
A Chosen IV Attack Using Phase Shifting
Equivalent Keys against DECIM v2

Hidehiko Nakagami, Ryoichi Teramura, Toshihiro Ohigashi,
Hidenori Kuwakado, and Masakatu Morii

Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
{0414358t, teramura}@stu.kobe-u.ac.jp, ohigashi@m.ieice.org,

{kuwakado, mmorii}@kobe-u.ac.jp

Abstract. DECIM v2 is a stream cipher submitted to the ECRYPT
stream cipher project (eSTREAM) and ISO/IEC 18033-4. No attack
against DECIM v2 has been proposed yet. In this paper, we propose a
chosen IV attack against DECIM v2 using a new equivalent key class.
Our attack can recover an 80-bit key with a time complexity of 279.56

when all bits of the IV are zero. This result is the best one on DECIM
v2.

Keywords: cryptanalysis, equivalent keys, stream cipher, DECIM v2,
eSTREAM

1 Introduction

Keys are called equivalent keys if ciphertexts generated from these keys have
equivalence. In general, equivalent keys generate same ciphertexts. In the stream
ciphers, keys that generate pseudo-random sequences (called keystreams) of dif-
ferent phase are also called equivalent keys since the ciphertext is made by
XORing a plaintext to a keystream. We call such equivalent keys phase shifting
equivalent keys.

In 2006, phase shifting equivalent keys on Grain v1 [1] are discussed by
Ö. Küçük [2]. Recently, key recovery attacks using phase shifting equivalent keys
have been proposed. These attacks search an key and phase shifting equivalent
keys in parallel for speeding up an exhaustive key search. Two key recovery
attacks against Grain v1 using phase shifting equivalent keys were independently
proposed by Isobe et al. [3] in September 2007 and by C. De Cannière et al. [4] in
February 2008 1. When all bits of an initialization vector (IV) are one, the attack
of Isobe et al. can recover an 80-bit key with a time complexity of 278.4 or 278.7,
and the attack of C. De Cannière et al. can recover the key with a time complexity
of 279. The IV is a public value, and is changed in each encryption session.
Moreover, Isobe et al. have given a lot of IVs for the attack [5]. Although key
1 The approach of these attacks are different. We think that the efficient of the key

recover attack can be improved with a combination of attacks of [3] and [4].

recovery attacks against Grain v1 using phase shifting equivalent keys have been
discussed, applying the attack to other stream ciphers has not been discussed
yet.

In this paper, we discuss a key recovery attack against DECIM v2 [6] using
phase shifting equivalent keys. DECIM v2 is a hardware oriented stream cipher,
which was designed by C. Berbain et al. It uses an 80-bit key K and a 64-bit IV
IV , and has submitted to the ECRYPT stream cipher project (eSTREAM) [7]
and ISO/IEC 18033-4. Now, no efficient attack against DECIM v2 has been
proposed yet. First, we show that any (K, IV) pair has a 1-bit phase shifting
equivalent key (K̂, ˆIV) with a probability of 1/8 on DECIM v2. Next, we propose
a key recovery attack against DECIM v2 using these equivalent keys. When
IV = (0, 0, . . . , 0) is used, our attack can recover an 80-bit key with a time
complexity of 279.56. Our attack is a first one against DECIM v2.

This paper is organized as follows: DECIM v2 is described in Sect. 2. In
Sect. 3. we define phase shifting equivalent keys, and show that conditions for
such equivalent keys. Sect. 4. we give conditions for phase shifting equivalent
keys of DECIM v2, and calculate the probability that any (K, IV) has a phase
shifting equivalent key. Sect. 5. we propose a key recovery attack against DECIM
v2 using phase shifting equivalent keys.

2 Description of DECIM v2

DECIM v2 uses an 80-bit key K = (K0, · · · , K79) and a 64-bit IV IV =
(IV0, · · · , IV63), where Ki and IVi are 1-bit variables. An internal state S con-
sists of a 192-bit linear feedback shift register (LFSR) S = (x0, x1, . . . , x191),
where xi is a 1-bit variable. In addition, DECIM v2 has a nonlinear filter func-
tion f and an irregular decimation mechanism (called the ABSG) and a Buffer.

The algorithm of DECIM v2 is split into a key-scheduling algorithm (KSA)
and a pseudo-random generation algorithm (PRGA). The KSA initializes the
internal state using K and IV . The PRGA generates a pseudo-random sequence
(called a keystream) Z = (z0, z1, . . .) from an initial state of the PRGA, which
is an internal state when the KSA was completed, where zi is a 1-bit variable.
A ciphertext/plaintext is obtained by XORing a plaintext/ciphertext to the
keystream.

We describe the KSA and the PRGA. In order to distinguish between the
KSA and the PRGA, we use different symbols. The internal state of the KSA is
denoted by S∗, and that of the PRGA is denoted by S.

2.1 Pseudo Random Generation Algorithm

The internal state of the PRGA at time t denotes St = (x0,t, x1,t, . . . , x191,t).
The PRGA has an update function PRGA Nextstate() and an output function
Output(). PRGA Nextstate() at time t updates St−1 to St, and Output()
generates the keystream from the internal state.

We describe the process of PRGA Nextstate(). The internal state St−1 is
updated as follows:

xi,t =

{
xi+1,t−1 if i = 0, . . . , 190,

lvt−1 if i = 191,
(1)

where

lvt−1 = x189,t−1 ⊕ x188,t−1 ⊕ x169,t−1 ⊕ x156,t−1 ⊕ x155,t−1 ⊕ x132,t−1

⊕x131,t−1 ⊕ x94,t−1 ⊕ x77,t−1 ⊕ x46,t−1 ⊕ x17,t−1

⊕x16,t−1 ⊕ x5,t−1 ⊕ x0,t−1. (2)

We describe the process of Output(). First, the nonlinear filter function f
outputs a 1-bit variable vt−1 using the internal state St−1 as follows 2 :

vt−1 =

{
0 if X = 0, 3,

1 if X = 1, 2,
(3)

where X = (x191,t−1+x186,t−1+x178,t−1+x172,t−1+x162,t−1+x144,t−1+x111,t−1+
x104,t−1 + x65,t−1 + x54,t−1 + x45,t−1 + x28,t−1 + x13,t−1) mod 4. Second, a 1-bit
variable yt−1 is obtained from vt−1 and St−1 as follows:

yt−1 = vt−1 ⊕ x1,t−1. (4)

Third, the ABSG outputs the keystream (z0, z1, . . .) from the sequence Y =
(y0, y1, . . .). The algorithm of the ABSG is given as follows:

Input: (y0, y1, . . .)
Set: i ← 0; j ← 0;
Repeat the following steps:

1. e ← yi, zj ← yi+1;
2. i ← i + 1;
3. while (yi = e) i ← i + 1;
4. i ← i + 1;
5. output zj ;
6. j ← j + 1;

The keystream (z0, z1, . . .) are stored in the buffer. Since the Buffer is a mech-
anism for the implementation, we omit its detail. Figure 1 shows the processes
of the PRGA of DECIM v2.

2 Note that Eq. (3) and vt−1 = f(a1, . . . , a13) =
L

1≤i<j≤13 aiaj

L
1≤i≤13 ai are equiv-

alent, where (a1, . . . , a13) = (x191,t−1, x186,t−1, x178,t−1, x172,t−1, x162,t−1, x144,t−1,
x111,t−1, x104,t−1, x65,t−1, x54,t−1, x45,t−1, x28,t−1, x13,t−1).

x191 x190 … x1 x0

f

…

ABSG

lv

v

y

Buffer

Plaintext

Ciphertext
z

Fig. 1. PRGA of DECIM v2.

2.2 Key Scheduling Algorithm

The internal state of the KSA at time t denotes S∗t = (x∗0,t, x
∗
1,t, . . . , x

∗
191,t). First,

S∗ is initialized by K and IV as follows:

x∗i,0 =





Ki if i = 0, . . . , 79,

Ki−80 ⊕ IVi−80 if i = 80, . . . , 143,

Ki−80 ⊕ IVi−144 ⊕ IVi−128 ⊕ IVi−112 ⊕ IVi−96 if i = 144, . . . , 159,

IVi−160 ⊕ IVi−128 ⊕ 1 if i = 160, . . . , 191.

(5)

Next, S∗t−1 is updated by KSA Nextstate(). KSA Nextstate() is defined
as

x∗i,t =

{
x∗i+1,t−1 if i = 0, . . . , 190,

lv∗t−1 ⊕ v∗t−1 if i = 191.
(6)

lv∗t−1 and v∗t−1 are obtained from S∗t−1 by using Eqs. (2) and (3).
After KSA Nextstate() is executed for t = 1, 2, . . . , 768, an obtained S∗768

is set to S0, which is an initial state of the PRGA. Figure 2 shows the processes
of the KSA of DECIM v2.

3 Phase Shifting Equivalent Keys

3.1 Description

In stream ciphers, a w bits of a keystream is outputted with updating an internal
state S in every time. The keystream Z generated from a key and an IV pair

f

lv*

v*

…

x191 x190 x1 x0** * *

Fig. 2. KSA of DECIM v2.

(K, IV) is expressed as Z = (z0, z1, . . .), where zi is a w-bit variable. We consider
the case that the internal state Sn, which is generated from (K, IV), is equal to
the initial state of the PRGA Ŝ0, which is generated from the different key and
IV pair (K̂, ˆIV), where n is a positive integer. This case is expressed as follows:

Sn = Ŝ0. (7)

If Eq. (7) holds, the keystream Ẑ, which is generated from (K̂, ˆIV), is

Ẑ = (ẑ0, ẑ1, . . .) = (zn, zn+1, . . .). (8)

Ẑ is the nw-bit shifted keystream from Z. Then, (K, IV) and (K̂, ˆIV) are called
phase shifting equivalent keys.

3.2 Conditions for Phase Shifting Equivalent Keys

First, we present conditions for obtaining phase shifting equivalent keys of a
stream cipher that has similar update functions of the KSA and the PRGA. We
give the following theorem for phase shifting equivalent keys.

Theorem 1 If (K, IV) and (K̂, ˆIV) satisfy following conditions, then Sn = Ŝ0

holds.

Condition 1: Ŝ∗0 and S∗n are identical.
Condition 2: The function PRGA Nextstate() of (K, IV) at time t = 1, 2, . . . , n

and the function KSA Nextstate() are identical.

Proof. From Condition 1, Ŝ∗0 = S∗n holds. Let T be the number of calling
KSA Nextstate() in the KSA. Since identical update function is used in the
KSA for all t = 1, 2, . . . , T − n, the initial state of the PRGA S0 satisfies
Ŝ∗T−n = S∗T = S0. When Condition 2 holds, PRGA Nextstate() of (K, IV)
at time t = 1, 2, . . . , n and the function KSA Nextstate() of (K̂, ˆIV) at time
t = T − n + 1, T − n + 2, . . . , T are identical. Then, Ŝ∗T = Ŝ0 = Sn holds. ut

(K , IV)

(K , IV)＾＾

KSA PRGA

KSA

…

…

PRGA

S0
* Sn

* S0 Sn

S0
*＾ ST - n

*＾ S0
＾

… … …

… …

Set

Set

Fig. 3. Conditions of the phase shifting equivalent keys.

Figure 3 shows that Condition 1 and Condition 2 of Theorem 1.
Next, we calculate a probability that any (K, IV) pair has a phase shifting

equivalent key (K̂, ˆIV). Let P1 be a probability that Condition 1 holds, and P2

be a probability that Condition 2 holds. Suppose that Condition 1 and Condition
2 are independent. Then, Pf , which is the probability that any (K, IV) pair has
a phase shifting equivalent key, is given as

Pf = P1 · P2. (9)

4 Phase Shifting Equivalent Keys of DECIM v2

4.1 Conditions for 1-bit Phase Shifting Equivalent Keys

We discuss conditions for 1-bit phase shifting equivalent keys of DECIM v2. In
DECIM v2, Condition 1 of Theorem 1 for 1-bit phase shifting equivalent keys is
written as follows:

S∗1 = Ŝ∗0 . (10)

In addition, Condition 2 of that is written as follows:

PRGA nextstate(S0) = KSA nextstate(Ŝ∗767). (11)

We consider conditions for satisfying Eq. (10). From Eqs. (5) and (6), S∗1 is
given as follows:

x∗i,1=





Ki+1 if i = 0, . . . , 78,

Ki−79 ⊕ IVi−79 if i = 79, . . . , 142,

Ki−79 ⊕ IVi−143 ⊕ IVi−127 ⊕ IVi−111 ⊕ IVi−95 if i = 143, . . . , 158,

IVi−159 ⊕ IVi−127 ⊕ 1 if i = 159, . . . , 190,

lv∗0 ⊕ v∗0 if i = 191.

(12)

A 1-bit phase shifting equivalent key (K̂, ˆIV) is defined as

K̂i =

{
Ki+1 if i = 0, . . . , 78,

K0 ⊕ IV0 if i = 79,
(13)

ˆIV i =

{
IVi+1 if i = 0, . . . , 62,

IV0 ⊕ IV16 ⊕ IV32 ⊕ IV48 if i = 63.
(14)

Then, from Eqs. (5) and (12)–(14), two conditions for satisfying Eq. (10) are
given as follows:

IV0 ⊕ IV32 ⊕K0 = 1, (15)
IV0 ⊕ IV16 ⊕ IV48 ⊕ 1 = lv∗0 ⊕ v∗0 . (16)

We consider a condition for satisfying Eq. (11). From Eqs. (1) and (6),
KSA Nextstate() and PRGA Nextstate() are identical if v∗t−1 = 0 holds
in the KSA. Thus, the condition for satisfying Eq. (11) is as follows:

v̂∗767 = 0. (17)

If Eqs. (15)–(17) hold, then Ŷ is 1-bit shifted sequence from Y , that is Ŷ =
(ŷ0, ŷ1, ŷ2, . . .) = (y1, y2, . . .) holds. Note that Y and Ŷ are not keystreams but
inputs of the ABSG. Keystreams Z and Ẑ are obtained from Y and Ŷ by the
ABSG. In the ABSG, Z is synchronized with Ẑ after the time that symbols
“00” or “11” are found in Y . After the synchronization, Z and Ẑ are promised
same sequences except the first bit. Thus, Z and Ẑ have equivalence. Moreover,
Z and Ẑ are specific sequences, which are (0, 0, 0, . . .) or (1, 1, 1, . . .), before
the synchronization. Therefore, Z and Ẑ generated from 1-bit phase shifting
equivalent keys can be detected.

The cases that the phase of Z and Ẑ does not shift exist. For example, if
(y0, y1, y2) is (0, 0, 0) or (1, 1, 1), then Z is equal to Ẑ. It is means that such (K,
IV) and (K̂, ˆIV) are typical equivalent keys. Moreover, if (y0, y1, y2) is (0, 0, 1)
or (1, 1, 0), then Z is equal to Ẑ except z0.

4.2 Rate of 1-bit Phase Shifting Equivalent Keys

We calculate a rate that any (K, IV) pair has a 1-bit phase shifting equivalent
key (K̂, ˆIV) by using Eq. (9).

Suppose that (K, IV) is selected randomly. Then, a probability that Eq. (15)
holds is 1/2. Moreover, since v∗0 is a 1-bit pseudo random variable, a probability
that Eq. (16) holds is 1/2. Therefore, the probability that Eq. (10) holds, which
is P1, is given as follows:

P1 =
1
4
. (18)

Since v̂∗767 is a 1-bit pseudo random variable, a probability that Eq. (17) holds
is 1/2. Therefore, the probability that Eq. (11) holds, which is P2, is given as
follows:

P2 =
1
2
. (19)

Finally, a rate that any (K, IV) pair has a 1-bit phase shifting equivalent
key, which is Pf , is given as follows:

Pf = P1 · P2 =
1
8
. (20)

5 A Key Recovery Attack against DECIM v2 using 1-bit
Phase Shifting Equivalent Keys

In this section, we propose a key recovery attack against DECIM v2 using 1-bit
phase shifting equivalent keys. We focus on 1-bit phase shifting equivalent keys
with same IV, namely, IV = ˆIV holds. When IV = ˆIV holds, we can search K
and K̂ in parallel. It means that a key can be found faster than an exhaustive
key search when such an IV is used.

5.1 Phase shifting equivalent keys with same IV

We discuss 1-bit phase shifting equivalent keys that IV = ˆIV holds. From
Eq. (14), the condition for IV = ˆIV is given as follows:

IVi =

{
IVi+1 if i = 0, . . . , 62,

IV0 ⊕ IV16 ⊕ IV32 ⊕ IV48 if i = 63.
(21)

Equation (21) holds only when IV = (0, 0, . . . , 0) is used. Thus, we focus on
1-bit phase shifting equivalent keys when IV = (0, 0, . . . , 0) is used.

First, we disscuss conditions for 1-bit phase shifting equivalent keys K̂ un-
der the condition that IV = (0, 0, . . . , 0). When IV = (0, 0, . . . , 0) is used, a
condition for K̂ is given from Eqs. (13) and (15) as follows:

K̂79 = K0 = 1. (22)

Moreover, a condition for K̂ is given from Eq. (16) as follows:

lv∗0 ⊕ v∗0 = 1. (23)

In order to satisfy Eq. (23), it is necessary to satisfy lv∗0 = 1 ∧ v∗0 = 0 or
lv∗0 = 0∧ v∗0 = 1. We consider a case of lv∗0 = 1∧ v∗0 = 0. When lv∗0 = 1∧ v∗0 = 0,
the following conditions for K is given from Eqs. (2), (3), and (5) and IV =
(0, 0, . . . , 0).

K77 ⊕K76 ⊕K75 ⊕K52 ⊕K51 ⊕K46 ⊕K17 ⊕K16 ⊕K14 ⊕K5 ⊕K0 = 0,

(24)
(K65 + K64 + K54 + K45 + K31 + K28 + K24 + K13) mod 4 = 2 or 3. (25)

By using Eq. (13), Eqs. (24) and (25) are rewritten as follows:

K̂79 ⊕ K̂76 ⊕ K̂75 ⊕ K̂74 ⊕ K̂51 ⊕ K̂50 ⊕ K̂45 ⊕ K̂16 ⊕ K̂15 ⊕ K̂13 ⊕ K̂4 = 0,

(26)
(K̂64 + K̂63 + K̂53 + K̂44 + K̂30 + K̂27 + K̂23 + K̂12) mod 4 = 2 or 3. (27)

In addition, we consider a case of lv∗0 = 0 ∧ v∗0 = 1. When lv∗0 = 0 ∧ v∗0 = 1,
the following conditions for K̂ is given in a manner similar to the case of lv∗0 =
1 ∧ v∗0 = 0.

K̂79 ⊕ K̂76 ⊕ K̂75 ⊕ K̂74 ⊕ K̂51 ⊕ K̂50 ⊕ K̂45 ⊕ K̂16 ⊕ K̂15 ⊕ K̂13 ⊕ K̂4 = 1,

(28)
(K̂64 + K̂63 + K̂53 + K̂44 + K̂30 + K̂27 + K̂23 + K̂12) mod 4 = 0 or 1. (29)

Next, we show a method to recover K from K̂. From Eqs. (13) and (22), a
following relation of between K and K̂ is given as

K(i+1) mod 80 = K̂i for ∀i ∈ {0, 1, . . . , 79}. (30)

Therefore, an original key K can be recovered from the equivalent key K̂ by
Eq. (30).

5.2 Proposed Attack and its Time Complexity

We propose a chosen IV key recovery attack using 1-bit phase shifting equiv-
alent keys. Our attack searches K̂ using Eqs. (22) and (26)–(29) when IV =
(0, 0, . . . , 0) is used. Specifically, our attack searches 278 candidates that satisfy
Eqs. (22), (26), and (27) or Eqs. (22), (28), and (29). If K has K̂ with a prob-
ability of Pf = 1/8, K̂ can be found with a probability of one from the 278

candidates. Then, K is recovered from K̂ by Eq. (30). On the other hand, K is
found from 278 candidates with a probability of Ps = 278/280 = 1/4. Since our
attack can search K and K̂ in parallel, K can be recovered more efficient than
an exhaustive key search.

We calculate the time complexity of our attack. When our attack searches for
278 candidates, the following four events occur: E1 (K and K̂ can be found), E2

(only K can be found), E3 (only K̂ can be found), and E4 (not found). Suppose
that K and K̂ are found independently. Then, probability that each event occurs

Table 1. Events when our attack searches 278 candidates and probabilities that each
event occurs.

Event Probability that the event occurs Recoverable keys

E1 Ps · Pf = 1/32 K and K̂

E2 Ps · (1− Pf) = 7/32 K

E3 (1− Ps) · Pf = 3/32 K̂

E4 (1− Ps) · (1− Pf) = 21/32 —

is given as Table 1. When E1 occurs, a key K can be recovered if either K or
K̂ is found. In this case, a time complexity for recovering the key is 277. When
E4 occurs, a key K cannot be recovered from 278 candidates. In this case, K is
found from other (280− 278) candidates. Thus, a time complexity for recovering
the key is 280 when E4 occurs. Then, the total time complexity for recovering
the key is obtained as follows:

Pr(E1) · 277 + Pr(E2) · ·278 + Pr(E3) · 278 + Pr(E4) · 280

=
1
32
· 277 +

7
32
· 278 +

3
32
· 278 +

21
32
· 280 = 279.56 (< 280). (31)

Therefore, our attack can recover an 80-bit key with a time complexity of 279.56.

6 Conclusion

This paper has presented the key recovery attack against DECIM v2 using phase
shifting equivalent keys. Our attack can recover an 80-bit key with a time com-
plexity of 279.56 when IV = (0, 0, . . . , 0) is used. It means that DECIM v2 is
not necessarily secure against the key recovery attack. Moreover, our attack can
easily apply to DECIM-128 [8]. Applying our attack to other IVs is future work.

References

1. M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for con-
strained environments,” eSTREAM, available at http://www.ecrypt.eu.org/

stream/p3ciphers/grain/Grain p3.pdf

2. Ö. Küçük, “Slide resynchronization attack on the initialization of Grain 1.0,”
eSTREAM, Report 2006/044, 2006, available at http://www.ecrypt.eu.org/

stream/papersdir/2006/044.ps

3. T. Isobe, T. Ohigashi, H. Kuwakado, and M. Morii, “A chosen-IV attack against
Grain,” Proc. Information and Communication System Security, ICSS2007-3,
pp.15–20, Sep. 2007.

4. C. De Cannière, Ö. Küçük, and B. Preneel “Analysis of Grain’s initialization al-
gorithm,” Workshop Record of SASC 2008, pp.43–56, Feb. 2008.

5. T. Isobe, T. Ohigashi, H. Kuwakado, and M. Morii, “A key recovery attack with
equivalent keys of stream cipher,” Technical Report of IEICE, ISEC2007-110,
pp.69–74, Nov. 2007.

6. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sib-
ert, “DECIM v2,” eSTREAM, available at http://www.ecrypt.eu.org/stream/

p3ciphers/decim/decim p3.pdf

7. eSTREAM, ECRYPT Stream Cipher Project, IST-2002-507932, available at http:
//www.ecrypt.eu.org/stream/

8. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sib-
ert, “DECIM-128,” eSTREAM, available at http://www.ecrypt.eu.org/stream/
p3ciphers/decim/decim128 p3.pdf

