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Abstract. We provide a convenient mathematical framework that es-
sentially encompasses all known pairing functions based on the Tate pair-
ing. We prove non-degeneracy and bounds on the lowest possible degree
of these pairing functions and show how efficient endomorphisms can be
used to achieve a further degree reduction.

1 Introduction

The cryptographic importance of efficiently computable, bilinear and non-
degenerate pairings that are hard to invert in various ways has been amply
demonstrated. The currently only known instantiations of pairings suit-
able for cryptography are the Weil and Tate pairings on elliptic curves or
on Jacobians of more general algebraic curves. In view of the applications,
efficient algorithms for computing these pairings are of great importance.

Let E be an elliptic curve over Fq and let G1, G2 be two subgroups
of E(Fq) of prime order r satisfying r | (q − 1). Let µr be the subgroup
of r-th roots of unity of F×

q . Then we can in principle define a pairing
e : G1 × G2 → µr by taking any generator of µr as the pairing value of
a generator of G1 and a generator of G2 and by extending via linearity.
Since the computation of pairing values would then require taking discrete
logarithms, this is not a practical approach.

A different approach avoiding the problem with the discrete loga-
rithms would be to use an algebraic representation of e such that pairing
values are obtained by substituting the coordinates of the input points
with respect to a short Weierstrass form of E into an algebraic expres-
sion. This can in principle generally be achieved by using polynomial
interpolation and would for example lead to a representation e(P,Q) =
f(xP , yP , xQ, yQ) where P = (xP , yP ) ∈ G1, Q = (xQ, yQ) ∈ G2 and
f ∈ Fqk [x1, y1, x2, y2] is a fixed polynomial of total degree about r2 (or
r if viewed in x1, y1 and x2, y2 separately). However, this approach will
also be impractical unless some efficient, i.e. at least polynomial time in
log(r), way of storing and evaluating f is found.



The approach currently employed is to use specific rational func-
tions fP on E depending on P instead of interpolation polynomials such
that the pairing values are obtained by a function evaluation e(P,Q) =
fP (Q)(q−1)/r. The functions fP are defined by means of principal divisors
with large coefficients but small support. One then essentially applies the
Riemann-Roch theorem in form of Miller’s algorithm to find a polynomial-
in-log(r)-sized representation of fP , consisting of a short product of quo-
tients of linear polynomials in x and y with large exponents, which enables
the efficient evaluation of fP (Q).

The Tate and ate pairings are two special forms of functions fP . Re-
cently, some more variants have been given in [4, 8]. Products of the Tate
and the ate pairing with the goal of reducing the degree of the resulting
pairing function have been considered in [3]. This idea has been much
extended in [7] and is also the objective of this paper. In addition to the
construction from [7] we provide a convenient mathematical framework
that allows to formulate a much clearer non-degeneracy condition and
relation with the Tate pairing. The key idea here is to use a degenerate
ate pairing instead of the non-degenerate ate pairing. We prove the non-
degeneracy of the pairings given by certain functions of lowest degree,
prove some optimal lower and upper bounds in every admissible dimen-
sion and extend the construction to allow the use of efficiently computable
automorphisms and endomorphisms.

2 Preliminaries

2.1 Notation

In this paper we will consider ordinary elliptic curves only, although the
general logic behind the construction generalises to supersingular elliptic
or hyperelliptic curves. Let us first briefly define the standard notation
and setting for pairings on such elliptic curves.

Let E be an ordinary elliptic curve over a finite field Fq. Let r ≥ 5
be a prime factor of #E(Fq) with embedding degree k ≥ 2 such that
k | (r − 1). Then E(Fqk)[r] ∼= Z/rZ × Z/rZ and there exists a basis P,Q
of E(Fqk)[r] satisfying π(P ) = P and π(Q) = qQ, where π is the q-power
Frobenius endomorphism on E. We define G1 = 〈P 〉 and G2 = 〈Q〉. Note
that G1 ∩G2 = {O}.

Let O be the point at infinity and z ∈ Fq(E) a fixed local uniformiser
at O. We say that f ∈ Fqk(E) is monic if (fz−v)(O) = 1 where v is the
order of f at O. In other words this says that the Laurent series expansion



of f in terms of z is of the form f = zv+O(zv+1). We will consider monic
functions f throughout the paper without further mentioning.

For s ∈ Z and R ∈ E(Fqk) we let fs,R ∈ Fqk(E) be the uniquely
determined monic function with divisor (fs,R) = ((sR) − (O)) − s((R) −
(O)) where (R) is the prime divisor corresponding to the point R. Miller’s
algorithm expresses fs,R as a product about log2(|s|) quotients of monic
linear functions with exponents of bitlength up to about log2(|s|). Note
that for R ∈ E(Fq) we have fs,R ∈ Fq(E).

The r-th roots of unity in Fqk are denoted by µr. The n-th cyclotomic
polynomial is denoted by Φn, and its degree by ϕ(n).

2.2 Tate and Ate Pairings

Recall that the reduced Tate pairing and ate pairings are bilinear pairings
G2 ×G1 → µr and are given as follows. The reduced Tate pairing is

t : G2 ×G1 → µr, (Q,P ) 7→ fr,Q(P )(q
k−1)/r.

It is in fact defined on all E(Fqk)[r] × E(Fqk)[r] and is always non-
degenerate.

Let s be an arbitrary integer such that s ≡ q mod r. Let N = gcd(sk−
1, qk−1), L = (sk−1)/N and c =

∑k−1
j=0 s

k−1−jqj mod N . The ate pairing
with respect to s is given by

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )c(q
k−1)/N .

The relation with the Tate pairing is as(Q,P ) = t(Q,P )L. It is thus
non-degenerate if and only if r ∤ L (see [4]).

It is possible to have the same final exponent in the ate pairing as in
the Tate pairing. Consider the modified ate pairing

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )(q
k−1)/r.

Since r |N and r ∤ c this is always bilinear, and using the relation with
the Tate pairing it is not difficult to show that it is non-degenerate if and
only if sk 6≡ 1 mod r2 (see also Corollary 14 and its proof).

It is in general not true that the ate pairing can be extended to a
bilinear pairing on proper overgroups of G2 or G1.



3 Pairing Functions of Lowest Degree

Let s be an integer. For h =
∑d

i=0 hix
i ∈ Z[x] with h(s) ≡ 0 mod r let

fs,h,R ∈ Fqk(E) for R ∈ E(Fqk)[r] be the uniquely defined monic function
satisfying

(fs,h,R) =
d

∑

i=0

hi((s
iR) − (O)).

Furthermore, define

||h||1 =
d

∑

i=0

|hi|.

Then ||h||1/2 ≤ deg(fs,h,R) ≤ ||h||1 where the lower degree bound holds if
s 6≡ 0 mod r, d is less than the order of s modulo r and R 6= O.

Theorem 1 Assume that s is a primitive k-th root of unity modulo r2.
Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → µr, (Q,P ) 7→ fs,h,Q(P )(q
k−1)/r

is a bilinear pairing that is non-degenerate if and only if h(s) 6≡ 0 mod r2.
The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )h(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r,
deg(h) ≤ ϕ(k)−1 and ||h||1 = O(r1/ϕ(k)) such that as,h is non-degenerate.
The O-constant depends only on k.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that as,h is a non-degenerate
bilinear pairing satisfies ||h||1 ≥ r1/ϕ(k).

Proof. It is convenient to describe the situation in terms of the ring A =
Z[x]/(xk−1)Z[x] and its ideals I(i) = {h+(xk−1)Z[x] |h(s) ≡ 1 mod ri}
for i ∈ {1, 2} (thus we use the notation from the beginning of section 4
in the case R = Z). In addition, let W be the multiplicative group of
functions G2 × G2 → µr and Wbilin the subgroup of bilinear functions.
We want to define a map as : I(1) →Wbilin.

Since fs,g(x)(xk−1)+h(x),R = fs,h(x),R we can consider fs,h,R also for

h ∈ I(1) in a natural way. Note that fs,x−s,R is equal to fs,R using the
previous notation. We now define the map as : I(1) → W, h 7→ as,h with

as,h(T, S) = fs,h,T (S)(q
k−1)/r and as,h(O, S) = as,h(T,O) = 1 for T ∈ G2

and S ∈ G1. Then as,h+g = as,has,g for all h, g ∈ I(1), so as is additive.



We wish to show im(as) = Wbilin and ker(as) = I(2). Observe that
as,r = t is the Tate pairing and as,x−s = 1 is the modified ate pairing with
respect to s (which is degenerate). Hence as,r, as,x−s ∈ Wbilin. If as,h ∈
Wbilin then as,hx ∈ Wbilin. This follows from as,hx(T, S) = as,h(sT, S) =
as,h(T, S)s and the bilinearity of ass,h. Together with the additivity of as

we obtain that if as,h ∈Wbilin, then as,hg = a
g(s)
s,h ∈ Wbilin for all g ∈ Z[x]

or all g ∈ A. Now I(1) = rA+ (x− s)A by Lemma 3, so every h ∈ I(1) is
of the form h = g1r + g2(x− s) with g1, g2 ∈ A. Then

as,h = as,g1r+g2(x−s) = ag1(s)
s,r a

g2(s)
s,x−s = ag1(s)s,r ∈Wbilin (2)

and thus im(as) ⊆ Wbilin. Finally, since as,r 6= 1 and r is prime, we have
im(as) = Wbilin.

The shown properties of as can be conveniently summarised as follows.
We make Wbilin into an A-module via fg = fg(s) for f ∈Wbilin and g ∈ A.
Then as is an epimorphism of the A-modules I(1) and Wbilin.

The kernel of as is an A-submodule of I(1) and hence an ideal of A con-
tained in I(1). Since as is surjective, the index satisfies (I(1) : ker(as)) =
#Wbilin = r. But r2, x−s ∈ ker(as) so I(2) = r2A+(x−s)A ⊆ ker(as) by
Lemma 3. Again by Lemma 3 we have (I(1) : I(2)) = r, so ker(as) = I(2)

follows.

Looking at (2) we see that g1(s) = h(s)/r mod r and thus as,h =

a
h(s)/r
s,r , which shows the relation of as,h with the Tate pairing.

Having set up the link to the ring A and the ideals I(i) the rest of the
theorem follows from Lemma 5 and Lemma 4. �

Some remarks on the theorem are in order. Suppose that s is an
integer with sk ≡ 1 mod r. Since k is coprime to r we can find i such
that (s+ ir)k ≡ 1 mod r2. Replacing s by s+ ir we can thus assume that
sk ≡ 1 mod r2 without loss of generality.

The construction of the proof is complete in the following sense:
Let w, hi ∈ Z such that

∑k−1
i=0 hi(π

i(Q)) − w(O) is a principal divi-

sor. Then
∑k−1

i=0 hiq
i ≡ 0 mod r and

∑k−1
i=0 hi(π

i(T )) − w(O) is a prin-
cipal divisor for every T ∈ G2. Let fT ∈ Fqk(E) be monic such that

(fT ) =
∑k−1

i=0 hi(π
i(T )) − w(O). Then (T, S) 7→ fT (S)(q

k−1)/r defines a

bilinear pairing that is equal to as,h for h =
∑k−1

i=0 hix
i ∈ I(1), as is di-

rectly seen. As a consequence, there are no additional functions left in
Fqk(E) that are supported on Z = {πi(Q) | 0 ≤ i ≤ k − 1} and could
possibly define a bilinear pairing.



4 Some Lemmas

This section contains some technical lemmas dealing with the ring A and
its ideals I(i) that occured in the proof of Theorem 1.

In the following we will work with R = Z, R = Z[t] and R = Q[t]. It is
hence convenient to deal with these cases simultaneously for a moment.

Let R be a domain and let r, s ∈ R such that r 6= 0 is not a unit and s
has order n ≥ 2 in (R/rR)×. Define the R-algebra and its ideals

A = R[x]/(xn − 1)R[x],

I(i) = {h+ (xn − 1)R[x] |h(s) ≡ 0 mod ri},

for i ≥ 0 such that sn ≡ 1 mod riR. In the following we will identify
elements of A with their representing polynomials of degree ≤ n− 1. We
also define the R-modules

I(i),m = {h ∈ I(i) | deg(h) ≤ m− 1}.

Note I(i),m ⊆ I(j),w for m ≤ w and j ≤ i. Also I(i),n = I(i).

Lemma 3 The I(i) and I(i),m have the following properties:

1. I(i) = riA+ (x− s)A.

2. I(i),m is free of rank m and a basis is ri, x−s, x2−s2, . . . , xm−1−sm−1.

3. If m ≥ ϕ(n) then I(i),m = M ⊕ I(i),ϕ(n) with M = {h ∈ I(i),m |h ≡
0 mod Φn}.

Proof. From the definition of I(i) it is clear that riA + (x − s)A ⊆ I(i).
Conversely, let h ∈ I(i). Polynomial division by x − s with remainder
shows h = g · (x− s)+h(s) with g ∈ A and h(s) ∈ R. By definition of I(i)

we have h(s) ∈ riR. Thus h = h(s) + g · (x − s) ∈ riA + (x − s)A. This
proves the first assertion.

The second assertion follows easily from the first assertion and a short
Hermite normal form calculation applied to the basis ri, x − s, x(x −
s), . . . , xm−2(x− s) of I(i),m.

The third assertion follows using polynomial division by Φn with re-
mainder: The projection I(i),m → I(i),ϕ(n), h 7→ h mod Φn is split by the
inclusion I(i),ϕ(n) → I(i),m. Here h mod Φn ∈ I(i),ϕ(n) since Φn(s) ≡ 0 mod
ri. Note that M is a free R-module with basis Φn, . . . , x

m−ϕ(n)−1Φn. �

We remark that in addition to Lemma 3 one can show I(i) = (I(1))i

if R = nR+ rR (for example R = Z and r a prime). Since the ideals I(i)

are closed under multiplication by x we see that they are closed under
rotation of the coefficients of h ∈ I(i).



4.1 The case R = Z

We keep the above notation and assume r ≥ 2. For h =
∑d

i=0 hix
i ∈ Z[x]

define

||h||1 =

d
∑

i=0

|hi| and ||h||2 =

d
∑

i=0

|hi|
2.

Extend this definition toA by using class representatives of degree ≤ n−1.
This makes I(i) into a lattice. We have || · ||1 = Θ(|| · ||2) on I(i) where the
constants depend only on n.

Lemma 4 Assume sn ≡ 1 mod ri and let h ∈ Z[x] such that h(s) ≡
0 mod ri. If h 6≡ 0 mod Φn then

||h||1 ≥ ri/ϕ(n).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Z[ζ] the ring
of integers of the n-cyclotomic number field K/Q. Let a = riB+(ζ−s)B.
Then a is an ideal of B of norm NK/Q(a) = ri, by assumption on s. We
have ζ ≡ s mod a. Thus h(ζ) ∈ a\{0} by assumption on h and therefore

|NK/Q(h(ζ))| ≥ NK/Q(a) = ri.

On the other hand, the ϕ(n) complex conjugates ζ(j) of ζ satisfy |ζ(j)| = 1.
Hence |h(ζ(j))| ≤ ||h||1 and

|NK/Q(h(ζ))| =
∣

∣

ϕ(n)
∏

j=1

h(ζ(j))
∣

∣ ≤ ||h||
ϕ(n)
1 .

Combining the two inequalities proves the first assertion. �

Lemma 5 Assume sn ≡ 1 mod r2. Let m ≥ ϕ(n) and w = m − ϕ(n).
Any length ordered LLL-reduced basis v1, . . . , vm of I(1),m satisfies

||vi||1 = O(1) and vi ∈ I(2) for 1 ≤ i ≤ w,

||vi||1 = Θ(r1/ϕ(n)) and vi 6= I(2) for w < i ≤ m.

The O- and Θ-constants depend only on n and the element relations hold
for r sufficiently large in comparison to n.

Proof. By Lemma 3 the determinant of I(1),m is r and its dimension is
m. We also have I(1),m = M ⊕ I(1),ϕ(n) with M = {h ∈ I(1),m |h ≡
0 mod Φn}. Thus there are at least ϕ(n) basis vectors vi of I(1),m whose



projection onto I(1),ϕ(n) is not zero. By Lemma 4 these vi satisfy ||vi||2 =
Ω(r1/ϕ(n)). On the other hand, the LLL-property shows

∏m
i=1 ||vi||2 =

O(r). Thus there are precisely ϕ(n) basis vectors vi of size Θ(r1/ϕ(n))
whose projection onto I(1),ϕ(n) is not zero. The other basis vectors vi are
in M and satisfy ||vi||2 = O(1). Since the vi are assumed to be ordered by
length the assertion on the norms follows.

Now Φn(s) ≡ 0 mod r2 by assumption on s. Hence v ∈ I(2) for every
v ∈ M . This shows vi ∈ I(2) for 1 ≤ i ≤ w. On the other hand, if
v ∈ I(1),m\M and v ∈ I(2), then v 6≡ 0 mod Φn and v(s) ≡ 0 mod r2.
Then ||v||2 = Ω(r2/ϕ(n)) by Lemma 4, which is a contradiction. This finally
shows vi 6∈ I(2) for w < i ≤ m. �

The true constants of the O-terms and Θ-terms cannot easily be given,
only worst case bounds are available that are usually much too large. Since
r will in practice be much larger than n the contribution of these terms is
small and can essentially be neglected. In this case the element relations
will hold. Note that, unconditionally, any (LLL-reduced) basis of I(1),m

must contain at least one basis element that is not in I(2).

4.2 The case R = Z[t]

We keep the above notation and assume deg(r) ≥ 1. For h =
∑d

i=0 hix
i ∈

Q[t, x] with hi ∈ Q[t] define

degt h = max
0≤i≤d

deg(hi).

Extend this definition toA by using class representatives of degree ≤ n−1.
This makes I(i) into a ‘lattice’ with respect to deg.

Lemma 6 Assume sn ≡ 1 mod riQ[t] and let h ∈ Q[t, x] such that
h(s) ≡ 0 mod riQ[t]. If h 6≡ 0 mod Φn(x)Q[t, x] then

degt(h) ≥ i/ϕ(n) deg(r).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Q[t, ζ] the
integral closure of Q[t] in the function field K = Q(t, ζ)/Q. Let a =
riB + (ζ − s)B. Then a is an ideal of B of norm NK/Q(t)(a) = ri, by
assumption on s. We have ζ ≡ s mod a. Thus h(ζ) ∈ a by assumption on
h and

deg(NK/Q(t)(h(ζ))) ≥ deg(NK/Q(t)(a)) = ideg(r).



On the other hand, the ϕ(n) Puiseux series expansions of ζ with respect
to the degree valuation of Q(t) are just the constant complex conjugates
ζ(j) of ζ and thus satisfy deg(ζ(j)) = 0. Hence deg(h(ζ(j))) ≤ degt(h) and

deg(NK/Q(t)(h(ζ))) = deg





ϕ(n)
∏

j=1

h(ζ(j))





=

ϕ(n)
∑

j=1

deg(h(ζ(j))) ≤ ϕ(n) degt(h).

Combining the two inequalities proves the assertion. �

The following lemma uses the function field LLL (e.g. [5]). On in-
put of M ∈ Q[t]n×n with det(M) 6= 0 the function field LLL outputs
N,T ∈ Q[t]n×n such that N = MT , det(T ) = 1 and the sum of the max-
imal degrees occuring in each column equals the degree of det(M). The
columns of N are then by definition independent LLL-reduced elements
of Q[t]n.

Lemma 7 Assume sn ≡ 1 mod r2Q[t]. Let m ≥ ϕ(n) and w = m−ϕ(n).
Any length ordered LLL-reduced independent elements v1, . . . , vm of I(1),m

generating a submodule of finite index satisfy

degt vi = 0 and vi ∈ I(2) for 1 ≤ i ≤ w,

degt(vi) = 1/ϕ(n) deg(r) and vi 6= I(2) for w < i ≤ m.

Proof. The assertion and proof are exactly analogous to Lemma 5, if we
replace I(1),m by QI(1),m (i.e. allowing rational coefficients or using R =
Q[t]), require that the vi be a length ordered LLL-reduced basis of QI(1),m

and observe the analogy degt = log(|| · ||2)). The lemma then follows
because any LLL-reduced independent elements of I(1),m generating a
submodule of finite index are an LLL-reduced basis of QI(1),m. �

The vi ∈ I(1),m of Lemma 7 can be obtained from any LLL-reduced
basis of QI(1),m by multiplying each vi by a suitable integer, for example
such that the transformation matrix of the input basis of I(1),m from
Lemma 3 and the LLL-reduced basis will be defined over Z[t].

5 Extended Ate Pairings

The next theorem extends the ate pairing with respect to s to a possibly
slightly larger set of admissible values of s. We will then apply this to
extend Theorem 1 in order to make use of automorphisms of E.



Theorem 8 Let n = lcm(k,#Aut(E)). Then n | (r − 1) and the n-th
roots of unity modulo r are defined in integers. Let s be any n-th root of
unity modulo r. Write s = uqd mod r with u an #Aut(E)-th root of unity
modulo r and let e be the order of u modulo r. Define

N = gcd(sn − 1, qk − 1), L = (sn − 1)/N,

c =
k−1
∑

i=0

(se)k−1−i(qde)i mod N.

Then there is γ ∈ Aut(E) of order e such that (γπd)(Q) = sQ and

as : G2 ×G1 → µr,

(Q,P ) 7→





e−1
∏

j=0

fs,Q(γ−j(P ))q
jdse−1−j





c(qk−1)/N

defines a bilinear pairing. If k |#Aut(E) then there is γ ∈ Aut(E) such
that γ(P ) = sP and

atwist
s : G1 ×G2 → µr,

(P,Q) 7→





e−1
∏

j=0

fs,P (γ−j(Q))s
e−1−j





c(qk−1)/N

also defines a bilinear pairing. Both pairings as and atwist
s are non-degen-

erate if and only if r ∤ L.
The relation with the reduced Tate pairing is

as(Q,P ) = t(Q,P )L and atwist
s (P,Q) = t(P,Q)L.

We remark that if P = O or Q = O then the pairing values are defined
to be equal to 1.

Proof (of Theorem 8). Since automorphisms of additive cyclic groups op-
erate by integer multiplication we get isomorphisms Aut(G1) ∼= Aut(G2) ∼=
F×
r . Now, since E is ordinary, Aut(E) is a cyclic group (of order 2, 4 or 6)

and operates faithfully on G2 and G1. The Frobenius endomorphism π op-
erates faithfully on G2 with order k. Since Aut(G2) is cyclic, Aut(E) and
π generate a cyclic subgroupH of Aut(G2) of order n = lcm(k,#Aut(E)).
The image of H in F×

r is the group of n-th roots of unity, which shows
that the n-roots of unity modulo r are defined in integers, hence n | (r−1),



and that s can be written as s ≡ uqd mod r with u of order e modulo r
and e |#Aut(E).

In the ate pairing case, since ue ≡ 1 mod r and e |#Aut(E), there
is γ ∈ Aut(E) corresponding to the multiplication-by-u automorphism
of G2 such that sQ = (uqd)Q = (γπd)(Q). In the twisted ate pairing
case, since s#Aut(E) ≡ 1 mod r, there is γ ∈ Aut(E) corresponding to the
multiplication-by-s automorphism of G2 such that sP = γ(P ). Define
ψ = γπd for the ate pairing case. Define ψ = γπd and interchange P,Q
for the twisted ate pairing case. In either case we have a purely inseparable
isogeny ψ of degree qd with ψ(Q) = sQ and ψ(P ) = (s−1qd)P = u−1P .
It now suffices to show that

t(Q,P )L =





e−1
∏

j=0

fs,Q(ψ−j(P ))q
jdse−1−j





c(qk−1)/N

, (9)

since for the twisted ate pairing case fs,Q(π(P )) = fs,Q(P )q, and equa-
tion (9) implies that the ate and twisted ate pairing are bilinear, and
non-degenerate if and only if r ∤ L.

The proof now is essentially the same as in [2], with some small mod-
ifications. From Lemma 1 of [2] we obtain

t(Q,P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N

and

t(Q,P )L = fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

= fsn−1,Q(P )(q
k−1)/N

= fsn,Q(P )(q
k−1)/N . (10)

Lemma 2 of [1] yields

fsn,Q = f s
n−1

s,Q f s
n−2

s,sQ · · · fs,sn−1Q. (11)

Since ψ is purely inseparable of degree qd, we obtain from Lemma 4 in [2]

fs,ψi(Q) ◦ ψ
i = f q

id

s,Q. (12)

We have ψi(Q) = siQ and ψie(P ) = P . Combining this with (11) and
(12) and a short calculation collecting functions that are evaluated at the



same points gives

fsn,Q(P ) =





e−1
∏

j=0

fs,Q(ψ−j(P ))q
jdse−1−j





Pk−1

i=0
(se)k−1−i(qde)i

. (13)

Substituting (13) into (10) yields (9). �

Corollary 14 With the notation and assumptions of Theorem 8, define
v = u−1 mod r. Then

as : G2 ×G1 → µr, (Q,P ) 7→





e−1
∏

j=0

fs,Q(γ−j(P ))v
j





(qk−1)/r

is a bilinear pairing that is non-degenerated if and only if sn 6≡ 1 mod r2.

Proof. Raising the ate pairing to the power N/r shows that the exponent
(qk − 1)/N can be replaced by the exponent (qk − 1)/r and the resulting
pairing will still be bilinear. It will be non-degenerate if and only if r ∤ L
and r ∤ (N/r), and this condition is equivalent to sn 6≡ 1 mod r2, since
sn−1 = LN . After raising to the power of (qk−1)/r every other additional
exponent may be reduced modulo r. Observing s−1qd ≡ u−1 mod r and
hence s−eqde ≡ 1 mod r we have c ≡

∑k−1
i=0 (se)k−1−i(qde)i ≡ k(qde)k−1 6≡

0 mod r. Hence c can be omitted without affecting bilinearity or non-
degeneracy. Finally, qjdse−1−j ≡ se−1vj mod r. By omitting se−1 for the
same reason we arrive at the pairing of the assertion. �

Since the automorphism group of an ordinary elliptic curve can only
be cyclic of order 2, 4 or 6 there are only few cases in which Theorem 8
can be applied.

6 Extended Pairing Functions of Lowest Degree

Using the extended ate pairing we obtain an extended version of Theo-
rem 1.

Theorem 15 Let n = lcm(k,#Aut(E)) and s be any primitive n-th root
of unity modulo r2. Write s = uqd mod r with u an #Aut(E)-th root
of unity modulo r and let e be the order of u modulo r. Define v =
u−1 mod r. Let γ ∈ Aut(E) of order e such that (γπd)(Q) = sQ.



Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → µr, (Q,P ) 7→





e−1
∏

j=0

fs,h,Q(γ−j(P ))v
j





(qk−1)/r

is a bilinear pairing that is non-degenerate if and only if h(s) 6≡ 0 mod r2.
The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )eh(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r,
deg(h) ≤ ϕ(n)−1 and ||h||1 = O(r1/ϕ(n)) such that as,h is non-degenerate.
The O-constant depends only on n.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that as,h is a non-degenerate
bilinear pairing satisfies ||h||1 ≥ r1/ϕ(n).

Proof. Using Corollary 14 we get that as,t−s defines a bilinear pairing that
is degenerate. Also as,r is equal to the e-th power te of the Tate pairing:

as,r(Q,P ) =





e−1
∏

j=0

fs,r,Q(γ−j(P ))v
j





(qk−1)/r

=
e−1
∏

j=0

t(Q, γ−j(P ))v
j

=

e−1
∏

j=0

t(Q, uj(P ))v
j

= t(Q,P )e.

Observing gcd(e, r) = 1 the proof is now essentially the same as that of
Theorem 1 and can be left to the reader. �

Note that Corollary 14 and Theorem 15 can also be formulated for
the extended twisted ate pairing from Theorem 8.

Since the automorphism group of ordinary elliptic curves is rather
small the best improvement we can in Theorem 15 get is for φ(n) = 2φ(k).
This happens precisely when

1. k is odd and #Aut(E) = 4 (equivalently D = −1)

2. k is not divisible by 3 and #Aut(E) = 6 (equivalently D = −3).

In all other cases, φ(n) = φ(k).

It is interesting to look for further extensions. The key point with
the ate pairing reduction is equation (12). But every purely inseparable



function of degree qi is of the form γπi with γ ∈ Aut(E). Thus we cannot
do better than Theorem 15.

On the other hand, we could choose to not use (12). Based on solely
(11) it is indeed possible to define non-degenerate bilinear pairing of the
following form.

Theorem 16 Let n be any divisor of r − 1 and s a primitive n-th root
of unity modulo r2.

Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → µr, (Q,P ) 7→





n−1
∏

j=0

fs,h,sjQ(P )s
n−1−j





(qk−1)/r

is a bilinear pairing that is non-degenerate if and only if h(s) 6≡ 0 mod r2.
The relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )ns
n−1h(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r,
deg(h) ≤ ϕ(n)−1 and ||h||1 = O(r1/ϕ(n)) such that as,h is non-degenerate.
The O-constant depends only on n.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that as,h is a non-degenerate
bilinear pairing satisfies ||h||1 ≥ r1/ϕ(n).

Proof. Using equations (10), (11) and the argument in the proof of Corol-
lary 14 we find that as,x−s defines a bilinear pairing that is degenerate.

Also as,r = tns
n−1

is quite directly seen. From here the proof is again the
same as that of Theorem 1 and can be left to the reader. �

Note that the product in the definition of as,h runs over n function
evaluations, as opposed to e function evaluations in Theorem 15. This is
precisely the effect of the missing ate pairing reduction. While the product
over n function evaluations is a big disadvantage it might be outweighed
by using h with very small norm and efficient endomorphisms α such that
α(Q) = sQ. An example for a similar construction, which does give a fast
pairing, are the NSS curves from [6]. See also [7], where these pairings are
called superoptimal pairings.

Of course it would be nice to have n > k and still use a pairing as in
Theorem 1, that is only one function evaluation instead of more function
evaluations. We have tried some examples of elliptic curves and n with
k |n and determined all functions in Fqk(E) supported in Zs = {siQ | 0 ≤



i ≤ n− 1} that would define a bilinear (non-degenerate) pairing. Except
for the already known functions supported on Z = {qiQ | 0 ≤ i ≤ k − 1}
we did not find any new functions. This suggests that on G1 and G2, at
least generically, all functions defining pairings are in fact of the form like
in Theorem 1.

7 Parametric Families

For parametric families of pairing friendly elliptic curves we get the fol-
lowing theorem.

Theorem 17 Assume that n, k are integers and q, s, r are polynomials
in Z[t] such that s is a primitive n-th root of unity modulo r2 and such
that for t0 ∈ J with J a suitable unbounded subset of Z there is an elliptic
curve E over Fq(t0) with parameters n, r(t0), s(t0) as in Theorem 1 (here
n = k), Theorem 15 or Theorem 16.

Then there is h ∈ Z[t][x] with deg(h) ≤ ϕ(n) − 1 and degt(h) =
1/ϕ(n) deg(r) such that

as,h(t0,x) : G2 ×G1 → µr

from said theorem is a non-degenerate bilinear pairing for all t0 ∈ J
sufficiently large. The polynomial h can be efficiently computed.

Any h ∈ Z[t][x] such that as,h(t0,x) is non-degenerate for all t0 ∈ J
sufficiently large satisfies degt(h) ≥ 1/ϕ(n) deg(r).

Proof. We define A, I(1), I(2) for r, s and R = Z[t] as at the beginning of
section 4. We also define A(t0), I

(1)(t0), I
(2)(t0) for r(t0), s(t0) and R = Z

as at the beginning of section 4. From Lemma 7 we see that there are
Z[t]-linearly independent vi ∈ I(1) with degt(vi) = 0 for the first and
degt(vi) = 1/ϕ(n) deg(r) for the last elements. Looking at the determi-
nant (a multiple of r) we see that there are only finitely many t0 such
that the specialised elements vi(t0) ∈ I(1)(t0) will not be Z-linearly in-
dependent. Since t0 is to be chosen sufficiently large we can assume that
the vi(t0) are Z-linearly independent. Then ||vi(t0)||1 = O(1) for the first
and ||vi(t0)||1 = Θ(r(t0)

1/ϕ(n)) for the last elements, where the constants
only depend on n and on the choice of the vi.

From Lemma 3 we have I(1),m(t0) = M(t0)⊕I
(1),ϕ(n)(t0) withM(t0) =

{h ∈ I(1),m(t0) |h ≡ 0 mod Φn} using polynomial division by Φn with
remainder. Any vector vi(t0) having non zero projection onto I(1),ϕ(n)(t0)
has norm in Ω(r(t0)

1/ϕ(n)) because of Lemma 4. Thus vi(t0) ∈M(t0) for



the first elements. Since the vi(t0) are linearly independent the last vi(t0)
must have non-zero projection onto I(1),ϕ(n)(t0). Lemma 4 together with
||vi(t0)||1 = Θ(r(t0)

1/ϕ(n)) implies vi(t0) 6∈ I(2)(t0). Thus the last vi(t0)
define non-degenerate bilinear pairings and we can choose h as one of the
vi(t0). Since the vi are computed by means of the function field LLL, the
polynomial h can be efficiently computed.

The last statement on the degrees follows since ||h(t0, x)||1 ≥ r(t0)
1/ϕ(n)

for t0 tending to infinity. �

A consequence of the Theorem is that in parametric families deg(r)
must be divisible by φ(n).

We refer to [7] for examples of this construction.
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