrass form of E into an algebraic expres-
sion. This can in principle generally be achieved by using polynomial
interpolation and would for example lead to a representation e(P,Q) =
f(xP , yP , xQ, yQ) where P = (xP , yP ) ∈ G1, Q = (xQ, yQ) ∈ G2 and
f ∈ Fqk [x1, y1, x2, y2] is a fixed polynomial of total degree about r2 (or
r if viewed in x1, y1 and x2, y2 separately). However, this approach will
also be impractical unless some efficient, i.e. at least polynomial time in
log(r), way of storing and evaluating f is found.



The approach currently employed is to use rational functions fP on E
depending on P instead of interpolation polynomials such that the pairing
values are obtained by a function evaluation e(P,Q) = fP (Q)(q−1)/r. The
functions fP are given by means of principal divisors with large coeffi-
cients but small support. One then essentially applies the Riemann-Roch
theorem in form of Miller’s algorithm to find a polynomial-in-log(r)-sized
representation of f , consisting of a short product of quotients of linear
polynomials in x and y with large exponents, which enables the efficient
evaluation of fP (Q).

The Tate and ate pairings are two special forms of functions fP . Re-
cently, some more variants have been given in [4, 8]. Products of the Tate
and the ate pairing with the goal of reducing the degree of the resulting
pairing function have been considered in [3]. This idea has been much
extended in [7] and is also the objective of this paper. In addition to the
construction from [7] we provide a convenient mathematical framework
that allows to formulate a much clearer non-degeneracy condition and
relation with the Tate pairing. The key idea here is to use a degenerate
ate pairing instead of the non-degenerate ate pairing. We prove the non-
degeneracy of the pairings given by certain functions of lowest degree,
prove some optimal lower and upper bounds in every admissible dimen-
sion and extend the construction to allow the use of efficiently computable
automorphisms and endomorphisms.

2 Preliminaries

2.1 Notation

In this paper we will consider ordinary elliptic curves only, although the
general logic behind the construction generalises to supersingular elliptic
or hyperelliptic curves. Let us first briefly define the standard notation
and setting for pairings on such elliptic curves.

Let E be an ordinary elliptic curve over a finite field Fq. Let r be a
prime factor of #E(Fq) with embedding degree k ≥ 2 such that k | (r−1).
Then E(Fqk)[r] ∼= Z/rZ×Z/rZ and there exists a basis P,Q of E(Fqk)[r]
satisfying π(P ) = P and π(Q) = qQ, where π is the q-power Frobenius
endomorphism on E. We define G1 = 〈P 〉 and G2 = 〈Q〉. Note that
G1 ∩G2 = {O}.

Let O be the point at infinity and z ∈ Fq(E) a fixed local uniformiser
at O. We say that f ∈ Fqk(E) is monic if (fz−v)(O) = 1 where v is the
order of f at O. In other words this says that the Laurent series expansion



of f in terms of z is of the form f = zv+O(zv+1). We will consider monic
functions f throughout the paper.

For s ∈ Z and R ∈ E(Fqk) we let fs,R ∈ Fqk(E) be the uniquely
determined monic function with divisor (fs,R) = s((R)− (O))− ((sR)−
(O)) where (R) is the prime divisor corresponding to the point R. Miller’s
algorithm expresses fs,R as a product about log2(|s|) powers of quotients
of monic linear functions. Note that for R ∈ E(Fq) we have fs,R ∈ Fq(E).

The r-th roots of unity in Fqk are denoted by µr. The n-th cyclotomic
polynomial is denoted by Φn, and its degree by ϕ(n).

2.2 Tate and Ate Pairings

Recall that the reduced Tate pairing and ate pairings are bilinear pairings
G2 ×G1 → µr and are given as follows. The reduced Tate pairing is

t : G2 ×G1 → µr, (Q,P ) 7→ fr,Q(P )(q
k−1)/r.

It is in fact defined on all E(Fqk)[r] × E(Fqk)[r] and is always non-
degenerate.

Let s be an arbitrary integer such that s ≡ q mod r. Let N = gcd(sk−
1, qk−1), L = (sk−1)/N and c =

∑k−1
j=0 s

k−1−jqj mod N . The ate pairing
with respect to s is given by

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )c(q
k−1)/N .

The relation with the Tate pairing is as(Q,P ) = t(Q,P )L. It is thus
non-degenerate if and only if r - L.

It is possible to have the same final exponent in the ate pairing as in
the Tate pairing. Consider the modified ate pairing

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )(q
k−1)/r.

Since r |N and r - c this is always bilinear, and using the relation with
the Tate pairing it is not difficult to show that it is non-degenerate if and
only if sk 6≡ 1 mod r2 (see also Corollary 13).

It is in general not true that the ate pairing can be extended to a
bilinear pairing on proper overgroups of G2 or G1.

3 Pairing Functions of Lowest Degree

Let s be an integer. For h =
∑d

i=0 hix
i ∈ Z[x] with h(s) ≡ 0 mod r let

fs,h,R ∈ Fqk(E) for R ∈ E(Fqk)[r] be the uniquely defined monic function



satisfying

(fs,h,R) =
d∑
i=0

hi((siR)− (O)).

Furthermore, define

||h||1 =
d∑
i=0

|hi|.

If d is less than the order of s modulo r then ||h||1/2 ≤ deg(fs,h,Q) ≤ ||h||1.

Theorem 1 Assume that s has order k modulo r. Then there is h ∈ Z[x]
with h(s) ≡ 0 mod r, deg(h) ≤ ϕ(k)− 1 and ||h||1 = O(r1/ϕ(k)) such that

as,h : G2 ×G1 → µr, (Q,P ) 7→ fs,h,Q(P )(q
k−1)/r

is a non-degenerate bilinear pairing. The polynomial h can be efficiently
computed. The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )h(s)/r.

Any h ∈ Z[x] with deg(h) ≤ k − 1 such that as,h is a non-degenerate
bilinear pairing satisfies ||h||1 ≥ r1/ϕ(k).

The O-constant depends only on k.

Proof. We may replace s by s + ir without affecting the statement of
the theorem. Since k is coprime to r we can find i such that (s + ir)k ≡
1 mod r2. In the following we thus assume that s has order k modulo r
and sk ≡ 1 mod r2.

It is convenient to describe the situation in terms of the ring A =
Z[x]/(xk−1)Z[x] and its ideals I(i) = {h+(xk−1)Z[x] |h(s) ≡ 1 mod ri}
for i ∈ {1, 2} (thus we use the notation from the beginning of section 4
in the case R = Z). In addition, let W be the multiplicative group of
functions G2 × G2 → µr and Wbilin the subgroup of bilinear functions.
We want to define a map as : I(1) →W .

Since fs,h(x)(xk−1)+g(x),R = fs,g(x),R we can consider fs,h,R also for
h ∈ I(1) in a natural way. Note that fs,x−s,R is equal to fs,R using the
previous notation.

We now define as : I(1) → W where h is mapped to as,h with
as,h(T, S) = fs,h,T (S)(q

k−1)/r and as,h(O, S) = as,h(T,O) = 1 for T ∈ G2

and S ∈ G1. Note as,h+g = as,has,g for all h, g ∈ I(1), so as is a homomor-
phism.



We wish to show im(as) = Wbilin and ker(as) = I(2). By Lemma 2 we
have I(i) = riA+ (x− s)A for i ∈ {1, 2}. Now as,r is the Tate pairing and
as,x−s is the degenerate ate pairing with respect to s. Hence as,r, as,x−s ∈
Wbilin. Since s has order k modulo r there is i such that s ≡ qi mod r.
Then as,xh = (as,h)q

i ∈ Wbilin for all h ∈ I(1). This together with the
additivity of as shows that if as,h ∈ Wbilin, then as,gh ∈ Wbilin for all
g ∈ Z[x] and all g ∈ A. Hence im(as) ⊆Wbilin because I(1) = rA+(x−s)A.
Finally, since as,r 6= 1 and r is prime, we have im(as) = Wbilin.

The above argument also shows that ker(as) is an ideal of A. Since
as is surjective, the index satisfies (I(1) : ker(as)) = #Wbilin = r. But
r2, x−s ∈ ker(as) so I(2) ⊆ ker(as). By Lemma 2 we have (I(1) : I(2)) = r
so ker(as) = I(2) follows.

Having set up the link to the ring A and the ideals I(i) the theo-
rem follows from the lattice arguments of Lemma 4, the isomorphism of
Lemma 2 and the lower bound of Lemma 3. �

We remark that the the construction of the proof is complete in the
following sense: Let w, hi ∈ Z such that

∑k−1
i=0 hi(π

i(Q))−w(O) is a prin-
cipal divisor. Then

∑k−1
i=0 hi(π

i(T ))−w(O) is a principal divisor for every
T ∈ G2 since necessarily

∑k−1
i=0 hiq

i ≡ 0 mod r. Let fT ∈ Fqk(E) be monic
such that (fT ) =

∑k−1
i=0 hi(π

i(T )) − w(O). Then (T, S) 7→ fT (S)(q
k−1)/r

defines a bilinear pairing that is equal to aq,h for h =
∑k−1

i=0 hix
i ∈ I(1), as

is directly seen. As a consequence, there are no additional functions left
in Fqk(E) that are supported on Z = {πi(Q) | 0 ≤ i ≤ k − 1} and could
possibly define a bilinear pairing.

4 Some Lemmas

This section contains some technical lemmas dealing with the ring A and
its ideals I(i) that occured in the proof of Theorem 1.

In the following we will work with R = Z, R = Z[t] and R = Q[t]. It is
hence convenient to deal with these cases simultaneously for a moment.

Let R be a domain and let r, s ∈ R such that r 6= 0 is not a unit and s
has order n ≥ 2 in (R/rR)×. Define the R-algebra and its ideals

A = R[x]/(xn − 1)R[x],

I(i) = {h+ (xn − 1)R[x] |h(s) ≡ 0 mod ri},

for i ≥ 0 such that sn ≡ 1 mod riR. In the following we will identify
elements of A with their representing polynomials of degree ≤ n− 1. We



also define the R-modules

I(i),m = {h ∈ I(i) | deg(h) ≤ m− 1}.

Note I(i),m ⊆ I(j),w for m ≤ w and i ≤ j. Also I(i),n = I(i).

Lemma 2 The I(i) and I(i),m have the following properties:

1. I(i) = riA+ (x− s)A.

2. I(i),m is free of rank m and a basis is ri, x−s, x2−s2, . . . , xm−1−sm−1.

3. I(i)/I(i+1) ∼= R/rR under h 7→ h(s)/ri with inverse g 7→ rig.

4. If m ≥ ϕ(n) then I(i),m = M ⊕ I(i),ϕ(n) with M = {h ∈ I(i),m |h ≡
0 mod Φn}.

Proof. From the definition of I(i) it is clear that riA + (x − s)A ⊆ I(i).
Conversely, let h ∈ I(i). Polynomial division by x − s with remainder
shows h = g · (x− s) +h(s) with g ∈ A and h(s) ∈ R. By definition of I(i)

we have h(s) ∈ riR. Thus h = h(s) + g · (x − s) ∈ riA + (x − s)A. This
proves the first assertion.

The second assertion follows easily from the first assertion and a short
Hermite normal form calculation. Another basis of I(i),m is given by ri, x−
s, x(x− s), . . . , xm−2(x− s).

The third assertion follows from the form of the bases in the second
assertion. Or, polynomial division by x − s with remainder shows that
h 7→ h(s)/ri splits g 7→ rig and has zero kernel by the first assertion.

The last assertion follows using polynomial division by Φn with re-
mainder: The inclusion I(i),ϕ(n) → I(i),m is split by the projection I(i),m →
I(i),ϕ(n), h 7→ h mod Φn. Here h mod Φn ∈ I(i),ϕ(n) since Φn(s) ≡ 0 mod
ri. Note that M is a free R-module with basis Φn, . . . , xm−ϕ(n)−1Φn. �

We remark that in addition to Lemma 2 one can show I(i) = (I(1))i

if R = nR+ rR (for example R = Z and r a prime). Since the ideals I(i)

are closed under multiplication by x we see that they are closed under
rotation of the coefficients of h ∈ I(i).

4.1 The case R = Z

We keep the above notation and assume r ≥ 2. For h =
∑d

i=0 hix
i ∈ Z[x]

define

||h||1 =
d∑
i=0

|hi| and ||h||2 =
d∑
i=0

|hi|2.



Extend this definition to A by using class representatives of degree≤ n−1.
This makes I(i) into a lattice. We have || · ||1 = Θ(|| · ||2) on I(i) where the
constants depend only on n.

Lemma 3 Assume sn ≡ 1 mod ri and let h ∈ Z[x] such that h(s) ≡
0 mod ri. If h 6≡ 0 mod Φn then

||h||1 ≥ ri/ϕ(n).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Z[ζ] the ring
of integers of the n-cyclotomic number field K/Q. Let a = riB+(ζ−s)B.
Then a is an ideal of B of norm NK/Q(a) = ri, by assumption on s. We
have ζ ≡ s mod a. Thus h(ζ) ∈ a by assumption on h and

|NK/Q(h(ζ))| ≥ NK/Q(a) = ri.

On the other hand, the ϕ(n) complex conjugates ζ(j) of ζ satisfy |ζ(j)| = 1.
Hence |h(ζ(j))| ≤ ||h||1 and

|NK/Q(h(ζ))| =
∣∣ϕ(n)∏
j=1

h(ζ(j))
∣∣ ≤ ||h||ϕ(n)

1 .

Combining the two inequalities proves the first assertion. �

Lemma 4 Assume sn ≡ 1 mod r2. Let m ≥ ϕ(n) and w = m − ϕ(n).
Any length ordered LLL-reduced basis v1, . . . , vm of I(1),m satisfies

||vi||1 = O(1) and vi ∈ I(2) for 1 ≤ i ≤ w,
||vi||1 = Θ(r1/ϕ(n)) and vi 6= I(2) for w < i ≤ m.

The O- and Θ-constants depend only on n and the element relations hold
for r sufficiently large in comparison to n.

Proof. By Lemma 2 the determinant of I(1),m is r and its dimension is
m. We also have I(1),m = M ⊕ I(1),ϕ(n) with M = {h ∈ I(1),m |h ≡ 0 mod
Φn}. Thus there are at least ϕ(n) basis vectors vi whose projection onto
I(1),ϕ(n) is not zero. By Lemma 3 these vi satisfy ||vi||2 = Ω(r1/ϕ(n)). On
the other hand, the LLL-property shows

∏m
i=1 ||vi||2 = O(r). Thus there

are precisely ϕ(n) basis vectors vi of size Θ(r1/ϕ(n)) whose projection onto
I(1),ϕ(n) is not zero. The other basis vectors vi are in M and satisfy ||vi||2 =
O(1). Since the vi are assumed to be ordered by length the assertion on
the norms follows observing || · ||1 = Θ(|| · ||2).



Now Φn(s) ≡ 0 mod r2 by assumption on s. Hence v ∈ I(2) for every
v ∈ M . This shows vi ∈ I(2) for 1 ≤ i ≤ w. On the other hand, if
v ∈ I(1),m\M and v ∈ I(2), then v 6≡ 0 mod Φn and v(s) ≡ 0 mod r2.
Then ||v||2 = Ω(r2/ϕ(n)) by Lemma 3. This finally shows vi 6∈ I(2) for
w < i ≤ m. �

The true constants of the O-terms and Θ-terms cannot easily be given,
only worst case bounds are available that are usually much too large. Since
r will in practice be much larger than n the contribution of these terms
is small and can essentially be neglected. Then the element relations will
hold as well. Note that, unconditionally, any (LLL-reduced) basis of I(1),m

must contain at least one basis element that is not in I(2).

4.2 The case R = Z[t]

We keep the above notation and assume deg(r) ≥ 1. For h =
∑d

i=0 hix
i ∈

Q[t, x] with hi ∈ Q[t] define

degt h = max
0≤i≤d

deg(hi).

Extend this definition to A by using class representatives of degree≤ n−1.
This makes I(i) into a ‘lattice’ with respect to deg.

Lemma 5 Assume sn ≡ 1 mod riQ[t] and let h ∈ Q[t, x] such that
h(s) ≡ 0 mod riQ[t]. If h 6≡ 0 mod Φn(x)Q[t, x] then

degt(h) ≥ i/ϕ(n) deg(r).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Q[t, ζ] the
integral closure of Q[t] in the function field K = Q(t, ζ)/Q. Let a =
riB + (ζ − s)B. Then a is an ideal of B of norm NK/Q(t)(a) = ri, by
assumption on s. We have ζ ≡ s mod a. Thus h(ζ) ∈ a by assumption on
h and

deg(NK/Q(t)(h(ζ))) ≥ deg(NK/Q(t)(a)) = i deg(r).

On the other hand, the ϕ(n) Puiseux series expansions of ζ with respect
to the degree valuation of Q(t) are just the constant complex conjugates
ζ(j) of ζ and thus satisfy deg(ζ(j)) = 0. Hence deg(h(ζ(j))) ≤ degt(h) and

deg(NK/Q(t)(h(ζ))) = deg

ϕ(n)∏
j=1

h(ζ(j))


=

ϕ(n)∑
j=1

deg(h(ζ(j))) ≤ ϕ(n) degt(h).



Combining the two inequalities proves the assertion. �

The following lemma uses the function field LLL (e.g. [5]). On in-
put of M ∈ Q[t]n×n with det(M) 6= 0 the function field LLL outputs
N,T ∈ Q[t]n×n such that N = MT , det(T ) = 1 and the sum of the max-
imal degrees occuring in each column equals the degree of det(M). The
columns of N are then by definition independent LLL-reduced elements
of Q[t]n.

Lemma 6 Assume sn ≡ 1 mod r2Q[t]. Let m ≥ ϕ(n) and w = m−ϕ(n).
Any length ordered LLL-reduced independent elements v1, . . . , vm of I(1),m

generating a submodule of finite index satisfy

degt vi = 0 and vi ∈ I(2) for 1 ≤ i ≤ w,
degt(vi) = 1/ϕ(n) deg(r) and vi 6= I(2) for w < i ≤ m.

Proof. The assertion and proof are exactly analogous to Lemma 4, if we
replace I(1),m by QI(1),m (i.e. allowing rational coefficients or using R =
Q[t]), require that the vi be a length ordered LLL-reduced basis of QI(1),m

and observe the analogy degt = log(|| · ||2)). The lemma then follows
because any LLL-reduced independent elements of I(1),m generating a
submodule of finite index are an LLL-reduced basis of QI(1),m. �

The vi ∈ I(1),m of Lemma 6 can be obtained from any LLL-reduced
basis of QI(1),m by multiplying each vi by a suitable integer, for example
such that the transformation matrix of the input basis of I(1),m from
Lemma 2 and the LLL-reduced basis will be defined over Z[t].

5 Extended Ate Pairings

The next theorem extends the ate pairing with respect to s to a possibly
slightly larger set of admissible values of s. We will then apply this to
extend Theorem 1 in order to make use of automorphisms of E.

Theorem 7 Let n = lcm(k,#Aut(E)). Then the n-th roots of unity mod-
ulo r are defined in integers. Let s be any n-th root of unity modulo r.
Write s = uqd mod r with u an #Aut(E)-th root of unity modulo r and
let e be the order of u modulo r. Define

N = gcd(sn − 1, qk − 1), L = (sn − 1)/N,

c =
k−1∑
i=0

(se)k−1−i(qde)i mod N.



Then there is γ ∈ Aut(E) of order e such that (γπd)(Q) = sQ and

as : G2 ×G1 → µr,

(Q,P ) 7→

e−1∏
j=0

fs,Q(γ−j(P ))q
jdse−1−j

c(qk−1)/N

defines a bilinear pairing. If k |#Aut(E) then there is γ ∈ Aut(E) such
that γ(P ) = sP and

atwist
s : G1 ×G2 → µr,

(P,Q) 7→

e−1∏
j=0

fs,P (γ−j(Q))s
e−1−j

c(qk−1)/N

also defines a bilinear pairing. Both pairings as and atwist
s are non-degen-

erate if and only if r - L.
The relation with the reduced Tate pairing is

as(Q,P ) = t(Q,P )L and atwist
s (P,Q) = t(P,Q)L.

We remark that if P = O or Q = O then the pairing values are defined
to be equal to 1.

Proof (of Theorem 7). Since automorphisms of cyclic groups operate by
integer multiplication we get isomorphisms Aut(G1) ∼= Aut(G2) ∼= F×r .
Now, since E is ordinary, Aut(E) is a cyclic group (of order 2, 4 or 6) and
operates faithfully on G2 and G1. The Frobenius endomorphism π oper-
ates faithfully on G2 with order k. Since Aut(G2) is cyclic, Aut(E) and π
generate a cyclic subgroup H of Aut(G2) of order n = lcm(k,#Aut(E)).
The image of H in F×r is the group of n-th roots of unity, which shows
that the n-roots of unity modulo r are defined in integers and that s can
be written as s ≡ uqd mod r with u of order e modulo r and e |#Aut(E).

In the ate pairing case, since ue ≡ 1 mod r and e |#Aut(E), there
is γ ∈ Aut(E) corresponding to the multiplication-by-u automorphism
of G2 such that sQ = (uqd)Q = (γπd)(Q). In the twisted ate pairing
case, since s#Aut(E) ≡ 1 mod r, there is γ ∈ Aut(E) corresponding to the
multiplication-by-s automorphism of G2 such that sP = γ(P ). Define
ψ = γπd for the ate pairing case. Define ψ = γπd and interchange P,Q
for the twisted ate pairing case. In either case we have a purely inseparable



isogeny ψ of degree qd with ψ(Q) = sQ and ψ(P ) = (s−1qd)P = u−1P .
It now suffices to show that

t(Q,P )L =

e−1∏
j=0

fs,Q(ψ−j(P ))q
jdse−1−j

c(qk−1)/N

, (8)

since fs,P (π(Q)) = fs,P (Q)q and equation (8) implies that the ate and
twisted ate pairing are bilinear, and non-degenerate if and only if r - L.

The proof now is essentially the same as in [2], with some small mod-
ifications. From Lemma 1 of [2] we obtain

t(Q,P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N

and

t(Q,P )L = fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

= fsn−1,Q(P )(q
k−1)/N

= fsn,Q(P )(q
k−1)/N . (9)

Lemma 2 of [1] yields

fsn,Q = fs
n−1

s,Q f s
n−2

s,sQ · · · fs,sn−1Q. (10)

Since ψ is purely inseparable of degree qd, we obtain from Lemma 4 in [2]

fs,ψi(Q) ◦ ψi = f q
id

s,Q. (11)

We have ψi(Q) = siQ and ψie(P ) = P . Combining this with (10) and
(11) and a short calculation collecting functions that are evaluated at the
same points gives

fsn,Q(P ) =

e−1∏
j=0

fs,Q(ψ−j(P ))q
jdse−1−j


Pk−1

i=0 (se)k−1−i(qde)i

. (12)

Substituting (12) into (9) yields (8). �

Corollary 13 With the notation and assumptions of Theorem 7, define
v = u−1 mod r. Then

as : G2 ×G1 → µr, (Q,P ) 7→

e−1∏
j=0

fs,Q(γ−j(P ))v
j

(qk−1)/r

is a bilinear pairing that is non-degenerated if and only if sn 6≡ 1 mod r2.



Proof. Raising the ate pairing to the power N/r shows that the exponent
(qk − 1)/N can be replaced by the exponent (qk − 1)/r and the resulting
pairing will still be bilinear. It will be non-degenerate if and only if r -
L and r - (N/r), and this condition is equivalent to sn 6≡ 1 mod r2,
since sn − 1 = LN . After raising to the power of (qk − 1)/r every other
exponent may be reduced modulo r. Observing s−1qd ≡ u−1 mod r and
hence s−eqde ≡ 1 mod r we have c ≡

∑k−1
i=0 (se)k−1−i(qde)i ≡ k(qde)k−1 6≡

0 mod r. Hence c can be omitted without affecting bilinearity or non-
degeneracy. Finally, qjdse−1−j ≡ se−1vj mod r. By omitting se−1 for the
same reason we arrive at the pairing of the assertion. �

Since the automorphism group of an ordinary elliptic curve can only
be cyclic of order 2, 4 or 6 there are only few cases in which Theorem 7
can be applied.

6 Extended Pairing Functions of Lowest Degree

Using the extended ate pairing we obtain an extended version of Theo-
rem 1.

Theorem 14 Let n = lcm(k,#Aut(E)). Then the n-th roots of unity
modulo r are defined in integers. Let s be any n-th root of unity modulo r.
Write s = uqd mod r with u an #Aut(E)-th root of unity modulo r and
let e be the order of u modulo r. Define v = u−1 mod r. Let γ ∈ Aut(E)
of order e such that (γπd)(Q) = sQ.

Then there is h ∈ Z[x] with h(s) ≡ 0 mod r, deg(h) ≤ ϕ(n) − 1 and
||h||1 = O(r1/ϕ(n)) such that

as,h : G2 ×G1 → µr, (Q,P ) 7→

e−1∏
j=0

fs,h,Q(γ−j(P ))v
j

(qk−1)/r

is a non-degenerate bilinear pairing. The polynomial h can be efficiently
computed. The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )h(s)/r.

Any h ∈ Z[x] with deg(h) ≤ n − 1 such that as,h is a bilinear non-
degenerate pairing satisfies ||h||1 ≥ r1/ϕ(n).

The O-constant depends only on n.



Proof. Using Corollary 13, the proof is essentially that of Theorem 1. The
only point to note is that if as,h ∈Wbilin, then also as,xh ∈Wbilin. This is
clear since T 7→ sT is an automorphism of G2. Then there is in fact a t
of order n modulo r such that as,xh = ats,h, but this is not needed for the
proof. The rest of the proof of Theorem 1 applies as is and can be left to
the reader.

Note that Corollary 13 and Theorem 14 can also be formulated for the
extended twisted ate pairing from Theorem 7. Since the automorphism
group of ordinary elliptic curves is rather small the best improvement we
can get is φ(n) = 2φ(k). This happens precisely when

1. k is odd and #Aut(E) = 4 (equivalently D = −1)
2. k is not divisible by 3 and #Aut(E) = 6 (equivalently D = −3).

In all other cases, φ(n) = φ(k).
It is interesting to look for further extensions. The key point with

the ate pairing reduction is equation (11). But every purely inseparable
function of degree qi is of the form γπi with γ ∈ Aut(E). Thus we cannot
do better than Theorem 14.

On the other hand, we could choose to not use (11). Based on solely
(10) it is indeed possible to define non-degenerate bilinear pairing of the
following form.

Theorem 15 Let n be any divisor of r − 1 and s an integer of order n
modulo r such that sn 6≡ 1 mod r2. Then there is h ∈ Z[x] with h(s) ≡
0 mod r, deg(h) ≤ ϕ(n)− 1 and ||h||1 = O(r1/ϕ(n)) such that

as,h : G2 ×G1 → µr, (Q,P ) 7→

n−1∏
j=0

fs,h,sjQ(P )s
n−1−j

(qk−1)/r

is a non-degenerate bilinear pairing. The polynomial h can be efficiently
computed. The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )h(s)/r.

Any h ∈ Z[x] with deg(h) ≤ n − 1 such that as,h is a bilinear non-
degenerate pairing satisfies ||h||1 ≥ r1/ϕ(n).

The O-constant depends only on n.

Proof. Using equation (10) and the argument in the proof of Corollary 13,
the proof is the same as that of Theorem 1 and can be left to the reader.



Note that the product in the definition of as,h runs over n function
evaluations, as opposed to e function evaluations in Theorem 14. This is
precisely the effect of the missing ate pairing reduction. While the product
over n function evaluations is a big disadvantage it might be outweighed
by using h with very small norm and efficient endomorphisms α such that
α(Q) = sQ. An example for a similar construction, which does give a fast
pairing, are the NSS curves from [6]. See also [7], where these pairings are
called superoptimal pairings.

Of course it would be nice to have n > k and still use a pairing as in
Theorem 1, that is only one function evaluation instead of more function
evaluations. We have tried some examples of elliptic curves and n with
k |n and determined all functions in Fqk(E) supported in Zs = {siQ | 0 ≤
i ≤ n− 1} that would define a bilinear (non-degenerate) pairing. Except
for the already known functions supported on Z = {qiQ | 0 ≤ i ≤ k − 1}
we did not find any new functions. This suggests that at least generically
all functions defining pairings are in fact of the form like in Theorem 1.

7 Parametric Families

For parametric families of pairing friendly elliptic curves we get the fol-
lowing theorem.

Theorem 16 Assume that q, s, r are given as polynomials in Z[t] such
that for t0 ∈ Z large enough there is an elliptic curve E over Fq(t0) with
parameters n, r(t0), s(t0) as in Theorem 1 (here n = k), Theorem 14 or
Theorem 15.

Then there is h ∈ Z[t][x] with deg(h) ≤ ϕ(n) − 1 and degt(h) =
1/ϕ(n) deg(r) such that

as,h(t0,x) : G2 ×G1 → µr

from said theorem is a non-degenerate bilinear pairing for all t0 suffi-
ciently large. The polynomial h can be efficiently computed.

Any h ∈ Z[t][x] with deg(h) ≤ n − 1 such that as,h(t0,x) is non-
degenerate for all t0 sufficiently large satisfies degt(h) ≥ 1/ϕ(n) deg(r).

Proof. We define A, I(1), I(2) for R = Z[t] and r, s as at the beginning of
section 4. From Lemma 6 we see that there are Z[t]-linearly independent
vi ∈ I(1) with degt(vi) = 0 for the first and degt(vi) = 1/ϕ(n) deg(r)
for the last elements. Looking at the determinant we see that there are
only finitely many t0 such that the specialised elements vi(t0) will not be



Z-linearly independent. Since t0 is to be chosen sufficiently large we can
assume that the vi(t0) are Z-linearly independent. Then ||vi(t0)||1 = O(1)
for the first and ||vi(t0)||1 = Θ(r(t0)1/ϕ(n)) for the last elements, where
the constants only depend on n.

We now use A, I(1), I(2) for R = Z. From Lemma 2 we have I(1),m =
M ⊕ I(1),ϕ(n) with M = {h ∈ I(1),m |h ≡ 0 mod Φn} using polynomial di-
vision by Φn with remainder. Any vector having non zero projection onto
I(1),ϕ(n) has norm in Ω(r(t0)1/ϕ(n)) because of Lemma 3. Thus vi(t0) ∈M
for the first elements. Since the vi(t0) are linearly independent the last
vi(t0) must have non-zero projection onto I(1),ϕ(n). Lemma 3 together
with ||vi(to)||1 = Θ(r(t0)1/ϕ(n)) implies vi(t0) 6∈ I(2). Thus the last vi(t0)
define a non-degenerqate bilinear pairing and we can choose h as one of
the vi(t0). Since the vi are computed by means of the function field LLL,
the polynomial h can be efficiently computed.

The last statement follows since ||h(t0, x)||1 ≥ r(t0)1/ϕ(n) for t0 tending
to infinity. �

A consequence of the Theorem is that in parametric families deg(r)
must be divisible by φ(n).

For examples of this construction we refer to [7].
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