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Abstract. We study the security of step-reduced but otherwise unmod-
ified SHA-256. We show the first collision attacks on SHA-256 reduced
to 23 and 24 steps with complexities 218 and 228.5, respectively. We give
example colliding message pairs for 23-step and 24-step SHA-256. The
best previous, recently obtained result was a collision attack for up to 22
steps. We extend our attacks to 23 and 24-step reduced SHA-512 with
respective complexities of 244.9 and 253.0. Additionally, we show non-
random behaviour of the SHA-256 compression function in the form of
free-start near-collisions for up to 31 steps, which is 6 more steps than
the recently obtained non-random behaviour in the form of a free-start
near-collision. Even though this represents a step forwards in terms of
cryptanalytic techniques, the results do not threaten the security of ap-
plications using SHA-256.
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1 Introduction

In the light of previous break-through results on hash functions such as
MD5 and SHA-1, the security of their successors, SHA-256 and sisters,
against all kinds of cryptanalytic attacks deserves special attention. This
is even more important as many products and services that used to rely
on SHA-1 are now migrating to SHA-256.
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1.1 Previous work on members of the SHA-2 family

Below, we briefly discuss existing work. Results on older variants of the
larger MD4 related hash function family, including SHA-1, suggest that
the concept of local collisions might also be important for the SHA-2
family. The first published analysis on members of the SHA-2 family, by
Gilbert and Handschuh [2], goes in this direction. They show that there
exists a 9-step local collision with probability 2−66. Later on, the result
was improved by Hawkes et al. [3]. By considering modular differences,
they increased the probability to 2−39. Using XOR differences, local colli-
sions with probability as high as 2−38 where used by Hölbl et al. [4]. Local
collisions with lower probability but with other properties were studied
by Sanadhya and Sarkar in [13].

Now we turn our attention to the analysis of simplified variants of
SHA-256. In [17], Yoshida and Biryukov replace all modular additions by
XOR. For this variant, a search for pseudo-collisions is described, which
is faster than brute force search for up to 34 steps. Matusiewicz et al. [8]
analysed a variant of SHA-256 where all Σ- and σ-functions are removed.
The conclusion is that for this variant, collisions can be found much faster
than by brute force search. The work shows that the approach used by
Chabaud and Joux [1] in their analysis of SHA-0 is extensible to that
particular variant of SHA-256. The message expansion as a building block
on its own was studied by Matusiewicz et al. [8] and Pramstaller et al. [12].

Finally, we discuss previous work that focuses on step-reduced but oth-
erwise unmodified SHA-256. The first study was done by Mendel et al. [9].
The results obtained are a practical 18-step collision and a differential
characteristic for 19-step SHA-224 collision. Also, an example of a pseudo-
near-collision for 22-step SHA-256 is given. Similar techniques have been
studied by Matusiewicz et al. [8] and recently also by Sanadhya and
Sarkar [15]. Using a different technique, Nikolić and Biryukov [10] ob-
tained collisions for up to 21 steps and non-random behaviour in the
form of semi free-start near-collisions for up to 25 steps. Very recently,
Sanadhya and Sarkar [16] extended this, and showed a collision example
for 22 steps of SHA-256 in [14].

1.2 Our Contribution

We extend the work of Nikolić and Biryukov [10] to collisions for 23-
and 24-step SHA-256 with respective time complexities of 218 and 228.5

reduced SHA-256 compression function evaluations. These 23- and 24-
step attacks are also applied to SHA-512, with complexities of 244.9 and



Table 1. Comparison of our results with the known results in the litera-
ture for each type. Effort is expressed in (equivalent) calls to the respective
reduced compression functions.

function steps type effort source example

SHA-256 18 collision 20 [9] yes
SHA-256 20 collision 21.58 [10] no
SHA-256 21 collision 215 [10] yes
SHA-256 22 collision 29 [14] yes
SHA-256 23 collision 218 this work yes
SHA-256 24 collision 228.5 this work yes
SHA-512 23 collision 243.9 this work yes
SHA-512 24 collision 253.0 this work no

SHA-256 23 semi-free-start collision 217 [10] yes
SHA-256 24 semi-free-start collision 217 this work no

SHA-224 25 free-start collision 217 this work no

SHA-256 22 free-start near-collision 20 [9] yes
SHA-256 25 semi-free-start near-collision 234 [10] yes
SHA-256 31 free-start near-collision 232, Table 6 this work no

253.0 for 23-step SHA-512 and 24-step SHA-512, respectively. Example
collision pairs for 23-step SHA-256 and SHA-512, and for 24-step SHA-
256 are given. The collision attacks presented in this work do not extend
beyond 24 steps, but we investigate several weaker collision style attacks
on a larger number of rounds. Our results are summarised in Table 1.

We use the terminology introduced by Lai and Massey [5] for different
types of attacks on (iterated) hash functions. A collision attack aims
to find two distinct messages that hash to the same result. In a semi-
free-start collision attack, the attacker is additionally allowed to choose
the initial chaining value, but the same value should be used for both
messages. In a free-start collision attack, a (small) difference may appear
in the initial chaining value. Near-collision attacks relax the requirement
that the hash results should be equal and allow for small differences.

The structure of this paper is as follows. We give a short description of
SHA-256 in Sect. 2. Section 3 gives an alternative description of the semi-
free-start collision attack by Nikolić and Biryukov [10], which will make
the subsequent description of the new attacks easier to understand. We
then discuss our collision attacks on 23- and 24-step SHA-256 in Sect. 4.
In Sect. 5, we apply our results to step-reduced SHA-512. Finally, Sect. 6
concludes.



Table 2. The notation used in this paper.

X ≫ s X rotated over s bits to the right
X ≫ s X shifted over s bits to the right

X One’s complement of X

X ⊕ Y Bitwise exclusive OR of X and Y

X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232

Ai, · · · , Hi State variables at step i, for the first message
A′

i, · · · , H ′

i Idem, for the second message
Wi i-th expanded message word of the first message
W ′

i Idem, for the second message
δX Additive difference in X, i.e., X ′

− X

δσ0 (X) Additive difference in σ0 (X), i.e., σ0 (X ′) − σ0 (X)

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using
the notation from Table 2. For a detailed specification, we refer to [11].

The compression function of SHA-256 consists of a message expan-
sion, which transforms a 512-bit message block into 64 expanded message
words Wi of 32 bits each, and a state update transformation. The latter
updates eight 32-bit state variables A, . . . , H in 64 identical steps, each
using one expanded message word. The message expansion can be defined
recursively as follows.

Wi =

{

Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 64

. (1)

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X ≫ 3) ,
σ1(X) = (X ≫ 17) ⊕ (X ≫ 19) ⊕ (X ≫ 10) .

(2)

The state update transformation updates two of the state variables in
every step. It uses the bitwise Boolean functions fch and fmaj as well as
the GF(2)-linear functions Σ0 and Σ1.

fch(X, Y, Z) = XY ⊕ XZ ,
fmaj(X, Y, Z) = XY ⊕ Y Z ⊕ XZ ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22) ,
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25) .

(3)



The following equations describe the state update transformation, where
Ki is a step constant.

T1 = Hi + Σ1(Ei) + fch(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fmaj(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 steps, the initial state variables are fed forward using word-wise
addition modulo 232.

3 Review of the Nikolić-Biryukov Semi-Free-Start
Collision Attack

In this section, we review the 23-step semi-free-start collision attack by
Nikolić and Biryukov [10]. The new results presented in this paper are
extensions of this attack. The notations we use are given in Table 2.

The attack uses a nine step differential, which is presented in Table 3.
All additive differences are fixed, as well as the actual values of some of the
internal state variables. Fixing these values ensures that the differential
is followed, as will be explained later. The constants α, β, γ and ǫ are
determined by the attack. The first difference is inserted via the message
word W9. There are no differences in expanded message words other than
those indicated in Table 3, i.e., only W9, W10, W11, W12, W16 and W17

can have a difference.

The attack algorithm consists of two phases. The first phase finds
suitable values for the constants α, β, γ and ǫ as well as two expanded
message words, W16 and W17. A detailed description of this phase of the
attack will be given in Sect. 3.2, as it is more instructive to describe the
second phase first.

3.1 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α, β,
γ, ǫ, W16 and W17, a pair of messages and a set of initial values that lead to
a semi-free-start collision for 23 steps of SHA-256. It works by carefully
fixing the internal state at step 11 as indicated in Table 3, and then
computing forward and backward. At each step, the expanded message
word Wi is computed such that the differential from Table 3 is followed.
During this, four extra conditions appear, involving only the constants



Table 3. A 9 step differential, using additive differences (left) and condi-
tions on the value (right). Zero differences resp. unconstrained values are
denoted by blanks.

step δA δB δC δD δE δF δG δH δW A B C D E F G H

8 α γ

9 1 α α γ + 1 γ

10 1 1 −1 −1 α α −1 γ + 1 γ

11 1 −1 1 δ1 α −1 α α ǫ −1 γ + 1 γ

12 1 −1 1 δ2 α α −1 α β ǫ −1 γ + 1
13 1 −1 1 α α α −1 β β ǫ −1
14 1 −1 α α α −1 β β ǫ

15 1 α α 0 −1 β β

16 1 1 α −2 0 −1 β

17 1 −1 −2 0 −1
18 −2 0

determined by the first phase of the attack.

σ1 (W16 + 1) − σ1 (W16) − Σ1 (ǫ − 1) + Σ1 (ǫ)

− fch (ǫ − 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 . (5)

σ1 (W17 − 1) − σ1 (W17) − fch (β, ǫ − 1, 0) + fch (β, ǫ,−1) = 0 . (6)

β = α − Σ0 (α) . (7)

fch (β, β, ǫ − 1) − fch (β, β, ǫ) = −1 . (8)

The first phase guarantees that the constants are such that these condi-
tions are satisfied. The second phase of the attack has a negligible com-
plexity and is guaranteed to succeed. Since there is still a lot of freedom
left, many 23-step semi-free-start collisions can be found, with only a neg-
ligible additional effort, by repeating this second phase several times. A
detailed description of this phase, including the origins of (5)–(8), is given
in Appendix A.

3.2 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for
the constants α, β, γ and ǫ, as well as two expanded message words, W16

and W17. Suitable values imply that the four conditions (5)–(8) are satis-
fied. Nikolić and Biryukov [10] do not give much detail on this procedure,
hence we clarify it below.



1. Make a random choice for γ and ǫ and search for a value of W16 such
that condition (5) is satisfied. This condition is of the form σ1 (x + 1)−
σ1 (x) = δ. There exists a simple, generic method to solve equations of
this form, which is described in Appendix B. We note however that for
this particular case, a faster method exists. An exhaustive search over
every possible value of x resulted in the observation that only 6 181
additive differences δ can ever be achieved. These can be stored in a
lookup table, together with one or more solutions for each difference.
Hence, solving an equation of this form can be done with a simple
table lookup.

If no solution exists, simply retry with different choices for γ and/or
ǫ. If the right hand side difference δ is selected uniformly at random,
the probability that the equation has a solution is 2−19.5, so we expect
to have to repeat this step about 219.5 times.

2. Make a random choice for α, and compute β using (7). Now check
condition (8). As described in [10], this equation is satisfied if the bits
of β are zero in the positions where the bits of ǫ− 1 and ǫ differ. This
occurs with a probability of approximately 1/3, so this condition is
fairly easy to satisfy.

3. The last condition, (6), is of the same form as the first condition, so it
can be solved in exactly the same way. The expected probability that
a solution exists is again 2−19.5.

Note that, because not all conditions depend on all of the constants de-
termined in this phase of the attack, the first condition can be treated
independently of the last three. Thus, the first and last step of this phase
of the attack are executed about 219.5 times and the second step about
221 times. One of these steps requires much less work than an evalua-
tion of the compression function of (reduced) SHA-256 — a bit less than
one step. Hence, the overall time complexity of the entire attack, when
expressed in SHA-256 compression function evaluations, is below 217.

4 Our Collision Attacks on Step-Reduced SHA-256

In this section we describe a novel, practical collision attack on SHA-256,
reduced to 23 steps. It has a time complexity of about 218 evaluations
of the reduced SHA-256 compression function. We also extend this to 24
steps of SHA-256, with an expected time complexity of 228.5 compression
function evaluations.



4.1 23-Step Collision

Our collision attack for SHA-256, reduced to 23 steps, consists of two
parts. First, we construct a semi-free-start collision for 23 steps, based on
the attack from Sect. 3. Then we transform this semi-free-start collision
into a real collision.

Finding “Good” Constants. Finding a 23 step semi-free-start collision is
done using the same attack as described in Sect. 3, with a slight change
to the first phase. In Sect. 3.2, it was described how to find constants α,
β, γ and ǫ such that there exist values for W16 and W17 ensuring that the
conditions (5) and (6) are satisfied. There are still some degrees of freedom
left in this process. Indeed, it is possible to determine the constants α, β,
γ and ǫ such that there are many values for W16 and W17 satisfying (5)
and (6).

We performed an exhaustive search for such good constants. Condi-
tion (5) depends only on ǫ and γ. An exhaustive search for this condition
can be performed with approximately 237 evaluations of (5), because for
each value of ǫ, only some of the bits in γ can have an influence. We found
several values for ǫ and γ for which more than 229 choices for W16 ensure
that (5) is satisfied, for instance

γ = 0000017cx , ǫ = 7f5f7200x . (9)

Conditions (6) and (8) depend on ǫ and β, which in turn depends on
α through (7). An interesting property is that condition (6) becomes
independent of ǫ if we assume that condition (8) is satisfied. Indeed, since
this assumption implies that the bits of β are zero where ǫ and ǫ−1 differ,
(6) reduces to

σ1

(

W ′

17 + 1
)

− σ1

(

W ′

17

)

= β . (10)

Because of this, an exhaustive search for good values of α and β is feasible.
There are many of the optimal values for α and β which are consistent
with (several of) the optimal values for ǫ, thus yielding a global optimum.
For instance, with γ and ǫ as in (9), the following values for α and β are
one of many optimal choices:

α = 00b321e3x , β = fcffe000x . (11)

There are 216 possible choices for W17 which satisfy (6) with these con-
stants. Thus, these values for α, β, γ and ǫ give us an additional freedom
of 245 in the choice of W16 and W17. This phase can be considered a pre-
computation, or alternatively, one can reduce the effort spent in this phase



by only searching a smaller part of the available search space, which likely
leads to less optimal results. It may however be a worthwhile trade-off in
practice.

Transforming into a Collision. Note that only 7 expanded message words,
W11 until W17, are actually fixed to a certain value when constructing a
semi-free-start collision, ignoring the freedom left in W16 and W17 for
now. The others are chosen arbitrarily or computed from the message
expansion when necessary. Using this freedom, it is possible to construct
many semi-free-start collisions with only a negligible additional effort. But
it is also possible to use this freedom in a controlled manner to transform
the semi-free-start collision into a real collision.

To this end, we first introduce an alternative description of SHA-256.
In older variants of the same design strategy, like MD5 or SHA-1, only
a single state variable is updated in every step. This naturally leads to
a description where only the first state variable is considered. Something
similar can be done with the SHA-2 hash functions, even though in the
standard description, two state variables are updated in every step.

From the state update equations (4), we derive a series of equations
expressing the inputs of the i-th state update transformation, Ai, . . . , Hi,
as a function of only Ai through Ai−7.

Ai = Ai , Bi = Ai−1 , Ci = Ai−2 , Di = Ai−3 ,
Ei = Ai−4 + Ai −Σ0(Ai−1) − fmaj(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1−Σ0(Ai−2) − fmaj(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2−Σ0(Ai−3) − fmaj(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3−Σ0(Ai−4) − fmaj(Ai−4, Ai−5, Ai−6) .

(12)

Substituting these into (4) yields an alternative description requiring only
a single state variable. This description can be written concisely as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) + Ai−7 + Wi . (13)

The function F (·) encapsulates (4) and (12), except for the addition of
the expanded message word Wi and the state variable Ai−7. From (12), it
is clear that one can easily transform an internal state in the standard de-
scription, 〈Ai, · · · , Hi〉, to the corresponding internal state in the alterna-
tive description, 〈Ai, · · · , Ai−7〉, and vice versa. Analogous to what is done
for MD5 and SHA-1, the initial values can be redefined as A−7, · · · , A0.

This alternative description of SHA-256 can be used to transform a 23
step semi-free-start collision for SHA-256 into a real collision. Since con-
trol over one expanded message word Wi gives full control over one state



variable Ai+1, control over eight consecutive expanded message words
gives full control over the entire internal state.

1. Start from a 23-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉
to the SHA-256 initial values, in the alternative description. Make
arbitrary choices for W0, W1 and W2, and recompute the first three
steps.

2. The eight message words W3 until W10 are now modified such that A4

until A11 remain unchanged. This implies that the internal state at
step 11, 〈A11, · · · , H11〉 does not change, and thus we connect to the
rest of the semi-free-start collision. More specifically, for every step i,
3 ≤ i ≤ 10, the new value of the i-th message word is computed as

Wi = Ai+1 −F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6)−Ai−7 . (14)

In the message words W9 and W10 there is an additive difference
of 1 and −1, respectively. This does not pose a problem since the
construction of the semi-free-start condition guarantees that these will
have the intended effect, regardless of the values of W9 and W10, see
Appendix A.

3. Now we need to verify again if conditions (5) and (6) are still satisfied,
since they depend on W16 and W17, which may have changed. If the
conditions are not satisfied, simply restart and make different choices
for W0, W1 and/or W2.
Recall however that we have spent extra effort in the first phase of
the attack to choose the constants α, β, γ and ǫ such that there
are many values for W16 and W17 that satisfy the conditions. For
the constants given in (9) and (11), there are 245 allowed values for
these two expanded message words. This translates into a probability
of 2−19 that the conditions (5) and (6) are indeed still satisfied. We
hence expect to have to repeat this procedure about 219 times. Every
trial requires an effort equivalent to about 10 steps of SHA-256.

4. After a successful modification of the first message words, the ex-
panded message words W18 until W22 need to be recomputed, and
also the corresponding steps need to be redone. The construction of
the semi-free-start collision still guarantees that no differences will be
introduced.

If we consider the first phase to be a precomputation, the overall attack
complexity is about 218 evaluations of the compression function of SHA-
256 reduced to 23 steps. An example collision pair for 23-step reduced
SHA-256 is given in Table 4.



Table 4. Example Colliding Message Pair for 23-Step Reduced SHA-256.

M 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d7 3b10201d 39953548 8e127f2b 0304fc01 e7118577 43b12ca7

M ′ 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d8 3b10201c 3995d548 91129f2a 0304fc01 e7118577 43b12ca7

H c77405ea 8bfe2016 ff0531b6 a89b81f6 e98cf052 491a6c62 fd009a40 3969dc83

4.2 24-Step Collision

The same approach can be extended to 24 steps of SHA-256, using the
24-step semi-free-start collision attack given in detail in Sect. 4.3. Simply
put, the 23-step attack is simply shifted down by a single step, and no
difference is introduced into W0 by the message expansion in the backward
direction.

When turning the semi-free-start collision into a collision, however, the
value of the expanded message word W16 (which was the non-expanded
message word W15 in the 23-step attack) should not change. In a straight-
forward extension of the 23-step collision attack to 24 steps, this extra
condition would only be satisfied with a probability of 2−32. Using the
available freedom in a better way, this can be improved substantially.

1. Start from a 24-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉
to the SHA-256 initial values. Make an arbitrary choice for W0 and
recompute the first step. Now, it follows from (4) that (A2 −W1) is a
constant:

c1 = A2 − W1 . (15)

2. The new value of W9 is determined from (14), i.e., it depends on A2

through A10. The state variables A5 through A10 have already been
fixed in the semi-free-start collision. If we additionally fix A4 and A3

to arbitrary values, it is possible to compute the sum of W9 and A2,

c2 = W9 + A2 = A10 − F (A9, · · · , A3) . (16)

3. Combining (1) and (15)–(16), results in

W16 − σ1(W14) − c2 + c1 − W0 = σ0(W1) − W1 . (17)

It is easy to find a suitable value for W1 that ensures that W16 has the
proper value, if it exists. It suffices to guess the 15 least significant bits
of W1 to compute all 32 bits of W1, satisfying the above condition with
probability 2−14. A conservative estimate is that each trial requires
an effort equivalent to one step update of SHA-256.



Table 5. Example Colliding Message Pair for 24-Step Reduced SHA-256.

M 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af09 5b28721d 1be35597 7ff22aa1 e807a758 c1519aaa

M ′ 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af0a 5b28721c 1be3f597 82f24aa0 e807a758 c1519aaa

H 1584074c 8b810a94 01ea31b1 81bffd02 d29c817d e4e04b51 b9f5ac4f 6b34d1f8

4. Now all the internal state variables have been fixed. The corresponding
message words can be found from (14) and the message expansion.
Just as in the 23-step collision attack, however, there are still some
conditions left. As explained in Sect. 4.1, these are satisfied with a
probability of 2−19.

Hence, the overall expected time complexity is equivalent to about 219 ·
(214 + 10) SHA-256 step computations, or about 228.5 evaluations of the
SHA-256 compression function reduced to 24 steps. An example collision
pair for 24-step reduced SHA-256 is given in Table 5. An extension of
this attack method beyond 24 steps fails, because then a difference in the
first or in the last message word becomes unavoidable. In [14], another
differential than the one shown in Table 3 is used to find 22-step collisions
for SHA-256. We tried to use this differential in our extended attacks, but
even for 23 steps, using this differential fails.

4.3 Further Extensions

This section discusses further extensions using weaker attack models. The
starting point is the 23-step semi-free-start collision attack of Nikolić and
Biryukov [10], which was described in Sect. 3.

Semi-Free-Start Collisions for 24 Steps of SHA-256. We keep the entire
attack algorithm from Sect. 3 unchanged, but shift everything down by
a single step. Because of this, one more message word, W0, needs to be
computed from the message expansion in the reverse direction. From (1),
it follows that the additive difference in this word is

δW0 = δW16 − δσ1 (W14) − δW9 − δσ0 (W1) . (18)

None of these expanded message words has a difference, so also δW0 = 0.
This yields 24-step semi-free-start collisions of SHA-256 with the same
complexity of 217 compression function evaluations.



Free-Start Collisions for 25 Steps of SHA-224. SHA-224 differs from
SHA-256 in two ways. First, it has different initial values, and second,
the output is truncated to the leftmost 224 bits. We can thus extend the
24-step semi-free-start collision of SHA-256 to a 25-step free-start colli-
sion of SHA-224 by simply shifting the same attack down one more step.
Now a difference will inevitably appear in W0, which propagates to the
initial value H0. The other initial values, A0 through G0 still have a zero
difference. Because the word H is truncated away in SHA-224, this results
in free-start collisions for 25 steps of SHA-224, with the same complexity.
Note that this attack would not apply if a different method of truncation
would have been chosen in the design of SHA-224.

Free-Start Near-Collisions of SHA-256. Extending the attack to more
steps is possible, provided that some differences are allowed both in the
initial value and in the hash result, i.e., when considering free-start near-
collisions. The starting point is again the 23-step semi-free-start collision
attack from Sect. 3. It is extended by adding a number of extra forward
and backward steps.

As explained above, no difference is introduced in the first backward
step. Note that, in general, the diffusion of differences is slower in the
backward direction than in the forward direction. A difference introduced
in an expanded message word Wi affects both Ai+1 and Ei+1 in the for-
ward direction, as opposed to only Hi when going in the backward direc-
tion. Thus, in the forward direction, all state words can be affected by a
single difference in an expanded message word after only four rounds. In
the backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of 232

reduced SHA-256 compression function evaluations. The results of our
experiments are summarised in Table 6. The first three columns give the
total number of steps, the number of extra forward and extra backward
steps, respectively. The fourth column gives kmin, the smallest Hamming
distance found. The last eight columns contain the 2-logarithm of the
number of solutions with a Hamming distance k of at most 8, 16, . . . , 64
bits.

For comparison, also the expected values for a generic birthday attack
with an equal effort of 232 is given. For a generic (free-start) near-collision
attack on an ideal n-bit hash function, using the birthday paradox with
an effort of 2w compression function evaluations, the lowest expected
Hamming distance is the lowest k for which

22w ·
∑k

i=0 2−n
(

n
i

)

≥ 1 . (19)



Table 6. Experimental results of the free-start near-collision attack
on SHA-256. For each number of steps, only the combination of for-
ward/backward steps that gave the best results is shown. For comparison,
the expected numbers of solutions for a generic birthday attack with an
equal effort are also given.

steps fwd. bwd. kmin 2-logarithm of the number of solutions with k

≤ 8 ≤ 16 ≤ 24 ≤ 32 ≤ 40 ≤ 48 ≤ 56 ≤ 64

25 1 1 2 31.95 32.00 32.00 32.00 32.00 32.00 32.00 32.00
26 1 2 8 24.17 31.55 31.99 32.00 32.00 32.00 32.00 32.00
27 1 3 11 −∞ 15.41 26.20 30.65 31.89 32.00 32.00 32.00
28 1 4 18 −∞ −∞ 8.77 20.41 27.24 30.63 31.80 31.99
29 1 5 32 −∞ −∞ −∞ 1.58 14.31 22.86 28.19 30.93
30 1 6 43 −∞ −∞ −∞ −∞ −∞ 10.73 19.58 25.68
31 2 6 53 −∞ −∞ −∞ −∞ −∞ −∞ 6.34 15.50

Birthday Attack 57 −143.41 −108.84 −80.49 −56.36 −35.51 −17.37 −1.57 12.14

For instance, with w = 32 and for SHA-256 (i.e., n = 256), this gives
k = 57 bits. Our attack performs significantly better for up to 30 steps of
SHA-256. For 31 steps, we still found 208 free-start near-collisions with a
Hamming distance of at most 57 bits, whereas a birthday attack is only
expected to find one with the same effort.

5 Collision Attacks on Step-Reduced SHA-512

SHA-512 is a 512-bit hash function from the SHA-2 family. Its structure is
very similar to SHA-256. The sizes of all words are increased to 64 bits and
the number of rounds is increased to 80. It uses a different initial chaining
value, and different step constants. Finally, the GF(2)-linear functions are
redefined. Refer to [11] for details on SHA-512. In this section, we extend
the collision attacks on SHA-256 that were described in Sect. 4.1 and 4.2
to SHA-512. The first phase of the attacks needs to be adapted, since an
exhaustive search as in Sect 3.2 is no longer feasible.

5.1 Finding “Good” Constants for SHA-512

Recall from Sect. 3.2 that the goal of the first phase of the attack is to
find values for the constants α, β, γ, ǫ such that the conditions (5)–(8)
are satisfied for many values of the expanded message words W16, W17.
Since an exhaustive search for good constants is infeasible, we suggest the
following approach.



1. First, make a list L of additive differences δ for which the equation

σ1 (x + 1) − σ1 (x) = δ (20)

has many solutions x. This can be accomplished by picking several
values for x at random and computing the corresponding δ’s. This
procedure is likely to quickly find the “good” values for δ, since the
more x’s correspond to a δ, the more likely we are to find it. Using
Appendix B, the number of solutions x for a given δ can be counted
efficiently.

2. Since all conditions (5)–(8) will need to be satisfied, we can use (10)
instead of (6). Hence, β should preferably be one of the “good” δ’s
from the list L. Knowing the value of β, we need to invert (7) to find
α. This can, for instance, be done by guessing the 36 most significant
bits of α and determining the other bits using (7). A guess succeeds
with a probability of about 2−36. Note that (7) cannot necessarily be
inverted for all β’s.

3. Now we make an arbitrary choice for ǫ which satisfies (8). Denote
by lβ the length of the run of least significant “0”-bits in β. Then, (8)
is satisfied if and only if the least significant “1”-bit of ǫ lies within
the lβ least significant bits. Unfortunately, for SHA-512, this condition
eliminates the best values for β.

4. If we choose a “good” value for σ1 (W16 + 1)−σ1 (W16) from the list L,
and since ǫ has already been chosen, (5) can be rewritten as

C − fch (ǫ − 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 , (21)

where C is a known constant. The bits in which ǫ and (ǫ − 1) differ
can be corrected by a proper choice of γ. Hence it is advantageous
to choose ǫ with a long run of least significant “0”-bits. This again
constrains β, as explained above. If no choice for γ can satisfy (21),
retry with a different choice for ǫ and/or β.

Unlike the exhaustive search in Sect. 3.2, this procedure does not guar-
antee to find the optimal solution. However, experiments show that we
can quickly find many good solutions. We found many values for the con-
stants α, β, γ and ǫ for which the conditions (5) and (8) are satisfied for
249.1 and 234 values for W16 and W17, respectively. Example values are

α = 3891fd20b54a8eb9x , β = 0001200000000000x ,
γ = 00000fff7f7fff46x , ǫ = 0000100000000000x .

(22)



Table 7. Example Colliding Message Pair for 23-Step Reduced SHA-512.

M 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce69 90561054da994c54 7262751c31b5bdd0

54b1d56610b9e802 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

M ′ 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce6a 90561054da994c53 7266551c31b5bd18

54b0b56610b9e801 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

H dd44d89f178803f5 136802b223c880ba bbb80917dda6a3e7 be1f118889bd5415

98adc37a0f32d151 83d35099922ee2c6 670ac37463f224da e0835506fb66503d

5.2 23-step Collision

The second phase of the 23-step attack from Sect. 4.1 can directly be
applied to SHA-512. With the constants from (22), a single attempt to
turn a 23-step semi-free-start collision into a 23-step collision will succeed
with an expected probability of 2−44.9 and costs about half of a reduced
SHA-512 compression function evaluation. Hence, this results in a colli-
sion attack on 23-step SHA-512 with an expected time complexity of 243.9

reduced compression function evaluations. An example collision pair for
23-step reduced SHA-512 is given in Table 7.

5.3 24-Step Collision

Also the second phase of the 24-step attack from Sect. 4.2 can be ap-
plied to SHA-512. One slight modification is required when determining
a suitable value for W0, due to the redefinition of the σ0-function in SHA-
512. Guessing the 8 least significant bits of W0 allows to compute all of
W0, satisfying (17) with probability 2−8. This results in a collision attack
on 24-step SHA-512 with an expected time complexity of 253.0 reduced
compression function evaluations.

6 Conclusion

Our results push the limit for cryptanalysis of step reduced but otherwise
unmodified SHA-256; we found practical collisions for up to 24 steps.
For almost half of the steps (31 out of 64) non-random properties of the
compression function are detectable in practice. The results also apply to
SHA-512, albeit with higher time complexities.
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A Detailed Description of the Second Phase of the
Nikolić-Biryukov Attack

This appendix gives a detailed description of the second phase of the
Nikolić-Biryukov attack [10]. When given suitable values for α, β, γ, ǫ,
W16 and W17 by the first phase, as described in Sect. 3.2, it constructs a
pair of messages and a set of initial values that lead to a semi-free-start
collision for 23 steps of SHA-256.

1. Start at step 11 by fixing the state variables in this step, A11, · · · , H11

as indicated in Table 3. The constants α, β, γ and ǫ are given by the
first phase of the attack.

2. Calculate W11 such that A12 = α and W ′

11 such that A′

12 = α. Now
E12 = β only depends on α, and we find condition (7) from Sect. 3.1.

E12 = α − Σ0 (α) = β . (23)

3. In a similar way, calculate W12 such that E13 = β and W ′

12 such that
E′

13 = β. This also guarantees that A13 = A′

13 because the majority
function absorbs the difference in C12.

4. Calculate W13 such that E14 = −1 and set W ′

13 = W13. Now, see
Table 3, δE14 should be equal to 1. This yields the condition

δE14 = fch (β, β, ǫ − 1) − fch (β, β, ǫ) + 2 = 1 . (24)

It was given before as (8), and is satisfied by the first phase of the
attack. Note that this also ensures that δA14 = 0.

5. Calculate W14 such that E15 = 0 and set W ′

14 = W14. Since the values
of E14 and E′

14 were chosen in the previous step to be fixed points of
the function Σ1, δΣ1 (E14) = δE14 = 1 cancels with δH14 = −1. Also,
fch absorbs the difference in E14, so no new differences are introduced.

http://de.arxiv.org/abs/0803.1220


6. Calculate W15 such that E16 = −2 and set W ′

15 = W15. The difference
in F15 is absorbed by fch.

7. The value for W16 is computed in phase one of the attack. The dif-
ference δW16 = 1 is cancelled by the output of fch. Indeed, since
the binary representation of E16 = −2 is 111 · · · 10b, the fch function
passes only the difference in the least significant bit.

8. Also the value for W17 is computed in phase one of the attack. The
difference δW17 = −1 cancels with δH17 = 1, thereby eliminating the
final difference in the state variables. Thus, a collision is reached.

9. Now, go back to step 11 and proceed in the backward direction. Make
an arbitrary choice for W10. The differential from Table 3 is followed
because of the careful choice of the state variables in step 11.

10. Make an arbitrary choice for W9, and proceed one step backward.
The difference δW9 = 1 cancels with δA10 and with δE10 such that
there is a zero difference in the state variables A9 through H9. Now
randomly choose W8 down to W2 and calculate backward. Because no
new differences appear in these expanded message words, there is also
a zero difference in the state variables A2 through H2.

11. It is not possible to freely choose W0 or W1 as 16 expanded message
words have already been chosen, i.e., W2 until W17. Hence, these are
computed using the message expansion in the backward direction.
Although some of the message words used to compute W0 and W1

have differences, these differences always cancel out.

12. Continuing forward from step 18 again, note that the collision is pre-
served as long as no new differences are introduced via the expanded
message words. From the message expansion, it follows that

δW18 = σ1 (W16 + 1) − σ1 (W16) − Σ1 (ǫ − 1) + Σ1 (ǫ)

− fch (ǫ − 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 . (25)

This is condition (5), which is satisfied by the first phase of the attack.

13. Similarly, in step 19, we require that δW19 = 0, which results in

σ1 (W17 − 1) − σ1 (W17) − fch (β, ǫ − 1, 0) + fch (β, ǫ,−1) = 0 . (26)

This condition was given in (6), and is also satisfied by the first phase
of the attack.

14. In steps 20–22, the message expansion guarantees that no new differ-
ences are introduced. In step 23, however, a difference of 1 is impos-
sible to avoid, hence the attack stops after 23 steps.



B Solving L(x + δ) = L(x) + δ′

This appendix describes a generic method to solve equations of the form
L(x + δ) = L(x) + δ′ where δ and δ′ are given n-bit additive differences,
and L is an n-bit to n-bit GF(2)-linear transformation. This is similar to
the problems studied by Lipmaa and Moriai [6] and Lipmaa et al. [7].

Consider the modular addition x + δ and let ∆ = (x + δ) ⊕ x. This
addition is described by the following equations, where xi is the i-th bit
of x and the ci’s are the carry bits:

(x + δ)i = xi ⊕ δi ⊕ ci

ci+1 = fmaj(xi, δi, ci)
c0 = 0

⇔
ci = δi ⊕ ∆i

ci+1 = fmaj(xi, δi, δi ⊕ ∆i)
c0 = 0

. (27)

Hence, once we fix both the additive difference δ and the XOR differ-
ence ∆, all the carries ci are fixed. Some of the xi’s are also fixed: when
∆i = 1 and i < n − 1, it must hold that xi = ci+1 = δi+1 ⊕ ∆i+1. The
other xi’s can be chosen arbitrarily. Thus, the allowed values for x lie in
an affine space. Note that not all additive differences are consistent with
all XOR differences, i.e., the following conditions must be satisfied

{

c0 = δ0 ⊕ ∆0 = 0
δi = δi+1 ⊕ ∆i+1 when ∆i = 0 and i < n − 1

. (28)

Solving an equation of the form L(x + δ) = L(x) + δ′ can be done as
follows. Let ∆′ = (L(x) + δ′) ⊕ L(x), i.e., the XOR-difference associated
with the modular addition L(x) + δ′. Since L(x + δ) = L(x) + δ′ and L is
GF(2)-linear, it follows that ∆′ = L(∆). We can thus simply enumerate
all the XOR-differences ∆ consistent with the given additive difference
δ, compute ∆′ = L(∆) and check if this is consistent with the other
additive difference δ′. If it is, both additions restrict x to a (different)
affine space. The intersection of these spaces, which can be computed by
solving a system of linear equations over GF(2), gives the solutions x for
the chosen XOR-difference ∆. Note that this intersection may be empty.
If no solutions are found for any value of the XOR-difference ∆, the
equation L(x + δ) = L(x) + δ′ has no solutions. Note that the number of
solutions of the equation can be counted efficiently using this method, as
the number of solutions of a linear system over GF(2) is straightforward
to compute.

The time complexity of this method is proportional to the minimum
of the number of XOR differences consistent with the given additive dif-
ferences δ or δ′. This follows from the fact that one can easily modify the
method to choose ∆′ instead of ∆.


