Collisions and other Non-Random Properties for Step-Reduced SHA-256 ${ }^{\star}$

Sebastiaan Indesteege ${ }^{1,2, \star \star}$, Florian Mendel ${ }^{3}$, Bart Preneel 1,2, Christian Rechberger ${ }^{3}$, and Vincent Rijmen ${ }^{1,2,3}$
${ }^{1}$ Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium. sebastiaan.indesteege@esat.kuleuven.be
${ }^{2}$ Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
${ }^{3}$ Institute for Applied Information Processing and Communications Inffeldgasse 16a, A-8010 Graz, Austria.

Abstract

We study the security of step-reduced but otherwise unmodified SHA-256. We show the first collision attacks on SHA-256 reduced to 22,23 and 24 steps with complexities $2^{31}, 2^{63}$, and 2^{95}, respectively. The best previous, recently obtained result was a collision attack for up to 21 steps. Additionally, we show non-random behaviour of SHA-256 in the form of pseudo-near collisions for up to 31 steps, which is 6 more steps than the recently obtained non-random behaviour in the form of a semi-free start near-collision. Even though it represents a step forwards in terms of cryptanalytic techniques, the results do not threaten the security of applications using SHA-256.

Key words: SHA-256, hash functions, collisions, semi-free start collisions, free start collisions, pseudo-near-collisions.

1 Introduction

In the light of previous break-through results on hash functions like MD5 and SHA-1, the security of their successor, SHA-256 and sisters, against all kinds of cryptanalytic attacks deserves special attention. This is even more important as many products and services that used to rely on SHA-1 are now migrating to SHA-256.

[^0]
1.1 Previous work on members of the SHA-2 family

Below, we briefly discuss existing work. Results on older variants of the bigger MD4 related hash function family including SHA-1 suggest that the concept of local collisions might also be important for the SHA-2 members. The first published analysis on members of the SHA-2 family, by Gilbert and Handschuh [2], goes in this direction. They show that there exists a 9 -step local collision with probability 2^{-66}. Later on, the result was improved by Hawkes et al. [3]. By considering modular differences, they increased the probability to 2^{-39}. Using XOR differences, local collisions with probability as high as 2^{-38} where used by Hölbl et al. [4]. Local collisions with lower probability but with other properties where studied by Sanadhya and Sakar in [12].

Now we turn our attention to the analysis of simplified variants of SHA-256. In [14], all modular additions are replaced by XOR. For this variant, a search for pseudo-collisions is described, which is faster than brute force search for up to 34 steps. In [7], a variant of SHA-256 is analysed where all Σ - and σ-functions are removed. The conclusion is that for this variant, collisions can be found much faster than by brute force search. The work shows that the approach used by Chabaud and Joux [1] in their analysis of SHA-0 is extensible to that particular variant of SHA-256. The message expansion as a building block on its own was studied in [7,11].

Finally we discuss previous work that focuses on step-reduced but otherwise unmodified SHA-256. The first study was done by Mendel et al. [8]. The results obtained are a practical 18-step collision and a differential characteristic for 19-step SHA-224 collision. Also an example of a pseudo-near-collision for 22-step SHA-256 is given. Similar techniques have been studied by Matusiewicz [7] and recently also by Sanadhya and Sakar [13]. By using a different technique, Nikolić and Biryukov [9] obtained the best known results so far: collisions for up to 21 steps and non-random behaviour in the form of semi free-start near-collisions for up to 25 steps.

1.2 Our Contribution

We extend the work of Nikolic and Biryukov [9] to collisions for 22-, 23and 24-step SHA-256 with respective time complexities of $2^{31}, 2^{63}$ and 2^{95} reduced SHA-256 compression function evaluations. We also give several weaker collision style attacks on a larger number of rounds. Our results are summarised in Table 1 .

Table 1. Comparison of our results with the known results in the literature for each type. Effort is expressed in (equivalent) calls to the respective reduced compression functions.

function	steps	type	effort	source	example
SHA-256	18	collision	2^{0}	$[8]$	yes
SHA-256	20	collision	$2^{1.58}$	$[9]$	no
SHA-256	21	collision	2^{15}	$[9]$	yes
SHA-256	22	collision	2^{31}	this work	yes
SHA-256	23	collision	2^{63}	this work	no
SHA-256	$\mathbf{2 4}$	collision	2^{95}	this work	no
SHA-256	23	semi-free start collision	2^{17}	$[9]$	yes
SHA-256	$\mathbf{2 4}$	semi-free start collision	2^{17}	this work	yes
SHA-224	$\mathbf{2 5}$	free start collision	2^{17}	this work	no
SHA-256	22	free start near-collision	2^{0}	$[8]$	yes
SHA-256	25	semi-free start near-collision	2^{34}	$[9]$	yes
SHA-256	$\mathbf{3 1}$	free start near-collision	2^{32}, Table 6	this work	no

The structure of this paper is as follows. We give a short description of SHA-256 in Sect. 2. Section 3 gives an alternative description of the semi-free start collision attack by Nikolić and Biryukov [9], which will make the subsequent description of the new attacks easier to understand. We then discuss our collision attacks on 22-, 23- and 24 -step SHA-256 in Sect. 4. Further extensions can be found in the appendix. Finally, Sect. 5 concludes.

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using the notations from Table 2. For a detailed specification, we refer to [10].

The compression function of SHA-256 consists of a message expansion, which transforms a 512-bit message block into 64 expanded message words W_{i} of 32 bits each, and a state update transformation. The latter updates eight 32 -bit state variables A, \ldots, H in 64 identical steps, each using one expanded message word. The message expansion can be defined recursively as follows.

$$
W_{i}=\left\{\begin{array}{ll}
M_{i} & 0 \leq i<16 \tag{1}\\
\sigma_{1}\left(W_{i-2}\right)+W_{i-7}+\sigma_{0}\left(W_{i-15}\right)+W_{i-16} & 16 \leq i<64
\end{array} .\right.
$$

Table 2. The notations used in this paper.

$X \gg s$	X rotated over s bits to the right
$X>s$	X shifted over s bits to the right
\bar{X}	One's complement of X
$X \oplus Y$	Bitwise exclusive OR of X and Y
$X+Y$	Addition of X and Y modulo 2^{32}
$X-Y$	Subtraction of X and Y modulo 2^{32}
A_{i}, \cdots, H_{i}	State variables at step i, for the first message
$A_{i}^{\prime}, \cdots, H_{i}^{\prime}$	Idem, for the second message
W_{i}	i-th expanded message word of the first message
W_{i}^{\prime}	i-th expanded message word of the second message
δX	Additive difference in X, i.e., $X^{\prime}-X$
$\delta \sigma_{0}(X)$	Additive difference in $\sigma_{0}(X)$, i.e., $\sigma_{0}\left(X^{\prime}\right)-\sigma_{0}(X)$

The functions $\sigma_{0}(X)$ and $\sigma_{1}(X)$ are given by

$$
\begin{align*}
& \sigma_{0}(X)=\left(\begin{array}{l}
X \gg
\end{array}\right) \oplus(X \gg 18) \oplus(X \gg 3) \\
& \sigma_{1}(X)=(X \gg 17) \oplus(X \gg 19) \oplus(X \gg 10) . \tag{2}
\end{align*}
$$

The state update transformation updates two of the state variables in every step. It uses the bitwise Boolean functions $f_{\text {ch }}$ and $f_{\text {maj }}$ as well as the GF(2)-linear functions Σ_{0} and Σ_{1}.

$$
\begin{align*}
f_{\mathrm{ch}}(X, Y, Z) & =X Y \oplus \bar{X} Z \\
f_{\mathrm{maj}}(X, Y, Z) & =X Y \oplus Y Z \oplus X Z \tag{3}\\
\Sigma_{0}(X) & =(X \ggg 2) \oplus(X \ggg 13) \oplus(X \ggg 22), \\
\Sigma_{1}(X) & =(X \ggg 6) \oplus(X \ggg 11) \oplus(X \ggg 25) .
\end{align*}
$$

The following equations describe the state update transformation, where K_{i} is a step constant.

$$
\begin{align*}
T_{1} & =H_{i}+\Sigma_{1}\left(E_{i}\right)+f_{\mathrm{ch}}\left(E_{i}, F_{i}, G_{i}\right)+K_{i}+W_{i} \\
T_{2} & =\Sigma_{0}\left(A_{i}\right)+f_{\mathrm{maj}}\left(A_{i}, B_{i}, C_{i}\right) \\
A_{i+1} & =T_{1}+T_{2}, \quad B_{i+1}=A_{i}, \quad C_{i+1}=B_{i}, \quad D_{i+1}=C_{i} \tag{4}\\
E_{i+1} & =D_{i}+T_{1}, \quad F_{i+1}=E_{i}, \quad G_{i+1}=F_{i}, \quad H_{i+1}=G_{i}
\end{align*}
$$

After 64 steps, the initial state variables are fed forward using word-wise addition modulo 2^{32}.

3 Review of the Nikolić-Biryukov Semi-Free Start Collision Attack

In this section we review the 23 step semi-free start collision attack by Nikolić and Biryukov [9], because new results we present in this paper are extensions of this attack. The notations we use are given in Table 2.

Table 3. A 9 step differential, using additive differences (left) and conditions on the value (right). Zero differences resp. unconstrained values are denoted by blanks.

step			δ	$C \delta$	D δ	δE	δF	δG	$G \delta$		¢V		A	B		C	D	E	F	G		H
8													α					γ				
9											1		α	α				$\gamma+1$	γ			
10	1					1					-		-1	α	o	α		-1	$\gamma+1$	γ		
11		1				-1					δ_{1}		α	-1	1 o	α	α	ϵ	-1	$\gamma+1$		γ
12							-1	1			δ_{2}		α	α	-	-1	α	β	ϵ	-1		+1
13									1					α	α	α	-1	β	β	ϵ		-1
14						1								α		α	α	-1	β	β		ϵ
15							1									α	α	0	-1	β		β
16								1	1		1						α		0	-1		β
17										1	-								-2	0		-1
18																				-2		0

3.1 A Nine Step Differential

The attack uses a nine step differential which is presented in Table 3. All modular additive differences are fixed, as well as some of the actual values. Fixing these values ensures that the differential is followed, as will be explained later. The constants α, β, γ and ϵ are determined by the attack algorithm. The first difference is inserted via the message word W_{9}. In order to obtain a 23 step semi-free start collision, we require that there are no differences in expanded message words other than those indicated in Table 3. In other words, only $W_{9}, W_{10}, W_{11}, W_{12}, W_{16}$ and W_{17} can have a difference.

3.2 The Attack

The attack algorithm consists of two phases. The first phase finds suitable values for the constants α, β, γ and ϵ as well as two expanded message words, W_{16} and W_{17}. The entire complexity of the attack can be attributed to this phase. A detailed description of this phase of the attack will be given in Sect. 3.4, as it is more instructive to describe the second phase first.

3.3 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α, $\beta, \gamma, \epsilon, W_{16}$ and W_{17}, a pair of messages and a set of initial values that lead to a semi-free start collision for 23 steps of SHA-256. It works by
carefully fixing the internal state at step 11 and then computing forward and backward. At each step, the expanded message word W_{i} is computed such that the differential from Table 3 is followed. In three steps, extra conditions appear, involving only the constants determined by the first phase of the attack. The first phase guarantees that the constants are such that these conditions are satisfied.

The second phase of the attack has a negligible complexity and is guaranteed to succeed. Since there is still a lot of freedom left, many 23 step semi-free start collisions can be found with only a negligible extra effort, by repeating this second phase several times.

1. Start at step 11 by fixing the state variables in this step, A_{11}, \cdots, H_{11} as indicated in Table 3. The constants α, β, γ and ϵ are given by the first phase of the attack.
2. Calculate W_{11} such that $A_{12}=\alpha$ and W_{11}^{\prime} such that $A_{12}^{\prime}=\alpha$. This can be done by simple rearranging (4). Compute the value of E_{12}, which we will refer to as β. Note that the value of β only depends on α, since

$$
\begin{equation*}
A_{12}=\alpha=\Sigma_{0}(\alpha)+f_{\mathrm{maj}}(\alpha,-1, \alpha)+\beta-\alpha \Rightarrow \beta=\alpha-\Sigma_{0}(\alpha) \tag{5}
\end{equation*}
$$

3. In a similar way, calculate W_{12} such that $E_{13}=\beta$ and W_{12}^{\prime} such that $E_{13}^{\prime}=\beta$. This also guarantees that $A_{13}=A_{13}^{\prime}$ because the majority function absorbs the difference in C_{12}.
4. Calculate W_{13} such that $E_{14}=-1$ and set $W_{13}^{\prime}=W_{13}$. Now, see Table 3, the additive difference δE_{14} should be equal to 1 . Computing this difference yields the condition

$$
\begin{equation*}
\delta E_{14}=f_{\mathrm{ch}}(\beta, \beta, \epsilon-1)-f_{\mathrm{ch}}(\beta, \beta, \epsilon)+2=1 \tag{6}
\end{equation*}
$$

This condition only involves the constants β and ϵ, and can thus already be ensured by a proper choice of these constants in phase one of the attack. Note that this condition also ensures that $\delta A_{14}=0$.
5. Calculate W_{14} such that $E_{15}=0$ and set $W_{14}^{\prime}=W_{14}$. Since the values of E_{14} and E_{14}^{\prime} were chosen to be fixed points of the function Σ_{1} in the previous step, $\delta \Sigma_{1}\left(E_{14}\right)=\delta E_{14}=1$ cancels with $\delta H_{14}=-1$. Also, $f_{\text {ch }}$ absorbs the difference in E_{14}, no new differences are introduced into the state.
6. Calculate W_{15} such that $E_{16}=-2$ and set $W_{15}^{\prime}=W_{15}$. The difference in F_{15} is absorbed by $f_{\text {ch }}$.
7. The value for W_{16} is computed in phase one of the attack. The difference $\delta W_{16}=1$ is cancelled by the output of $f_{\text {ch }}$. Indeed, since the binary representation of $E_{16}=-2$ is $111 \cdots 10_{b}$, the f_{ch} function passes only the difference in the least significant bit.
8. Also the value for W_{17} is computed in phase one of the attack. The difference $\delta W_{17}=1$ cancels with $\delta H_{17}=1$, thereby eliminating the final difference in the state variables. Thus, a collision is reached after step 17.
9. Now, go back to step 11 and proceed in the backward direction. Make an arbitrary choice for W_{10}. The differential from Table 3 is followed because of the careful choice of the state variables in step 11.
10. Make an arbitrary choice for W_{9}, and proceed one step backward. The difference $\delta W_{9}=1$ cancels with δA_{10} and with δE_{10} such that there is a zero difference in the state variables A_{9} through H_{9}. Now randomly choose W_{8} down to W_{2} and calculate backward. Because no new differences appear in these expanded message words, there is also a zero difference in the state variables A_{2} through H_{2}.
11. It is not possible to freely choose W_{0} or W_{1} as 16 expanded message words have already been chosen, i.e., W_{2} until W_{17}. Hence, these are computed using the message expansion in the backward direction. Although some of the message words used to compute W_{0} and W_{1} have differences, these differences always cancel out.
12. Continuing forward from step 18 again, note that the collision is preserved as long as no new differences are introduced via the expanded message words. From the message expansion, it follows that

$$
\begin{align*}
\delta W_{18}= & \delta \sigma_{1}\left(W_{16}\right)+\delta W_{11} \\
= & \sigma_{1}\left(W_{16}+1\right)-\sigma_{1}\left(W_{16}\right)-\Sigma_{1}(\epsilon-1)+\Sigma_{1}(\epsilon) \\
& -f_{\mathrm{ch}}(\epsilon-1,0, \gamma+1)+f_{\mathrm{ch}}(\epsilon,-1, \gamma+1)=0 . \tag{7}
\end{align*}
$$

Phase one of the attack will have to ensure that W_{16}, γ and ϵ are chosen such that this condition is satisfied.
13. In step 19, it follows from the message expansion that the following condition needs to be satisfied:

$$
\begin{align*}
\delta W_{19}= & \delta \sigma_{1}\left(W_{17}\right)+\delta W_{12} \\
= & \sigma_{1}\left(W_{17}-1\right)-\sigma_{1}\left(W_{17}\right) \\
& -f_{\mathrm{ch}}(\beta, \epsilon-1,0)+f_{\mathrm{ch}}(\beta, \epsilon,-1)=0 . \tag{8}
\end{align*}
$$

Again, this condition only depends on W_{17} and the constants β and ϵ, so phase one of the attack can ensure that this condition is satisfied.
14. In steps $20-22$, the message expansion guarantees that no new differences are introduced. In step 23, however, a difference of 1 is impossible to avoid, hence the attack stops after 23 steps.

3.4 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for the constants α, β, γ and ϵ, as well as two expanded message words, W_{16} and W_{17}. Suitable values imply that the three conditions that are required to be satisfied in the second phase of the attack are indeed satisfied. This is achieved as follows.

1. Make a random choice for γ and ϵ, and search for a value of W_{16} such that condition (7) is satisfied. There exists a simple, generic method to solve equations of this form, which is described in Appendix B. We note however that for this particular case, a faster method exists. An exhaustive search over every possible value of W_{16} resulted in the observation that only 6181 additive differences can ever be achieved. These can be stored in a lookup table, together with one or more solutions for each difference. Hence, solving an equation of the form $\sigma_{1}(x+1)-\sigma_{1}(x)=\delta$ can by done with a simple table lookup. If no solution exists, simply retry with different choices for γ and/or ϵ. If the right hand side difference is selected uniformly at random, the probability that the equation has a solution is about $2^{-19.5}$, so we expect to have to repeat this step about $2^{19.5}$ times.
2. Satisfying the other two conditions can be done independently of the first. Make a random choice for α, and compute β using (5), i.e., $\beta=\alpha-\Sigma_{0}(\alpha)$. Now check condition (6), which states that

$$
\begin{equation*}
f_{\mathrm{ch}}(\beta, \beta, \epsilon-1)-f_{\mathrm{ch}}(\beta, \beta, \epsilon)=-1 \tag{9}
\end{equation*}
$$

As described in [9], this equation is satisfied if the bits of β are zero in the positions where the bits of $\epsilon-1$ and ϵ differ. This occurs with a probability of approximately $1 / 3$, so this condition is fairly easy to satisfy.
3. The last condition, (8), is of exactly the same form as the first, provided it is rewritten as

$$
\begin{equation*}
\sigma_{1}\left(W_{17}^{\prime}+1\right)-\sigma_{1}\left(W_{17}^{\prime}\right)+f_{\mathrm{ch}}(\beta, \epsilon-1,0)-f_{\mathrm{ch}}(\beta, \epsilon,-1)=0 \tag{10}
\end{equation*}
$$

It can thus be solved in exactly the same way, requiring the same expected effort.

Note that, because not all conditions depend on all of the constants that are determined in this phase of the attack, the first condition can be treated independently of the last two. Thus, the first and last step of this phase of the attack are executed about $2^{19.5}$ times and the second step
about 2^{21} times. Note also that one of these steps requires much less work than an evaluation of the compression function of (reduced) SHA-256 a bit less than one step. Hence, the overall time complexity of the attack, when expressed in SHA-256 compression function evaluations is below 2^{17}.

4 Our Collision Attacks on SHA-256

In this section we describe a novel, practical collision attack on SHA-256, reduced to 22 steps. It has a time complexity of less than 2^{31} evaluations of the reduced SHA-256 compression function. We also extend this to 23 and 24 steps of SHA-256, with expected time complexities of 2^{63} and 2^{95} compression function evaluations, respectively.

4.122 Step Collision

Our collision attack for SHA-256 reduced to 22 steps consists of two parts. First, we construct a semi-free start collision for 22 steps, based on the attack from Sect. 3. Then we transform this semi-free start collision into a real collision. The overall time complexity is dominated by the second part.

Finding a 22 step semi-free start collision can be done using the same attack as described in Sect. 3, but shifting everything up a single step. So we start by determining appropriate values for $\alpha, \beta, \gamma, \epsilon, W_{15}$ and W_{16} as in Sect. 3.4. Then we proceed by fixing the internal state at step 10 to

$$
\begin{align*}
& \left\langle A_{10}, \cdots, H_{10}\right\rangle=\langle\alpha,-1, \alpha, \alpha, \quad \epsilon, \quad-1, \gamma+1, \gamma\rangle, \\
& \left\langle A_{10}^{\prime}, \cdots, H_{10}^{\prime}\right\rangle=\langle\alpha, 0, \alpha, \alpha, \epsilon-1, \quad 0, \gamma+1, \gamma\rangle . \tag{11}
\end{align*}
$$

Then, as in Sect. 3.2, we compute forward and backward to find a semifree start collision for 22 steps.

Note that only 7 expanded message words are actually fixed to a certain value when constructing a semi-free start collision. Indeed, only W_{10} until W_{16} are really fixed, the others are chosen arbitrarily or computed from the message expansion when necessary. Using this freedom, it is possible to construct many semi-free start collisions with only a negligible extra effort. But it is also possible to use this freedom in a controlled manner to transform the semi-free start collision into a real collision.

To this end, we first introduce an alternative description of SHA-256. In older variants of the same design strategy like MD5 or SHA-1, only a single state variable is updated in every step. This naturally leads to
a description where only the first state variable is considered. Something similar can be done with the SHA-2 hash functions, even though in the standard description, two state variables are updated in every step.

From the state update equations (4), we derive a series of equations which express the inputs of the i-th state update transformation, A_{i}, \ldots, H_{i}, as a function of only A_{i} through A_{i-7}.

$$
\begin{align*}
& A_{i}=A_{i}, \\
& B_{i}=A_{i-1}, \\
& C_{i}=A_{i-2}, \\
& D_{i}=A_{i-3}, \\
& E_{i}=A_{i-4}+A_{i}-\Sigma_{0}\left(A_{i-1}\right)-f_{\text {maj }}\left(A_{i-1}, A_{i-2}, A_{i-3}\right), \tag{12}\\
& F_{i}=A_{i-5}+A_{i-1}-\Sigma_{0}\left(A_{i-2}\right)-f_{\text {maj }}\left(A_{i-2}, A_{i-3}, A_{i-4}\right), \\
& G_{i}=A_{i-6}+A_{i-2}-\Sigma_{0}\left(A_{i-3}\right)-f_{\text {maj }}\left(A_{i-3}, A_{i-4}, A_{i-5}\right), \\
& H_{i}=A_{i-7}+A_{i-3}-\Sigma_{0}\left(A_{i-4}\right)-f_{\text {maj }}\left(A_{i-4}, A_{i-5}, A_{i-6}\right) .
\end{align*}
$$

Substituting these into (4) yields an alternative description requiring only a single state variable. This description can be written as

$$
\begin{equation*}
A_{i+1}=F\left(A_{i}, A_{i-1}, A_{i-2}, A_{i-3}, A_{i-4}, A_{i-5}, A_{i-6}, A_{i-7}\right)+W_{i} . \tag{13}
\end{equation*}
$$

The function $F(\cdot)$ encapsulates (4) and (12) except for the addition of the expanded message word W_{i}.

From (12) it is clear that one can easily transform the internal state in the standard description, $\left\langle A_{i}, \cdots, H_{i}\right\rangle$, to the internal state in the alternative description, $\left\langle A_{i}, \cdots, A_{i-7}\right\rangle$ and vice versa. Analogous to what is done for MD5 and SHA-1, the initial values can be defined as A_{-7}, \cdots, A_{0}. Since control over one expanded message word W_{i} gives full control over one state variable A_{i+1}, control over eight consecutive expanded message words gives full control over the entire internal state.

This alternative description of SHA-256 can be used to transform a 22 step semi-free start collision for SHA-256 into a real collision.

1. Set $\left\langle A_{0}, \cdots, A_{-7}\right\rangle$ to the SHA-256 initial values, in the alternative description. Guess the value of W_{0} and make an arbitrary choice for W_{1}. Recompute the first two steps.
2. The eight message words W_{2} until W_{9} are now modified such that A_{3} until A_{10} remain unchanged. In the original description of SHA256 , this implies that the internal state at step 10 , i.e., $\left\langle A_{10}, \cdots, H_{10}\right\rangle$ does not change, and thus we connect to the rest of the semi-free start collision. More specifically, for every $i, 2 \leq i \leq 9$, the new value of the i-th message word is computed as

$$
\begin{equation*}
W_{i}=A_{i+1}-F\left(A_{i}, A_{i-1}, A_{i-2}, A_{i-3}, A_{i-4}, A_{i-5}, A_{i-6}, A_{i-7}\right) . \tag{14}
\end{equation*}
$$

Table 4. Example Colliding Message Pair for 22-Step Reduced SHA-256.

M	3f33fbb4 ${ }_{x}$ 2900a136x 9ea9a88a f $_{x} 20002$ cb $_{x}$ $0 f 4 \mathrm{c} 6885_{x}$ 534faf 12_{x} 1332ecbf $_{x} 093 \mathrm{ba554} x$ 831e6c2d ${ }_{x}$ 268fac10x f2b9f3fc x_{x} 2da97d95 x 8d7231b7x 19e59a75 $_{x}$ 12c895a7 $_{x}$ bf5fffff $_{x}$
M^{\prime}	$\begin{array}{llll} 3 \mathrm{f} 33 \mathrm{fbb}_{x} & 2900 \mathrm{a} 136_{x} & 9 \mathrm{ea} 9 \mathrm{a} 88 \mathrm{a}_{x} & \mathrm{f} 20002 \mathrm{cb}_{x} \\ 0 \mathrm{f} 4 \mathrm{c} 6885_{x} & 534 \mathrm{faf}_{3} 2_{x} & 1332 \mathrm{ecbf}_{x} & 093 \mathrm{ba} 54_{x} \\ 831 \mathrm{e} 6 \mathrm{c} 2 \mathrm{e}_{x} & 268{\mathrm{fac} 0 f_{x}}^{\mathrm{f} 2 \mathrm{ba} 635 \mathrm{~b}_{x}} & 35 \mathrm{a} 95 \mathrm{~d} 94_{x} \\ 8 \mathrm{~d} 7231 \mathrm{~b} 7_{x} & 19 \mathrm{e} 59 \mathrm{a} 75_{x} & 12 \mathrm{c} 895 \mathrm{a} 7_{x} & \mathrm{bf} 600000_{x} \end{array}$
H	b68a4da9 x_{x} 328d6c14 316753e9 $_{x}$ c37931af ${ }_{x}$

In the message words W_{8} and W_{9} there is an additive difference of 1 and -1 , respectively. This does not pose a problem since the construction of the semi-free start condition guarantees that these will have the intended effect, regardless of the values of W_{8} and W_{9}, see Sect. 3.3.
3. Now the guess for W_{0} needs to be checked using the message expansion in the reverse direction. If the guess was incorrect, restart with a different guess and/or choice for W_{1}. The probability that the guess was correct is 2^{-32}, so we expect to have to repeat this procedure about 2^{32} times. Every trial requires an effort equivalent to about 10 rounds of SHA-256.
4. After a successful modification of the first message words, the expanded message words W_{17} until W_{21} need to be recomputed, and also the corresponding steps need to be redone. The construction of the semi-free start collision still guarantees that no differences will be introduced.

The complexity of the attack is clearly dominated by the second part, i.e., transforming the 22 step semi-free start collision for SHA-256 into a real collision. This step has an expected time complexity of about 2^{31} evaluations of the compression function of SHA-256 reduced to 22 steps. An example collision pair for 22 -step reduced SHA-256 is given in Table 4.

4.2 Extension to 23 and 24 Steps

The same approach can be extended to 23 or 24 steps of SHA-256. The entire attack is simply shifted down by one or two steps, respectively. The consequence of this is that more message words need to be guessed. For the 23 -step collision attack, both W_{0} and W_{1} need to be guessed, and
for the 24-step collision attack, also W_{2} needs to be guessed. In order to have enough freedom, a prefix block with no differences can be used. This allows to randomise the initial values of the second block, where the attack is applied.

This results in an expected time complexity of 2^{63} and 2^{95}, for $23-$ step and 24 -step collisions respectively. Note that the cost of computing the prefix blocks can be neglected because the cost of a single prefix block computation is amortised over many trials. An extension of this attack method beyond 24 steps fails, because then a difference in the first message word, W_{0}, becomes unavoidable.

4.3 Further Extensions

Appendix A extends this further, using weaker attack models. In Sect.A.1, a semi-free start collision attack on 24 step SHA-256 is described. Section A. 2 considers SHA-224 and shows free start collisions for one more step, i.e., 25 steps of SHA-224. Finally, in Sect. A.3, pseudo-near collision attacks on SHA-256 are explored.

5 Conclusion

Our results push the limit to cryptanalysis for step reduced but otherwise unmodified SHA-256; we found practical collisions for 22 steps, and shortcut collision attacks for up to 24 steps. For almost half of the steps (31 out of 64) non-random properties are detectable in practice. Even though we did not perform a detailed analysis, we expect very similar results for SHA-512.

References

1. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of LNCS, pages 56-71. Springer, 1998.
2. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of $L N C S$, pages 175-193. Springer, 2003
3. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On corrective patterns for the SHA-2 family. Cryptology ePrint Archive, Report 2004/207, August 2004. http://eprint.iacr.org/.
4. Marko Holbl, Christian Rechberger, and Tatjana Welzer. Searching for messages conforming to arbitrary sets of conditions in SHA-256. In Proceedings of WEWORC 2007, LNCS. Springer, 2008. To appear.
5. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential properties of addition. In Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer Science, pages 336-350. Springer, 2001.
6. Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive differential probability of exclusive-or. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 317-331. Springer, 2004.
7. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of simplified variants of SHA-256. In Proceedings of WEWoRC 2005, LNI P-74, pages 123-134, 2005.
8. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of $L N C S$, pages 126-143. Springer, 2006.
9. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, March 26-28, 2007,, LNCS. Springer, 2008. To appear.
10. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash Standard, August 2002. Available online at http://www.itl.nist.gov/fipspubs/.
11. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Preliminary Analysis of the SHA-256 Message Expansion. NIST - First Cryptographic Hash Workshop, October 31-November 1, 2005.
12. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817 of $L N C S$, pages 193-205. Springer, 2007.
13. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256. In Proceedings of ACNS 2008, LNCS. Springer, 2008. To appear.
14. Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 Variant. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 3897 of $L N C S$, pages 245-260. Springer, 2005.

A Further Extensions

This appendix explores further extensions towards weaker collision-style attacks on a larger number of steps of SHA-256 and SHA-224.

A. 1 Semi-Free Start Collisions for 24 Steps of SHA-256

This section presents a straightforward extension of the 23 step semi-free start collision attack of Nikolić and Biryukov [9], which was described in Sect. 3. We keep the entire attack algorithm unchanged, but shift everything down by a single step. Because of this, one more message word, W_{0}, needs to be computed from the message expansion in the reverse direction. From the message expansion in the reverse direction, it follows that the additive difference in this word is

$$
\begin{equation*}
\delta W_{0}=\delta W_{16}-\delta \sigma_{1}\left(W_{14}\right)-\delta W_{9}-\delta \sigma_{0}\left(W_{1}\right) . \tag{15}
\end{equation*}
$$

None of these expanded message words has a difference, so also $\delta W_{0}=0$. This yields 24 step semi-free start collisions of SHA- 256 with the same complexity (2^{17}) An example is given in Table 5 .

Table 5. Example Semi-Free Start Collision for 24 Steps of SHA-256.

```
H0 e6b21e2a}\mp@subsup{|}{x}{}9\textrm{eec3b}3\mp@subsup{6}{x}{}\mp@subsup{674816bf}{x}{}52fd4d82
    2075dfbc}\mp@subsup{x}{x}{}1630\mp@subsup{\textrm{fbe9}}{x}{}\mp@subsup{855fa59a9}{x}{}\mp@subsup{10912d28}{x}{
M 05f5130d
    43b0adda}\mp@subsup{|}{2}{29ac6ae1x 50a8319b}\mp@subsup{|}{x}{}49a119b6
```



```
    0fb71437x bcb17024x 2d1bf28a 
M' 05f5130d}\mp@subsup{|}{x}{c4ff49bd}\mp@subsup{|}{x}{}9\textrm{a}8\textrm{bfb}7\mp@subsup{7}{x}{}\mp@subsup{259e363c}{x}{
    43b0adda }\mp@subsup{\mp@code{N 29ac6ae1 }}{x}{}50\textrm{a}8319\mp@subsup{b}{x}{}49\textrm{a}119\textrm{b}\mp@subsup{6}{x}{
    782da4a3x 1d8f6847x 541e17fex
    0fb6b8e6x 7cb18fe3x 2d1bf28a
    db365949x 470b5345x 8c4d3ec4x 2988e2b0
```


A. 2 Free Start Collisions for 25 Steps of SHA-224

SHA-224 differs from SHA-256 in two ways. First, it has different initial values, and second, the output is truncated to the leftmost 224 bits. We can thus extend the 24 -step semi-free start collision of SHA-256 from Sect. A. 1 to a 25 -step free start collision of SHA-224 by simply shifting the same attack down one more step. Now a difference will inevitably appear in W_{0}, which propagates to the initial value H_{0}. The other initial values, A_{0} through G_{0} still have a zero difference. Because the word H is truncated away in SHA-224, this results in free start collisions for 25 steps of SHA-224.

A. 3 Pseudo-Near Collisions of SHA-256

Extending the attack to more steps is possible, provided that some differences are allowed both in the initial value and in the hash result, i.e., when considering pseudo-near collisions. The starting point is again the 23 -step semi-free start collision attack from Sect. 3. It is extended by adding a number of extra backward and forward steps. For a given number of steps, the attacker can choose how to split the required extra steps into backward and forward steps.

As explained in Sect. A.1, no difference is introduced in the first backward step. Note also that the diffusion of differences is slower in the backward direction than in the forward direction. A difference introduced in an expanded message word W_{i} affects both A_{i+1} and E_{i+1} in the forward direction, as opposed to only H_{i} when going in the backward direction. Thus, in the forward direction, all state words can be affected by a single

Table 6. Experimental results of the pseudo-near collision attack on SHA-256. For each number of steps, only the combination of forward/backward steps that gave the best results is shown. For comparison, the expected numbers of solutions for a generic birthday attack with an equal effort are also given.

steps bwd. fwd.	$k_{\min }$	2-logarithm of the number of solutions with k									
			≤ 8	≤ 16	≤ 24	≤ 32	≤ 40	≤ 48	≤ 56	≤ 64	
25	1	1	2	31.95	32.00	32.00	32.00	32.00	32.00	32.00	32.00
26	2	1	8	24.17	31.55	31.99	32.00	32.00	32.00	32.00	32.00
27	3	1	11	$-\infty$	15.41	26.20	30.65	31.89	32.00	32.00	32.00
28	4	1	18	$-\infty$	$-\infty$	8.77	20.41	27.24	30.63	31.80	31.99
29	5	1	32	$-\infty$	$-\infty$	$-\infty$	1.58	14.31	22.86	28.19	30.93
30	6	1	43	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	10.73	19.58	25.68
31	6	2	53	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	6.34	15.50
Birthday Attack		57	-143.41	-108.84	-80.49	-56.36	-35.51	-17.37	-1.57	12.14	

difference in an expanded message word after only four rounds. In the backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of 2^{32} reduced SHA-256 compression function evaluations, which are summarised in Table 6. The first three columns give the total number of steps, and the number of extra backward and extra forward steps, respectively. The fourth column gives k_{min}, the smallest Hamming distance found. The last eight columns contain the 2-logarithm of the number of solutions with a Hamming distance k of at most $8,16, \ldots, 64$ bits. For comparison, also the expected values for a generic birthday attack with an equal effort of 2^{32} is given.

For a generic (pseudo-) near collision attack on an ideal n-bit hash function, using the birthday paradox with an effort of 2^{w} compression function evaluations, the lowest expected Hamming distance is the lowest k for which

$$
\begin{equation*}
2^{2 w} \cdot\left(\sum_{i=0}^{k} 2^{-n}\binom{n}{i}\right) \geq 1 \tag{16}
\end{equation*}
$$

For instance, with $w=32$ and for SHA-256 (i.e., $n=256$), this gives $k=57$ bits. Our attack performs significantly better for up to 30 steps of SHA-256. For 31 steps, we still found 208 pseudo-near collisions with a Hamming distance of at most 57 bits, whereas a birthday attack is only expected to find one with the same effort.

B Solving $\mathcal{L}(x+\delta)=\mathcal{L}(x)+\delta^{\prime}$

This section describes a generic method to solve equations of the form $\mathcal{L}(x+\delta)=\mathcal{L}(x)+\delta^{\prime}$ where δ and δ^{\prime} are given n-bit additive differences, and \mathcal{L} is an n-bit to n-bit $\mathrm{GF}(2)$-linear transformation. This is a similar problem to the ones studied by Lipmaa and Moriai [5] and Lipmaa et al. [6].

Consider the modular addition $x+\delta$ and let $\Delta=(x+\delta) \oplus x$. This addition is described by the following equations, where x_{i} is the i-th bit of x and the c_{i} 's are the carry bits:

$$
\begin{array}{rlrl}
(x+\delta)_{i} & =x_{i} \oplus \delta_{i} \oplus c_{i} & c_{i} & =\delta_{i} \oplus \Delta_{i} \\
c_{i+1} & =f_{\text {maj }}\left(x_{i}, \delta_{i}, c_{i}\right) & \Leftrightarrow & c_{i+1} \tag{17}\\
c_{0} & =f_{\text {maj }}\left(x_{i}, \delta_{i}, \delta_{i} \oplus \Delta_{i}\right) \\
c_{0} & =0
\end{array}
$$

Hence, once we fix both the additive difference δ and the XOR difference Δ, all the c_{i} 's are fixed. Some of the x_{i} 's are also fixed: when $\Delta_{i}=1$ and $i+1<n$, it must hold that $x_{i}=c_{i+1}=\delta_{i+1} \oplus \Delta_{i+1}$. This means that the allowed values for x lie in an affine space. Note that not all additive differences are consistent with all XOR differences, i.e., the following conditions must be satisfied

$$
\left\{\begin{array}{rl}
c_{0} & =\delta_{0} \oplus \Delta_{0}=0 \tag{18}\\
\delta_{i} & =\delta_{i+1} \oplus \Delta_{i+1} \quad \text { when } \quad \Delta_{i}=0 \text { and } i+1<n
\end{array} .\right.
$$

Solving an equation of the form $\mathcal{L}(x+\delta)=\mathcal{L}(x)+\delta^{\prime}$ can be done as follows. Let $\Delta^{\prime}=\left(\mathcal{L}(x)+\delta^{\prime}\right) \oplus \mathcal{L}(x)$, i.e., the XOR-difference associated with the modular addition $\mathcal{L}(x)+\delta^{\prime}$. Since $\mathcal{L}(x+\delta)=\mathcal{L}(x)+\delta^{\prime}$ and \mathcal{L} is $\mathrm{GF}(2)$-linear, it follows that $\Delta^{\prime}=\mathcal{L}(\Delta)$. We can thus simply enumerate all the XOR-differences Δ consistent with δ, compute $\Delta^{\prime}=\mathcal{L}(\Delta)$ and check if this is consistent with δ^{\prime}. If it is, both additions restrict x to a (different) affine space. The intersection of these spaces, which can be computed by solving a system of linear equations over GF(2), gives the solutions x for the chosen Δ. Note that the intersection may be empty. If no solutions are found for any value of Δ, the equation $\mathcal{L}(x+\delta)=\mathcal{L}(x)+\delta^{\prime}$ has no solutions.

The time complexity of this method is proportional to the minimum of the number of XOR differences consistent with δ or δ^{\prime}. This follows from the fact that one can easily modify the method to choose Δ^{\prime} instead of Δ.

[^0]: * This work was supported in part by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT, and in part by the Austrian Science Fund (FWF), project P19863. This work was done during a visit of the first author to the Graz University of Technology.
 ** F.W.O. Research Assistant, Fund for Scientific Research - Flanders (Belgium).

