
Sound and Fine-grain Specification of Cryptographic Tasks

Juan A. Garay ∗ Aggelos Kiayias † Hong-Sheng Zhou†

March 24, 2008

Abstract

The Universal Composability (UC) framework, introduced by Canetti, allows for the design of crypto-
graphic protocols satisfying strong security properties, such as non-malleability and preservation of security
under (concurrent) composition. In the UC framework (as in several other frameworks), the security of a
protocol carrying out a given task is formulated via the “trusted-party paradigm,” where the protocol execu-
tion is compared with an ideal process where the outputs are computed by a trusted party that sees all the
inputs. A protocol is said to securely carry out a given task if running the protocol with a realistic adver-
sary amounts to “emulating” the ideal process with the appropriate trusted party. In the UC framework the
program run by the trusted party is called an ideal functionality.

However, while this simulation-based security formulation provides strong security guarantees, its use-
fulness is contingent on the properties and correct specification of the realized ideal functionality, which, as
demonstrated in recent years by the coexistence of complex, multiple functionalities for the same task as
well as by their “unstable” nature, does not seem to be an easy task. On the other hand, the more traditional,
gamed-based definitions of cryptographic tasks, although providing a less satisfying level of security (stand-
alone executions, or executions in very controlled settings), have been successful in terms of formalizing as
well as capturing the underlying task’s natural properties.

In this paper we address this gap in the security modeling of cryptographic properties, and introduce a
general methodology for translating game-based definitions of properties of cryptographic tasks to syntac-
tically concise ideal functionality programs. Moreover, taking advantage of a suitable algebraic structure
of the space of our ideal functionality programs, we are able to “accumulate” ideal functionalities based on
many different game-based security notions. In this way, we can obtain a well-defined mapping of all the
game-based security properties of a cryptographic task to its corresponding UC counterpart. In addition, the
methodology allows us to “debug” existing ideal functionalities, establish relations between them, and make
some critical observations about the modeling of the ideal process in the UC framework. We demonstrate
the power of our approach by applying our methodology to a variety of basic cryptographic tasks, including
commitments, digital signatures, public-key encryption, zero-knowledge proofs, and oblivious transfer.

Instrumental in our translation methodology is the new notion of a canonical functionality class for a
cryptographic task which is endowed with a bounded semilattice structure. This structure allows the grading
of ideal functionalities according to the level of security they offer as well as their natural joining, enabling
the modular combination of security properties.

Key words: Cryptographic protocols, universal composability, security definitions, lattices and partial orders.

∗Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974, USA. E-mail: garay@research.bell-labs.com.
†University of Connecticut, Computer Science and Engineering, Storrs, CT 06269, USA. E-mail: {aggelos,hszhou}@

cse.uconn.edu.

1

Contents

1 Introduction 2

2 Canonical Functionalities 3

3 From Classical Security Definitions to Ideal Functionalities 8
3.1 Ideal functionalities from consistency games . 8
3.2 Ideal functionalities from hiding games . 9

4 Applying the Methodology: Commitments 10

Appendices 15

A The Universal Composability Framework 15

B Proofs 15

C Simulation-Based Games 20

D Applying the Methodology: Other Tasks 21
D.1 Commitments (cont’d) . 21

D.1.1 Binding . 21
D.1.2 Hiding and equivocality . 21
D.1.3 Multi-session commitments . 23

D.2 Digital Signatures . 23
D.2.1 Unforgeability . 23
D.2.2 Completeness . 25
D.2.3 Consistency . 27
D.2.4 The canonical ideal signature functionality . 29

D.3 Zero-Knowledge Proofs . 30
D.3.1 Completeness . 30
D.3.2 Soundness . 32
D.3.3 Zero-knowledge . 36
D.3.4 The canonical ideal ZK functionality . 37

D.4 Oblivious Transfer . 37
D.4.1 Correctness . 38
D.4.2 Sender’s security . 39
D.4.3 Receiver’s security . 40

1

1 Introduction

The Universal Composability (UC) framework proposed by Canetti [Can05], culminating a long sequence of
simulation-based security definitions (cf. [GMW87, GL90, MR91, Bea91, Can00]; see also [PW01] for an
alternative framework), allows for arguing the security of cryptographic protocols in arbitrary settings where
executions can be concurrent and adversarially interleaved. The framework is particularly attractive for the
design of secure systems as it supports modular design, provides non-malleability across sessions [DDN00],
and preserves security under composition.

In the UC framework, security is argued by providing a proof that a protocol realizes an ideal function-
ality F for the same cryptographic task. While this simulation-based formulation provides satisfying security
guarantees, its usefulness is contingent on the properties of the realized ideal functionality. In particular, any
ideal functionality is required to interact with an ideal-world adversary to whom it reveals aspects of its inter-
nal state. Thus, such a program can be quite far from an idealization of a given cryptographic task. To make
things worse, the application of the framework to the analysis of many cryptographic schemes has shown that
relatively complex ideal functionality programs are the norm. This has frequently led to successive revisions
of ideal functionality programs, the simultaneous coexistence of multiple different ideal functionalities for the
same task, and the discovery of errors in the ideal functionality programs, which in turn would lead to flawed
security guarantees for the protocols realizing them. (A quick inspection of recent papers providing UC for-
mulations of cryptographic tasks should suffice to support the complexity claim; see the treatment of digital
signatures [Can01, BH04, Can04, Can05] for an example of need-to-revise and error-prone formulations of
ideal functionalities.)

On the other hand, basic cryptographic schemes have enjoyed a rigorous security formalization through
gamed-based definitions. While such definitions provide a less satisfying level of security guarantees (as they
may exclude composition, adaptive corruptions, non-malleability and other properties offered by the UC frame-
work), they are typically much easier to specify and understand as the appropriate formulations of the natural
properties of the underlying cryptographic task. Examples include the existential unforgeability notion for dig-
ital signatures [GMR88], IND-CPA security for public-key encryption, the binding property of commitment
schemes, the soundness property of zero-knowledge, and others. Thus, there exists a clear gap in the security
modeling of cryptographic properties: strong simulation-based definitions as provided by the UC framework
can provide adequate and much-needed security guarantees for protocol executions and interactions in today’s
open networks, but, as argued above, tend to be complex and error-prone, which makes the task of assessing
the usefulness of a particular ideal functionality specification as a security definition particularly challenging.

In this paper we address this problem by introducing a general methodology for translating game-based
definitions of properties of cryptographic tasks to syntactically concise ideal functionality programs. Moreover,
taking advantage of a suitable algebraic structure of the space of our ideal functionality programs we are able
to “accumulate” ideal functionalities based on different game-based security notions. In this way, we obtain a
well-defined mapping of all the game-based security properties of a cryptographic task to their corresponding
UC counterpart. Furthermore, the systematic approach we present enables the debugging and fine tuning of
ideal functionalities to the intended underlying properties of cryptographic tasks.

Our results. First, we introduce the notion of the class of canonical functionalities for a cryptographic task
T . Each member of this class has a simple, concise syntax built around two pass-through communication
flows: one from the environment to the ideal-world adversary and another in the opposite direction. Every
cryptographic task is associated to its corresponding canonical functionality class. We next define an operation
over this class and show that the class has the algebraic structure of a semilattice which enables the joining of
canonical functionalities. This algebraic structure is a unique feature that we take advantage of in our translation
methodology. In fact, it imposes a natural preordering of canonical functionalities which enables the grading
of canonical functionalities according to the level of security they offer. Finally, the syntactic conciseness
of our canonical functionalities gives rise to a well-defined communication (formal) language between the
functionality and the other entities in an ideal world simulation which is instrumental in our methodology.

2

These results are presented in Section 2.
Second, we present a general formulation of game-based definitions for properties of cryptographic tasks.

We divide games into two general types: consistency games and hiding games. The former capture properties
such as correctness, unforgeability and binding, while the latter capture properties such as IND-CPA security,
commitment hiding and zero-knowledge. Depending on the type of game we present a translation methodology
for obtaining its corresponding canonical functionality. Then, given a set of canonical functionalities that
capture individual game-based properties of a cryptographic task, we provide the ideal functionality of the task
by making use of the algebraic structure of our canonical functionality class. We demonstrate the soundness of
our approach by showing that any scheme that realizes such ideal functionality would also possess the properties
of the game-based definitions. These results are presented in Section 3. In some cases, our transformation is
“tight,” as we are also able to show the opposite direction while in others the resulting canonical functionality
corresponds to stricter security notions due to the strength of the UC framework.

Third, we apply our methodology to a variety of basic cryptographic tasks, obtaining ideal functionalitites
for commitments, digital signatures, public-key encryption, zero-knowledge proofs of knowledge, and oblivi-
ous transfer. While in some cases (commitment, zero-knowledge) the obtained functionalitites are essentially
equivalent to existing ones in the literature, in others (signature, public-key encryption and oblivious transfer)
they differ, allowing us to pinpoint their shortcomings with respect to ours. In fact, this “debugging” goes be-
yond the specification of particular tasks, as in the case of oblivious transfer we are able to point to a structural
inadequacy in the UC notion of “delayed output” in the ideal process.

For conciseness, only the treatment of commitments, whose properties are expressed using both types of
games, is presented in the main body of the paper (Section 4), while some of the other tasks — signatures, ZK
and OT — appear in the appendix (Section D). (Public-key encryption will be added shortly.) Proofs, as well
as a brief overview of the UC framework, also appear in the appendix.
Preliminaries. We first introduce some notation and review notions that will be used throughout the paper.
Given a sequence w consisting of elements from an alphabet Σ = {a1, . . . , ak}, we let wi denote the i-th
element in w. We can obtain a subsequence of w, call it w′, by erasing some of the elements in w without
disturbing the relative positions of the remaining elements. We denote this by w′ 4 w and we remark that ε 4 w
for any string w. If Σ′ ⊆ Σ, for any string w ∈ Σ∗ we denote by w|Σ′ the largest subsequence of w that belongs
to (Σ′)∗. For any w ∈ Σ∗ we write w′ � w when w′ is derived from w after substituting at least one symbol of
w with the special symbol “−”. Finally, for a given set of strings S we define S� = {w′ | ∃w ∈ S : w′ � w}.

A monoid (A,+) is a semigroup with an identity element. Any monoid possesses a preorder relation
denoted by . such that a . b iff ∃c : a + c = b.

2 Canonical Functionalities

Cryptographic tasks and environment communication. A (non-interactive) cryptographic task is a tuple
T = 〈A1, . . . , Ak〉. Each Ai is called an action of the cryptographic task with Ai = 〈ACTIONi, {D(λ)

i }λ∈N,

{R(λ)
i }λ∈N〉 where ACTIONi is a label, λ ∈ N is the security parameter and D

(λ)
i and R

(λ)
i are sets of values

called the domain and range of the action, respectively. An example of a non-interactive cryptographic task is a
digital signature that has three actions: “key-generation,” “signature-generation,” and “signature-verification.”
An interactive cryptographic task between two players is defined similarly with the difference that any of the
actions Ai may have pairs of values as domain and range elements; in such case, Ai is an action involving
two parties. For example, a commitment is an interactive cryptographic task with two actions, “commit” and
“open” in which two parties are involved. Multi-party cryptographic tasks are defined similarly.

A cryptographic scheme Σ = 〈M1, . . . ,Mk〉 implements a cryptographic task T = 〈A1, . . . , Ak〉 if Mi

is an algorithm that for input sizes λ, maps elements of D
(λ)
i to R

(λ)
i . Note that in the case of an interactive

task, Mi would be a protocol between (amongst) the parties that are involved in the action of the (multiparty)
cryptographic task.

3

Recall that in the UC framework, the environment is creating processes which are entities maintaining state
across actions. For this reason, we want to associate to any cryptographic task T a stateful abstract entity1

πT . In more detail, πT is a “packaging” of the actions of the task T together with some data fields that
are persistent across action invocations. For example, an abstract entity for the commitment task offers two
actions, commit and open, and has a persistent data field that is generated by the commit action and used by
the corresponding open action (the decommitment information). Similarly, an abstract entity for the digital
signature task offers three actions, key-generation, signature-generation, and signature-verification, and has a
persistent data field produced by the key-generation action and used by the signature-generation action (this
is the signing key). If the cryptographic scheme Σ implements the cryptographic task T , then πΣ would be a
protocol implementation of πT that is derived by implementing all actions of πT with the algorithms of Σ. Note
that in the UC framework, a πΣ protocol is intended to approximate an “ideal functionality”FT that shares with
πΣ the same I/O specifications (i.e., they possess the same communication interface with the environment).

Below we specify more explicitly the language of the communication between the πT entities and their
environment. For each λ ∈ N, we define the set of symbols of the form (ACTIONi,P, x); here ACTIONi is the
label that corresponds to the i-th action. P is a tuple that designates the identifiers of the entities and their roles
in the particular action (in particular which parties provided the input to the action and which parties should
receive output). To differentiate multiple copies of the protocol run by the same group of entities, P may also
include a session identifier sid . Notice that the same ACTIONi may be sent by more than one entities in P. The
value x ∈ D

(λ)
i is an encoding of the input to the action; note that whenever x = ε, we will drop x from the

symbol notation for ease of reading.
In response to a symbol (ACTIONi,P, x), entity πT will return a symbol (ACTIONRETURNi,P, y) where

y ∈ R
(λ)
i ; note that more than one entities may be receiving an ACTIONRETURNi symbol for a certain action.

(ACTIONRETURNi,P, y), constitutes the finite I/O alphabet of the πT entity and is denoted by ΣT ; note that
we drop the parameterization by λ for simplicity.

The actions of a cryptographic scheme might make sense only in certain order; for this reason not all strings
over ΣT are valid as action sequences. To formalize this, we associate with πT a predicate WFT called the well-
formedness predicate. For any string w ∈ (ΣT)∗ and symbol a ∈ ΣT , the well-formedness predicate WFT (w, a)
decides whether the string wa is intelligible with respect to the cryptographic task T .

The functional dependency between action inputs and action outputs for the task T is captured by a string
mapping DOT : (ΣT)∗ × (ΣT) → O(λ) called the default output. DOT is history dependent: given a pair
〈w, a〉 that satisfies WFT (w, a), it will return a value that is the intended output of the task on action sym-
bol a given the history w. For example, in the case of a zero-knowledge task T = ZK, upon receiving
(PROVE, 〈P, V, sid〉, 〈x,m〉), DOZK will output the pair 〈x, φ〉 where φ = 1 if and only if 〈x,m〉 belongs
to the relation that parameterizes the zero-knowledge task. In the case of a commitment task T = COM, as-
suming that the history contains (COMMIT, 〈C, V, sid〉,m) (COMMITRETURN, 〈C, V, sid〉) on action symbol
(OPEN, 〈C, V, sid〉), the mapping DOCOM will output the value m as this is the intended output of a commitment
scheme at this moment.

This completes the description of a cryptographic task and its communication with the environment. Look-
ing ahead, in the UC framework, within a single session in the real world there can be many processes running
the implementation πΣ of a cryptographic task T activated by the environment. These objects and their interac-
tions are idealized by a single entity in the ideal world called the ideal functionality FT that corresponds to the
cryptographic task T . Recall that FT presents to the environment the same I/O interface that a collection of πΣ

processes provides in the real world. It follows that the communication language of FT is over the alphabet ΣT .
Following the UC formalization, besides the interaction with the environment, FT also communicates with an
ideal world entity, called the ideal world adversary S. This interaction defines another communication language
that is not bound by the alphabet of the real world. Moreover, FT may halt whenever it deems that a certain
sequence of symbols is not consistent with some of the required properties of the cryptographic task T . Below

1In the UC framework [Can05], this entity would correspond to a “protocol” specification.

4

we explicitly provide a syntax for ideal functionalities by introducing the concept of a canonical functionality
for a cryptographic task T .

The canonical functionality of a cryptographic task. In order to obtain an ideal functionality for a crypto-
graphic task T , we also need to specify the communication alphabet with the ideal world adversary as well
as the way this communication is defined based on the functionality’s state. Moreover, we need to specify
cases where the functionality may wish to halt its operation. In this section we provide an explicit syntax for
a class of functionalities that idealize the cryptographic task T — this is the class of canonical functionalities
for the cryptographic task T . In this first formulation of canonical functionalities we focus on a wide class of
cryptographic tasks whose action outputs are not required to follow an ideal probability distribution. Such tasks
include digital signatures, commitment, public-key encryption, secure message transmission, zero-knowledge
proofs, secure deterministic function evaluation, etc.

First we define the communication language between a canonical functionality and the ideal world adver-
sary. For each action symbol (ACTIONi,P, x), the canonical functionality will produce a “leaking-action”
symbol (LEAKACTIONi,P, x′) where x′ � x and send it to the ideal world adversary; this means that the
functionality will pass control to the adversary and will provide to the adversary the value x′ which is a “sup-
pressed” version of the action input x (note that x′ may only reveal the length of x). The default output of
the cryptographic task (provided by the DOT mapping) will also be sent out with the LEAKACTIONi symbol
to the adversary. We distinguish two types of default outputs: public and private. When the default output is
public the adversary is allowed to see the output that is meant to be delivered to a party. On the other hand,
if the default output is private, the adversary will be handed a pointer to the value of the default output. The
functionality keeps track of the correspondence between pointers and actual values and the adversary can take
advantage of such pointers to provide output to parties by dereferencing them. As examples of a public output
case, recall the default outputs corresponding to the tasks of zero-knowledge and commitments in the previous
section. Private outputs on the other hand are intrinsic to the cryptographic tasks of oblivious transfer and
secure function evaluation.

At any point, the ideal world adversary may provide an “influence-action” symbol (INFLACTIONi,P, y′) to
the functionality; this symbol instructs the functionality to produce an (ACTIONRETURNi,P, y) symbol, where
y = y′ if y′ is a value (public output) and y = ∗(y′) if y′ is a pointer to a value (private output), and to send
it to the party P (note that the identity of P is inferred from P). If more than one party is supposed to receive
an output then the adversary will generate as many INFLACTION symbols as necessary2. In addition to the
above symbols, the communication between the canonical functionality and the adversary includes two other
symbols, namely, CORRUPT and PATCH, that enable the adversary to control corrupted parties (see below).
The extended communication alphabet is denoted by Σext

T and includes all I/O symbols of ΣT as well as the
corresponding INFLACTION, LEAKACTION, CORRUPT and PATCH symbols.

Whenever the canonical functionality receives an action symbol it recovers the history of previously re-
ceived symbols for the party providing the input and tests the new symbol with the well-formedness predicate
WFT ; it ignores any symbol that fails the well-formedness test WFT .

Furthermore, the canonical functionality is parameterized by two functions: suppress() and validate().
Given an action symbol (ACTIONi,P, x), the function suppress() will determine what information about x
will the ideal world adversary learn (the output of the function will be passed into the LEAKACTION symbol
together with the default output). Specifically, the suppress() function is defined over the (ACTIONi,P, x)
symbols and will output some x′�x. We require that the suppress() function will always substitute with “−” the
same locations of x, independently of x. The validate() function, on the other hand, tells the functionality when
to halt and is used whenever the functionality receiving an INFLACTION symbol produces an ACTIONRETURN

symbol as output. Specifically, the validate() predicate is defined over strings of Σ∗. We note that suppress() is
history independent while the validate() predicate is not. The intuition is that the suppress() function abstracts
what the adversary learns about the possibly private inputs of parties (i.e., it captures the hiding aspects of the

2In our current formalization we postpone the treatment of fairness.

5

functionality) whereas the validate() predicate makes sure that the outputs produced by the functionality are
consistent with its history according to the intended consistency properties of the task.

A canonical functionality needs also to maintain state. The state of the functionality, denoted by history, is
the sequence of all I/O symbols ordered chronologically as received from and sent to the environment. We use
historyPj

to denote all symbols associated to party Pj in history, i.e., the ACTION symbols that were provided
by Pj and ACTIONRETURN symbols that were returned to Pj .

Canonical Functionality F suppress,validate
T

Initially, history := ε and binding := ε.

– Upon receiving msg = (ACTIONi,P, x) from some party Pj , if Pj is corrupted set x′ = x else com-
pute x′ ← suppress(msg), set msg ′ ← (LEAKACTIONi,P, x′) and if WFT (historyPj

,msg) = 1 send
〈msg ′,DOT (history,msg)〉 to the adversary S, record msg in history and in case Pj is uncorrupted, set
binding[l] = {Pj} where l = |history|; otherwise ignore msg .

– Upon receiving msg = (INFLACTIONi,P, y′) from the adversary S, infer Pj from P, set msg ′ ←
(ACTIONRETURNi,P, y), where y = y′ if y′ is a value, or y = ∗(y′) if y′ is a pointer, and if WFT (historyPj

,
msg ′) = 1 record msg ′ in history (otherwise ignore msg). If validate(history) = 1, then send msg ′

to party Pj ; if Pj is uncorrupted, set binding[k] ← binding[k] ∪ {Pj}, 1 ≤ k ≤ |history|. Otherwise
(validate(history) = 0), if Pj is corrupted remove msg ′ from history (i.e., ignore msg) else send an error
symbol to the party Pj and halt.

– Upon receiving msg = (CORRUPT, Pj) from the adversary S, mark Pj as corrupted, return historyPj
to the

adversary S, and set binding[k]← binding[k] \ {Pj}, 1 ≤ k ≤ |history|.

– Upon receiving msg = (PATCH, history′) from the adversary S where history′ ∈ (ΣT)|history| do the follow-
ing: if binding[k] = ∅ set history[k]← history′[k], 1 ≤ k ≤ |history|.

Figure 1: Definition of the class of canonical functionalities FT for a task T quantifying over all admissible
pairs suppress(), validate().

The CORRUPT and PATCH symbols are used to handle the behavior of corrupted parties. When a party Pj is
corrupted, we allow the adversary to learn historyPj

3. Moreover, to handle adaptive corruptions, we allow the
adversary to rewrite the history of corrupted parties using PATCH symbols in the following manner: a certain
symbol that was provided by a corrupted party can be modified provided this symbol has not contributed to the
view of any honest party. To facilitate this checking the canonical functionality uses an array called binding[·]
that for each symbol in history it records the set of honest parties whose view could have been affected by that
symbol.

The canonical functionality operates with parties whose identities are selected from a namespace, within a
session that is recognized by a session identifier which belongs to a session-id space. We define the class of
canonical functionalities in Figure 1 and a pictorial representation can be found in Figure 2; each member of
the class is specified by a pair of functions suppress(), validate() as defined above. For a given cryptographic
task T , the dummy functionality for T defined as follows:

Definition 2.1 (Dummy Functionality). We call the canonical functionality Fdum
T ∈ FT dummy if (1) for all

x and any ACTION, suppress((ACTION,P, x)) = x, and (2) validate() = 1 always.

It should be noted that the dummy functionality does not capture any of the intended correctness or secu-
rity properties of the cryptographic task T . This means that any protocol π UC-realizing Fdum

T will merely
syntactically match the purpose of T but will lack any useful property.

3We also defer the treatment of forward security for now.

6

Theorem 2.2. For any cryptographic task T there is a scheme Σ implementing T such that πΣ UC-realizes the
dummy functionality Fdum

T .

Algebraic structure of the class of canonical functionalities. We define a conjunction operation denoted
by ∧ on the class of canonical functionalities for a task T . Observe that for any two members of the canoni-
cal functionality class that are parameterized by the functions suppress1, suppress2 respectively, for any sym-
bol a = (ACTIONi,P, x), it holds that suppress1((ACTIONi,P, suppress2(a))) = suppress2((ACTIONi,P,
suppress1(a))). This fact will be handy in the definition below.

Definition 2.3 (Conjuncting Functionalities). Given F1 = F suppress1,validate1
T ,F2 = F suppress2,validate2

T ∈ FT

we define the conjunction F1 ∧ F2 of the two functionalities as the functionality F suppress,validate
T ∈ FT ,

where, (1) for any a = (ACTION,P, x) ∈ Σ, suppress(a) = suppress1(ACTIONi,P, suppress2(a)), and
(2) validate() = validate1()∧ validate2(), i.e., the logical conjunction of the two validate predicates of F1,F2.

Proposition 2.4. (FT ,∧) is a commutative monoid with the dummy functionalityFdum
T as the identity element.

Any commutative monoid has an associated preordering relation denoted by .; in the case of (FT ,∧) we
say that F1 . F2 iff there exists F3 such that F2 = F1 ∧ F3. The intuitive interpretation of F1 . F2 is that
F2 is at least as strict from a security point of view as F1.

FT together with ∧ forms a bounded (join-)semilattice, i.e., every set of elements in FT has a least upper
bound. Note that (1) we use ∧ in place of the standard ∨ in lattice theory as it is more consistent as an operator
in our setting where lattice elements would capture security properties (and going higher in the lattice means
that security increases), and (2) given that FT as a commutative monoid lacks the antisymmetric property, the
semilattice would be in fact over the quotient FT / � where � is the equivalence relation defined as F1 � F2

iff F1 . F2 and F2 . F1. An example of such a lattice for the commitment task is given in Figure 3. In the
following proposition we show an important property of FT : UC-realizing any point F of FT would imply
that any semilattice point dominated by F is also UC-realizable.

I/O Environment
Interaction

(Action, x) (ActionReturn, y)

Ideal World
Adversary
Interaction

(LeakAction, x′) (InflAction, y′)

history

FT

validate()suppress()

Figure 2: The canonical functionality: com-
munication flows with the environment and
adversary.

Fbind

Fdum
COM

Fhide

FCOM

F⊥COM
Fval=⊥
COM

realizability
"horizon"

Fcorr ∧ Fbind

Fcorr

Figure 3: The lattice of canonical functionali-
ties for the commitment task showing relations be-
tween the functionalities defined in Section 4.

Proposition 2.5. If πΣ UC-realizes F , then πΣ UC-realizes any F ′ . F .

The language of a canonical functionality. For a given cryptographic task T , a canonical functionality for T
defines a language over the symbols that are used by the functionality to communicate with the environment.
We formalize the language as follows:

Definition 2.6. Given a canonical functionalityFT , an environmentZ and an adversary S, we define L
I/O
FT ,Z,S =

{w|w ∈ (ΣT)∗ so that w is a string of symbols equal to history of FT in an execution with Z and S }.

7

We may quantify the language over all possible environments Z and ideal world adversaries S in which
case we will omit referencing them. Moreover we may consider only those strings in history of FT for which
the environment Z returns 1. In this case we will denote the language as B

I/O
FT ,Z,S .

3 From Classical Security Definitions to Ideal Functionalities

Traditionally, correctness and privacy definitions of cryptographic tasks are given by specifying a game between
the attacker and a “challenger” who controls different aspects of the cryptographic task. The attacker either tries
to produce an undesired sequence of actions or attempts to deduce a hidden bit selected by the challenger. In the
former case we call the interaction a consistency game while in the latter we call the interaction a hiding game.
Examples of properties modeled with consistency games include completeness properties, the unforgeability of
digital signatures, the binding property of commitments, the soundness property of zero-knowledge protocols
etc. Hiding games, on the other hand are typically divided into two categories: indistinguishability games and
simulation games. In the former case we have games such as the IND-CPA game for public-key encryption
while in the latter we have games where the adversary tries to distinguish between a real or a simulated action;
such games include the modeling of the zero-knowledge property. Here we show how to transform game-based
definitions to ideal functionalities. In order to detail the transformation we first provide a formal definition of
games below.

Game-based security definitions. A game-based definition G for a cryptographic task T = 〈A1, . . . , Ak〉
involves two PPT interactive Turing machines, the challenger C and the attacker A. The challenger additionally
uses the actions of the cryptographic task as oracles. When the interaction terminates, a Turing machine called
the judge4 J reads the transcript of the interaction as well as the internal state of the challenger and decides
which party won the game. We denote the success probability of the attacker when playing the game G by
SuccG

A . It equals the probability of the event that the judge decides that the attacker wins the game.

Consistency games are the most general ones and fit the general description given above. We say that
a cryptographic scheme that implements a task T satisfies the property defined by a game G if for all PPT
attackers A it holds that SuccG

A is a negligible function in λ.

In an indistinguishability game, the attacker focuses on a particular action of the cryptographic task. At
some point of the interaction with the challenger, the attacker provides two input strings x0, x1 for the action
where x0 = 〈xL

0 , xR
0 〉, x1 = 〈xL

1 , xR
1 〉 such that either the left or the right parts of the strings are required to

be different by the challenger while the other parts are required to be equal (for example in the witness hiding
game for zero-knowledge, xL

0 = xL
1 will be the statement while xR

0 , xR
1 will be two distinct witnesses). In

response, the challenger flips a coin b and executes the action that is attacked on input xb. The interaction
provides the output of the action to the attacker who is supposed to provide a guess b∗ for b. The judge decides
that the attacker wins whenever b = b∗. We say that a cryptographic scheme that implements a task T satisfies
the property defined by the indistinguishability game G if for all PPT attackers A it holds that the function
|SuccG

A − 1
2 | is a negligible function in λ.

The translation for simulation-based games is very similar to the above and is given in Section C.

3.1 Ideal functionalities from consistency games

Suppose that G is a consistency game for a cryptographic task T = 〈A1, . . . , Ak〉 that involves a challenger
C, an attacker A and a judge J. Let Σ be any cryptographic scheme that implements the task T . Our goal is
to obtain a canonical functionality FG ∈ FT such that if a protocol πΣ UC-realizes any F & FG then the
cryptographic scheme Σ satisfies the property defined by the game G. Our methodology proceeds in three
steps: we first define an environment (and also the corresponding ideal world) based on the game G. Second,

4Typically, the functionality of the judge is incorporated as part of the challenger machine; we find it more convenient to specify it
as a separate function.

8

based on this environment, we define a language that corresponds to the event where the attacker wins the
game. Third, provided that the language is decidable, we obtain a canonical functionality by incorporating the
language decider as part of the validate() predicate of the canonical functionality. We describe the three steps
in more detail below.
Step 1: Defining the environment and simulator. We first present the transformation from the game G for a
task T implemented by a scheme Σ to the corresponding environment ZA

G and the ideal world adversary SΣ
G .

We say that the transformation is sound, provided that the judge J decides that the attacker wins the game if
and only if the environment ZA

G returns 1 in an execution with Fdum
T and SΣ

G . More specifically, it holds that
Pr[IDEALFdum

T ,ZA
G,SΣ

G
(1λ) = 1] = SuccG

A .
First, we describe how we derive the environment ZA

G based on the game G. ZA
G will simulate both the

attacker A and the challenger C; whenever C makes an oracle call to some action Ai, the environment ZA
G

needs to invoke some entity πT by issuing an ACTIONi symbol. The program of C will be executed by ZA
G

respecting the “packaging” of the task’s actions in the abstract entity πT . For example, in the unforgeability
game for digital signatures, an oracle call to the key generation operation will result in issuing the symbol
(KEYGEN, 〈S, sid〉) to a party called S, where S is a random name from the namespace for some random sid ;
subsequent calls by C to the signing oracle for a message m, will result in the symbols (SIGN, 〈S, sid〉,m)
directed to the same party S. If the attacker A needs to play the role of some party of the cryptographic task
T , ZA

G will need to spawn and corrupt a πT entity and then simulate it according to the operation of A. In such
case, SΣ

G will mediate the corruption operation between ZA
G and the ideal functionality.

Second, we define an ideal world adversary SΣ
G that will be paired with ZA

G. SΣ
G will interact with ZA

G to
corrupt parties if the environment requests it and it will also provide influence action symbols whenever a leak
action symbol occurs following the program of the scheme Σ.
Step 2: Defining the “bad language.” This language will correspond to the event that the attacker wins the
game. It is denoted by B

I/O
T,G ⊆

⋃
A,Σ L

I/O

Fdum
T ,ZA

G,SΣ
G

and contains those strings for which the environment ZA
G

returns 1. Note that based on the soundness of the transformation of the game G to the environment ZA
G those

strings correspond exactly to the event where the attacker A wins the game G against the challenger C. While
this language captures the event that the attacker wins the game, it is not sufficient for describing the winning
event within more complex executions because the bad sequence of symbols may be interleaved with other
actions. We define this extended bad language as exactly those strings of L

I/O

Fdum
T

that contain as a subsequence

a string of B
I/O
T,G, and denote it as Bext

T,G.
Step 3: Defining the ideal functionality. In order to define the class of canonical functionalities that capture
the game G we need first to show that the extended bad language Bext

T,G defined in step 2 is polynomial-time
decidable. Then, given the decider D for the language, we define the canonical functionality FG that captures
the game G by requiring that w ∈ Bext

T,G if and only if validate(w) = 0; in other words, the function validate()
simulates the decider D, and whenever the decider accepts the functionality halts.

Claim 3.1. Suppose that a cryptographic scheme Σ implements a cryptographic task T and G is a consistency
game for T . Then it holds that if πΣ UC-realizes some F & FG, then Σ satisfies the property defined by G.

We demonstrate the above claim for several fundamental cryptographic tasks in Section 4 and Section D.

3.2 Ideal functionalities from hiding games

Here we focus on indistinguishability games; the translation for simulation-based games is given in Section C.
Let G be an indistinguishability game for a cryptographic task T . We show how to define a canonical func-
tionality for the task that implies the indistinguishability property. In this case, our methodology proceeds in
two steps: we first define an environment and an ideal world simulator based on the game G. Second, based
on the environment’s operation we define the canonical functionality by appropriately modifying the suppress
function.

9

Step 1: Defining the environment and simulator. As in the case of consistency games, we define an
environment ZA

G and simulator SΣ
G based on the operation of the challenger C, the attacker A and the judge J.

The transformation is identical to the one in step 1 of the previous subsection.

Step 2: Defining the canonical functionality. During any execution of the environment ZA
G with SΣ

G , it holds
that it issues a symbol ACTIONi with input xb where b is a random bit selected by ZA

G and x0, x1 were provided
by the attacker A (which is simulated by ZA

G). Assuming that x0 = 〈xL
0 , xR

0 〉 and x1 = 〈xL
1 , xR

1 〉 and the game
G contains the test xL

0 = xL
1 and xR

0 6= xR
1 , we define the suppress function for symbol a = (ACTIONi,P, xb)

where b ∈ {0, 1} by suppress(a) = 〈xL
b , (−)|x

R
b |〉 (recall that suppress(a) � xb).

Claim 3.2. Suppose that a cryptographic scheme Σ implements a cryptographic task T and G is an indis-
tinguishability game for T . Then it holds that if πΣ UC-realizes some F & FG, then Σ satisfies the hiding
property defined by game G.

4 Applying the Methodology: Commitments

We now apply our methodology to several fundamental cryptographic tasks. Here we treat commitments,
whose properties are modeled by both consistency and hiding games; the application to other tasks can be
found in Section D.

Following Figure 1, any canonical functionality for commitment, FCOM, is defined for two types of roles,
the committer C and the verifier V , with two actions, COMMIT and OPEN. The WF predicate for FCOM requires
that a COMMIT should precede COMMITRETURN and an OPEN should precede OPENRETURN; moreover,
COMMIT should always precede OPEN and COMMITRETURN should always precede OPENRETURN. The de-
fault output DO forFCOM is defined as follows: whenever history contains the symbols (COMMIT, 〈C, V, sid〉,m)
and (OPEN, 〈C, V, sid〉) the default output is m, otherwise it is empty. Based on the above the dummy function-
ality Fdum

COM is defined (cf. Definition 2.1). We consider the properties of commitments in turn. For simplicity
we consider single-move commitment protocol.

Correctness. This property can be modeled by a consistency game where the adversary chooses an m for
which the committer produces a commitment that the verifier fails to accept.

Definition 4.1 (Correctness). A commitment scheme Σ(COM) = 〈commit, verify〉 is correct if for all PPT
attackers A, it holds that Pr[m← A(1λ); (c, ξ)← commit(m);φ← verify(c,m, ξ) : φ = 0] ≤ negl(λ).

Game Gcorr is as follows. The challenger C uses as oracles the algorithms commit(), verify(), and in-
teracts with the attacker A: the attacker A outputs m; the challenger invokes the committer oracle with m and
obtains 〈c, ξ〉; then the challenger queries the verifier oracle with 〈c, ξ〉 and obtains the response φ. The judge J
decides that A wins the game if φ 6= 1. We describe the three steps of the transformation outlined in Section 3.1.

Step 1. We construct an environment ZA
corr and the corresponding ideal world adversary SΣ

corr based on game
Gcorr. In order to simulate the game, the environment first picks C, V from the namespace at random as well as a
random sid . Then, it simulates A on input 1λ; once A outputs m,ZA

corr sends (COMMIT, 〈C, V, sid〉,m) to party
C; whenZA

corr receives c from the adversary it simply relays it back. When it receives (COMMITRETURN, 〈C, V,
sid〉) from party V it sends (OPEN, 〈C, V, sid〉) to party C. Finally, ifZA

corr receives (OPENRETURN, 〈C, V, sid〉,
〈m, 0〉) from party V , it terminates with 1, otherwise, in any other case, with 0.

The ideal-world adversary SΣ
corr, when it receives (LEAKCOMMIT, 〈C, V, sid〉,m) it simulates commit()

to obtain 〈c, ξ〉. It then shows c to the environment Z and when the environment responds with c, SΣ
corr sends a

symbol (INFLCOMMIT, 〈C, V, sid〉) to the functionality. When it receives (LEAKOPEN, 〈C, V, sid〉), it sends
the symbol (INFLOPEN, 〈C, V, sid〉, verify(c,m, ξ)) to the functionality.

Step 2. For any correctness attacker A and scheme Σ, the environment ZA
corr, the adversary SΣ

corr, and the
dummy canonical commitment functionality together give rise to the language L

I/O

Fdum
COM ,ZA

corr,SΣ
corr

(cf. Section 2).

10

We consider the subset of strings B
I/O
COM,corr of the union of all the I/O languages quantified over all possible

correctness attackers A and schemes Σ that contains exactly those strings that correspond to the case that the
environment returns 1. Formally, B

I/O
COM,corr

def=
⋃

A,Σ B
I/O

Fdum
COM ,ZA

corr,SΣ
corr

. We next prove the following characteri-
zation of this language as well as determine its time complexity:

Lemma 4.2. (1) B
I/O
COM,corr =

{
w

∣∣∣∣ w = (COMMIT, 〈C, V, sid〉,m)(COMMITRETURN, 〈C, V, sid〉)
(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m, 0〉)

}
, and

(2) B
I/O
COM,corr is decidable in polynomial time.

In order to obtain the bad language for the correctness property we extend B
I/O
COM,corr as follows: Bext

COM,corr =

{w ∈ L
I/O

Fdum
COM

| ∃w′ ∈ B
I/O
COM,corr such that w′ 4 w}. Observe that BCOM,corr is also polynomial time decidable.

Step 3. We next define the class of ideal functionalities that corresponds to the correctness property.

Definition 4.3 (Canonical Functionality Fcorr). The functionality Fcorr ∈ FCOM equals F suppress,validate
COM , where

(1) suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,corr.

Theorem 4.4 (Translation Soundness). If πΣ(COM) realizes some F & Fcorr, then Σ(COM) is correct.

In fact, the converse of the above theorem also holds hence for correctness the translation is tight.

Theorem 4.5. If Σ(COM) is correct, then πΣ(COM) realizes Fcorr.

Hiding. We now apply our methodology over the hiding indistinguishability game for commitment schemes.

Definition 4.6 (Hiding). A commitment scheme Σ(COM) = 〈commit, verify〉 is hiding if for all PPT attackers
A = (A1,A2), it holds that Pr[(m0,m1, st) ← A1(1λ); b r← {0, 1}; (c, ξ) ← commit(mb); b∗ ← A2(st , c) :
b∗ = b ∧m0 6= m1] ≤ 1

2 + negl(λ).

The above definition can be modeled as a hiding game Ghide for the task COM as follows. The challenger
C is allowed to use algorithms commit(), verify() as oracles, and interacts with the attacker A = (A1,A2).
First A1 produces a tuple 〈m0,m1〉, where m0 6= m1. In response, the challenger randomly chooses a bit b and
queries the commit() oracle with mb to obtain 〈c, ξ〉. Then, C sends c to A2 to obtain b∗ as a guess of b. The
judge J decides that A wins the game if b∗ = b. We next proceed to apply the methodology of Section 3.2.
Step 1. We construct an environment ZA

hide and the corresponding ideal world adversary SΣ
hide based on the

game Ghide described above. In order to simulate the game, the environment first picks C, V from the names-
pace at random as well as a random sid . Then it requests the corruption of the party V and simulates A1 on input
1λ. Once A1 produces 〈m0,m1〉,ZA

hide flips a random coin b, gives to C the symbol (COMMIT, 〈C, V, sid〉,mb)
and waits for the transmission from C to V that contains the commitment c. Then, ZA

hide simulates A2 on input
c to obtain b∗ and terminates with 1 if and only if b = b∗ and m0 6= m1. The ideal world adversary SΣ

hide,
whenever it receives (LEAKCOMMIT, 〈C, V, sid〉,m) it executes commit() on m and communicates the output
of the protocol to the environment (similarly, it simulates the real world in any other respect).
Step 2. Based on the environment ZA

hide we define the functionality class that corresponds to the hiding game:

Definition 4.7 (Canonical Functionality Fhide). The functionality Fhide ∈ FCOM equals F suppress,validate, where
(1) validate() = 1 always, and (2) suppress(a) = (−)|m| for a = (COMMIT, 〈C, V, sid〉,m).

Theorem 4.8 (Translation Soundness). If πΣ(COM) realizes some F & Fhide, then Σ(COM) satisfies hiding.

The converse of the above theorem does not hold as hiding is not sufficiently strong to imply the UC-
realization of Fhide. Nevertheless, if the hiding property is strengthened to equivocality (see Section D.1.2),
then we are able to show that the converse holds for static adversaries.

Binding. We model the binding property of commitments in terms of extractability as this stronger formulation
will enable a tight translation. See Section D.1.1 for the more standard formulation of binding.

11

Definition 4.9 (Binding in the sense of Extractability). A commitment scheme Σ(COM) = 〈commit, verify〉 is
binding in the sense of extractability if there exists a PPT E, for all PPT attackers A such that Pr[(c,m2, ξ2)←
A(1λ);m1 ← E(c);φ← verify(c,m2, ξ2) : φ = 1 ∧m1 6= m2] ≤ negl(λ).

The above property can be modeled by a consistency game, Gbind, as follows. The challenger C uses as
oracles the algorithms commit(), verify() and the witness extractor E, and interacts with the attacker A: the
attacker A outputs 〈c,m2, ξ2〉; the challenger simulates E on input c to obtain response m1, and then queries
the the verifier oracle with the pair 〈m2, ξ2〉 to obtain response φ. The judge J decides that A wins the game if
m1 6= m2 and φ = 1. Next we describe the three steps of the transformation outlined in Section 3.1.

Step 1. We construct an environment ZA,E
bind and the corresponding ideal world adversary SΣ,E

bind based on
the game Gbind described above. In order to simulate the game, the environment first picks C, V from the
namespace at random as well as a random sid . Then, the environment requests the corruption of party C and
simulates A on input 1λ; once A outputs 〈c,m2, ξ2〉, the environment sends c to S and requests from S to make
a commitment on behalf of the party C to the party V . The environment simulates E on input c and obtains m1.
After receiving a symbol (COMMITRETURN, 〈C, V, sid〉) from party V , the environment sends 〈m2, ξ2〉 to S
and requests from S to open the commitment of C to V . IfZA,E

bind receives (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉)
from V , where m2 is different from m1, it terminates with 1; otherwise it terminates with 0.

We next describe the operation of SΣ,E
bind. When SΣ,E

bind receives the corruption request from the environment
it relays it to the functionality. When SΣ,E

bind receives c from the environment, it runs the extractor E on input
c to compute m1, and then gives a symbol (COMMIT, 〈C, V, sid〉,m1) to the functionality on behalf of the
corrupted party C; then, SΣ,E

bind sends symbol (INFLCOMMIT, 〈C, V, sid〉) to the functionality. When SΣ,E
bind

receives 〈m2, ξ2〉 from the environment it sends a symbol (INFLOPEN, 〈C, V, sid〉, 〈m2, verify(c,m2, ξ2)〉)
to the functionality.

Step 2. For any extractability attacker A, any scheme Σ, any extractor E, the environment ZA,E
bind and the adver-

sary SΣ,E
bind and the dummy canonical commitment functionality together give rise to the language L

I/O

Fdum
COM ,ZA,E

bind,SΣ,E
bind

.

We consider the subset of strings B
I/O
COM,bind of the union of all the I/O languages quantified over all possible A,

E and Σ that contains exactly those strings corresponds to the case that the environment returns 1. Formally,
B

I/O
COM,bind

def=
⋃

A,Σ,E B
I/O

Fdum
COM ,ZA,E

bind,SΣ,E
bind

We now show:

Lemma 4.10. (1) B
I/O
COM,bind =

w

∣∣∣∣∣∣
w = (COMMIT, 〈C, V, sid〉,m)(COMMITRETURN, 〈C, V, sid〉)

(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m′, 1〉)
such that m 6= m′ for some m,m′

, and

(2) B
I/O
COM,bind is decidable in polynomial time.

In order to obtain the bad language for the binding property we extend B
I/O
COM,bind as follows: Bext

COM,bind =

{w ∈ L
I/O

Fdum
COM

∣∣∣ ∃w′ ∈ B
I/O
COM,bind such that w′ 4 w }. Observe that BCOM,bind is also polynomial-time decidable.

Step 3. We next define the class of ideal functionalities that corresponds to the binding property.

Definition 4.11 (Canonical FunctionalityFbind). The functionalityFbind ∈ FCOM equalsF suppress,validate
COM where

(1) suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,bind.

Theorem 4.12 (Translation Soundness). If πΣ(COM) realizes some F & Fbind against static adversaries, then
Σ(COM) is binding in the sense of extractability.

In fact, the converse of the above theorem also holds hence for binding in the sense of extractability the
translation is tight.

Theorem 4.13. If Σ(COM) is binding in the sense of extractability, then πΣ(COM) realizes Fbind.

12

The canonical ideal commitment functionality. The (canonical) ideal commitment functionality would equal
Fcorr ∧ Fbind ∧ Fhide. In light of the translation soundness theorems above and Proposition 2.5 we obtain:

Corollary 4.14. If πΣ(COM) realizes some F & Fcorr ∧ Fbind ∧ Fhide, then the commitment scheme Σ(COM)
satisfies correctness, binding, and hiding.

Functionality Fcorr ∧ Fbind ∧ Fhide turns out to be equivalent (in the sense of UC-emulation) to the com-
mitment functionality as it appears in [Can05]. We note that our canonical functionality easily generalizes to
the multi-session setting (see Section D.1.3), and in this case one can show that it implies non-malleability (in
the sense that any πΣ realizing Fcorr∧Fbind∧Fhide would imply that Σ(COM) is non-malleable). Interestingly,
we also show that merely realizing F̂hide implies the (weaker) non-malleability definition put forth in [PR05].
This demonstrates the power of the methodology to establish (fine-grain) relations between security properties.

Further treatment of commitments appears in Section D, where we also apply the methodology to other
cryptographic tasks — signatures, zero-knowledge and oblivious transfer.

References
[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority.

J. Cryptology, 4(2):75–122, 1991.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell, editor, CRYPTO
1992, volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer, 1992.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable signature func-
tionality. In Kan Zhang and Yuliang Zheng, editors, ISC 2004, volume 3225 of Lecture Notes in Computer
Science, pages 61–72. Springer, 2004. http://eprint.iacr.org/2003/240.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202,
2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS 2001,
pages 136–145. IEEE Computer Society, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In CSFW 2004, pages
219–235. IEEE Computer Society, 2004. Full version at http://eprint.iacr.org/2003/239/.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Cryptology
ePrint Archive, Report 2000/067, December 2005. Latest version at http://eprint.iacr.org/2000/
067/.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-
party secure computation. In STOC 2002, pages 494–503. ACM, 2002. Full version at http://www.cs.
biu.ac.il/˜lindell/PAPERS/uc-comp.ps.

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance, editor, CRYPTO
1987, volume 293 of Lecture Notes in Computer Science, pages 350–354. Springer, 1987.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–
437, 2000. Preliminary version appears at STOC 1991.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. Commun.
ACM, 28(6):637–647, 1985.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral ma-
jority. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO 1990, volume 537 of Lecture Notes in
Computer Science, pages 77–93. Springer, 1990.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

13

http://eprint.iacr.org/2003/240
http://eprint.iacr.org/2003/239/
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2000/067/
http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps
http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. In STOC 1987, pages 218–229. ACM, 1987.

[HK07] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
Cryptology ePrint Archive: Report 2007/118, 2007. Preliminary version appears in Eurocrypt 2005.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan Feigenbaum, editor, CRYPTO
1991, volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer, 1991. Long version at
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-511.pdf.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS 2005, pages 563–572.
IEEE Computer Society, 2005. Available at http://www.eecs.harvard.edu/˜alon/PAPERS/
conc-nmc/conc-nmc.ps.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. In IEEE Symposium on Security and Privacy, 2001.

[Rab81] Michael Rabin. How to exchange secrets by oblivious transfer. In Technical Report TR-81. Harvard University,
1981.

14

http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-511.pdf
http://www.eecs.harvard.edu/~alon/PAPERS/conc-nmc/conc-nmc.ps
http://www.eecs.harvard.edu/~alon/PAPERS/conc-nmc/conc-nmc.ps

A The Universal Composability Framework

The UC framework was proposed by Canetti for defining the security and composition of protocols [Can01].
In this framework one first defines an “ideal functionality” of a protocol, and then proves that a particular
implementation of this protocol operating in a given computational environment securely realizes this ideal
functionality. The basic entities involved are n players P1, . . . , Pn, an adversary A, and an environment Z .
The real execution of a protocol π, run by the players in the presence of A and an environment machine Z ,
with input z, is modeled as a sequence of activations of the entities. The environment Z is activated first,
generating in particular the inputs to the other players. Then the protocol proceeds by having A exchange
messages with the players and the environment. Finally, the environment outputs one bit, which is the output
of the protocol.

The security of the protocols is defined by comparing the real execution of the protocol to an ideal process
in which an additional entity, the ideal functionality F , is introduced; essentially, F is an incorruptible trusted
party that is programmed to produce the desired functionality of the given task. The players are replaced by
dummy players, who do not communicate with each other; whenever a dummy player is activated, it forwards
its input to F . Let A denote the adversary in this idealized execution. As in the real-life execution, the output
of the protocol execution is the one-bit output of Z . Now a protocol π securely realizes an ideal functionality
F if for any real-life adversary A there exists an ideal-execution adversary S such that no environment Z , on
any input, can tell with non-negligible probability whether it is interacting with A and players running π in
the real-life execution, or with S and F in the ideal execution. More precisely, if the two binary distribution
ensembles, REALπ,A,Z and IDEALF ,S,Z , describing Z’s output after interacting with adversary A and play-
ers running protocol π (resp., adversary S and ideal functionality F), are computationally indistinguishable
(denoted REALπ,A,Z

c
≈ IDEALF ,S,Z). For further details on the UC framework refer to [Can05].

B Proofs

(Proof of Theorem 2.2). Consider a task T , and its well-formedness predicate WFT . We construct a scheme
Σ that implements T such that πΣ realizes the dummy functionality Fdum

T . We first give description for πT ,
then we design the scheme Σ; the protocol πΣ will be obtained by implementing all actions of πT with the
algorithms of Σ. A πT entity P maintains an array history, initially empty, which is used to record the entity’s
action symbols. In particular, when P receives a symbol (ACTION,P, x) from the environment, it records
the symbol into its history, runs the predicate WFT over history, and if the predicate returns 0, then the input
is ignored, and the input will be removed from its history. Whenever required by the action, the πT entity
returns an output symbol (ACTIONRETURN,P, y), using the WFT predicate to ensure well-formedness. We
next describe the scheme Σ implementing the cryptographic task T . Recall that for each action T specifies a
domain and range; given that we are only interested in designing a protocol realizing the dummy functionality
we will simply define each action of Σ to map every input of the action domain D

(λ)
i to an element of the action

range R
(λ)
i . This captures the case of a non-interactive action. For interactive actions, say between two parties,

Σ provides a two party protocol where the two parties coordinate according to the input-output behavior of the
action. This completes the description of Σ that together with πT defines the protocol πΣ.

Next, we construct an ideal world adversary S such that no environment Z can distinguish an execution
involving πΣ and the real world adversary from an execution of Fdum

T and the ideal world adversary. The
construction of S is as follows: S will simply perform a faithful simulation of the real world execution with
the protocol πΣ and the real-world adversary. This is possible as the canonical dummy functionality relays
all (valid) I/O from the environment without any modifications. We next prove that no environment Z can
distinguish the ideal from the real world for the above simulator S and in fact the simulation is perfect.

Observe that the only difference between the real world execution and the ideal world execution is the
fact that the verification of the well-formedness predicate in the real world is distributed amongst the parties

15

whereas in the ideal world it is handled by the canonical functionality. Observe that if the combined history of
all parties in an ideal world execution is well-formed then the local history of each party in the real world will
also be well-formed (as the same WFT predicate is used globally and locally and the predicate is only sensitive
in the order of symbols). Note that the reverse direction is not necessarily true; indeed a set of well-formed local
histories may not be composed to a global history that is well-formed (and this may provide an opportunity for
an adversarial environment to distinguish the real from the ideal world). Nevertheless, this is not the case due to
the fact that a Σ scheme, specifically the coordination component of the protocol implementation of interactive
actions, will ensure that the composition (according to the real order of events as induced by the adversary) of
the local histories of all parties in a real world execution will result in a well-formed global history.

In the case of corrupted parties observe that the composed global history of a real world execution might
cease to be well-formed as it may not include the local histories of corrupted parties (which are handled in-
ternally by the adversary). This discrepancy, however, will not result in any distinguishing advantage as the
simulator S has the power to insert symbols in the canonical functionality’s history that follow the actions of
corrupted parties and thus maintain the well-formedness of the functionality’s history.

Based on the above we conclude that the ideal world adversary S is performing a perfect simulation of the
ideal world when interacting with Fdum

T and thus πΣ is a UC-realization of Fdum
T .

(Proof of Proposition 2.5). Let π be a protocol that UC-realizes F and let F ′ be any functionality such that
F ′ . F which means that F = F ′ ∧ F ′′ for some F ′′ ∈ FT . Let F ′ = F suppress1,validate1

T ,F ′′ =
F suppress2,validate2

T ∈ FT . To prove the proposition, it suffices to prove the following statement that any protocol
π that UC-realizes F also UC-realizes F ′.

To prove that π UC-realizes F ′, we need to show that for any A′ there is an ideal world adversary S ′ such
that for all Z ′, IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . Notice that based on the condition that protocol π realizes F ,
for any A there is an ideal world adversary S such that for all Z , IDEALF ,S,Z ≈ REALπ,A,Z .

Given a real world adversaryA′ for the protocol π, there exists an S from the premise of the proposition that
simulates it in the ideal world interacting with F . We construct an S ′ that interacts with F ′ as follows: S ′ sim-
ulates S in its interface with the functionality F ′ with the following modification: each time when F ′ has input
a = (ACTION,P, x) it gives to the adversary the symbol (LEAKACTION,P, x1) where x1 = suppress1(a);
given this symbol, S ′ computes x2 = suppress2(ACTION,P, x1) and gives the symbol (LEAKACTION,P, x2)
to S. This completes the description of S ′.

Given an environment Z ′ we will show that IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . From the premise of the
proposition we know that IDEALF ,S,Z′ ≈ REALπ,A′,Z′ , thus it suffices to show IDEALF ,S,Z′ ≈ IDEALF ′,S′,Z′ .

To each run of F with S and Z ′ we can correspond a run of F ′ with S ′ and Z ′; observe that the corre-
spondence will preserve the history of the canonical functionality, i.e., the history of F in the run with S and
Z ′ will be the same in the corresponding run of F ′ with S ′ and Z ′ (the environment is the same in both cases
and S ′ operates identically to S in terms of the way it influences the functionality). Thus, given that the event
that validate2(history) = 0 happens with negligible probability over all runs of F with S and Z ′ (since this a
real world simulation and whenever this event happens the functionality F returns an error symbol), it follows
that it also happens with negligible probability over the runs of F ′ with S ′ and Z ′. Consider the event that
Z ′ returns 1 over all runs of F with S and Z ′ and observe that its probability is the same to the event that
Z ′ returns 1 over all runs of F ′ with S ′ and Z ′ where both events are taken over the conditional space where
validate2(history) = 1. Given that validate2(history) = 0 is a negligible probability event in either space the
proof of the proposition follows.

(Proof of Lemma 4.2). (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First
we need to show B

I/O
COM,corr ⊆ Y . Let w be any string in B

I/O
COM,corr; then it holds that there exist A,Σ such

that w equals the history string in the ideal world execution of the environment ZA
corr with adversary SΣ

corr

and the dummy functionality Fdum
COM . Based on the definition of the environment ZA

corr and the adversary SΣ
corr,

we know that the symbol (COMMIT, 〈C, V, sid〉,m) from dummy party C will be recorded into history in

16

the dummy functionality; and then after receiving an INFLCOMMIT symbol from the adversary, the symbol
(COMMITRETURN, 〈C, V, sid〉) will be recorded in history and be sent to the dummy party V by the function-
ality. Later a symbol (OPEN, 〈C, V, sid〉) will be recorded into history; and then after an INFLOPEN symbol,
the symbol (OPENRETURN, 〈C, V, sid〉, 〈m, 0〉) will be recorded in history. It follows that the string w belongs
to the set Y .

Second we need to show B
I/O
COM,corr ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the

ideal world execution of ZA
corr with adversary SΣ

corr and the dummy functionality Fdum
COM it holds that history =

w. Given that w ∈ Y it holds that there exist m such that w = (COMMIT, 〈C, V, sid〉,m)(COMMITRETURN,
〈C, V, sid〉)(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m, 0〉). Define A output always m. Define commit
that on input 〈m, ξ〉 returns c and the verify that on input 〈c,m, ξ〉 returns 0. It follows immediately that the
history string that in the ideal world execution of ZA

corr with adversary SΣ
corr and the dummy functionality Fdum

COM

would equal w.
(2) It is easy to show the language B

I/O
COM,corr is decidable.

(Proof of Theorem 4.4). By contradiction, assume scheme Σ(COM) is not correct. We need to construct an en-
vironment Z to distinguish the two worlds with non-negligible probability. Based on the successful correctness
attacker A, we use Z = ZA

corr as defined above. Notice that in the real world, A is a successful correctness
attacker against Σ(COM), so Z outputs 1 with non-negligible probability. However in the ideal world, 〈m, 0〉
would cause any canonical functionality F & Fcorr to halt, so the environmentZ can never output 1. Therefore
the constructed Z distinguishes the two worlds with non-negligible probability.

(Proof of Theorem 4.5). Given that no attacker A can win the correctness game above, we need to show that
there exists a adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the
generic adversary for commitment task, which means S will simulate the real world inside. Each time, when
S obtains (LEAKCOMMIT, 〈C, V, sid〉,m) from Fcorr, it simulates party C inside to commit such m into c,
and sends the commitment value c to party V ; when the simulated V receives the commitment value c from
party C, the ideal world adversary S sends symbol (COMMITRETURN, 〈C, V, sid〉) to Fcorr; later when S
obtain the LEAKOPEN symbol from the functionality, it simulates party C to open the commitment value c to
the m to party V ; when the simulated V receives the opening from party C, party V produces the verification
result 〈m,φ〉, and the adversary S sends (INFLOPEN, 〈C, V, sid〉, 〈m,φ〉) to Fcorr. Furthermore S corrupts
the parties following Z’s instruction. Whenever S receives a commitment value c from a corrupted committer
C, S randomly select m′ and play the role of the committer C to send (COMMIT, 〈C, V, sid〉,m′) to Fcorr,
and receives the corresponding LEAKCOMMIT symbol from the functionality; later when S receives from the
corrupted committer C the opening for the c, S simulates party V with such opening value, and if V returns
〈m,φ〉, then S sends (INFLOPEN, 〈C, V, sid〉, 〈m, φ〉) to Fcorr.

Assume πΣ(COM) cannot realize Fcorr, i.e., for all S there exists an environment Z can distinguish the
two worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further
simulates the real world for the copy of Z .

We let F denote the event that in a run of πΣ(COM) with Z , no party is corrupted, and the commitment value
c is computed based on the witness m and some coins ξ, but later c cannot be opened to 〈m, ξ〉, i.e., 〈c,m, ξ〉
cannot be verified. Observe that if event F does not occur and Fcorr does not halt, the simulated Z cannot
distinguish the two worlds; recall that Fcorr halts only when m′ = m and φ = 0; notice that m′ = m holds with
only negligible probability, which meansFcorr halts with negligible probability. HoweverZ can distinguish the
two worlds with non-negligible probability, which means event F must occur with non-negligible probability,
i.e., A is a successful correctness attacker.

(Proof of Theorem 4.8). By contradiction, we assume Σ(COM) is not hiding, i.e., there exists a successful hiding
attacker A who can guess the hidden bit b with non-negligible probability higher than 1/2. Now we need
to construct an environment that distinguish the two worlds with non-negligible probability. Based on the
successful hiding attacker A, we use Z = ZA

hide as defined above. Notice that in the real world the value c will

17

be produced based on mb according to the commitment protocol and since A is a successful hiding attacker,
Z will output 1 with probability bounded away from 1/2 by a non-negligible fraction; on the other hand, in
the ideal world for any canonical functionality F & Fhide, since any such functionality will suppress the mb

entirely in response to the (COMMIT, 〈C, V, sid〉,mb) symbol, no matter how the adversary S is designed (note
that S has adversarial role in this proof), c will be produced independently of b, therefore even an unbounded
A will not be able to influence the output based on b. It follows that Z will output 1 with probability 1/2. It
follows that Z distinguishes the two worlds with non-negligible probability.

(Proof of Lemma 4.10). (1) Denote by Y the language in the right hand side of the lemma’s statement (1).
First we need to show B

I/O
COM,bind ⊆ Y . Let w be any string in B

I/O
COM,bind; then it holds that there exist A,Σ,E

such that w equals the history string in the ideal world execution of the environment ZA,E
bind with adversary

SΣ,E
bind and the dummy functionality Fdum

COM . Based on the definition of the environment ZA,E
bind and the adversary

SΣ,E
bind, we know that the symbol (COMMIT, 〈C, V, sid〉,m1) will be patched by the adversary into history in

the dummy functionality; and then after receiving an INFLCOMMIT symbol from the adversary, the symbol
(COMMITRETURN, 〈C, V, sid〉) will be recorded in history and be sent to the dummy party V by the function-
ality. Later a symbol (OPEN, 〈C, V, sid〉) will be patched into history; and then after an INFLOPEN symbol, the
symbol (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) will be recorded in history. It follows that the string w belongs
to the set Y .

Second we need to show B
I/O
COM,bind ⊇ Y . Let w be any string in Y . We will construct A,Σ,E such that in the

ideal world execution of ZA,E
bind with adversary SΣ,E

bind and the dummy functionality Fdum
COM it holds that history =

w. Given that w ∈ Y it holds that there exist m1,m2 such that w = (COMMIT, 〈C, V, sid〉,m1)(COMMITRETURN,
〈C, V, sid〉)(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) with m1 6= m2. Let c, ξ2 be a random
string and define A output always 〈c,m2, ξ2〉. Next define E as follows: given c it returns m1; for any other
input it returns a random string. Finally define commit that on input 〈m2, ξ2〉 returns c and the verify that on
input 〈c,m2, ξ2〉 returns 1. It follows immediately that the history string that in the ideal world execution of
ZA,E

bind with adversary SΣ,E
bind and the dummy functionality Fdum

COM would equal w.
(2) It is easy to show the language B

I/O
COM,bind is decidable.

(Proof of Theorem 4.12). Given that there exists an ideal world adversary S such that no Z can distinguish the
two worlds, we need to show that there exists a witness extractor E such that no A can open a valid commitment
value in a way that disagrees with the extractor E with non-negligible probability.

We construct an extractor E as follows. Given input c, E simulates S. E gives S the symbol (CORRUPT, P)
as well as the instruction to deliver c to the receiver V as the commitment value produced by the corrupted
committer C. Whenever E receives the symbol (COMMIT, 〈C, V, sid〉,m1) produced by S on behalf of the
corrupted C, E sends to S the symbol (LEAKCOMMIT, 〈C, V, sid〉) on behalf of the functionality. If E re-
ceives the symbol (INFLCOMMIT, 〈C, V, sid〉) from S, E outputs m1, otherwise outputs ⊥. This completes the
description of E.

Assume for the sake of contradiction that the scheme Σ(COM) is not binding in the sense of extractability,
i.e., for the extractor E defined above there exists a successful binding attacker A (as in the definition of binding
in the sense of extractability) that wins the game with non-negligible probability β. That is Pr[(c,m2, ξ2) ←
A(1λ);φ← verify(c,m2, ξ2);m1 ← E(c) : m1 6= m2 ∧ φ = 1] = β.

We now construct an environment Z that distinguishes the real and the ideal worlds with non-negligible
probability thus deriving a contradiction. The construction of Z is similar to ZA,E

bind in step 1 of the trans-
lation. The environment Z first corrupts party C; then the environment simulates A as follows: when A
outputs a triple 〈c,m2, ξ2〉, the environment simulates E on input c to obtain m1. Then, the environment Z
gives c to the adversary as the commitment value produced by the corrupted party C. Then, after receiv-
ing (COMMITRETURN, 〈C, V, sid〉) from party V , Z gives 〈m2, ξ2〉 to the adversary as the opening for the
commitment value c. When it receives (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) from party V , the environment

18

simulates the operation of V on inputs c and 〈m2, ξ2〉 and obtains the output φ. If m1 6= m2 and φ = 1, the
environment terminates with 1; in any other case, it terminates with 0. This completes the description of Z .

First we consider the case that Z interacts with the real world. Define R1 as the event that in the real
world execution, the tuple produced by A is valid, and we let αr1 denote the probability the event occurs, i.e.,
αr1 = Pr[R1] = Pr[(c,m2, ξ2) ← A(1λ);φ ← verify(c,m2, ξ2);m1 ← E(c) : φ = 1]. Define R2 as
the event in the conditional space on R1 when the extractor E returns a message m1 such that m1 6= m2;
let αr2 denote the probability of the event, i.e., αr2 = Pr[R2]. It follows that β = αr1αr2. Define R3 as
the event in the conditional space on R1 when the environment receives (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉);
let αr3 denote the probability of the event, i.e., αr3 = Pr[R3]. When R1 occurs, given that verification is
deterministic, the receiver V on input c and 〈m2, ξ2〉, always returns (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) to
the environment, which means that the event R3 occurs with probability 1, i.e., we have αr3 = 1. It follows
that the probability that Z outputs 1 when it interacts with the real world αr = Pr[R1] Pr[R3R2]. Note that
when R1 occurs, R3 will occur with probability 1, and at the same time R2 will occur with probability αr2, so
we have Pr[R3R2] = 1 · αr2 = αr2. As a result αr = Pr[R1] Pr[R3R2] = αr1αr2 = β. We have αr1 ≥ β and
αr2 ≥ β; since β is non-negligible, so are αr1, αr2. Further, we have αr = β.

Next we consider the case that Z interacts with the ideal world. We define I1 as the event that in the ideal
world execution the tuple produced by A is valid and we let αi1 = Pr[I1]. We define I2 as the event in the
conditional space on I1 when the extractor E outputs m1 such that m1 6= m2; let αi2 = Pr[I2]. Notice that
αi1 = αr1 and αi2 = αr2 since the events I1, I2 and R1, R2 are in correspondence. Define I3 as the event in
the conditional space on I1 when the environment receives (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) and denote
αi3 = Pr[I3].
Claim: The events I2 and I3 are complementary. Recall that both I2 and I3 are over the conditional space
on I1. Whenever event I2 occurs we have that E fails to extract the message that will be opened by the
corrupted prover; this means that S either is not providing the symbol (COMMITRETURN, 〈C, V, sid〉) to the
functionality, or in case it does it the message provided by S in the (COMMIT, 〈C, V, sid〉,m1) symbol is
such that m1 6= m2. On the other hand, whenever the event I3 occurs we have that the environment receives
an (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉). This means that the ideal world adversary S given valid (c,m2, ξ2)
makes the functionality to output (OPENRETURN, 〈C, V, sid〉, 〈m2, 1〉) to the environment. This can only
happen when S produces the (INFLOPEN, 〈C, V, sid〉, 〈m2, 1〉) symbol and at the same time the history of the
functionality contains the symbols (COMMIT, 〈C, V, sid〉,m2) and (COMMITRETURN, 〈C, V, sid〉). It is easy
to see that I2, I3 are complementary.

Next we compute the probability that Z outputs 1 when it interacts with the ideal world as follows αi =
Pr[I1] Pr[I3I2]. When I1 occurs, I2 occurs with probability αi2, and at the same time, I3 occurs with probability
αi3; thus Pr[I2I3] = αi2αi3 given that the events are independents. Based on the claim above, αi2 + αi3 = 1.
Thus we have αi = Pr[I1] Pr[I2I3] = αi1αi2αi3 = αi1αi2(1− αi2) = αr1αr2(1− αr2) = (1− αr2)β.

The difference in the probability that the environment returns 1 between the two worlds is αr − αi =
(1 − (1 − αr2))β = αr2β ≥ β2. Since β is non-negligible, so is the difference. Therefore Z can distinguish
the ideal and the real worlds with non-negligible probability.

(Proof of Theorem 4.13). Given that there exists a witness extractor E such that no A can “explain” the same
commitment value in two ways (as in definition for binding in the sense of extractability). We need to show that
there exists an ideal world adversary S such that no Z can distinguish the two worlds. We use E as a part of
S, i.e., we let S = SΣ,E

bind as above. Each time, when S obtains (LEAKCOMMIT, 〈C, V, sid〉,m) from Fbind, it
simulates party C inside to commit on such m to party V ; when the simulated V receives the commitment value
from party C, the ideal world adversary S sends symbol (INFLCOMMIT, 〈C, V, sid〉) to Fbind; later when S
obtain the LEAKOPEN symbol from the functionality, it simulates party C to open the commitment value to the
m to party V ; when the simulated V receives the opening value from party C, party V produces the verification
result 〈m,φ〉, and the adversary S sends (INFLOPEN, 〈C, V, sid〉, 〈m,φ〉) to Fbind. Further S corrupts the
parties following Z’s instruction. Whenever S receives a commitment value c from a corrupted committer C,

19

S runs E to extract the underlying m and play the role of the committer C to send (COMMIT, 〈C, V, sid〉,m)
to Fbind, and receives the corresponding LEAKCOMMIT symbol from the functionality; later when S receives
from the corrupted committer C the opening for the c, S simulates party V with such opening value, and if V
returns 〈m′, φ〉, then S sends (INFLOPEN, 〈C, V, sid〉, 〈m′, φ〉) to Fbind.

Next we justify the validity of S based on the validity of E. Assume πΣ(COM) cannot realize Fbind, i.e., for
all S there exists an environment Z which can distinguish the two worlds with non-negligible probability. We
construct A by simulating a copy of Z inside; and A further simulates the real world for the copy of Z . The
attacker A sets 〈c,m′, ξ′〉 outputted by Z as its output.

We let F denote the event that Z outputs c and 〈m′, ξ′〉, where c can be extracted into m and m 6= m′

and 〈m′, ξ′〉 is a valid opening. Observe that if event F does not occur and Fbind does not halt, the simulated
Z cannot distinguish the two worlds; recall that Fbind halt only when m′ 6= m and φ = 1; notice that given
the extractor E, m′ 6= m holds with only negligible probability, which means Fbind halts with negligible
probability. However Z can distinguish the two worlds with non-negligible probability, which means event F
must occur with non-negligible probability, i.e., A is a successful binding attacker.

C Simulation-Based Games

We define a simulation-based game similarly to an indistinguishability game in the sense that the adversary
will again be attacking a particular action. This can be extended to a set of actions but we do not consider
such games at present. The simulation-based game has the distinguishing characteristic that the challenger
has access to a PPT TM called the simulation machine S that produces outputs that appear to be close to the
attacked action output while using only a portion of the input that is given to the action. In the simulation-based
game, at some point of the interaction, the attacker will provide some input x to the challenger. In response, the
challenger C will flip a coin b, and if b = 0 it will execute the action on the whole input x and return the output
to A, while, if b = 1 it will run the simulation machine of the action with only a portion of x and return the
output to A. The game will terminate with the attacker A providing a guess b∗ for the bit b. The judge is defined
in the same way as in the indistinguishability game. We say that a cryptographic scheme that implements a task
T satisfies the property defined by the simulation-based game G if there exists a simulation machine S for all
PPT attackers A so that the function |SuccG

A − 1
2 | is a negligible function in λ.

We next define the translation of a simulation-based hiding game. As in the case of indistinguishability
our methodology proceeds in two steps: we first define an environment and ideal-world simulator and then a
corresponding canonical functionality.
Step 1: Defining the environment and simulator. Suppose S is a simulator for a particular action of the
cryptographic task and A is an adversary playing the simulation game G. The environment ZA,S

G proceeds
as follows: it first flips a coin b, and if b = 0 it simulates G together with the adversary A and executes all
actions requested by the challenger C. On the other hand, if b = 1, ZA,S

G operates in the same way but it
substitutes the execution of the action under consideration with an execution of the simulator S. As before the
environment outputs 1 if and only if the judge determines that the adversary wins the game G. SΣ,S

G on the
other hand operates as follows: given the LEAKACTION symbol for the action under consideration it simulates
S internally and returns the output to the environment.
Step 2: Defining the canonical functionality. ACTIONi operates on input x; assume that that x = 〈xL, xR〉
and the simulator of the action S action operates on input xL. In such case, we define the suppress function for
symbol a = (ACTIONi,P, x) by suppress(a) = 〈xL, (−)|x

R|〉.
Claim C.1. Suppose that a cryptographic scheme Σ implements a cryptographic task T and G is an simulation-
based game for T . Then it holds that if πΣ UC-realizes some F & FG then Σ satisfies the hiding property
defined by game G.

We note that it is possible to define simulation-based hiding games where a different part of the action
input x is supposed to be provided to the simulator depending on actions taken prior to the action that is being

20

attacked. For example, if x = 〈xL, xR〉 it can be the case that the simulator is given xL on some executions
and xR on others (for an example of such a formulation see [HK07] in the case of oblivious transfer). In
such a setting we will define suppress to eliminate both the xL, xR parts of the action content for a symbol
(ACTIONi,P, x).

D Applying the Methodology: Other Tasks

D.1 Commitments (cont’d)

D.1.1 Binding

We begin this section by showing an alternative, more standard definition of binding:

Definition D.1 (Binding). A commitment scheme Σ(COM) = 〈commit, verify〉 is binding if for all PPT at-

tackers A it holds that Pr
[

(c,m1, ξ1,m2, ξ2)← A(1λ);φ1 ← verify(c,m1, ξ1);
φ2 ← verify(c,m2, ξ2) : φ1 = φ2 = 1 ∧m1 6= m2

]
≤ negl(λ).

The property of extractability given in Definition 4.9 is a strengthening of the binding formulation as given
above.

Proposition D.2. A commitment scheme Σ that satisfies binding in the sense of extractability (cf. Definition 4.9)
satisfies the binding property of Definition D.1.

Proof. Given a scheme Σ that is extractable, we need to show that such Σ is binding. By contradiction, assume
that Σ is not binding, i.e., there is a binding attacker Abind that wins the binding game with non-negligible
probability β. We construct an extractability attacker Aext that wins the extractability game also with non-
negligible probability.

Aext simulates Abind; once Abind outputs 〈c,m1, ξ1,m2, ξ2〉, Aext flips a coin b, and outputs a tuple
〈c,mb, ξb〉. Since Abind is a successful binding attacker, with non-negligible probability β, verify(c,m1, ξ1) =
1 and verify(c,m2, ξ2) = 1 and m1 6= m2. For any E with input c, it outputs m′ such that m′ = mb with
probability at most 1

2 . Therefore following the extractability game, for all E, there exists an extractability
attacker with probability β

2 , which is also non-negligible.

D.1.2 Hiding and equivocality

In this section we formulate commitment hiding as a simulation-based game, apply our translation methodology
to it and investigate the property’s relationship with the commitment property of equivocality.

Definition D.3 (Hiding). A commitment scheme Σ(COM) = 〈commit, verify〉 is hiding if there exists a PPT S
so that for all PPT attackers A = (A1,A2), it holds

Pr

 (m, st)← A1(1λ); b r← {0, 1};
if b = 0 then (c, ξ)← commit(m) else c← S(1λ);
b∗ ← A2(st , c) : b = b∗

 ≤ 1
2

+ negl(λ)

The above definition can be modeled as a hiding game Ghide for the task COM as follows. The challenger C
is allowed to use algorithms commit(), verify() as oracles, and interacts with the attacker A = (A1,A2). First
A1 produces a value m. In response, the challenger C randomly chooses a bit b; if b = 0, then C queries the
commit() oracle with m to obtain 〈c, ξ〉. If b = 1, then C feeds S with 1λ to obtain c. Later C sends such c to
A2 to obtain b∗ as a guess of b. The judge J decides that A wins the game if b∗ = b. We next proceed to apply
the methodology of Section C.

21

Step 1. We construct an environment ZA,S
hide and the corresponding ideal world adversary SΣ,S

hide based on the
game Ghide described above. In order to simulate the game, the environment first picks C, V from the names-
pace at random as well as a random sid . Then it requests the corruption of the party V and simulates A1 on
input 1λ. Once A1 produces m, ZA,S

hide sends C the symbol (COMMIT, 〈C, V, sid〉,m). The environment now
expects c from the adversary. Outside the environment, a coin b is flipped; if b = 0, the environment will
interact with the real world, party C will produce c based on its input (COMMIT, 〈C, V, sid〉,m). If b = 1,
the environment will interact with the ideal world, now SΣ

hide will produce such c based on the information it
receives from the ideal functionality. Finally the environment simulates A2 on input c; when A2 outputs b∗, the
environment outputs such b∗.
Step 2. Based on the environment ZA

hide we define the functionality class that corresponds to the hiding game:

Definition D.4 (Canonical Functionality Fhide). The functionality Fhide ∈ FCOM equals F suppress,validate, where
(1) validate() = 1 always, and (2) suppress(a) = (−)|m| for a = (COMMIT, 〈C, V, sid〉,m).

Note that the functionality Fhide above is the same as the one in Definition 4.7 that was produced by
the indistinguishability-based formulation of hiding. Interestingly, Fhide captures a stronger notion of hiding,
namely, the equivocality property. Next we give the definition of equivocality, and then we show the equivalence
between the security notions of Fhide and equivocality.

Definition D.5 (Equivocality). A commitment scheme Σ(COM) = 〈commit, verify〉 is equivocal if there exists
a PPT S = (S1,S2) for all PPT attackers A = (A1,A2,A3), so that

Pr

(m, st)← A1(1λ); b r← {0, 1};
if b = 0 then (c, ξ)← commit(m)
else if b = 1 then (c, δ)← S1(1λ);
st ← A2(c);
if b = 1 then ξ ← S2(c, δ,m);
b∗ ← A3(st , ξ) : b = b∗

 ≤
1
2

+ negl(λ)

Theorem D.6. If πΣ(COM) realizes some F & Fhide against static adversaries, then Σ(COM) is equivocal.

Proof. Assume that there exists an ideal world adversary S such that no environment Z can distinguish the
executions in the real world and executions with the ideal process Fhide. We will show that there exists a
simulator S such that no A can win the simulation-based game for equivocality. S operates as follows: on input
1λ it runs S on input (LEAKCOMMIT,P) and when S responds with c it sets δ to be the internal state of S and
returns (c, δ). S on input (c, δ,m) it invokes S with state δ on input 〈(LEAKOPEN,P),m〉; when S outputs the
message (m, ξ) as the opening from the committer to the verifier, S terminates and returns ξ. Next we justify
the validity of S based on the validity of S.

By contradiction, we assume Σ(COM) is not equivocal, i.e., for all S, there exists a successful equivocality
attacker A that outputs b∗ = b with non-negligible probability at least β + 1/2 where β is a non-negligible
function. We construct an environment Z based on A that distinguishes the two worlds with non-negligible
probability; we use Z = ZA,S

hide as defined above.
If b = 0 and Z interacts with the real world, the pair 〈c, ξ〉 will be produced honestly by the party P

following the commit() protocol; recall that A succeeds with advantage β in predicting b. On the other hand,
if b = 0 and Z interacts with the ideal world, the values 〈c, ξ〉 will be produced by S as defined above (based
on c ← S1(1λ) and ξ ← S2(c,m), respectively). Therefore, Z , conditioning on b = 0 it distinguishes the two
worlds with non-negligible probability β, a contradiction.

Theorem D.7. If Σ(COM) is equivocal, then πΣ(COM) realizes Fhide against static adversaries.

Given that Σ is equivocal there is a simulator S according to the equivocality definition. To show that Σ UC
realizes Fhide, we will construct a simulator S by employing S for the simulation of the interactions between
the committer and receiver. The proof of the theorem follows easily.

22

D.1.3 Multi-session commitments

We now show how to extend the results of Section 4 for the commitment primitive in the multi-session setting
where a single functionality serves a population of committers and verifiers.

In the single-session setting P determines the id’s of the two parties involved in the session as well as their
roles. In the multi-session setting P determines the id’s of all active parties within the session as well as the
id’s of the two parties involved in a particular subsession and their roles. The translation methodology given in
Section 4 generalizes directly resulting in the multisession commitment functionality F̂comp ∧ F̂bind ∧ F̂hide.
Moreover, we are able to investigate the relationship of these properties with the non-malleability property that
is defined for the multi-session setting. We use the definition of non-malleability that was given in [PR05].

Definition D.8 (Concurrent non-malleability w.r.t. opening [PR05]). A commitment scheme Σ(COM) = 〈commit,
verify〉 is concurrently non-malleable with respect to opening if for all PPT attackers A = (A1,A2,A3) there
exists a PPT S = (S1,S2), so that for all PPT D = (D1,D2)

Pr

({mi}i∈[n], γ)← D1(1λ); b r← {0, 1}; st := 1λ; δ := 1λ;
for i ∈ [n]

if b = 0
then

(ci, ξi)← commit(mi); (c′i, st)← A1(st , ci); (m′
i, ξ

′
i)← A2(st ,mi, ξi);

else
(c′i, δ)← S1(δ); (m′

i, ξ
′
i)← S2(δ,mi);

b∗ ← D2(γ, {m′
i}i∈[n]) : b = b∗ ∧i∈[n] verify(c′i,m

′
i, ξ

′
i) = 1

≤ 1

2
+ negl(λ)

Theorem D.9. If πΣ realizes F̂hide, then Σ satisfies concurrent non-malleability as defined above.

D.2 Digital Signatures

The basic requirements for digital signatures were first formulated in [GMR88] including completeness, con-
sistency5, and unforgeability. We can model each property by a consistency game. In this section we show
how to translate these traditional notions into the corresponding UC canonical functionalities for the digital
signature task.

Following Figure 1, any canonical signature functionalityFSIG is defined for two types of roles, the signer S
and the verifiers V , with three actions, KEYGEN, SIGN, VERIFY. We denote the canonical signature function-
ality class as FSIG. Next we treat the three security properties, unforgeability, completeness, and consistency,
of signature one by one.

D.2.1 Unforgeability

Definition D.10 (Unforgeability). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is unforgeable if for all
PPT forgers A,

Pr[(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);φ← verify(vk,m, σ) :
φ = 1 and A never asked sign(vk, sk, ·) to sign m] ≤ negl(λ).

The above definition is a reformulation of GMR notion for unforgeability, which is based on a consistency
game Guf for task SIG. The challenger C uses algorithms gen(), sign(), verify() as oracles, and interacts
with forger A: C queries the gen() oracle and obtains 〈sk, vk〉, and then sends such vk to A; each time upon
receiving m from the forger A, the challenger C queries the sign() oracle with m and obtains σ, and then
returns such σ to A; upon receiving from A a pair 〈m′, σ′〉, C queries the verify() oracle with 〈m′, σ′, vk〉 and

5Consistency is implied in the GMR specification, as pointed out by Canetti [Can04].

23

obtains the verification result. The judge J decides that A wins the game if m′ has never been queried before
and the verification result is 1.
Step 1. Based on the game Guf described above, we can construct an environment ZA

uf and the corresponding
ideal world adversary SΣ

uf as follows. In order to simulate the game, the environment first picks S and V from
the namespace at random as well as a random sid . The environment sends (KEYGEN, 〈S, sid〉) to party S
and receives (KEYGENRETURN, 〈S, sid〉, vk) from it; then the environment simulates A internally by feeding
vk as the input; when A queries m to its signing oracle, the environment sends (SIGN, 〈S, sid〉,m) to party
S and receives σ, and returns such σ to A as the signature for the queried m; once A outputs a pair 〈m,σ〉,
the environment inputs (VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to V and receives the verification result. In the
case that m has never been queried and the verification result is 1, the environment terminates with 1; otherwise
with 0.

We next define the ideal-world adversary SΣ
uf . Each time SΣ

uf receives (LEAKKEYGEN, 〈S, sid〉) from
the dummy functionality, it runs (vk, sk) ← gen(1λ) and sends (INFLKEYGEN, 〈S, sid〉, vk) to the func-
tionality. Later when SΣ

uf receives (LEAKSIGN, 〈S, sid〉,m) from the dummy functionality, it runs σ ←
sign(vk, sk,m), and sends (INFLSIGN, 〈S, sid〉, σ) to the functionality. When SΣ

uf receives (LEAKVERIFY,
〈V, sid〉, 〈m, σ, vk〉) from the dummy functionality, it runs φ← verify(vk, sk,m, σ), and sends (INFLVERIFY,
〈V, sid〉, φ) to the functionality.

Based on the dummy signature functionality Fdum
SIG , the environment ZA

uf , and the adversary SΣ
uf , we de-

fine the set of strings in the I/O communication of the functionality to the environment as specified in every
possible run of the ideal world execution. Based on this we will obtain the bad language corresponding to the
functionality in step 2.
Step 2. For any forger A and scheme Σ, the environment ZA

uf , the adversary SΣ
uf , and the dummy canonical

signature functionality together give rise to the language L
I/O

Fdum
SIG ,ZA

uf ,S
Σ
uf

(cf. Section 2). We consider the subset

of strings B
I/O
SIG,uf of the union of all the I/O languages quantified over all possible forgers A and schemes Σ

that contains exactly those strings for which the environment returns 1. Formally,

B
I/O
SIG,uf

def=
⋃
A,Σ

L
I/O

Fdum
SIG ,ZA

uf ,S
Σ
uf

We next prove the following characterization of this language as well as determine its time-complexity:

Lemma D.11. (1) B
I/O
SIG,uf =

w

∣∣∣∣∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(SIGN, 〈S, sid〉,m1)(SIGNRETURN, 〈S, sid〉, σ1) · · ·
(SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)
(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN, 〈V, sid〉, 1)

such that m′ 6∈ {m1, . . . ,m`}

,

and (2) B
I/O
SIG,uf is decidable in polynomial time.

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to
show B

I/O
SIG,uf ⊆ Y . Let w be any string in B

I/O
SIG,uf ; then it holds that there exist A,Σ such that w equals the

history string in the ideal world execution of the environment ZA
uf with adversary SΣ

uf and the dummy function-
ality Fdum

SIG . Based on the definition of the environment ZA
uf and the adversary SΣ

uf , we know that the symbols
(KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)(SIGNRETURN, 〈S, sid〉, σ1) · · ·
(SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN, 〈V, sid〉, 1)
will be recorded into history in the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,uf ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the ideal

world execution of ZA
uf with adversary SΣ

uf and the dummy functionality Fdum
SIG it holds that history = w. Given

that w ∈ Y , there exist string w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)
(SIGNRETURN, 〈S, sid〉, σ1) · · · (SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)

24

(VERIFYRETURN, 〈V, sid〉, 1). Define gen output 〈vk, sk〉. Define sign that upon input mi returns σi for
1 ≤ i ≤ `; Define A output 〈m′, σ′〉; Define verify that upon input 〈m′, σ′, vk〉 returns 1. It follows im-
mediately that the history string that in the ideal world execution of ZA

uf with adversary SΣ
uf and the dummy

functionality Fdum
SIG would equal w.

(2) It is easy to show the language B
I/O
SIG,uf is decidable.

In order to obtain the bad language for the unforgeability property we extend B
I/O
SIG,uf as follows:

Bext
SIG,uf =

{
w ∈ L

I/O

Fdum
SIG

∣∣∣ ∃w′ ∈ B
I/O
SIG,uf s.t. w′ 4 w

}
We observe that Bext

SIG,uf is also decidable in polynomial time.

Step 3. Next we define the class of ideal functionalities that corresponds to the unforgeability property.

Definition D.12 (Canonical Functionality Fuf). The functionality Fuf ∈ FSIG equals F suppress,validate
SIG , where

(1) suppress() is same as in Fdum
SIG , and (2) validate(w) = 0 if and only if w ∈ Bext

SIG,uf .

Theorem D.13. If πΣ(SIG) realizes some F & Fuf , then Σ(SIG) is unforgeable.

Proof. By contradiction, assume scheme Σ(SIG) is not unforgeable. We need to construct an environmentZ to
distinguish the two worlds with non-negligible probability. Based on the successful forger A, we use Z = ZA

uf

as defined above. Notice that in the real world, A is a successful forger against Σ(SIG), so Z outputs 1 with
non-negligible probability. However in the ideal world, the case that a valid pair 〈m′, σ′〉 where m′ is new
would cause any canonical functionality F & Fuf to halt, so the environment Z can never output 1. Therefore
the constructed Z distinguishes the two worlds with non-negligible probability.

Theorem D.14. If Σ(SIG) is unforgeable, then πΣ(SIG) realizes Fuf .

Proof. Given that no forger A can win the unforgeability game above, we need to show that there exists a
adversary S such that noZ can distinguish the two worlds. The adversary S is designed as the generic adversary
for signature task.

Assume πΣ(SIG) cannot realize Fuf , i.e. for all S there exists an environment Z can distinguish the two
worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further simu-
lates the real world for the copy of Z .

We let F denote the event that in a run of πΣ(SIG) with Z , signer is honest, verification key vk is produced
by the signer, m is not signed by the signer, and 〈vk,m, σ〉 is valid. Observe that if event F does not occur, the
simulated Z cannot distinguish the two worlds. However, based on assumption above, Z can distinguish the
two worlds with non-negligible probability, which means event F must occur with non-negligible probability,
i.e., A is a successful forger.

D.2.2 Completeness

Definition D.15 (Completeness). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is complete if for all
PPT attackers A,

Pr[m← A(1λ); (vk, sk)← gen(1λ);σ ← sign(vk, sk,m);φ← verify(vk,m, σ) : φ = 0] ≤ negl(λ).

The above definition can be modeled as a consistency game, Gcomp as follows. The challenger C uses
algorithms gen(), sign(), verify() as oracles, and interacts with completeness attacker A: after receiving m
produced by A, the challenger C queries the gen() oracle and obtains sk, vk; then C queries the sign() oracle
with sk,m and obtains σ; later C queries the verify() oracle with 〈m,σ, vk〉 to obtains the verification result.
The judge J decides that A wins the game if the verification result is 0.

25

Step 1. Based on the game Gcomp described above, we can construct an environment ZA
comp and the cor-

responding ideal world adversary SΣ
comp. The environment ZA

comp here is similar to the environment ZA
uf ;

the environment first picks S and V from the namespace at random as well as a random sid . The environ-
ment simulates A with input 1λ and obtains m; it then sends (KEYGEN, 〈S, sid〉) to party S and receives
(KEYGENRETURN, 〈S, sid〉, vk) from the party S; later the environment sends (SIGN, 〈S, sid〉,m) to party S
and receives σ; the environment inputs (VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to V and receives the verifica-
tion result. If the verification result φ = 0, the environment terminates with 1; otherwise with 0. The adversary
SΣ

comp is defined similarly to the adversary SΣ
uf in the previous section.

Step 2. For any completeness attacker A and scheme Σ, the environment ZA
comp, the adversary SΣ

comp, and the

dummy canonical signature functionality together give rise to the language L
I/O

Fdum
SIG ,ZA

comp,SΣ
comp

. We consider

the subset of strings B
I/O
SIG,comp of the union of all the I/O languages quantified over all possible completeness

attackers A and schemes Σ that contains exactly those strings for which the environment returns 1. Formally,

B
I/O
SIG,comp

def=
⋃
A,Σ

L
I/O

Fdum
SIG ,ZA

comp,SΣ
comp

We next prove the following characterization of this language as well as determine its time-complexity:

Lemma D.16. (1) B
I/O
SIG,comp =

w

∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(SIGN, 〈S, sid〉,m)(SIGNRETURN, 〈S, sid〉, σ)
(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0)

(2) B

I/O
SIG,comp is decidable in polynomial time.

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to show
B

I/O
SIG,comp ⊆ Y . Let w be any string in B

I/O
SIG,comp; then it holds that there exist A,Σ such that w equals the

history string in the ideal world execution of the environmentZA
comp with adversary SΣ

comp and the dummy func-
tionality Fdum

SIG . Based on the definition of the environment ZA
comp and the adversary SΣ

comp, we know that the
symbols (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m)(SIGNRETURN, 〈S, sid〉, σ)
(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0) will be recorded into history in the dummy func-
tionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,comp ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the

ideal world execution ofZA
comp with adversary SΣ

comp and the dummy functionalityFdum
SIG it holds that history =

w. Given that w ∈ Y , there exist w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m)
(SIGNRETURN, 〈S, sid〉, σ)(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0). Define gen output
〈vk, sk〉. Define sign that upon input m returns σ; Define A output 〈m,σ〉; Define verify that upon input
〈m,σ〉 returns 0. It follows immediately that the history string that in the ideal world execution of ZA

comp with
adversary SΣ

comp and the dummy functionality Fdum
SIG would equal w.

(2) It is easy to show the language B
I/O
SIG,comp is decidable.

In order to obtain the bad language for the completeness property we extend B
I/O
SIG,comp as follows:

Bext
SIG,comp =

{
w ∈ L

I/O

Fdum
SIG

∣∣∣ ∃w′ ∈ B
I/O
SIG,comp s.t. w′ 4 w

}
We observe that Bext

SIG,comp is also decidable in polynomial time.

Step 3. We then define the class of ideal functionalities that corresponds to the completeness property.

Definition D.17 (Canonical Functionality Fcomp). The functionality Fcomp ∈ FSIG equals F suppress,validate
SIG ,

where (1) suppress() is the same as in Fdum
SIG , and (2) validate(w) = 0 if and only if w ∈ Bext

SIG,comp.

26

Theorem D.18. If πΣ(SIG) realizes some F & Fcomp, then Σ(SIG) is complete.

Proof. By contradiction, assume scheme Σ(SIG) is not complete. We need to construct an environment Z to
distinguish the two worlds with non-negligible probability. Based on the successful completeness attacker A,
we use Z = ZA

comp as defined above. Notice that in the real world, A is a successful completeness attacker
against Σ(SIG), so Z outputs 1 with non-negligible probability. However in the ideal world, the case that
a pair 〈m,σ〉 produced in the signing stage is verified with φ = 0 would cause any canonical functionality
F & Fcomp to halt, so the environment Z can never output 1. Therefore the constructed Z distinguishes the
two worlds with non-negligible probability.

Theorem D.19. If Σ(SIG) is complete, then πΣ(SIG) realizes Fcomp.

Proof. Given that no attacker A can win the completeness game above, we need to show that there exists an
ideal world adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the
generic adversary for the signature task (that performs a simulation of the real-world).

Assume πΣ(SIG) cannot realize Fcomp, i.e. for all S there exists an environment Z can distinguish the
two worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further
simulates the real world for the copy of Z . The adversary A will output the plaintext m that corresponds to the
following event F :

F is defined as the event that in a run of πΣ(SIG) withZ , an honest signer, the verification key vk is produced
by the signer, m is signed by the signer into σ based on the vk, and 〈vk,m, σ〉 verifies to 0. Observe that if
the event F does not occur, the simulated Z cannot distinguish the two worlds. However Z can distinguish
the two worlds with non-negligible probability, which means that the event F must occur with non-negligible
probability, i.e., A is a successful completeness attacker.

D.2.3 Consistency

Definition D.20 (Consistency). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is consistent if for all PPT
attackers A,

Pr[(vk,m, σ)← A(1λ);φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2] ≤ negl(λ).

The above definition can also be modeled by a consistency game, Gcons, as follows. The challenger C uses
algorithms gen(), sign(), verify() as oracles, and interacts with the consistency attacker A: C simulates A
on input 1λ to obtain 〈vk,m, σ〉 and then calls the the verify() oracle with 〈m,σ, vk〉 twice and obtains the
verification results φ1 and φ2 respectively. The judge J decides that A wins the game if the two verification
results are different, i.e., φ1 6= φ2.
Step 1. Based on the game Gcons described above, we can construct an environment ZA

cons and the cor-
responding ideal world adversary SΣ

cons as follows. The environment first picks S and two V ’s from the
namespace at random as well as a random sid . Then the environment simulates A to obtain 〈vk,m, σ〉 and
gives the symbols (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉) and (VERIFY, 〈V2, sid〉, 〈m,σ, vk〉) to obtain the symbols
(VERIFYRETURN, 〈V1, sid〉, φ1) and (VERIFYRETURN, 〈V2, sid〉, φ2). In the case that φ1 6= φ2, the environ-
ment terminates with 1 otherwise with 0. SΣ

cons is defined similarly to SΣ
uf .

Step 2. For any consistency attacker A and scheme Σ, the environment ZA
cons, the ideal adversary SΣ

cons, and
the dummy canonical signature functionality together give rise to the language L

I/O

Fdum
SIG ,ZA

cons,SΣ
cons

. We consider

the subset of strings B
I/O
SIG,cons of the union of all the I/O languages quantified over all possible consistency

attackers A and schemes Σ that contains exactly those strings for which the environment returns 1. Formally,

B
I/O
SIG,cons

def=
⋃
A,Σ

L
I/O

Fdum
SIG ,ZA

cons,SΣ
cons

We next prove the following characterization of this language as well as determine its time-complexity:

27

Lemma D.21. (1) B
I/O
SIG,cons =

w

∣∣∣∣∣∣
w = (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)

(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2)
such that φ1 6= φ2

,

and (2) B
I/O
SIG,cons is decidable in polynomial time.

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to show
B

I/O
SIG,cons ⊆ Y . Let w be any string in B

I/O
SIG,cons; then it holds that there exist A,Σ such that w equals the history

string in the ideal world execution of the environment ZA
cons with adversary SΣ

cons and the dummy functionality
Fdum
SIG . Based on the definition of the environment ZA

cons and the adversary SΣ
cons, we know that the symbols

(KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m, σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2) where φ1 6= φ2 will be recorded into history
in the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,cons ⊇ Y . Let w be any string in Y . We will construct A,Σ such that

in the ideal world execution of ZA
cons with adversary SΣ

cons and the dummy functionality Fdum
SIG it holds that

history = w. Given that w ∈ Y , there exist string w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)
(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)(VERIFY, 〈V2, sid〉, 〈m, σ, vk〉)(VERIFYRETURN,
〈V2, sid〉, φ2) with φ1 6= φ2. Define gen output 〈vk, sk〉. Define A output 〈m,σ〉; Define verify that upon
input 〈m,σ, vk〉 returns φ1 for the first time and φ2 for the second time. It follows immediately that the history
string that in the ideal world execution of ZA

cons with adversary SΣ
cons and the dummy functionality Fdum

SIG would
equal w.

(2) It is easy to show the language B
I/O
SIG,cons is decidable.

In order to obtain the bad language for the consistency property we extend B
I/O
SIG,cons as follows:

Bext
SIG,cons =

{
w ∈ L

I/O

Fdum
SIG

∣∣∣ ∃w′ ∈ B
I/O
SIG,cons s.t. w′ 4 w

}
We observe that Bext

SIG,cons is also decidable in polynomial time.
Step 3. We proceed next to define the canonical functionality that corresponds to the consistency property.

Definition D.22 (Canonical Functionality Fcons). The functionality Fcons ∈ FSIG equals F suppress,validate
SIG ,

where (1) suppress() is same as in Fdum
SIG , and (2) validate(w) = 0 if and only if w ∈ Bext

SIG,cons.

Theorem D.23. If πΣ(SIG) realizes some F & Fcons, then Σ(SIG) is consistent.

Proof. By contradiction, assume scheme Σ(SIG) is not consistent. We need to construct an environment Z to
distinguish the two worlds with non-negligible probability. Based on the successful consistency attacker A, we
use Z = ZA

cons as defined above. Notice that in the real world, A is a successful consistency attacker against
Σ(SIG), so Z outputs 1 with non-negligible probability. However in the ideal world, the case that φ1 6= φ2

would cause any canonical functionalityF & Fcons to halt, so the environmentZ can never output 1. Therefore
the constructed Z distinguishes the two worlds with non-negligible probability.

Theorem D.24. If Σ(SIG) is consistent, then πΣ(SIG) realizes Fcons.

Proof. Given that no attacker A can win the consistency game above, we need to show that there exists an ideal
world adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the generic
ideal world adversary (that performs a simulation of the real-world).

Assume πΣ(SIG) cannot realize Fcons, i.e., for all S there exists an environment Z that can distinguish the
two worlds with non-negligible probability. A operates by simulating a copy of Z in the real world; it returns
m,σ, vk based on an event F as defined below.

We let F denote the event that in a run of πΣ(SIG) withZ , the same tuple 〈vk,m, σ〉 is verified with different
results in two verifications. Observe that if event F does not occur, the simulated Z cannot distinguish the two

28

worlds. However Z can distinguish the two worlds with non-negligible probability, which means event F must
occur with non-negligible probability, i.e., A is a successful consistency attacker.

In this section we used a different game-based formulation compared to the one in [Can04]. The reason
is that the consistency formulation given there and reformulated below falls short of capturing the intended
properties for the digital signature task in the UC setting. We illustrate these issues below.

Definition D.25 (Weak Consistency). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is weakly consistent
if for all PPT attackers A,

Pr
[

(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);
φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2

]
≤ negl(λ).

Remark D.26. The weak consistency definition above is taken from [Can04]. We can construct a counterex-
ample Σ′ below which satisfies completeness, unforgeability and the weak consistency, but the corresponding
πΣ′ does not realize FSIG in [Can04] (or the FSIG that is produced from our translation methodology in this
section).

Let Σ be a scheme satisfies completeness, unforgeability and weak consistency. We modify such Σ into
Σ′: (1) prepend a bit b to the verification key; if b = 0 then the verification procedure remains the same;
if b = 1 then the verification procedure accepts its input message-signature pair with probability 1/2; (2)
the key generation algorithm returns a verification key starting with bit 0. Notice that Σ′ still satisfies the
three properties, completeness, unforgeability and weak consistency, since the honest key generation will never
return a verification key starting with bit 1. According to Theorem 2 in [Can04], the corresponding πΣ′ can
realize FSIG. However this is not true. When the signer is corrupted at the beginning, a verification key vk′

with starting bit 1 can be chosen and then two verification requests with the same input 〈m,σ, vk′〉 will return
in different verification results with non-negligible probability, i.e., 1/2 in this case.

D.2.4 The canonical ideal signature functionality

The (canonical) ideal signature functionality would equal Fuf ∧ Fcomp ∧ Fcons. In light of Proposition 2.5 we
obtain the following:

Corollary D.27. If πΣ(SIG) realizes some F & Fuf ∧Fcomp∧Fcons, then the signature scheme Σ(SIG) satisfies
unforgeability, completeness, and consistency.

Remark D.28. It is easy to verify that the canonical functionality Fuf ∧ Fcomp ∧ Fcons is UC-equivalent to
the digital signature ideal functionality of [Can04] and thus UC-realizable. Recall that a problematic variant of
FSIG appeared first in [Can01]; a main shortcoming of that first rendering of FSIG was its failure to capture the
consistency property something that was also pointed out in [BH04]; this latter work did not capture consistency
fully either as pointed out in [Can04], which performed a thorough investigation between the correspondence
of the game-based security formulation of the Goldwasser et al. [GMR88] notion for digital signatures and
the FSIG ideal functionality. In [Can04] a correspondence theorem was shown that established that any digital
signature scheme secure in the [GMR88]-sense would result in a UC-secure signature protocol.

However, as we now show with the help of our methodology this correspondence does not stand. In fact,
when one applies our translation methodology to the three game-based definitions that are put forth in [Can04]
to capture the [GMR88] notion of security, the resulting functionality is not the FSIG functionality as defined
above. This is due to the fact that the consistency game as defined in [Can04] (cf. page 12, Definition 1) assumes
an honest key generation. More specifically, if our consistency game translation is applied to the consistency
game as given in that work it results in a bad language that is of the following form (cf. the bad language of
Lemma D.21):

29

(BI/O
SIG,cons)

′ =

w

∣∣∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2)

such that φ1 6= φ2

It follows that the corresponding F ′

cons canonical functionality would have a validate predicate that checks
for verification inconsistency only in the case that a KEYGEN symbol has been recorded in the history of the
functionality. This is too restrictive as it precludes corrupted signers that may never register a KEYGEN symbol
with the functionality (and in fact this is exactly the issue pointed out in [Can04] regarding the previous work
of [BH04]). It is easy to see that the resulting (weaker) canonical functionality F ′

SIG = Fuf ∧ Fcomp ∧ F ′
cons

resides at a lower point compared to FSIG in the FSIG lattice of canonical functionalities. Furthermore, it
is possible to design a digital signature scheme Σ so that its corresponding πΣ UC-realizes F ′

SIG but fails to
realize FSIG, as shown in Remark D.26. It is easy to see that this scheme passes the game based formulation
of [Can04] and based on our methodology it will UC-realize F ′

SIG. Nevertheless, FSIG will not be realized
by this digital signature (the environment can produce two public-keys prepended with “0” and then issue two
verification requests — this is sufficient to distinguish the real from the ideal world in the FSIG setting). As a
result the correspondence between the game-based notions and the UC formulation given in [Can04] (cf. page
12, Theorem 2) is not correct. The appropriate formulation of the consistency game is the one we present in
Definition D.20 and this provides the exact game-based correspondence to the FSIG canonical functionality.

D.3 Zero-Knowledge Proofs

The concept of zero-knowledge proofs was introduced by Goldwasser, Micali and Rackoff [GMR89]. Bellare
and Goldreich [BG92] extended the soundness property to knowledge extraction. Here we focus on zero-
knowledge proofs that are public-coin protocols for the verifier, i.e., the verifier has a public random tape.

Following Figure 1, the canonical functionality for zero-knowledge, FZK, is defined for two types of roles,
the prover P and the verifier V , with a single action PROVE. We denote the zero-knowledge proof functionality
class as FZK. The WF predicate for FZK, requires that a PROVE should precede PROVERETURN. The default
output DO returns 〈x, φ〉 whenever (PROVE, 〈P, V, sid〉, 〈x,w〉) is in the history, where φ = 1 if and only if
〈x,m〉 belongs to the relation that parameterizes the zero-knowledge task, and φ = 0 otherwise. Based on the
above the dummy functionality Fdum

ZK is defined (cf. Definition 2.1).

D.3.1 Completeness

For simplicity we provide the ZK properties for a single protocol (i.e., essentially the NIZK setting); neverthe-
less the results of this section can be extended to protocols with many moves in straightforward way.

Definition D.29 (Completeness). A zero-knowledge proof scheme Σ(ZK) = 〈prove, verify〉 is complete if
for all PPT attackers A,

Pr[(x,m)← A(1λ);$ ← prove(x,m);φ← verify(x,$) : (x,m) ∈ R ∧ φ 6= 1] ≤ negl(λ).

The above property can be modeled by a consistency game, Gcomp, as follows. The challenger C uses
as oracles the algorithms prove(), verify(), and interacts with the attacker A: the attacker A outputs a pair
(x,m) ∈ R; the challenger queries the proving oracle with the pair 〈x,m〉 and obtains the response $; the
challenger then queries the verification oracle with the pair 〈x, $〉 and obtains the response φ. The judge J
decides that A wins the game if (x,m) ∈ R and φ 6= 1. Next we describe the three steps of the transformation
outlined in Section 3.1.
Step 1. We construct an environment ZA

comp and the corresponding ideal world adversary SΣ
comp based on

the game Gcomp described above. In order to simulate the game, the environment ZA
comp first picks P, V

30

from the namespace at random as well as a random sid . Then simulates A on input 1λ; once A outputs
〈x,m〉, and if (x,m) ∈ R, then the environment sends (PROVE, 〈P, V, sid〉, 〈x, m〉) to party P ; the envi-
ronment then receives $ as the proof transcripts through the adversary. Finally if ZA

comp receives a symbol
(PROVERETURN, 〈P, V, sid〉, 〈x, 0〉) from V , the environment terminates with 1; otherwise terminates with 0.

The ideal-world adversary SΣ
comp translates the communications from ZA

comp into the appropriate sym-
bols that the canonical zero-knowledge functionality understands. When SΣ

comp receives the pair 〈x,$〉, if
verify(x,$) = 1, it sends a symbol (INFLPROVE, 〈P, V, sid〉, 〈x, 1〉); else if verify(x,$) = 0, a symbol
(INFLPROVE, 〈P, V, sid〉, 〈x, 0〉) to the functionality.
Step 2. For any completeness attacker A and scheme Σ, the environment ZA

comp, the adversary SΣ
comp, and the

dummy canonical zero-knowledge functionality Fdum
ZK together give rise to the language L

I/O

Fdum
ZK ,ZA

comp,SΣ
comp

(cf.

Section 2). We consider the subset of strings B
I/O
ZK,comp of the union of all the I/O languages quantified over all

possible completeness attackers A and schemes Σ that contains exactly those strings corresponds to the case
that the environment returns 1. Formally,

B
I/O
ZK,comp

def=
⋃
A,Σ

L
I/O

Fdum
ZK ,ZA

comp,SΣ
comp

We next prove the following characterization of this language as well as determine its time-complexity:

Lemma D.30. (1) B
I/O
ZK,comp =

w

∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x, m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, 0〉)
such that (x, m) ∈ R

, and (2) B
I/O
ZK,comp is decid-

able in polynomial time.

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to
show B

I/O
ZK,comp ⊆ Y . Let w be any string in B

I/O
ZK,comp; then it holds that there exist A,Σ such that w equals

the history string in the ideal world execution of the environment ZA
comp with adversary SΣ

comp and the dummy
functionality Fdum

ZK . Based on the definition of the environment ZA
comp and the adversary SΣ

comp, we know
that the symbol (PROVE, 〈P, V, sid〉, 〈x,m〉) from the dummy party P will be recorded by the adversary into
history in the dummy functionality; and then after receiving an INFLPROVE symbol from the adversary, the
symbol (PROVERETURN, 〈P, V, sid〉, 〈x, 0〉) will be recorded in history and be sent to the dummy party V by
the functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
ZK,comp ⊇ Y . Let w be any string in Y . We will construct A,Σ such that

in the ideal world execution of ZA
comp with adversary SΣ

comp and the dummy functionality Fdum
ZK it holds that

history = w. Given that w ∈ Y it holds that there exist x,m such that w = (PROVE, 〈P, V, sid〉, 〈x,m〉)
(PROVERETURN, 〈P, V, sid〉, 〈x, 0〉) with (x,m) ∈ R. Define A output 〈x,m〉. Let $ be a random string
and define prove that on input 〈x,m〉 returns $ and the verify that on input 〈x,$〉 returns 0. It follows
immediately that the history string that in the ideal world execution of ZA

comp with adversary SΣ
comp and the

dummy functionality Fdum
ZK would equal w.

(2) It is easy to show the language B
I/O
ZK,comp is decidable.

In order to obtain the bad language for the completeness property we extend B
I/O
ZK,comp as follows:

Bext
ZK,comp =

{
w ∈ L

I/O

Fdum
ZK

∣∣∣ ∃w′ ∈ B
I/O
ZK,comp such that w′ 4 w

}
We observe that Bext

ZK,comp is also decidable in polynomial time.
Step 3. Next we define the class of ideal functionalities that corresponds to the completeness property.

Definition D.31 (Canonical Functionality Fcomp). The functionality Fcomp ∈ FZK equals F suppress,validate
ZK

where (1) suppress() is same as in Fdum
ZK , and (2) validate(w) = 0 if and only if w ∈ Bext

ZK,comp.

31

Theorem D.32. If πΣ(ZK) realizes some F & Fcomp against static adversaries, then Σ(ZK) is complete.

Proof. By contradiction, assume scheme Σ(ZK) is not complete. We need to construct an environment Z to
distinguish the two worlds with non-negligible probability. Based on the successful completeness attacker A,
we use Z = ZA

comp as defined above. Notice that in the real world, A is a successful completeness attacker
against Σ(ZK), so Z outputs 1 with non-negligible probability. However in the ideal world, the case that
(x,m) ∈ R and φ = 0 would cause any canonical functionality F & Fcomp to halt, so the environment Z can
never output 1. Therefore the constructed Z distinguishes the two worlds with non-negligible probability.

Theorem D.33. If Σ(ZK) is complete, then πΣ(ZK) realizes Fcomp.

Proof. Given that no attacker A can win the completeness game above, we need to show that there exists
an adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the generic
adversary for zero-knowledge task, which means S will simulate the real world. Each time, when S obtains
(LEAKPROVE, 〈P, V, sid〉, 〈x,m〉) from Fcomp, it simulates party P to make a proof $ based on such 〈x,m〉,
and sends 〈x, $〉 to party V ; when the simulated V receives the pair 〈x, $〉 from party P , party V produces
the verification result φ, and the ideal world adversary S sends symbol (PROVERETURN, 〈P, V, sid〉, 〈x, φ〉)
to Fcomp. Further S will corrupt any party following the instruction of Z . Whenever S receives a pair 〈x, $〉
from a corrupted prover P , S sends (PROVE, 〈P, V, sid〉, 〈x, ?〉) to Fcomp where “?” is a special symbol that is
not part of the input alphabet for the environment, and receives the corresponding LEAKPROVE symbol from
the functionality; later when S receives from the corrupted prover P the pair 〈x,$〉, S simulates party V with
such pair, and if V returns 〈x, φ〉, then S sends (PROVERETURN, 〈P, V, sid〉, 〈x, φ〉) to Fcomp.

Assume πΣ(ZK) cannot realize Fcomp, i.e., for all S there exists an environment Z that can distinguish the
two worlds with non-negligible probability. We construct A by simulating a copy of Z; A further simulates the
real world for the copy of Z .

We let F denote the event that in a run of πΣ(ZK) with Z , no party is corrupted, and the proof $ is based
on the witness m for the statement x where (x,m) ∈ R, but the verifier is not convinced, i.e., $ cannot be
verified. Observe that if event F does not occur and the functionality Fcomp does not halt, the simulated Z
cannot distinguish the two worlds; recall that Fcomp halts only when (x,m′) ∈ R and φ = 0; notice that
(x, ?) ∈ R does not hold, which means Fcomp will not halt. However Z can distinguish the two worlds
with non-negligible probability, which means event F must occur with non-negligible probability, i.e., A is a
successful completeness attacker.

D.3.2 Soundness

In this subsection, we investigate the consistency property when the prover is corrupted. We start with sound-
ness in the sense of language membership.

Definition D.34 (Soundness). A zero-knowledge proof scheme Σ(ZK) = 〈prove, verify〉 is sound if for all
PPT attackers A it holds that

Pr[(x,$)← A(1λ);φ← verify(x,$) : x 6∈ LR ∧ φ = 1] ≤ negl(λ).

However, when we apply our methodology directly on the soundness game, the obtained environment Zsound

should test an NP-predicate to determine if x ∈ LR, and the bad language

B
I/O
ZK,sound =

w

∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉)
such that x 6∈ LR

would be undecidable in polynomial time. To handle this issue, we apply our methodology to a stronger
soundness game, i.e., a knowledge-extraction game.

32

Definition D.35 (Soundness in the sense of Knowledge Extraction). A zero-knowledge proof scheme Σ(ZK) =
〈prove, verify〉 is sound in the sense of knowledge extraction for the NP relation R if there exists a PPT E
such that for all PPT attackers A it holds that

Pr[(x,$)← A(1λ);φ← verify(x,$);m← E(x,$) : (x,m) 6∈ R ∧ φ = 1] ≤ negl(λ).

The above property can be modeled by a consistency game, Gsound, as follows. The challenger C uses as
oracles the algorithms prove(), verify() and the knowledge extractor E, and interacts with the attacker A: the
attacker A outputs a pair 〈x,$〉; the challenger queries the extractor with such pair and obtains the response m;
the challenger also queries the verification oracle with the pair and obtains the response φ. The judge J decides
that A wins the game if (x,m) 6∈ R and φ = 1. Next we describe the three steps of the transformation outlined
in Section 3.1.
Step 1. We construct an environment ZA,E

sound and the corresponding ideal world adversary SΣ,E
sound based on the

game Gsound described above. In order to simulate the game, the environment first picks P, V from the names-
pace at random as well as a random sid . Then, the environment requests the corruption of party P and simulates
A on input 1λ; once A outputs 〈x,$〉, the environment gives 〈x,$〉 to SΣ,E

sound and requests from SΣ,E
sound to make

a proof $ for statement x from the party P to party V ; at the same time, the environment simulates E on input
〈x,$〉 to obtain an output m. If ZA,E

sound receives a symbol (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) from V , and
(x,m) 6∈ R, it terminates with 1; otherwise it terminates with 0.

The ideal-world adversary SΣ,E
sound communicates with the environment ZA,E

sound and converts this interaction
to the appropriate symbols the functionality understands. In particular, SΣ,E

sound will relay the corruption request
of ZA,E

sound to the functionality. When SΣ,E
sound receives the pair 〈x,$〉, it simulates E on input 〈x,$〉 to obtain an

output m; then it provides a symbol (PROVE, 〈P, V, sid〉, 〈x,m〉) to the functionality on behalf of P ; further
if verify(x,$) = 1, it also sends a symbol (INFLPROVE, 〈P, V, sid〉, 〈x, 1〉) to the functionality, else if
verify(x,$) = 0, it sends a symbol (INFLPROVE, 〈P, V, sid〉, 〈x, 0〉) to the functionality.

Step 2. For any soundness attacker A, scheme Σ and extractor E, the environmentZA,E
sound, the adversary SΣ,E

sound,
and the dummy canonical zero-knowledge functionality together give rise to the language L

I/O

Fdum
ZK ,ZA,E

sound,SΣ,E
sound

(cf. Section 2). We consider the subset of strings B
I/O
ZK,sound of the union of the I/O languages quantified over all

possible soundness attackers A, extractors E and schemes Σ that contains exactly those strings that correspond
to the case where the environment returns 1. Formally,

B
I/O
ZK,sound

def=
⋃

A,Σ,E

B
I/O

Fdum
ZK ,ZA,E

sound,SΣ,E
sound

We prove the following facts about this language:

Lemma D.36. (1) B
I/O
ZK,sound =

w

∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉)
such that (x,m) 6∈ R

, and (2) B
I/O
ZK,sound is de-

cidable in polynomial time.

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need
to show B

I/O
ZK,sound ⊆ Y . Let w be any string in B

I/O
ZK,sound; then it holds that there exist A,Σ,E such that

w equals the history string in the ideal world execution of the environment ZA,E
sound with adversary SΣ,E

sound

and the dummy functionality Fdum
ZK . Based on the definition of the environment ZA,E

sound and the adversary
SΣ,E

sound, we know that the symbol (PROVE, 〈P, V, sid〉, 〈x,m〉) will be patched by the adversary into history
in the dummy functionality; and then after receiving an INFLPROVE symbol from the adversary, the symbol
(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) will be recorded in history and be sent to the dummy party V by the
functionality. It follows that the string w belongs to the set Y .

33

Second we need to show B
I/O
ZK,sound ⊇ Y . Let w be any string in Y . We will construct A,Σ,E such that

in the ideal world execution of ZA,E
sound with adversary SΣ,E

sound and the dummy functionality Fdum
ZK it holds that

history = w. Given that w ∈ Y it holds that there exist x, m such that w = (PROVE, 〈P, V, sid〉, 〈x, m〉)
(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) with (x,m) 6∈ R. Let $ be a random string and define A output always
〈x,$〉. Next define E as follows: given 〈x,$〉 it returns m; for any other input it returns a random string.
Finally define prove that on input 〈x,m〉 returns $ and the verify that on input 〈x,$〉 returns 1. It follows
immediately that the history string that in the ideal world execution of ZA,E

sound with adversary SΣ,E
sound and the

dummy functionality Fdum
ZK would equal w.

(2) Still we need to show the language B
I/O
ZK,sound. This follows easily based on the decidability of R.

In order to obtain the bad language for the soundness property we extend B
I/O
ZK,sound as follows:

Bext
ZK,sound =

{
w ∈ L

I/O

Fdum
ZK

∣∣∣ ∃w′ ∈ B
I/O
ZK,sound such that w′ 4 w

}
Observe that Bext

ZK,sound is also polynomial-time decidable.

Step 3. We next define the class of ideal functionalities that corresponds to the knowledge-extraction property.

Definition D.37 (Canonical Functionality Fsound). The functionality Fsound ∈ FZK equals F suppress,validate
ZK

where (1) suppress() is same as in Fdum
ZK , and (2) validate(w) = 0 if and only if w ∈ Bext

ZK,sound.

Theorem D.38. If πΣ(ZK) realizes some F & Fsound against static adversaries, then Σ(ZK) is sound in the
sense of knowledge extraction.

Proof. Given that there exists an ideal world adversary S such that no Z can distinguish the two worlds, we
need to show that there exists a knowledge extractor E such that no A can convince the verifier without the
witness being recovered by E (cf., the definition for soundness in the sense of knowledge extraction above).

We construct an extractor E as follows. Given input 〈x,$〉, E simulates S. E gives S the symbol
(CORRUPT, P) as well as the instruction to deliver the pair 〈x,$〉 to the verifier V on behalf of the cor-
rupted prover P . Whenever E receives from S the symbol (PROVE, 〈P, V, sid〉, 〈x,m〉) (i.e., the symbol that
in an ideal world execution would be given by S to the functionality on behalf of the corrupted prover P), it
sends symbol (LEAKPROVE, 〈P, V, sid〉, x) to S on behalf of the ideal functionality. If E receives the symbol
(INFLPROVE, 〈P, V, sid〉, 〈x, 1〉) from S, it outputs m, otherwise ⊥. This completes the description of E.

Assume for the sake of contradiction that the scheme Σ(ZK) is not sound in the sense of knowledge ex-
traction w.r.t. the extractor E given above, which implies that there exists a successful soundness attacker A
(as in the definition of soundness in the sense of knowledge extraction) that wins the game with non-negligible
probability β. That is Pr[(x,$)← A(1λ);φ← verify(x, $);m← E(x,$) : (x, m) 6∈ R ∧ φ = 1] = β.

We now construct an environment Z that distinguishes the ideal and the real worlds with non-negligible
probability thus refuting the premise of the theorem and deriving a contradiction. The construction of Z is
similar to ZA,E

sound as defined above. The environment Z first corrupts party P ; then the environment sim-
ulates A as follows: when A outputs a pair 〈x,$〉, the environment simulates E on input 〈x,$〉 to obtain
m. Then, the environment Z gives the pair 〈x,$〉 to the adversary as the statement and the proof pro-
duced by the corrupted prover P with the instruction to deliver it to the honest verifier V . When Z receives
(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) from party V , the environment simulates party V on input 〈x,$〉 and
obtains φ (note that the environment is merely repeating the computation of V , i.e., it simply checks if 〈x, $〉
is valid taking advantage of the public-coin nature of the protocol). If (x,m) 6∈ R and φ = 1, the environment
terminates with 1; in any other case, it terminates with 0.

First we consider the case that Z interacts with the real world. Define R1 as the event that in the real
world execution, the pair produced by A is valid, and we let αr1 denote the probability the event occurs, i.e.,
αr1 = Pr[R1] = Pr[(x,$) ← A(1λ);φ ← verify(x, $);m ← E(x,$) : φ = 1]. Define R2 as the event of

34

the conditional space on R1 when the extractor E outputs m such that (x,m) 6∈ R; let αr2 denote the probability
of the event, i.e., αr2 = Pr[R2]. It follows that β = αr1αr2. Define R3 as the event in the conditional space
on R1 when the environment receives (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉); let αr3 denote the probability of
this event, i.e., αr3 = Pr[R3]. Note that when R1 occurs, since the verification is deterministic, the verifier
V given input a valid pair 〈x,$〉 always returns (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉), which means the event
R3 occurs with probability 1, i.e., we have αr3 = 1. It follows that the probability that Z outputs 1 when
it interacts with the real world is αr = Pr[R1] Pr[R3R2]. Note that given that R1 occurs, the event R3 will
occur with probability 1, and at the same time the event R2 will occur with probability αr2, and we have
Pr[R3R2] = 1 · αr2 = αr2. So, αr = Pr[R1] Pr[R3R2] = αr1αr2 = β. We have αr1 ≥ β and αr2 ≥ β; since
β is non-negligible, so are αr1, αr2. Further, we have αr = β.

Next we consider the case that Z interacts with the ideal world. We define I1 as the event that in the ideal
world execution the pair produced by A is valid and we let αi1 = Pr[I1]. We define I2 as the event of the
conditional space on I1 when the extractor E outputs m such that (x,m) 6∈ R and we let αi2 = Pr[I2]. Notice
that αi1 = αr1 and αi2 = αr2 since the events I1, I2 and R1, R2 are in correspondence. Next, define I3 as the
event in the conditional space on I1 when the environment receives (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) and
denote αi3 = Pr[I3].
Claim: The events I2 and I3 are complementary. Recall that both I2 and I3 are over the conditional space
on I1. Whenever I2 occurs we have that E given a valid pair 〈x, $〉 outputs m s.t. (x,m) 6∈ R. Given
that E bases its output on the simulation of S this implies that S does not influence the functionality with a
(INFLPROVE, 〈P, V, sid〉, 〈x, 1〉) symbol, or in case it does the witness provided by S in the (PROVE, 〈P, V 〉,
〈x,m〉) symbol is not valid witness. On the other hand, whenever the event I3 occurs we have that the envi-
ronment receives (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉). This means that the ideal world adversary S given the
valid pair 〈x,$〉 makes the ideal functionality to output (PROVERETURN, 〈P, V, sid〉, 〈x, 1〉) to the environ-
ment. This can only happen when S produces the (INFLPROVE, 〈P, V, sid〉, 〈x, 1〉) symbol and at the same
time it provided a valid witness to the functionality in the symbol (PROVE, 〈P, V 〉, 〈x,m〉). It is easy to see
that I2, I3 are complementary.

Next we compute the probability that Z outputs 1 when it interacts with the ideal world as follows αi =
Pr[I1] Pr[I3I2]. When I1 occurs, I2 occurs with probability αi2, and at the same time, I3 occurs with probability
αi3; so Pr[I2I3] = αi2αi3 given that the two events are independent. Based on the claim above αi2 + αi3 = 1.
Thus we have αi = Pr[I1] Pr[I2I3] = αi1αi2αi3 = αi1αi2(1− αi2) = αr1αr2(1− αr2) = (1− αr2)β.

The difference in the probability that the environment returns 1 between the two worlds is αr − αi =
(1 − (1 − αr2))β = αr2β ≥ β2. Since β is non-negligible, so is the difference. Therefore Z can distinguish
the ideal and the real worlds with non-negligible probability.

Theorem D.39. If Σ(ZK) is sound in the sense of knowledge-extraction, then πΣ(ZK) realizes Fsound.

Proof. By assumption there exists a knowledge extractor E such that no A can win the game given in the
knowledge-extraction definition above. We need to show that there exists an ideal world adversary S such that
no Z can distinguish the two worlds. Given such E we construct an S that simulates E; we let S = SΣ,E

sound

as above. Each time, when S obtains (LEAKPROVE, 〈P, V, sid〉, 〈x,m〉) from Fsound, it simulates party P
to make a proof $ based on such 〈x,m〉, and sends 〈x,$〉 to party V ; when the simulated V receives the
pair 〈x, $〉 from party P , party V produces the verification result φ, and the ideal world adversary S sends
symbol (INFLPROVE, 〈P, V, sid〉, 〈x, φ〉) to Fsound. Further S corrupts parties following the instructions of
Z . Whenever S receives a pair 〈x,$〉 from a corrupted prover P , S runs the extractor E to obtain m′ and
play the role of the prover P to send (PROVE, 〈P, V, sid〉, 〈x,m′〉) to Fsound, and receives the corresponding
LEAKPROVE symbol from the functionality; later when S receives from the corrupted prover P the pair 〈x,$〉,
S simulates party V with such pair, and if V returns 〈x, φ〉, then S sends (INFLPROVE, 〈P, V, sid〉, 〈x, φ〉) to
Fsound.

Next we justify the validity of S based on the validity of E. Assume πΣ(ZK) cannot realize Fsound, i.e.,
for all S there exists an environment Z that can distinguish the two worlds with non-negligible probability.

35

We construct A by simulating a copy of Z . When Z sends out (PROVE, 〈P, V, sid〉, 〈x,m〉) to party P , A
computes $ ← prove(x,m) and sends 〈x, $〉 through the real world dummy adversary to the environment.
Later ifZ corrupts the party P , then A sends m and the random coins used for computing $ through the dummy
adversary to the environment. When Z sends 〈x,$〉 through the dummy adversary to party V , A computes
φ ← verify(x,$), and returns the environment the symbol (PROVERETURN, 〈P, V, sid〉, 〈x, φ〉). Note that
A sets 〈x,$〉 as its output.

We let F denote the event that Z outputs 〈x,$〉, where $ is a proof which can be verified for statement x,
and m can be extracted such that (x,m) 6∈ R. Observe that if event F does not occur and Fsound does not halt,
the simulated Z cannot distinguish the two worlds; recall that Fsound halts only when (x,m) 6∈ R and φ = 1;
notice that given the extractor E, (x,m) 6∈ R holds with only negligible probability, which means Fsound halts
with negligible probability. However Z can distinguish the two worlds with non-negligible probability, which
means event F must occur with non-negligible probability, i.e., A is a successful knowledge-extractability
attacker.

D.3.3 Zero-knowledge

In this section we demonstrate the translation of the simulation-based hiding game for the zero-knowledge
property to its corresponding canonical functionality.

Definition D.40 (Zero-knowledge). A scheme Σ(ZK) = 〈prove, verify〉 is zero-knowledge if there exists a
PPT S, such that for all PPT attackers A = (A1,A2) it holds that

Pr

 (x,m, st)← A1(1λ); b r← {0, 1};
if b = 0 then $ ← prove(x,m) else $ ← S(x);
b∗ ← A2(st , $) : b = b∗

 ≤ 1
2

+ negl(λ)

The above definition can be modeled as a hiding game Gzk for the task ZK as follows. The challenger C uses
the algorithms prove(), verify() and the simulator S as oracles, and interacts with the attacker A = (A1,A2).
First A1 produces a pair 〈x, m〉 for the challenger C. Then C flips a coin b and if b = 0 then C queries the
prove() oracle with 〈x,m〉 to obtain $. If b = 1, C provides to S the value x and obtains $. In either case, C
sends $ to A2 to obtain a bit b∗ which is the attacker’s guess of b. The judge J decides that A wins the game if
b∗ = b. We next proceed to apply the methodology of Section C.
Step 1. We construct an environment ZA,S

zk and the corresponding ideal world adversary SΣ,S
zk based on the

game Gzk described above and a scheme Σ and a simulator S. The environment ZA,S
zk first picks P, V from

the namespace at random as well as a random sid . Then it requests the corruption of party V and simulates
A1 on input 1λ. Once A1 produces 〈x,m, st〉, ZA,S

zk flips a coin b, and if b = 0 it sends to party P the symbol
(PROVE, 〈P, V, sid〉, 〈x,m〉). On the other hand, if b = 1, it runs internally the simulator S on input x. In
either case the environment will obtain a value $ (if b = 0 the value $ will be obtained from the adversary
whereas if b = 1 the value $ will be computed internally by S). Then, ZA,S

zk will run A2 on input 〈st,$〉 to
obtain b∗ and will return 1 if and only if b = b∗. The ideal world adversary SΣ,S

zk , whenever it receives a symbol
(LEAKPROVE, 〈P, V, sid〉, x), it will simulate S and send $ to the environment.

Step 2. Based on the environment ZA,S
zk we define the functionality class that corresponds to the hiding game:

Definition D.41 (Canonical Functionality Fzk). The functionality Fzk ∈ FZK equals F suppress,validate, where
(1) validate() = 1 always, and (2) suppress(a) = (−)|x|+|m| for a = (PROVE, 〈P, V, sid〉, 〈x,m〉).

Theorem D.42. If πΣ(ZK) realizes some F & Fzk against static adversaries, then Σ(ZK) is zero-knowledge.

Proof. Given that there exists an ideal world adversary S such that no Z can distinguish the two worlds. We
need to show that there exists a simulation machine S such that no A can win the hiding game. We can construct
S by simulating the adversary S inside; notice that for any F & Fzk, the adversary S obtains such x from the

36

default output of the canonical functionality; therefore S needs to obtain from C the statement x. Next we
justify the validity of the simulation machine S based on the validity of the adversary S.

By contradiction, assume scheme Σ(ZK) is not zero-knowledge, i.e., for all S, there exists a successful
zero-knowledge attacker A to output b∗ = b with non-negligible probability above 1/2, say β + 1/2. We need
to construct an environment Z based on A to distinguish the two worlds with non-negligible probability; we
use Z = ZA,S

zk as defined above.
If b = 0 and Z interacts with the real world, the $ will be produced by party P using prove() algorithm;

now the A is a successful attacker and produces b∗ = b with non-negligible probability above one half. However
if b = 0 and Z interacts with the ideal world, the $ will be produced by S; now even an unbounded A can only
produces b∗ = b with negligible probability above one half. Therefore, Z can distinguish the two worlds with
non-negligible probability.

Theorem D.43. If Σ(ZK) is zero-knowledge, then πΣ(ZK) realizes Fzk against static adversaries.

Proof. Given that there exists a simulation machine S such that no A can win the game given in the zero-
knowledge property definition above. We need to show that there exists an ideal world adversary S such that
no Z can distinguish the two worlds. We construct S by simulating S inside; we let S = SΣ,S

zk as above. Next
we justify the validity of S based on the validity of S.

Assume πΣ(ZK) cannot realize Fzk, i.e., for all S there exists an environment Z can distinguish the two
worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further simu-
lates the real world for the copy of Z . When Z sends out (PROVE, 〈P, V, sid〉, 〈x,m〉) to party P , the attacker
A outputs 〈x,m〉; when A receives $, the pair 〈x,$〉 will be sent to Z; when Z outputs a bit φ, the attacker A
sets b∗ = φ as its output.

Notice that if $ is produced by $ ← prove(x, m), then the internally simulated Z is interacting with the
real world, and if $ is produced by S, based on the construction of S, the Z is interacting with the ideal world.
Based on the assumption, Z can distinguish the two worlds with non-negligible probability, so A can win the
game with non-negligible probability.

D.3.4 The canonical ideal ZK functionality

The (canonical) ideal ZK functionality would equal Fcomp∧Fsound∧Fzk. In light of Proposition 2.5 we obtain
the following:

Corollary D.44. If πΣ(ZK) realizes some F & Fcomp ∧ Fsound ∧ Fzk, then the zero-knowledge scheme Σ(ZK)
satisfies completeness, knowledge-extraction and zero-knowledge property.

Functionality Fcomp ∧ Fsound ∧ Fzk turns out to be equivalent (in the sense of UC-emulation) to the zero-
knowledge functionality as it appears in [Can05]. Similarly to the case of the commitment task, our canonical
ZK functionality can easily be generalized to the multi-session setting.

D.4 Oblivious Transfer

Oblivious transfer was introduced by [Rab81]. Even, Goldreich and Lempel [EGL85] defined the “1-out-of-
2” oblivious transfer (which we consider in this section); Crepeau [Cré87] showed that the two variants are
equivalent.

Following Figure 1, any canonical functionality for oblivious transfer in single session, FOT, is defined
for two types of roles, the sender S and the receiver R, with a single action TRANSFER. The WF predi-
cate for FOT, requires that a TRANSFER should precede TRANSFERRETURN. The default output DO for FOT
is defined as follows: whenever, history contains the symbols (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉) and
(TRANSFER, 〈〈S, R, sid〉, R〉, i), the default output is &(mi) which is the pointer to mi; otherwise it is empty.
Based on the above the dummy functionality Fdum

OT is defined (cf. Definition 2.1).

37

D.4.1 Correctness

For simplicity here we consider two-move OT-protocols; nevertheless, the results of this section can be extended
to protocols with many moves in a straightforward way.

Definition D.45 (Correctness). An oblivious transfer scheme Σ(OT) = 〈select, transfer, return〉 is correct
if for all PPT attackers A, one of the following holds

Pr

 (m0,m1, i)← A(1λ);$R ← select(i);
$S ← transfer(m0,m1, $R);
m′ ← return($S) : m′ 6= mi

 ≤ negl(λ).

The above property can be modeled by a consistency game, Gcorr, as follows. The challenger C uses
as oracles the algorithms select(), transfer(), return(), and interacts with the attacker A: the attacker
A outputs 〈m0,m1, i〉; the challenger queries the select() oracle with i and obtains the response $R;the
challenger queries the transfer() oracle with the pair 〈m0,m1〉 with $R and obtains the response $S ; the
challenger then queries the return() oracle again with $S and obtains the response m′. The judge J decides
that A wins the game if m′ 6= mi. Next we describe the three steps of the transformation outlined in Section 3.1.
Step 1. We construct an environment ZA

corr and the corresponding ideal world adversary SΣ
corr based on the

game Gcorr described above. In order to simulate the game, the environment ZA
corr first picks S, R from the

namespace at random as well as a random sid . Then the environment simulates A on input 1λ; once A out-
puts 〈m0,m1, i〉, the environment sends (TRANSFER, 〈〈S, R, sid〉, R〉, i) to party R; the environment sends
(TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉) to party S; the environment then receives $S as the proof transcripts
through the adversary. Finally ZA

corr receives a symbol (TRANSFERRETURN, 〈〈S, R, sid〉, R〉,m′) from R,
where m′ 6= mi, the environment terminates with 1; otherwise terminates with 0.

The ideal-world adversary SΣ
corr translates the communications fromZA

corr into the appropriate symbols that
the canonical oblivious transfer functionality understands.
Step 2. For any correctness attacker A and scheme Σ, the environment ZA

corr, the adversary SΣ
corr, and the

dummy canonical oblivious transfer functionality Fdum
OT together give rise to the language L

I/O

Fdum
OT ,ZA

corr,SΣ
corr

(cf. Section 2). We consider the subset of strings B
I/O
OT,corr of the union of all the I/O languages quantified over

all possible correctness attackers A and schemes Σ that contains exactly those strings corresponds to the case
that the environment returns 1. Formally,

B
I/O
OT,corr

def=
⋃
A,Σ

L
I/O

Fdum
OT ,ZA

corr,SΣ
corr

We next prove the following characterization of this language as well as determine its time-complexity:

Lemma D.46. (1) B
I/O
OT,corr =

w

∣∣∣∣∣∣∣∣∣∣
w = abc or bac
where a = (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉),

b = (TRANSFER, 〈〈S, R, sid〉, R〉, i),
c = (TRANSFERRETURN, 〈〈S, R, sid〉, R〉,m′),

such that m′ 6= mi

, and (2) B
I/O
OT,corr

is decidable in polynomial time.

In order to obtain the bad language for the correctness property we extend B
I/O
OT,corr as follows:

Bext
OT,corr =

{
w ∈ L

I/O

Fdum
OT

∣∣∣ ∃w′ ∈ B
I/O
OT,corr such that w′ 4 w

}
We observe that Bext

OT,corr is also decidable in polynomial time.
Step 3. Next we define the class of ideal functionalities that corresponds to the correctness property.

38

Definition D.47 (Canonical Functionality Fcorr). The functionality Fcorr ∈ FOT equals F suppress,validate
OT , where

(1) suppress() is the same as in Fdum
OT , and (2) validate(w) = 0 if and only if w ∈ Bext

OT,corr.

Theorem D.48. If πΣ(OT) realizes some F & Fcorr, then Σ(OT) is correct.

Proof. By contradiction, assume scheme Σ(OT) is not correct. We need to construct an environment Z to
distinguish the two worlds with non-negligible probability. Based on the successful correctness attacker A, we
use Z = ZA

corr as defined above. Notice that in the real world, A is a successful correctness attacker against
Σ(OT), so Z outputs 1 with non-negligible probability. However in the ideal world, m′ 6= mi would cause any
canonical functionality F & Fcorr to halt, so the environment Z can never output 1. Therefore the constructed
Z distinguishes the two worlds with non-negligible probability.

Theorem D.49. If Σ(OT) is correct, then πΣ(OT) realizes Fcorr.

Proof. Given that no attacker A can win the correctness game above, we need to show that there exists
an ideal adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the
generic adversary for OT task, which means S will simulate the real world. Each time, when S obtains
(LEAKTRANSFER, 〈〈S, R, sid〉, R〉, i) from Fcorr, it simulates party R internally to send out its choice i by
using message $R, and sends $R to party S; when S obtains (LEAKTRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉)
from Fcorr, it simulates party S internally to transfer m0,m1 by using message $S , and sends $S to party R;
when the simulated party R produces its output m′, S sends the symbol (INFLTRANSFER, 〈〈S, R, sid〉, R〉,m′)
to Fcorr. Furthermore S corrupts the parties following Z’s instruction. Whenever S receives $S from
a corrupted sender S, S runs the simulated party R to compute the output m′, and then randomly select
m̂. Based on R’s choice i ∈ {0, 1}, S sets mi = m′ and m1−i = m̂, and then plays the role of the
corrupted sender S to send symbol (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉) to Fcorr; S later sends symbol
(INFLTRANSFER, 〈〈S, R, sid〉, R〉,m′) to Fcorr.

Assume πΣ(OT) cannot realize Fcorr, i.e., for all S there exists an environment Z can distinguish the two
worlds with non-negligible probability. We construct A by simulating a copy of Z internally; and A further
simulates the real world for the copy of Z .

We let F denote the event that in a run of πΣ(OT) with Z , no party is corrupted, and the value m′ receiver
obtained is not the one the receiver selected from the sender’s contribution. Observe that if event F does
not occur and Fcorr does not halt, the simulated Z cannot distinguish the two worlds; recall that Fcorr halts
only when m′ = mi; based on our simulator S this is always guaranteed except negligible probability, which
means Fcorr halts with negligible probability. However Z can distinguish the two worlds with non-negligible
probability, which means event F must occur with non-negligible probability, i.e., A is a successful correctness
attacker.

D.4.2 Sender’s security

In this section we demonstrate the translation of the simulation-based hiding game for the security of the sender
to its corresponding canonical functionality.

Definition D.50 (Sender’s Security). A scheme Σ(OT) = 〈select, transfer, return〉 satisfies sender secu-
rity if there exist PPT machines S and E, such that for all PPT attackers A = (A1,A2) it holds that

Pr

(m0,m1, $R, st)← A1(1λ); b r← {0, 1}; i← E($R);
if b = 0 then $S ← transfer(m0,m1, $R)

else if b = 1 then $S ← S(i, mi, $R);
b∗ ← A2(st , $S) : b = b∗

 ≤ 1
2

+ negl(λ)

39

The above definition can be modeled as a hiding game Gssec for the task OT as follows. The challenger
C uses the algorithms select(), transfer(), return(), the simulator S, and the extractor E as oracles, and
interacts with the attacker A = (A1,A2). First A1 produces a tuple 〈m0,m1, $R〉 for the challenger C. Then
C flips a coin b, and if b = 0 then C queries the transfer() oracle with 〈m0,m1, $R〉 to obtain $S . Else if
b = 1, C queries extractor E with $R and obtains i; and if i = 0, then C provides to S the value 〈m0, $R〉 and
obtains $S ; else if i = 1, then C provides to S the value 〈m1, $R〉 and obtains $S . In all cases, C sends $S to
A2 to obtain a bit b∗ which is the attacker’s guess of b. The judge J decides that A wins the game if b∗ = b. We
next proceed to apply the methodology of Section C.
Step 1. We construct an environment ZA,S,E

ssec and the corresponding ideal world adversary SΣ,S,E
ssec based on the

game Gssec described above and a scheme Σ, a simulation machine S, and an extractor E. The environment
first picks S, R from the namespace at random as well as a random sid . Then it requests the corruption of party
R and simulates A1 on input 1λ. Once A1 produces 〈m0,m1, $R, st〉, the environment ZA,S,E

ssec flips a coin b,
and if b = 0 it sends to party S the symbol (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉). On the other hand, if
b = 1, it runs internally the extractor E on $R and obtains i; then the environment runs internally the simulator
S on input 〈mi, $R〉. In either case the environment will obtain a value $S (if b = 0 the value $S will be
obtained from the adversary whereas if b = 1 the value $S will be computed internally by S). Then, ZA,S,E

ssec

will run A2 on input 〈st,$S〉 to obtain b∗ and will return 1 if and only if b = b∗. The ideal world adversary
SΣ,S,E

ssec , whenever it receives a symbol (LEAKTRANSFER, 〈〈S, R, sid〉, S〉), it will simulate S and send $S to
the environment.
Step 2. Based on the environment ZA,S,E

ssec we define the functionality class that corresponds to the mixed game:

Definition D.51 (Canonical Functionality Fssec). The functionality Fssec ∈ FOT equals F suppress,validate, where
(1) validate() = 1 always, and (2) suppress(a) = (−)|m0|+|m1|, for a = (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉).

Theorem D.52. If πΣ(OT) realizes some F & Fssec against static adversaries, then Σ(OT) satisfies sender’s
security.

Proof. Given that there exists an ideal world adversary S such that no Z can distinguish the two worlds. We
need to show that there exists a simulation machine S such that no A can win the hiding game. We can construct
S by simulating the adversary S; we justify the validity of the simulation machine S based on the validity of
the adversary S.

By contradiction, assume scheme Σ(OT) does not satisfy sender security, i.e., for all S, there exists a suc-
cessful attacker A to output b∗ = b with non-negligible probability above 1/2, say β + 1/2. We need to
construct an environment Z based on A to distinguish the two worlds with non-negligible probability; we use
Z = ZA,S,E

ssec as defined above.
If b = 0 and Z interacts with the real world, after receiving $R, the $S will be produced by party S

using transfer() algorithm over m0,m1, $R; now the A is a successful attacker and produces b∗ = b with
non-negligible probability above one half. However if b = 1 and Z interacts with the ideal world, obtain i
by running E over $R, then the $S will be produced by S over mi, $R; now even an unbounded A can only
produces b∗ = b with negligible probability above one half. Therefore, Z can distinguish the two worlds with
non-negligible probability.

D.4.3 Receiver’s security

Definition D.53 (Receiver’s Security). A scheme Σ(OT) = 〈select, transfer, return〉 satisfies receiver
security if there exist a PPT machine S, such that for all PPT attackers A = (A1,A2) it holds that

Pr

(i, st)← A1(1λ); b r← {0, 1};
if b = 0 then $R ← select(i)

else if b = 1 then $R ← S(1λ);
b∗ ← A2(st,$R) : b = b∗

 ≤ 1
2

+ negl(λ)

40

The above definition can be modeled as a hiding game Grsec for the task OT as follows. The challenger
C uses the algorithms select(), transfer(), return(), the simulator S as oracles, and interacts with the
attacker A = (A1,A2). First A1 produces 〈i, st〉 for the challenger C. Then C flips a coin b and if b = 0 then C
queries the select() oracle with i to obtain $R. If b = 1, C queries S without such i and obtains $R. In both
cases, C sends $R to A2 to obtain a bit b∗ which is the attacker’s guess of b. The judge J decides that A wins
the game if b∗ = b. We next proceed to apply the methodology of Section C.

Step 1. We construct an environment ZA,S
rsec and the corresponding ideal world adversary SΣ,S

rsec based on the
game Grsec described above and a scheme Σ, a simulation machine S. The environment first picks S, R from
the namespace at random as well as a random sid . Then it requests the corruption of party R and simulates A1

on input 1λ. Once A1 produces 〈i, st〉, the environment ZA,S
rsec flips a coin b, and if b = 0 it sends to party R

the symbol (TRANSFER, 〈〈S, R, sid〉, R〉, i). On the other hand, if b = 1, the environment runs internally the
simulator S. In either case the environment will obtain a value $R (if b = 0 the value $R will be obtained from
the adversary whereas if b = 1 the value $R will be computed internally by S). Then, ZA,S

rsec will run A2 on
input 〈st,$R〉 to obtain b∗ and will return 1 if and only if b = b∗. The ideal world adversary SΣ,S

rsec, whenever it
receives a symbol (LEAKTRANSFER, 〈〈S, R, sid〉, R〉), it will simulate S and send $R to the environment.

Step 2. Based on the environment ZA,S
rsec we define the functionality class that corresponds to the hiding game:

Definition D.54 (Canonical Functionality Frsec). The functionality Frsec ∈ FOT equals F suppress,validate, where
(1) validate() = 1 always, and (2) suppress(a) = −, for a = (TRANSFER, 〈〈S, R, sid〉, R〉, i).

Theorem D.55. If πΣ(OT) realizes some F & Frsec against static adversaries, then Σ(OT) satisfies receiver’s
security.

Proof. Given that there exists an ideal world adversary S such that no Z can distinguish the two worlds. We
need to show that there exists a simulation machine S such that no A can win the hiding game. We can construct
S by simulating the adversary S; we justify the validity of the simulation machine S based on the validity of
the adversary S.

By contradiction, assume scheme Σ(OT) does not satisfy receiver’s security, i.e., for all S, there exists a
successful attacker A to output b∗ = b with non-negligible probability above 1/2. We need to construct an
environment Z based on A to distinguish the two worlds with non-negligible probability; we use Z = ZA,S

rsec as
defined above.

If b = 0 andZ interacts with the real world, the $R will be produced by party R using select() algorithm;
now the A is a successful attacker and produces b∗ = b with non-negligible probability above one half. However
if b = 0 and Z interacts with the ideal world, the $R will be produced by S; now even an unbounded A can
only produces b∗ = b with negligible probability above one half. Therefore, Z can distinguish the two worlds
with non-negligible probability.

Remark D.56. Note that the resulting canonical ideal functionality for oblivious transfer FOT = Fssec∧Frsec∧
Fcorr is different from the corresponding functionalities given in [CLOS02, Can05] (that themselves have im-
portant differences). In particular, [Can05] introduced the notion of “delayed output” to the adversary as a
mechanism to enable the ideal world adversary to delay the output of a certain action any amount time neces-
sary to make the view of the environment indistinguishable to the real world’s. This is important as failing to
provide such capability to the adversary may enable an impossibility result due to the existence of environments
that can tell the real world from the ideal by simply observing the failure of the simulator to “synchronize” with
the protocol flow in the real world. While the introduction of delayed output in [Can05] successfully serves
functionalities such as zero-knowledge and commitments (that turn out to be identical to our corresponding
canonical versions) that is not the case for oblivious transfer. This is due to the fact that the basic action
in oblivious transfer requires the input contribution from both the sender and the receiver prior to producing
output. This asks for a more finely grained interaction between the ideal functionality and the ideal world ad-
versary. In our setting this is captured by the LEAKTRANSFER symbols that are sent to the adversary whenever

41

a TRANSFER symbol is submitted by either the sender or the receiver (and note that none of these symbols
produce output to the receiver). In contrast, in the oblivious transfer functionality of [Can05] such notifications
are handled with two delayed outputs something that forces the ideal functionality to wait when the receiver’s
input is submitted in case the sender has not submitted his input yet (cf. [Can05], Figure 25, page 108). This
may induce an impossibility result for protocols where the receiver is supposed to send the first message in
the oblivious transfer protocol: in such case the environment can distinguish the real from the ideal world by
activating the receiver without activating the sender and observing the network communication. This would not
affect our canonical formulation of the oblivious transfer functionality that notifies using the LEAKTRANSFER

symbols the ideal world adversary whenever either party provides input.

42

	Introduction
	Canonical Functionalities
	From Classical Security Definitions to Ideal Functionalities
	Ideal functionalities from consistency games
	Ideal functionalities from hiding games

	Applying the Methodology: Commitments
	Appendices
	The Universal Composability Framework
	Proofs
	Simulation-Based Games
	Applying the Methodology: Other Tasks
	Commitments (cont'd)
	Binding
	Hiding and equivocality
	Multi-session commitments

	Digital Signatures
	Unforgeability
	Completeness
	Consistency
	The canonical ideal signature functionality

	Zero-Knowledge Proofs
	Completeness
	Soundness
	Zero-knowledge
	The canonical ideal ZK functionality

	Oblivious Transfer
	Correctness
	Sender's security
	Receiver's security

