
Collisions and other Non-Random Properties for
Step-Reduced SHA-256⋆

Sebastiaan Indesteege1,2,⋆⋆, Florian Mendel3, Bart Preneel1,2, Christian
Rechberger3, and Vincent Rijmen1,2,3

1 Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

3 Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A–8010 Graz, Austria.

Abstract. We study the security of step-reduced but otherwise unmod-
ified SHA-256. We show the first collision attacks on SHA-256 reduced
to 23 and 24 steps with complexities 218 and 250, respectively. We give
an example colliding message pair for 23-step SHA-256. The best pre-
vious, recently obtained result was a collision attack for up to 22 steps.
Additionally, we show non-random behaviour of SHA-256 in the form
of pseudo-near collisions for up to 31 steps, which is 6 more steps than
the recently obtained non-random behaviour in the form of a semi-free
start near-collision. Even though this represents a step forwards in terms
of cryptanalytic techniques, the results do not threaten the security of
applications using SHA-256.

Key words: SHA-256, hash functions, collisions, semi-free start colli-
sions, free start collisions, pseudo-near-collisions.

1 Introduction

In the light of previous break-through results on hash functions like MD5
and SHA-1, the security of their successor, SHA-256 and sisters, against
all kinds of cryptanalytic attacks deserves special attention. This is even
more important as many products and services that used to rely on SHA-1
are now migrating to SHA-256.

⋆ This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), in part by the European Commission through
the IST Programme under Contract IST-2002-507932 ECRYPT, and in part by the
Austrian Science Fund (FWF), project P19863. This work was done during a visit
of the first author to the Graz University of Technology.

⋆⋆ F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).



1.1 Previous work on members of the SHA-2 family

Below, we briefly discuss existing work. Results on older variants of the
bigger MD4 related hash function family including SHA-1 suggest that
the concept of local collisions might also be important for the SHA-2
members. The first published analysis on members of the SHA-2 family,
by Gilbert and Handschuh [2], goes in this direction. They show that
there exists a 9-step local collision with probability 2−66. Later on, the
result was improved by Hawkes et al. [3]. By considering modular dif-
ferences, they increased the probability to 2−39. Using XOR differences,
local collisions with probability as high as 2−38 where used by Hölbl et

al. [4]. Local collisions with lower probability but with other properties
where studied by Sanadhya and Sakar in [12].

Now we turn our attention to the analysis of simplified variants of
SHA-256. In [15], all modular additions are replaced by XOR. For this
variant, a search for pseudo-collisions is described, which is faster than
brute force search for up to 34 steps. In [7], a variant of SHA-256 is
analysed where all Σ- and σ-functions are removed. The conclusion is
that for this variant, collisions can be found much faster than by brute
force search. The work shows that the approach used by Chabaud and
Joux [1] in their analysis of SHA-0 is extensible to that particular variant
of SHA-256. The message expansion as a building block on its own was
studied in [7,11].

Finally we discuss previous work that focuses on step-reduced but
otherwise unmodified SHA-256. The first study was done by Mendel et

al. [8]. The results obtained are a practical 18-step collision and a dif-
ferential characteristic for 19-step SHA-224 collision. Also an example of
a pseudo-near-collision for 22-step SHA-256 is given. Similar techniques
have been studied by Matusiewicz [7] and recently also by Sanadhya and
Sakar [14]. By using a different technique, Nikolić and Biryukov [9] ob-
tained collisions for up to 21 steps and non-random behaviour in the form
of semi free-start near-collisions for up to 25 steps. Very recently, Sanad-
hya and Sakar [13] showed a collision example for 22 steps of SHA-256,
likely based on a similar technique.

1.2 Our Contribution

We extend the work of Nikolić and Biryukov [9] to collisions for 23- and
24-step SHA-256 with respective time complexities of 218 and 250 reduced
SHA-256 compression function evaluations. We also give several weaker
collision style attacks on a larger number of rounds. Our results are sum-
marised in Table 1.



Table 1. Comparison of our results with the known results in the litera-
ture for each type. Effort is expressed in (equivalent) calls to the respective
reduced compression functions.

function steps type effort source example

SHA-256 18 collision 20 [8] yes
SHA-256 20 collision 21.58 [9] no
SHA-256 21 collision 215 [9] yes
SHA-256 22 collision 29 [13] yes
SHA-256 23 collision 218 this work yes
SHA-256 24 collision 250 this work no

SHA-256 23 semi-free start collision 217 [9] yes
SHA-256 24 semi-free start collision 217 this work yes

SHA-224 25 free start collision 217 this work no

SHA-256 22 free start near-collision 20 [8] yes
SHA-256 25 semi-free start near-collision 234 [9] yes
SHA-256 31 free start near-collision 232, Table 6 this work no

The structure of this paper is as follows. We give a short description
of SHA-256 in Sect. 2. Section 3 gives an alternative description of the
semi-free start collision attack by Nikolić and Biryukov [9], which will
make the subsequent description of the new attacks easier to understand.
We then discuss our collision attacks on 23- and 24-step SHA-256 in
Sect. 4. Further extensions can be found in the appendix. Finally, Sect. 5
concludes.

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using
the notations from Table 2. For a detailed specification, we refer to [10].

The compression function of SHA-256 consists of a message expan-
sion, which transforms a 512-bit message block into 64 expanded message
words Wi of 32 bits each, and a state update transformation. The latter
updates eight 32-bit state variables A, . . . , H in 64 identical steps, each
using one expanded message word. The message expansion can be defined
recursively as follows.

Wi =

{

Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 64

. (1)

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X ≫ 3) ,
σ1(X) = (X ≫ 17) ⊕ (X ≫ 19) ⊕ (X ≫ 10) .

(2)



Table 2. The notations used in this paper.

X ≫ s X rotated over s bits to the right
X ≫ s X shifted over s bits to the right

X One’s complement of X

X ⊕ Y Bitwise exclusive OR of X and Y

X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232

Ai, · · · , Hi State variables at step i, for the first message
A′

i, · · · , H
′

i Idem, for the second message
Wi i-th expanded message word of the first message
W ′

i i-th expanded message word of the second message
δX Additive difference in X, i.e., X ′

− X

δσ0 (X) Additive difference in σ0 (X), i.e., σ0 (X ′) − σ0 (X)

The state update transformation updates two of the state variables in
every step. It uses the bitwise Boolean functions fch and fmaj as well as
the GF(2)-linear functions Σ0 and Σ1.

fch(X, Y, Z) = XY ⊕ XZ ,
fmaj(X, Y, Z) = XY ⊕ Y Z ⊕ XZ ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22) ,
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25) .

(3)

The following equations describe the state update transformation, where
Ki is a step constant.

T1 = Hi + Σ1(Ei) + fch(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fmaj(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 steps, the initial state variables are fed forward using word-wise
addition modulo 232.

3 Review of the Nikolić-Biryukov Semi-Free Start
Collision Attack

In this section we review the 23 step semi-free start collision attack by
Nikolić and Biryukov [9], because new results we present in this paper
are extensions of this attack. The notations we use are given in Table 2.

3.1 A Nine Step Differential

The attack uses a nine step differential which is presented in Table 3.
All modular additive differences are fixed, as well as some of the actual



Table 3. A 9 step differential, using additive differences (left) and condi-
tions on the value (right). Zero differences resp. unconstrained values are
denoted by blanks.

step δA δB δC δD δE δF δG δH δW A B C D E F G H

8 α γ

9 1 α α γ + 1 γ

10 1 1 −1 −1 α α −1 γ + 1 γ

11 1 −1 1 δ1 α −1 α α ǫ −1 γ + 1 γ

12 1 −1 1 δ2 α α −1 α β ǫ −1 γ + 1
13 1 −1 1 α α α −1 β β ǫ −1
14 1 −1 α α α −1 β β ǫ

15 1 α α 0 −1 β β

16 1 1 α −2 0 −1 β

17 1 −1 −2 0 −1
18 −2 0

values. Fixing these values ensures that the differential is followed, as will
be explained later. The constants α, β, γ and ǫ are determined by the
attack algorithm. The first difference is inserted via the message word W9.
In order to obtain a 23 step semi-free start collision, we require that there
are no differences in expanded message words other than those indicated
in Table 3. In other words, only W9, W10, W11, W12, W16 and W17 can
have a difference.

3.2 The Attack

The attack algorithm consists of two phases. The first phase finds suitable
values for the constants α, β, γ and ǫ as well as two expanded message
words, W16 and W17. The entire complexity of the attack can be at-
tributed to this phase. A detailed description of this phase of the attack
will be given in Sect. 3.4, as it is more instructive to describe the second
phase first.

3.3 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α,
β, γ, ǫ, W16 and W17, a pair of messages and a set of initial values that
lead to a semi-free start collision for 23 steps of SHA-256. It works by
carefully fixing the internal state at step 11 and then computing forward
and backward. At each step, the expanded message word Wi is computed
such that the differential from Table 3 is followed. In three steps, extra
conditions appear, involving only the constants determined by the first



phase of the attack. The first phase guarantees that the constants are
such that these conditions are satisfied.

The second phase of the attack has a negligible complexity and is
guaranteed to succeed. Since there is still a lot of freedom left, many 23
step semi-free start collisions can be found with only a negligible extra
effort, by repeating this second phase several times.

1. Start at step 11 by fixing the state variables in this step, A11, · · · , H11

as indicated in Table 3. The constants α, β, γ and ǫ are given by the
first phase of the attack.

2. Calculate W11 such that A12 = α and W ′

11 such that A′

12 = α. This
can be done by simple rearranging (4). Compute the value of E12,
which we will refer to as β. Note that the value of β only depends on
α, since

A12 = α = Σ0 (α) + fmaj (α,−1, α) + β − α ⇒ β = α − Σ0 (α) . (5)

3. In a similar way, calculate W12 such that E13 = β and W ′

12 such that
E′

13 = β. This also guarantees that A13 = A′

13 because the majority
function absorbs the difference in C12.

4. Calculate W13 such that E14 = −1 and set W ′

13 = W13. Now, see
Table 3, the additive difference δE14 should be equal to 1. Computing
this difference yields the condition

δE14 = fch (β, β, ǫ − 1) − fch (β, β, ǫ) + 2 = 1 . (6)

This condition only involves the constants β and ǫ, and can thus
already be ensured by a proper choice of these constants in phase one
of the attack. Note that this condition also ensures that δA14 = 0.

5. Calculate W14 such that E15 = 0 and set W ′

14 = W14. Since the values
of E14 and E′

14 were chosen to be fixed points of the function Σ1 in the
previous step, δΣ1 (E14) = δE14 = 1 cancels with δH14 = −1. Also,
fch absorbs the difference in E14, no new differences are introduced
into the state.

6. Calculate W15 such that E16 = −2 and set W ′

15 = W15. The difference
in F15 is absorbed by fch.

7. The value for W16 is computed in phase one of the attack. The dif-
ference δW16 = 1 is cancelled by the output of fch. Indeed, since
the binary representation of E16 = −2 is 111 · · · 10b, the fch function
passes only the difference in the least significant bit.

8. Also the value for W17 is computed in phase one of the attack. The
difference δW17 = 1 cancels with δH17 = 1, thereby eliminating the
final difference in the state variables. Thus, a collision is reached after
step 17.



9. Now, go back to step 11 and proceed in the backward direction. Make
an arbitrary choice for W10. The differential from Table 3 is followed
because of the careful choice of the state variables in step 11.

10. Make an arbitrary choice for W9, and proceed one step backward.
The difference δW9 = 1 cancels with δA10 and with δE10 such that
there is a zero difference in the state variables A9 through H9. Now
randomly choose W8 down to W2 and calculate backward. Because no
new differences appear in these expanded message words, there is also
a zero difference in the state variables A2 through H2.

11. It is not possible to freely choose W0 or W1 as 16 expanded message
words have already been chosen, i.e., W2 until W17. Hence, these are
computed using the message expansion in the backward direction.
Although some of the message words used to compute W0 and W1

have differences, these differences always cancel out.
12. Continuing forward from step 18 again, note that the collision is pre-

served as long as no new differences are introduced via the expanded
message words. From the message expansion, it follows that

δW18 = δσ1 (W16) + δW11

= σ1 (W16 + 1) − σ1 (W16) − Σ1 (ǫ − 1) + Σ1 (ǫ)

−fch (ǫ − 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 . (7)

Phase one of the attack will have to ensure that W16, γ and ǫ are
chosen such that this condition is satisfied.

13. In step 19, it follows from the message expansion that the following
condition needs to be satisfied:

δW19 = δσ1 (W17) + δW12

= σ1 (W17 − 1) − σ1 (W17)

−fch (β, ǫ − 1, 0) + fch (β, ǫ,−1) = 0 . (8)

Again, this condition only depends on W17 and the constants β and ǫ,
so phase one of the attack can ensure that this condition is satisfied.

14. In steps 20–22, the message expansion guarantees that no new differ-
ences are introduced. In step 23, however, a difference of 1 is impos-
sible to avoid, hence the attack stops after 23 steps.

3.4 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for
the constants α, β, γ and ǫ, as well as two expanded message words, W16

and W17. Suitable values imply that the three conditions that are required



to be satisfied in the second phase of the attack are indeed satisfied. This
is achieved as follows.

1. Make a random choice for γ and ǫ, and search for a value of W16 such
that condition (7) is satisfied. There exists a simple, generic method
to solve equations of this form, which is described in Appendix B.
We note however that for this particular case, a faster method exists.
An exhaustive search over every possible value of W16 resulted in the
observation that only 6 181 additive differences can ever be achieved.
These can be stored in a lookup table, together with one or more
solutions for each difference. Hence, solving an equation of the form
σ1 (x + 1) − σ1 (x) = δ can by done with a simple table lookup.
If no solution exists, simply retry with different choices for γ and/or
ǫ. If the right hand side difference is selected uniformly at random,
the probability that the equation has a solution is about 2−19.5, so we
expect to have to repeat this step about 219.5 times.

2. Satisfying the other two conditions can be done independently of the
first. Make a random choice for α, and compute β using (5), i.e.,
β = α − Σ0 (α). Now check condition (6), which states that

fch (β, β, ǫ − 1) − fch (β, β, ǫ) = −1 . (9)

As described in [9], this equation is satisfied if the bits of β are zero
in the positions where the bits of ǫ − 1 and ǫ differ. This occurs with
a probability of approximately 1/3, so this condition is fairly easy to
satisfy.

3. The last condition, (8), is of the same form as the first condition,
provided it is rewritten as

σ1

(

W ′

17 + 1
)

− σ1

(

W ′

17

)

= fch (β, ǫ,−1) − fch (β, ǫ − 1, 0) . (10)

Also, it becomes independent of ǫ if we assume that the previous
condition is satisfied, because that implies that the bits of β are zero
where ǫ and ǫ − 1 differ. Hence, the right hand side is equal to β.

Note that, because not all conditions depend on all of the constants
that are determined in this phase of the attack, the first condition can
be treated independently of the last two. Thus, the first and last step of
this phase of the attack are executed about 219.5 times and the second
step about 221 times. Note also that one of these steps requires much less
work than an evaluation of the compression function of (reduced) SHA-
256 — a bit less than one step. Hence, the overall time complexity of the
attack, when expressed in SHA-256 compression function evaluations, is
below 217. If we consider the first phase to be a precomputation, the time
complexity is only one reduced SHA-256 evaluation.



4 Our Collision Attacks on SHA-256

In this section we describe a novel, practical collision attack on SHA-256,
reduced to 23 steps. It has a time complexity of about 218 evaluations
of the reduced SHA-256 compression function. We also extend this to 24
steps of SHA-256, with an expected time complexity of 250 compression
function evaluations.

4.1 23 Step Collision

Our collision attack for SHA-256 reduced to 23 steps consists of two parts.
First, we construct a semi-free start collision for 23 steps, based on the
attack from Sect. 3. Then we transform this semi-free start collision into
a real collision.

Finding “Good” Constants. Finding a 23 step semi-free start collision is
done using the same attack as described in Sect. 3, with a slight change
to the first phase. In Sect. 3.4 it was described how to find constants α,
β, γ and ǫ such that there exist values for W16 and W17 ensuring that the
conditions (7) and (8) are satisfied. There are still some degrees of freedom
left in this process. Indeed, it is possible to determine the constants α, β,
γ and ǫ such that there are many values for W16 and W17 satisfying (7)
and (8).

We performed a partially exhaustive search for such good constants.
Condition (7) depends only on ǫ and γ. An exhaustive search can be
performed with approximately 237 evaluations of (7), because for each
value of ǫ, only some of the bits in γ can have an influence. We found
several values for ǫ and γ for which more than 229 choices for W16 ensure
that (7) is satisfied, for example

γ = 0000017cx and ǫ = 7f5f7200x . (11)

Conditions (6) and (8) depend on β (which in turn depends on α) and ǫ.
Recall from Sect. 3.4 that (8) becomes independent of ǫ if we assume (6) is
satisfied. Hence again, an exhaustive search is feasible. With ǫ as in (11),
the following values are for α and β are one of many optimal choices:

α = 00b321e3x and β = fcffe000x . (12)

There are 216 possible W17’s which satisfy (8) with these constants. Thus,
these values for α, β, γ and ǫ gives us an additional freedom of 245 in the
choice of W16 and W17. This phase can be considered a precomputation,
or alternatively, one can reduce the effort spent in this phase by only
searching a smaller part of the available search space, which likely leads to
less optimal results. It may however be a worthwhile trade-off in practice.



Transforming into a Collision. Note that only 7 expanded message words
are actually fixed to a certain value when constructing a semi-free start
collision. Indeed, only W11 until W17 are really fixed, if we ignore the
freedom we still have left in W16 and W17 for now. The others are cho-
sen arbitrarily or computed from the message expansion when necessary.
Using this freedom, it is possible to construct many semi-free start colli-
sions with only a negligible extra effort. But it is also possible to use this
freedom in a controlled manner to transform the semi-free start collision
into a real collision.

To this end, we first introduce an alternative description of SHA-256.
In older variants of the same design strategy like MD5 or SHA-1, only
a single state variable is updated in every step. This naturally leads to
a description where only the first state variable is considered. Something
similar can be done with the SHA-2 hash functions, even though in the
standard description, two state variables are updated in every step.

From the state update equations (4), we derive a series of equa-
tions which express the inputs of the i-th state update transformation,
Ai, . . . , Hi, as a function of only Ai through Ai−7.

Ai = Ai ,
Bi = Ai−1 ,
Ci = Ai−2 ,
Di = Ai−3 ,
Ei = Ai−4 + Ai − Σ0(Ai−1) − fmaj(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1 − Σ0(Ai−2) − fmaj(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2 − Σ0(Ai−3) − fmaj(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3 − Σ0(Ai−4) − fmaj(Ai−4, Ai−5, Ai−6) .

(13)

Substituting these into (4) yields an alternative description requiring only
a single state variable. This description can be written as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6, Ai−7) + Wi . (14)

The function F (·) encapsulates (4) and (13) except for the addition of
the expanded message word Wi.

From (13) it is clear that one can easily transform the internal state
in the standard description, 〈Ai, · · · , Hi〉, to the internal state in the al-
ternative description, 〈Ai, · · · , Ai−7〉 and vice versa. Analogous to what is
done for MD5 and SHA-1, the initial values can be defined as A−7, · · · , A0.
Since control over one expanded message word Wi gives full control over
one state variable Ai+1, control over eight consecutive expanded message
words gives full control over the entire internal state.

This alternative description of SHA-256 can be used to transform a
23 step semi-free start collision for SHA-256 into a real collision.



1. Set 〈A0, · · · , A−7〉 to the SHA-256 initial values, in the alternative
description. Make arbitrary choices for W0, W1 and W2. Recompute
the first three steps.

2. The eight message words W3 until W10 are now modified such that
A4 until A11 remain unchanged. In the original description of SHA-
256, this implies that the internal state at step 11, i.e., 〈A11, · · · , H11〉
does not change, and thus we connect to the rest of the semi-free start
collision. More specifically, for every i, 3 ≤ i ≤ 10, the new value of
the i-th message word is computed as

Wi = Ai+1 − F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6, Ai−7) . (15)

In the message words W9 and W10 there is an additive difference
of 1 and −1, respectively. This does not pose a problem since the
construction of the semi-free start condition guarantees that these
will have the intended effect, regardless of the values of W9 and W10,
see Sect. 3.3.

3. Now we need to verify again if conditions (7) and (8) are still satisfied,
since they depend on W16 and W17, which may have changed. If the
conditions are not satisfied, simply restart and make different choices
for W0, W1 and/or W2.
Recall however that we have spent extra effort in the first phase of the
attack to choose the constants α, β, γ and ǫ such that there are many
values for W16 and W17 that satisfy the conditions. For the constants
given in (11) and (12), there are 245 allowed values for these two
expanded message words. This translates into a probability of 2−19

that the conditions (7) and (8) are indeed still satisfied. We hence
expect to have to repeat this procedure about 219 times. Every trial
requires an effort equivalent to about 10 rounds of SHA-256.

4. After a successful modification of the first message words, the ex-
panded message words W18 until W22 need to be recomputed, and
also the corresponding steps need to be redone. The construction of
the semi-free start collision still guarantees that no differences will be
introduced.

If we consider the first phase to be a precomputation, the overall
attack complexity is about 218 evaluations of the compression function
of SHA-256 reduced to 23 steps. An example collision pair for 23-step
reduced SHA-256 is given in Table 4.

4.2 Extensions

The same approach can be extended to 24 steps of SHA-256. The entire
attack is simply shifted down by one step. The consequence of this is that



Table 4. Example Colliding Message Pair for 23-Step Reduced SHA-256.

M 29f1ebfbx 4468041ax 1e6565b6x 4cc17e75x

4ea4f993x 33a77104x 864a828dx 1dcec3d2x

d33d7b02x bcd4a2d7x 3b10201dx 39953548x

8e127f2bx 0304fc01x e7118577x 43b12ca7x

M ′ 29f1ebfbx 4468041ax 1e6565b6x 4cc17e75x

4ea4f993x 33a77104x 864a828dx 1dcec3d2x

d33d7b02x bcd4a2d8x 3b10201cx 3995d548x

91129f2ax 0304fc01x e7118577x 43b12ca7x

H c77405eax 8bfe2016x ff0531b6x a89b81f6x

e98cf052x 491a6c62x fd009a40x 3969dc83x

one more expanded message word can only be assigned a correct value
probabilistically. Since for this message word, W16 (which was W15 in the
23-step attack), there is only one correct value, this only happens with a
probability of 2−32.

This results in an expected time complexity of 250 for 24-step SHA-
256 collisions. An extension of this attack method beyond 24 steps fails,
because then a difference in the first message word, W0, becomes unavoid-
able. In [13], another differential than the one shown in Table 3 is used
to find 22-step collisions for SHA-256. We tried to use this differential in
our extended attacks, but even for 23 steps, using this differential fails.

Appendix A extends this further, using weaker attack models. In
Sect. A.1, a semi-free start collision attack on 24 step SHA-256 is de-
scribed. Section A.2 considers SHA-224 and shows free start collisions for
one more step, i.e., 25 steps of SHA-224. Finally, in Sect. A.3, pseudo-near
collision attacks on SHA-256 are explored.

5 Conclusion

Our results push the limit to cryptanalysis for step reduced but otherwise
unmodified SHA-256; we found practical collisions for 23 steps, and short-
cut collision attacks for up to 24 steps. For almost half of the steps (31
out of 64) non-random properties are detectable in practice. Even though
we did not perform a detailed analysis, we expect very similar results for
SHA-512.

Acknowledgements

The authors would like to acknowledge the use of the VIC computer
cluster of K.U.Leuven, which was used to obtain most of the experimental
results presented in this paper.



References

1. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of LNCS, pages 56–71. Springer, 1998.

2. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In
Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography,
volume 3006 of LNCS, pages 175–193. Springer, 2003.

3. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On corrective patterns
for the SHA-2 family. Cryptology ePrint Archive, Report 2004/207, August 2004.
http://eprint.iacr.org/.

4. Marko Holbl, Christian Rechberger, and Tatjana Welzer. Searching for messages
conforming to arbitrary sets of conditions in SHA-256. In Proceedings of WE-

WORC 2007, LNCS. Springer, 2008. To appear.
5. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential

properties of addition. In Mitsuru Matsui, editor, FSE, volume 2355 of Lecture

Notes in Computer Science, pages 336–350. Springer, 2001.
6. Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive differential

probability of exclusive-or. In Bimal K. Roy and Willi Meier, editors, FSE, volume
3017 of Lecture Notes in Computer Science, pages 317–331. Springer, 2004.

7. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rechberger,
and Vincent Rijmen. Analysis of simplified variants of SHA-256. In Proceedings

of WEWoRC 2005, LNI P-74, pages 123–134, 2005.
8. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen.

Analysis of Step-Reduced SHA-256. In Matthew J. B. Robshaw, editor, FSE,
volume 4047 of LNCS, pages 126–143. Springer, 2006.

9. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In
Kaisa Nyberg, editor, Fast Software Encryption, 15th International Workshop,

FSE 2008, Lausanne, Switzerland, March 26-28, 2007,, LNCS. Springer, 2008. To
appear.

10. National Institute of Standards and Technology (NIST). FIPS-
180-2: Secure Hash Standard, August 2002. Available online at
http://www.itl.nist.gov/fipspubs/.

11. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Preliminary
Analysis of the SHA-256 Message Expansion. NIST - First Cryptographic Hash
Workshop, October 31-November 1, 2005.

12. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2
Hash Family. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817
of LNCS, pages 193–205. Springer, 2007.

13. Somitra Kumar Sanadhya and Palash Sarkar. 22-step collisions
for SHA-2. arXiv e-print archive, arXiv:0803.1220v1, March 2008.
http://de.arxiv.org/abs/0803.1220.

14. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256.
In Proceedings of ACNS 2008, LNCS. Springer, 2008. To appear.

15. Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 Variant. In Bart
Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume
3897 of LNCS, pages 245–260. Springer, 2005.

A Further Extensions

This appendix explores further extensions towards weaker collision-style
attacks on a larger number of steps of SHA-256 and SHA-224.

http://eprint.iacr.org/
http://www.itl.nist.gov/fipspubs/
http://de.arxiv.org/abs/0803.1220


Table 5. Example Semi-Free Start Collision for 24 Steps of SHA-256.

H0 e6b21e2ax 9eec3b36x 674816bfx 52fd4d82x

2075dfbcx 1630fbe9x 85fa59a9x 10912d28x

M 05f5130dx c4ff49bdx 9a8bfb77x 259e363cx

43b0addax 29ac6ae1x 50a8319bx 49a119b6x

782da4a3x 1d8f6847x 541e17fdx 4d1f8e0dx

0fb71437x bcb17024x 2d1bf28ax b2fcaa23x

M ′ 05f5130dx c4ff49bdx 9a8bfb77x 259e363cx

43b0addax 29ac6ae1x 50a8319bx 49a119b6x

782da4a3x 1d8f6847x 541e17fex 4d1f8e0cx

0fb6b8e6x 7cb18fe3x 2d1bf28ax b2fcaa23x

H db365949x 470b5345x 8c4d3ec4x 2988e2b0x

e4de89c3x 2ea2b092x 24914fc4x 4f8bc9bcx

A.1 Semi-Free Start Collisions for 24 Steps of SHA-256

This section presents a straightforward extension of the 23 step semi-free
start collision attack of Nikolić and Biryukov [9], which was described
in Sect. 3. We keep the entire attack algorithm unchanged, but shift
everything down by a single step. Because of this, one more message word,
W0, needs to be computed from the message expansion in the reverse
direction. From the message expansion in the reverse direction, it follows
that the additive difference in this word is

δW0 = δW16 − δσ1 (W14) − δW9 − δσ0 (W1) . (16)

None of these expanded message words has a difference, so also δW0 = 0.
This yields 24 step semi-free start collisions of SHA-256 with the same
complexity (217) An example is given in Table 5.

A.2 Free Start Collisions for 25 Steps of SHA-224

SHA-224 differs from SHA-256 in two ways. First, it has different initial
values, and second, the output is truncated to the leftmost 224 bits. We
can thus extend the 24-step semi-free start collision of SHA-256 from
Sect. A.1 to a 25-step free start collision of SHA-224 by simply shifting
the same attack down one more step. Now a difference will inevitably
appear in W0, which propagates to the initial value H0. The other initial
values, A0 through G0 still have a zero difference. Because the word H
is truncated away in SHA-224, this results in free start collisions for 25
steps of SHA-224.



A.3 Pseudo-Near Collisions of SHA-256

Extending the attack to more steps is possible, provided that some dif-
ferences are allowed both in the initial value and in the hash result, i.e.,
when considering pseudo-near collisions. The starting point is again the
23-step semi-free start collision attack from Sect. 3. It is extended by
adding a number of extra backward and forward steps. For a given num-
ber of steps, the attacker can choose how to split the required extra steps
into backward and forward steps.

As explained in Sect. A.1, no difference is introduced in the first back-
ward step. Note also that the diffusion of differences is slower in the back-
ward direction than in the forward direction. A difference introduced in
an expanded message word Wi affects both Ai+1 and Ei+1 in the forward
direction, as opposed to only Hi when going in the backward direction.
Thus, in the forward direction, all state words can be affected by a single
difference in an expanded message word after only four rounds. In the
backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of
232 reduced SHA-256 compression function evaluations, which are sum-
marised in Table 6. The first three columns give the total number of steps,
and the number of extra backward and extra forward steps, respectively.
The fourth column gives kmin, the smallest Hamming distance found. The
last eight columns contain the 2-logarithm of the number of solutions with
a Hamming distance k of at most 8, 16, . . . , 64 bits. For comparison, also
the expected values for a generic birthday attack with an equal effort of
232 is given.

For a generic (pseudo-) near collision attack on an ideal n-bit hash
function, using the birthday paradox with an effort of 2w compression
function evaluations, the lowest expected Hamming distance is the lowest
k for which

22w ·

(

k
∑

i=0

2−n

(

n

i

)

)

≥ 1 . (17)

For instance, with w = 32 and for SHA-256 (i.e., n = 256), this gives
k = 57 bits. Our attack performs significantly better for up to 30 steps of
SHA-256. For 31 steps, we still found 208 pseudo-near collisions with a
Hamming distance of at most 57 bits, whereas a birthday attack is only
expected to find one with the same effort.

B Solving L(x + δ) = L(x) + δ′

This section describes a generic method to solve equations of the form
L(x + δ) = L(x) + δ′ where δ and δ′ are given n-bit additive differences,



Table 6. Experimental results of the pseudo-near collision attack on
SHA-256. For each number of steps, only the combination of for-
ward/backward steps that gave the best results is shown. For comparison,
the expected numbers of solutions for a generic birthday attack with an
equal effort are also given.

steps bwd. fwd. kmin 2-logarithm of the number of solutions with k

≤ 8 ≤ 16 ≤ 24 ≤ 32 ≤ 40 ≤ 48 ≤ 56 ≤ 64

25 1 1 2 31.95 32.00 32.00 32.00 32.00 32.00 32.00 32.00
26 2 1 8 24.17 31.55 31.99 32.00 32.00 32.00 32.00 32.00
27 3 1 11 −∞ 15.41 26.20 30.65 31.89 32.00 32.00 32.00
28 4 1 18 −∞ −∞ 8.77 20.41 27.24 30.63 31.80 31.99
29 5 1 32 −∞ −∞ −∞ 1.58 14.31 22.86 28.19 30.93
30 6 1 43 −∞ −∞ −∞ −∞ −∞ 10.73 19.58 25.68
31 6 2 53 −∞ −∞ −∞ −∞ −∞ −∞ 6.34 15.50

Birthday Attack 57 −143.41 −108.84 −80.49 −56.36 −35.51 −17.37 −1.57 12.14

and L is an n-bit to n-bit GF(2)-linear transformation. This is a similar
problem to the ones studied by Lipmaa and Moriai [5] and Lipmaa et

al. [6].
Consider the modular addition x + δ and let ∆ = (x + δ) ⊕ x. This

addition is described by the following equations, where xi is the i-th bit
of x and the ci’s are the carry bits:

(x + δ)i = xi ⊕ δi ⊕ ci

ci+1 = fmaj(xi, δi, ci)
c0 = 0

⇔
ci = δi ⊕ ∆i

ci+1 = fmaj(xi, δi, δi ⊕ ∆i)
c0 = 0

. (18)

Hence, once we fix both the additive difference δ and the XOR differ-
ence ∆, all the ci’s are fixed. Some of the xi’s are also fixed: when ∆i = 1
and i + 1 < n, it must hold that xi = ci+1 = δi+1 ⊕ ∆i+1. This means
that the allowed values for x lie in an affine space. Note that not all addi-
tive differences are consistent with all XOR differences, i.e., the following
conditions must be satisfied

{

c0 = δ0 ⊕ ∆0 = 0
δi = δi+1 ⊕ ∆i+1 when ∆i = 0 and i + 1 < n

. (19)

Solving an equation of the form L(x + δ) = L(x) + δ′ can be done as
follows. Let ∆′ = (L(x) + δ′) ⊕ L(x), i.e., the XOR-difference associated
with the modular addition L(x) + δ′. Since L(x + δ) = L(x) + δ′ and L is
GF(2)-linear, it follows that ∆′ = L(∆). We can thus simply enumerate
all the XOR-differences ∆ consistent with δ, compute ∆′ = L(∆) and
check if this is consistent with δ′. If it is, both additions restrict x to



a (different) affine space. The intersection of these spaces, which can be
computed by solving a system of linear equations over GF(2), gives the
solutions x for the chosen ∆. Note that the intersection may be empty. If
no solutions are found for any value of ∆, the equation L(x+δ) = L(x)+δ′

has no solutions.
The time complexity of this method is proportional to the minimum

of the number of XOR differences consistent with δ or δ′. This follows
from the fact that one can easily modify the method to choose ∆′ instead
of ∆.


