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Abstract

Nowadays it is widely accepted to formulate the security of a protocol carrying out a given task via the
“trusted-party paradigm,” where the protocol execution is compared with an ideal process where the outputs
are computed by a trusted party that sees all the inputs. A protocol is said to securely carry out a given task if
running the protocol with a realistic adversary amounts to “emulating” the ideal process with the appropriate
trusted party. In the Universal Composability (UC) framework the program run by the trusted party is called
an ideal functionality. While this simulation-based security formulation provides strong security guarantees,
its usefulness is contingent on the properties and correct specification of the ideal functionality, which, as
demonstrated in recent years by the coexistence of complex, multiple functionalities for the same task as
well as by their “unstable” nature, does not seem to be an easy task.

In this paper we address this issue, by introducing a general methodology for the sound specification
of ideal functionalities. First, we introduce the class of canonical ideal functionalities for a cryptographic
task, which unifies the syntactic specification of a large class of cryptographic tasks under the same basic
template functionality. Furthermore, this representation enables the isolation of the individual properties
of a cryptographic task as separate members of the corresponding class. By endowing the class of canoni-
cal functionalities with an algebraic structure we are able to combine basic functionalities to a single final
canonical functionality for a given task. Effectively, this puts forth a bottom-up approach for the specifica-
tion of ideal functionalities: first one defines a set of basic constituent functionalities for the task at hand,
and then combines them into a single ideal functionality taking advantage of the algebraic structure.

In our framework, the constituent functionalities of a task can be derived either directly or, following
a translation strategy we introduce, from existing game-based definitions; such definitions have in many
cases captured desired individual properties of cryptographic tasks, albeit in less adversarial settings than
universal composition. Our translation methodology entails a sequence of steps that systematically derive
a corresponding canonical functionality given a game-based definition, effectively “lifting” the game-based
definition to its composition-safe version.

We demonstrate the power of our approach by applying our methodology to a variety of basic cryp-
tographic tasks, including commitments, digital signatures, zero-knowledge proofs, and oblivious transfer.
While in some cases our derived canonical functionalities are equivalent to existing formulations, thus at-
testing to the validity of our approach, in others they differ, enabling us to “debug” previous definitions and
pinpoint their shortcomings.

1 Introduction

The Universal Composability (UC) framework proposed by Canetti [Can05], culminating a long sequence of
simulation-based security definitions (cf. [GMW87, GL90, MR91, Bea91, Can00]; see also [PW01, Küs06] for
alternative frameworks), allows for arguing the security of cryptographic protocols in arbitrary settings where
executions can be concurrent and adversarially interleaved. The framework is particularly attractive for the
design of secure systems as it supports modularity, provides non-malleability across sessions [DDN00], and
preserves security under composition.
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In the UC framework, security is argued by providing a proof that a protocol realizes an ideal functionality
F for the cryptographic task. While this simulation-based formulation provides compelling security guaran-
tees, its usefulness is contingent on the properties of the realized ideal functionality. In particular, any ideal
functionality is required to interact with an ideal-world adversary to whom it reveals aspects of its internal
state. Thus, such a program can be quite far from an idealization of a given cryptographic task. To make
things worse, the application of the framework to the analysis of many cryptographic schemes has shown
that relatively complex ideal functionalities are the norm. This has frequently led to successive revisions of
ideal functionality programs, the simultaneous coexistence of multiple different ideal functionalities for the
same task, and the discovery of errors in their specification, which in turn would lead to flawed security guar-
antees for the protocols realizing them. A quick inspection of recent papers providing UC formulations of
cryptographic tasks should suffice to support the claim about their complexity; see the treatment of digital
signatures [Can01, BH04, Can04] for an example of need-to-revise and error-prone formulations of ideal func-
tionalities.

In this paper we address this problem by introducing a general methodology for the sound specification of
ideal functionalities. Following our methodology each task gives rise to a class of ideal functionalities that are
consistent with the cryptographic task in terms of its actions. This representation unifies the syntactic specifi-
cation of a large class of cryptographic tasks under the same basic template functionality, and, furthermore, it
enables the isolation of the individual properties of a cryptographic task as separate members of the correspond-
ing functionality class. This facilitates a fine-grain specification of the basic constituent properties of the ideal
version of a task. At the same time, our methodology provides a way to combine constituent functionalities of
a task to a single “supremum” ideal functionality that encompasses all constituent properties. This amounts to
a bottom-up approach for achieving the original goal of expressing all required properties of a cryptographic
task with a single functionality. This approach can be contrasted with the common “top-down” approach that
specifies an ideal functionality capturing all essential properties at once, and then possibly relaxing it to bring
it closer to realizability.

In addition, our methodology makes it easy to lift existing formulations of cryptographic properties for a
task in case those have already been investigated in the form of game-based definitions to their corresponding
UC counterparts. While such definitions are frequently easier to specify and understand as the appropriate
formulations of the natural properties of the underlying cryptographic task, they typically provide a less sat-
isfying level of security guarantees (as they may exclude composition, adaptive corruptions, non-malleability
and other properties offered by the UC framework). Examples include the existential unforgeability notion for
digital signatures [GMR88], IND-CPA security for public-key encryption, the hiding property of commitment
schemes, and others.

1.1 Our results

We now summarize our results in more detail:
1. We introduce the notion of the class of canonical functionalities for a cryptographic task T . Each member of
this class has a simple, concise syntax built around two pass-through communication flows: one from the en-
vironment to the ideal-world adversary and another in the opposite direction. Every cryptographic task is
associated to its corresponding canonical functionality class. Next, we define an operation over this class and
show that the class has the algebraic structure of a semilattice which enables the joining of canonical function-
alities. This algebraic structure is a unique feature that characterizes our bottom-up functionality specification
approach. It imposes a natural ordering which enables the grading of canonical functionalities according to the
level of security they offer, as well as the combination of more basic functionalities into a single final functional-
ity for a task. Furthermore, the syntactic conciseness of our canonical functionalities gives rise to a well-defined
communication (formal) language between the functionality and the other entities in an ideal-world simulation
which is instrumental in our methodology. These results are presented in Section 3.

We remark that the canonical functionality template abstracts all the common elements that are shared
among ideal functionalities for many cryptographic tasks in the UC framework1. Once we have this formalism

1In this version we concentrate on deterministic ideal functionalities, which can formalize many cryptographic tasks such as digital
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in place, this enables us to give very simple and concise formal definitions of the ideal functionalities for various
different cryptographic tasks. When compared to the approach of defining functionalities of cryptographic tasks
individually, our approach “contains” the complexity of such definitions in the template canonical functionality
specification. This minimizes the effort of defining tasks in the UC framework without sacrificing rigor.

We further remark that while our canonical template and the algebraic structure helps understand the re-
quirements for realizing a given functionality, it is not intended to be a tool for deciding the realizability of
cryptographic tasks. Specifically, we prove that it is possible to draw a realizability horizon at some level of the
semilattice of canonical functionalities that separates realizable functionalities from those that are impossible
to realize (in the plain model). We note that setup assumptions (such as the existence of a CRS) can be viewed
as modifiers to the level of the realizability horizon; specifically, as ways to increase the number of properties
that can be achieved by a certain cryptographic task.
2. We propose a new methodology for the sound writing of functionality programs. We follow a bottom-up ap-
proach: we first define basic constituent functionalities for a cryptographic task and then we combine them
taking advantage of the algebraic structure of the canonical functionality class. Next, we turn to the derivation
of such constituent functionalities. These basic functionalities can be derived either directly or, following a
translation strategy we introduce, from existing game-based definitions. Our game-to-functionality translation
operates as follows. We divide games into two general types: consistency games and hiding games. The former
capture properties such as correctness, unforgeability and binding, while the latter capture properties such as
IND-CPA security and commitment hiding. Depending on the type of game, we present a sequence of steps that
transform a game-based definition (whenever it exists or it is easily defined) into its corresponding canonical
functionality. We demonstrate the soundness of this translation by showing that any scheme that realizes the
resulting ideal functionality also possesses the properties offered by the game-based definition (Section 4).
3. We showcase our methodology by applying it to a variety of basic cryptographic tasks. We obtain ideal func-
tionalities for digital signatures, oblivious transfer, commitments and zero-knowledge proofs of knowledge. In
some cases (commitment, zero-knowledge) our derived canonical functionalities are equivalent to previously
proposed functionalities in the literature, something that attests to the soundness of the bottom up approach;
in others (signature and oblivious transfer), our derived canonical functionalities differ from some previous
definitions, allowing us to pinpoint their shortcomings. In fact, this “debugging” goes beyond the specification
of particular tasks, as in the case of oblivious transfer we are able to point to a (fixable) structural inadequacy
in the UC notion of “delayed output” in the ideal process. These results are presented in Section 5. Some
background on the UC framework and proofs of our claims are given in the appendix.

1.2 Related work

To our knowledge the only work that relates individual properties of cryptographic tasks to sets of ideal func-
tionalities is by Datta et al. [DDM+06]. In their work each game-based property of a cryptographic task is
mapped to a syntactic expression in process calculus that the ideal functionality program needs to satisfy.
Based on this, they were able to generalize impossibility results on the realizability of specific cryptographic
tasks such as bit commitment and group signatures. In contrast, while the current work also abstracts the basic
properties of a cryptographic task in a syntactic fashion, it further provides a methodology to explicitly (and
easily) write ideal functionality programs within the UC framework that provably satisfy such properties.

2 Preliminaries

We will lay out our results following the Universal Composability framework of Canetti [Can05];see Ap-
pendix A for a review of the basic notions. Recall that in the UC framework, the environment is creating
processes which are entities maintaining state across actions. Further, a cryptographic task T is associated with
an ideal functionality which is a stateful entity. The functionality FT is a “packaging” of the actions of the task
T together with data fields that are persistent across action invocations. For example, an ideal functionality

signatures, public-key encryption, oblivious transfer, zero-knowledge and others.
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for the commitment task offers two actions, commit and open, and has a persistent data field that is generated
by the commit action and used by the corresponding open action (the decommitment information). Similarly,
an ideal functionality for the digital signature task offers three actions, key-generation, signature-generation,
and signature-verification, and has a persistent data field that is updated by the signing action and used by the
verification action (this is the list of messages that have been signed).

Given that the environment is generating all actions for the ideal functionality of a task, not all sequences of
actions are sensible, as the environment is assumed adversarial. Actions that are deemed inconsistent with the
current state are ignored by the ideal functionality. This implicitly determines a notion of “well-formedness” of
action sequences that we will formalize in the next section. Furthermore, the ideal functionality may generate
output to a party depending on its internal state and the influence of the adversary; to formalize the interaction
between the functionality and the adversary with respect to output generation we will define in the next section
two functions that we call the “public output” and “secret output” of the functionality.

Our definitions of well-formedness and public/secret output for a functionality will also require basic string
operations. Given a sequence w consisting of elements from an alphabet Σ = {a1, . . . , ak}, we let wi denote the
i-th element in w. We can obtain a subsequence of w, call it w′, by erasing some of the elements in w without
disturbing the relative positions of the remaining elements. We denote this by w′ 4 w and we remark that ε 4 w
for any string w. If Σ′ ⊆ Σ, for any string w ∈ Σ∗ we denote by w|Σ′ the largest subsequence of w that belongs
to (Σ′)∗. For any w ∈ Σ∗ we write w′ � w when w′ is derived from w after substituting at least one symbol of
w with the special symbol “−”. Finally, for a given set of strings S we define S� = {w′ | ∃w ∈ S : w′ � w}.

A monoid (A,+) is a semigroup with an identity element. Any monoid possesses a preorder relation
denoted by . such that a . b iff ∃c : a + c = b.

3 Canonical Ideal Functionalities

In this section we provide an explicit syntax for a class of functionalities that idealize the cryptographic task
T — this is the class of canonical functionalities for the cryptographic task T . In this first formulation of
canonical functionalities we focus on a wide class of cryptographic tasks whose action outputs are not required
to follow an ideal probability distribution, i.e., the ideal functionality can be deterministic. Such tasks include
digital signatures, commitment, public-key encryption, secure message transmission, zero-knowledge proofs,
secure deterministic function evaluation, etc.

3.1 The communication language of ideal functionalities

We start by specifying the language of the communication between the ideal functionality FT of a task T
and the environment. The alphabet over which the environment communicates with the ideal functionality is
parameterized by the security parameter λ ∈ N and is a finite set of symbols of the form (ACTION,P, x);
note that we will usually omit reference to λ for simplicity. Here ACTION is a label that determines the action
the environment instructs the functionality to do (e.g., COMMIT, SIGN, etc.). P is a tuple that designates the
identifiers of the entities and their roles in the particular action (in particular which parties provided the input
to the action and which parties should receive output). To differentiate multiple invocations of the functionality
by the same group of entities, P may also include a session identifier sid . Finally, the value x is an encoding
of the input to the action whose length is polynomial in λ; note that whenever x = ε, we will drop x from the
symbol notation for ease of reading.

In response to a symbol (ACTION,P, x), the ideal functionality may return a symbol (ACTIONRETURN,
P, y) to some party (see below in what circumstances). The set of all symbols of the form (ACTION,P, x) and
(ACTIONRETURN,P, y), constitutes the finite I/O alphabet of the ideal functionality, i.e., the communication
alphabet between the functionality and the environment, and is denoted by ΣT .

As mentioned in Section 2, the actions of a cryptographic scheme make sense only in certain order; for
this reason not all strings over ΣT are valid as action sequences. To formalize this, we associate with the ideal
functionality the predicate WFT called the well-formedness predicate. For any string w ∈ (ΣT )∗ and symbol
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a ∈ ΣT , the well-formedness predicate WFT (w, a) decides whether the string wa is sensible with respect to
FT .

We also mentioned before that the ideal functionality may produce output based on its internal state and the
current action symbol following the influence of the adversary. In order to enable an informed influence the ad-
versary needs to know some information about the internal state of the functionality. This will be formally cap-
tured by a polynomial-time string mapping POT called the public output mapping, that given a string w ∈ (ΣT )∗

and a symbol a ∈ ΣT that satisfies WFT (w, a), may return a value that is a part of the suggested output of the
ideal functionality on action symbol a given the history w. For example, in the case of a zero-knowledge task
T = ZK, upon receiving (PROVE, 〈P, V, sid〉, 〈x, m〉), POZK will output the pair 〈x, φ〉 where φ = 1 if and
only if 〈x,m〉 belongs to the relation that parameterizes the zero-knowledge functionality. Depending on the
task, parts or all of the suggested output may not be be revealed to the adversary. To capture this, another string
mapping SOT called the secret output mapping is defined. For example, for the task T = OT of oblivious trans-
fer, upon receiving symbols (TRANSFER, 〈S, R, sid〉, 〈m0,m1〉) and (TRANSFER, 〈S, R, sid〉, i), the mapping
SOOT will return mi which will not be communicated to the adversary. On the other hand, in some cases,
the ideal functionality may not suggest any output, i.e., the SOT ,POT mappings will be empty, and then the
adversary will be responsible for the output to parties. For example, in the digital signature task T = SIG,
on action symbol (KEYGEN, 〈S, sid〉) the mappings POSIG and SOSIG will output the empty string as there
is no need for the functionality to suggest any distribution on the public key pk that is returned in the symbol
(KEYGENRETURN, 〈S, sid〉, pk) and is specified by the adversary.

This completes the description of the I/O language used in the communication between the environment
and the ideal functionality. FT also communicates with an ideal world entity, called the ideal world adversary
S. This interaction defines another communication language that is not bound by the alphabet of the real world.
We next define this language formally. For each input action symbol (ACTION,P, x), the ideal functionality
may want to notify the ideal world adversary. We capture this by introducing a set of “leaking-action” symbols
(LEAKACTION,P, x′) where x′ will have a functional dependency on x according to the program of the ideal
functionality. The public output of the ideal functionality (as defined by the POT mapping) will also be sent
out with the LEAKACTION symbol to the adversary.

Conversely, the ideal world adversary may also communicate with the ideal functionality; to capture this
interaction we introduce the “influence-action” symbols denoted by (INFLACTION,P, ·). Such symbols are
used by S to influence the output of a particular action that is currently under-way. Moreover, the adversary may
inform the functionality that a certain party is corrupted; for this purpose symbols of the form (CORRUPT, ·) will
be used. Finally, the adversary can control the way the ideal functionality handles corrupted parties through
the use of (PATCH, ·) symbols which enable the adversary to specify the inputs of corrupted parties as well
as their state with respect to all currently ongoing actions. The exact syntax of (CORRUPT, ·), (PATCH, ·)
symbols is explained below. The extended communication alphabet of the ideal functionality is denoted by
Σext

T and includes all I/O symbols of ΣT as well as the corresponding INFLACTION, LEAKACTION, CORRUPT
and PATCH symbols.

So far we introduced a syntax for the communication language between the ideal functionality and the other
entities of the ideal world. Next, we will describe a well-defined class of structured ideal functionalities for a
cryptographic task. We call this the class of canonical functionalities for the task.

3.2 The canonical functionality of a cryptographic task

The functionalities that we consider in this paper correspond to the following design choices: (i) the adversary
is notified of all input actions (by means of LEAKACTION symbols), (ii) the ideal functionality produces output
only after being instructed by the adversary through an INFLACTION symbol (this captures the delayed output
property of [Can05]), (iii) the ideal functionality is a deterministic TM, and (iv) outputs are always given
sequentially and thus fairness will not be captured.

A canonical functionality is essentially defined by two functions: suppress() and validate(). As stated in (i)
above, given an action symbol (ACTION,P, x) a canonical ideal functionality will always notify the adversary
about this input. The function suppress() will determine what information about x the ideal world adversary
will learn. The output of suppress() will be passed into the LEAKACTION symbol. Specifically, the suppress()
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function is defined over (ACTION,P, x) symbols and will output some x′ � x. We require that the suppress()
function will always substitute with “−” the same locations of x, independently of x.

Together with a LEAKACTION symbol the adversary will also be given the public output of the ideal
functionality. Furthermore, the canonical functionality will return output to some party whenever it receives an
INFLACTION symbol. In particular given (INFLACTION,P, y′) it will return (ACTIONRETURN,P, y) to the
party in P that is supposed to receive output, where y consists of y′ (which may be empty) concatenated with
the secret output of the functionality (which may also be empty).

Given that not all output influences are consistent with the intended security properties of the cryptographic
task, the validate() predicate is defined over strings of Σ∗ and determines when the canonical functionality will
halt. We note that suppress() is history independent while validate() is not. The intuition is that the suppress()
function abstracts what the adversary learns about the possibly private inputs of parties (i.e., it captures the
hiding aspects of the functionality) whereas the validate() predicate makes sure that the outputs produced by
the functionality are consistent with its history according to the intended consistency properties of the task.

In order to perform the validate() check a canonical functionality needs to be stateful. The state of the
functionality, denoted by history, is the sequence of all I/O symbols ordered chronologically as received from
and sent to the environment. We use historyPj

to denote all symbols associated to party Pj in history, i.e., the
ACTION symbols that were provided by Pj and ACTIONRETURN symbols that were returned to Pj .

The CORRUPT and PATCH symbols are used to handle the behavior of corrupted parties. When a party Pj

is corrupted, we allow the adversary to learn historyPj

2. Moreover, to handle adaptive corruptions, we allow
the adversary to rewrite the history of corrupted parties using the PATCH symbols in the following manner: a
certain symbol that was provided by a corrupted party can be modified provided this symbol has not contributed
to the view of any honest party. To facilitate this checking the canonical functionality will use an array called
binding[·] that for each symbol in history, records the set of honest parties whose view could have been affected
by that symbol. In particular each time an honest party Pj receives output from the ideal functionality all
previous symbols in history are marked with Pj in the binding[·] table.

We now have all the elements to present the exact formulation of the class of canonical functionalities
FT . Each member of the class is specified by a pair of functions suppress(), validate() as defined above.
Specifically, the functionality responds to msg = (ACTION,P, x) symbols by issuing (LEAKACTION,P, x′)
symbols to the adversary where x′ = suppress(msg) and to msg = (INFLACTION,P, y) from the adversary by
issuing (ACTIONRETURN,P, y) symbols to the parties specified in P as long as validate(history||msg) = 1.
Additionally it responds to CORRUPT, PATCH symbols as one would expect: given a CORRUPT(Pj) symbol,
it returns to the adversary the history of party Pj and given a PATCH(history′) it modifies its internal state
with respect to corrupted parties following history′. This is specified in more detail in Figure 1, and a pictorial
representation can be found in Figure 2.

A canonical functionality defines a language over the symbols that are used by the functionality to commu-
nicate with the environment. We formalize this language as follows:

Definition 3.1. Given a canonical functionalityFT , an environmentZ and an adversary S, we define L
I/O
FT ,Z,S =

{w|w ∈ (ΣT )∗ such that w is equal to history of FT in an execution with Z and S }.

We may quantify the language over all possible environments Z and ideal world adversaries S in which case
we will omit referencing them. Moreover, we may consider only those strings in history of FT for which the
environment Z returns 1; we will denote this (“bad”) language as B

I/O
FT ,Z,S .

3.3 Algebraic structure of canonical functionality classes

The suppress(), validate() parameterization effectively gives a range of canonical functionalities with security
and correctness properties of different strength for the same cryptographic task. We next endow this class with
an algebraic structure that will be helpful in classifying and combining the various canonical functionalities for
the same cryptographic task.

2We also defer the treatment of forward security for now.
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Canonical Functionality F suppress,validate
T

Initially, history := ε and binding := ε.

Upon receiving msg = (ACTIONi,P, x) from some party Pj , if Pj is corrupted set x′ ← x else compute x′ ←
suppress(msg), set msg ′ ← (LEAKACTIONi,P, x′). If WFT (historyPj

,msg) = 1 then do the following:
Send 〈msg ′,POT (history,msg)〉 to the adversary S;
record msg in history and also if Pj is uncorrupted, set binding[|history|] = {Pj}.

Otherwise (WFT (historyPj
,msg) = 0) ignore msg .

Upon receiving msg = (INFLACTIONi,P, y′) from the adversary S, infer Pj from P, and set msg ′ ←
(ACTIONRETURNi,P, y), where y ← y′||SOT (history). If WFT (historyPj

,msg ′) = 1 do the following:
If validate(history||msg ′) = 1, then append msg ′ to history and send msg ′ to party Pj ;
if Pj is honest, set binding[k]← binding[k] ∪ {Pj}, 1 ≤ k ≤ |history|.
Otherwise (validate(history||msg ′) = 0), if Pj is honest send an error symbol to Pj and halt.

Otherwise (WFT (historyPj
,msg ′) = 0 or Pj is corrupted) ignore msg .

Upon receiving msg = (CORRUPT, Pj) from the adversary S, mark Pj as corrupted, return historyPj
to S, and

set binding[k]← binding[k] \ {Pj}, 1 ≤ k ≤ |history|.
Upon receiving msg = (PATCH, history′) from the adversary S where history′ ∈ (ΣT )|history| do the following:
if binding[k] = ∅ set history[k]← history′[k], 1 ≤ k ≤ |history|.

Figure 1: Definition of the class of canonical functionalities FT for a task T quantifying over all admissible
pairs suppress(), validate().

We define a conjunction operation denoted by ∧ on the class of canonical functionalities for a task T .
This operation will enable us to combine canonical functionalities for a task T , while providing a concise
way of representing members of the class in terms of “simpler” members. Observe that for any two mem-
bers of the canonical functionality class that are parameterized by the functions suppress1 and suppress2,
respectively, for any symbol a = (ACTIONi,P, x), it holds that suppress1((ACTIONi,P, suppress2(a))) =
suppress2((ACTIONi,P, suppress1(a))). This fact will be handy in the definition below.

Definition 3.2 (Conjuncting Functionalities). Given F1 = F suppress1,validate1
T ,F2 = F suppress2,validate2

T ∈ FT

we define the conjunction F1 ∧ F2 of the two functionalities as the functionality F suppress,validate
T ∈ FT ,

where (1) for any a = (ACTION,P, x) ∈ Σ, suppress(a) = suppress1(ACTIONi,P, suppress2(a)), and
(2) validate() = validate1()∧ validate2(), i.e., the logical conjunction of the two validate predicates of F1,F2.

We next show that the canonical functionality class for a task T has a monoid structure with identity element
a canonical functionality that we call the dummy functionality for T defined as follows:

Figure 2: The canonical functionality: com-
munication flows with the environment and
adversary.

Figure 3: The lattice of canonical functionali-
ties for commitment showing relations between
the constituent functionalities (Section 5.3).
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Definition 3.3 (Dummy Functionality). We call the canonical functionality Fdum
T ∈ FT dummy if (1) for all

x and any ACTION, suppress((ACTION,P, x)) = x, and (2) validate() = 1 always.

Observe that the dummy functionality does not capture any of the intended correctness or security properties of
the cryptographic task T . This means that any protocol π UC-realizing Fdum

T will merely syntactically match
the purpose of T but will lack any useful property.

Proposition 3.4. (FT ,∧) is a commutative monoid with the dummy functionalityFdum
T as the identity element.

Any commutative monoid has an associated preordering relation denoted by .; in the case of (FT ,∧) we
say that F1 . F2 if and only if there exists F3 such that F2 = F1∧F3. The intuitive interpretation of F1 . F2

is that F2 is at least as strict as F1 from a security point of view.
FT together with ∧ forms a bounded (join-)semilattice, i.e., every set of elements in FT has a least upper

bound. Note that (1) we use∧ in place of the standard∨ in lattice theory as it is more consistent as an operator in
our setting where lattice elements would capture security properties (and going higher in the lattice means that
security increases), and (2) given that (FT ,∧) as a commutative monoid lacks the antisymmetric property, the
semilattice would be in fact over the quotient FT / � where � is the equivalence relation defined as F1 � F2

iff F1 . F2 and F2 . F1.
We next define the top canonical functionality F top

T which is the supremum of all canonical functionalities
in FT representing the most stringent idealization of a cryptographic task. The top functionality suppresses
all inputs (but allows the adversary to see the length of them), while it restricts all output influences of the
adversary.

Definition 3.5 (Top Functionality). We call the canonical functionality F top
T ∈ FT top if for any ACTION, (1)

for all x, suppress((ACTION,P, x)) = (−)|x|, and (2) for all w, a, validate(wa) = 0.

While the top functionality offers security it does so at the expense of providing no response to the parties that
employ it, i.e., it never produces any output. Thus it is the dual from a security point of view to the dummy
functionality and due to its unresponsiveness it is equally meaningless as an idealization of a cryptographic
task. Useful functionalities will lie somewhere in between these two extremes.

This completes the description of the algebraic structure of the class of canonical functionalities. The lattice
of canonical functionalities for a task can be represented by a directed graph where the F top

T is placed at the
top level and Fdum

T at the bottom. An example of such a lattice for the commitment task is given in Figure 3.
Given the lattice of canonical functionalities we will show that we can identify a level of the lattice as the

“realizability horizon.” We will show that all canonical functionalities at and below this level are realizable (in
the plain model) whereas all canonical functionalities above the level are unrealizable. First we show that all
canonical functionality lattices have a realizability level.

Theorem 3.6. For every task T , there is a protocol π that UC-realizes the dummy functionality Fdum
T .

Next, we show that UC-realizing any point F of FT would imply that any lattice point dominated by F is
also UC-realizable.

Theorem 3.7. If π UC-realizes F , then π UC-realizes any F ′ . F .

As it will become apparent, the usefulness of the lattice is in the fact that it is natural to identify individual
desired properties of the task, map them to canonical functionalities in the lattice and then use the conjunction
operation to derive the (local) supremum of these lattice points that will yield the final functionality for the
task. In this way, an idealization of a cryptographic task can be solidly “defended” by presenting its constituent
canonical functionalities.

4 Deriving Canonical Ideal Functionalities

4.1 The general approach

In this section we outline a methodology for deriving canonical ideal functionalities. Given a cryptographic
task T , the first step is to identify a set of consistency (including correctness) and privacy properties:

8



Consistency properties are expressed in terms of languages over the I/O alphabet ΣT . In particular one needs
to identify sets of strings over ΣT that violate a certain consistency aspect of the underlying task. Provided
that the set of strings identified is polynomial-time decidable a corresponding canonical functionality is
derived by setting the validate() predicate to reject all strings that violate the consistency property.
Privacy properties are expressed in terms of suppression of input values that accompany action symbols. In
particular, if a certain action a = (ACTION,P, x) is supposed to maintain the privacy of a portion x′ of the
input x, we define suppress(a) to be equal to x with all locations corresponding to x′ substituted by “−”.

Now, using the above guidelines one can define a set of canonical functionalities each one corresponding to
different security or consistency aspects of a cryptographic task. Then, given the canonical functionalities
F1, . . . ,Fk so defined, one can derive the canonical ideal functionality of the cryptographic task by combining
the functionalities as F = F1 ∧ . . . ∧ Fk. In such case we call F1, . . . ,Fk the constituent canonical func-
tionalities of F (note that typically there will be a unique set of natural constituent functionalities although the
functionality may have many different sets of possible constituents). It follows that Fi . F and, based on
Theorem 3.7, we have that any protocol that realizes F also realizes Fi for all i = 1, . . . , k, thus the canonical
ideal functionality F preserves all consistency and privacy properties identified individually in F1, . . . ,Fk.

As an example of applying this general approach for deriving the ideal functionality of a cryptographic task
the reader is referred to Section 5.2 where we apply this strategy for the case of oblivious transfer.

Depending on the cryptographic task, it may not always be easy to properly identify the required set of con-
sistency and privacy properties that will yield the constituent canonical functionalities of the task. Fortunately,
for many of them substantial effort has been spent in identifying individual security properties formalized in
terms of “security games.” Examples include the unforgeability game of digital signatures [GMR88] and the
IND-CPA game of public key encryption [GM84].

Next we show how one can leverage on existing game-based definitions of a cryptographic task to derive
constituent canonical ideal functionalities in a systematic way. Importantly, our formal transformation approach
from games to functionalities provably maintains the underlying game-based security notions. This translation
methodology can be applied whenever game-based definitions have been identified. In fact, it is even possible
to specify games for desired security properties “on demand” and apply the translation methodology to them as
well.

4.2 Ideal functionalities from game-based security definitions

Individual correctness and privacy definitions are frequently specified by a game between the attacker and a
“challenger” who controls different aspects of the cryptographic task. The attacker either tries to produce an
undesired sequence of actions or attempts to deduce a hidden bit selected by the challenger. In the former case
we call the interaction a consistency game while in the latter we call the interaction a hiding game. Examples of
properties modeled with consistency games include completeness properties, the unforgeability of digital sig-
natures, the binding property of commitments, the soundness property of zero-knowledge protocols etc., while
hiding games are used to model the IND-CPA property of public-key encryption and the hiding property of
commitment schemes among others. In order to detail our transformation we first provide a formal description
of game based definitions.

A game-based definition G for a cryptographic task T involves two PPT interactive Turing machines, the
challenger C and the attacker A. The challenger uses the actions of the cryptographic task as oracles. When
the interaction terminates, a Turing machine called the judge3 J reads the transcript of the interaction as well as
the internal state of the challenger and decides which party won the game. We denote the success probability
of the attacker when playing the game G by SuccG

A ; it equals the probability of the event that the judge decides
that the attacker wins the game.

Consistency games are restricted to be deterministic programs (note that the task actions invoked by the
game may be probabilistic). We say that a cryptographic scheme that implements a task T satisfies the property

3Typically, the functionality of the judge is incorporated as part of the challenger program; we find it more convenient to specify it
as a separate function.
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defined by a game G if for all PPT attackers A it holds that SuccG
A is a negligible function in the security

parameter λ.
In a hiding game, the attacker focuses on a particular action of the cryptographic task. At some point of

the interaction with the challenger, the attacker provides two input strings x0, x1 for a certain action where
x0 = 〈xL

0 , xR
0 〉, x1 = 〈xL

1 , xR
1 〉 such that either the left or the right parts of the strings are required to be

different while the other parts are required to be equal (for example in the witness hiding game for zero-
knowledge, xL

0 = xL
1 will be the statement while xR

0 , xR
1 will be two distinct witnesses). In response, the

challenger flips a coin b and executes the action that is attacked on input xb. The interaction provides the output
of the action to the attacker who is supposed to provide a guess b∗ for b. The judge decides that the attacker
wins whenever b = b∗. We say that a cryptographic scheme that implements a task T satisfies the property
defined by the hiding game G if for all PPT attackers A it holds that the function |SuccG

A − 1
2 | is a negligible

function in λ.

4.2.1 Ideal functionalities from consistency games

Suppose that G is a consistency game for a cryptographic task T that involves a challenger C, an attacker A and
a judge J. Let Σ be any cryptographic scheme that implements the task T . Recall that our goal is to obtain a
canonical functionality FG ∈ FT such that if a protocol πΣ UC-realizes any F & FG then the cryptographic
scheme Σ satisfies the property defined by the game G. Our methodology proceeds in three steps: we first
define an environment (and also the corresponding ideal world) based on the game G. Second, based on this
environment, we define a language that corresponds to the event where the attacker wins the game. Third,
provided that the language is decidable, we obtain a canonical functionality by incorporating the language
decider as part of the validate() predicate of the canonical functionality. We describe the three steps in more
detail below.
Step 1: Defining the environment and simulator. We first present the transformation from the game G for a
task T implemented by a scheme Σ to the corresponding environment ZA

G and the ideal world adversary SΣ
G .

We say that the transformation is sound, provided that the judge J decides that the attacker wins the game if
and only if the environment ZA

G returns 1 in an execution with Fdum
T and SΣ

G . More specifically, it holds that
Pr[IDEALFdum

T ,ZA
G,SΣ

G
(1λ) = 1] = SuccG

A .
First, we describe how we derive the environment ZA

G based on the game G. ZA
G will simulate both the

attacker A and the challenger C; whenever C makes an oracle call to some action of the task, the environment
ZA

G issues the corresponding ACTION symbol. The program of C will be executed by ZA
G. For example,

in the unforgeability game for digital signatures, an oracle call to the key generation operation will result in
issuing the symbol (KEYGEN, 〈S, sid〉) to a party called S, where S is a random name from the namespace
for some random sid ; subsequent calls by C to the signing oracle for a message m, will result in the symbols
(SIGN, 〈S, sid〉,m) directed to the same party S. Continuing with the description ofZA

G, if the attacker A needs
to play the role of some party of the cryptographic task T , ZA

G will need to spawn a party and corrupt it and
then simulate it according to the operation of A.

Second, we define an ideal world adversary SΣ
G that will be paired with ZA

G. SΣ
G will interact with ZA

G to
corrupt parties if the environment requests it and it will also provide influence action symbols whenever a leak
action symbol occurs following the program of the scheme Σ.
Step 2: Defining the “bad language.” This language will correspond to the event that the attacker wins the
game. It is denoted by B

I/O
T,G ⊆

⋃
A,Σ L

I/O

Fdum
T ,ZA

G,SΣ
G

and contains those strings for which the environment ZA
G

returns 1. It is easy to see that given the way the transformation of the game G to the environment ZA
G was

performed, those strings exactly correspond to the event when the attacker A wins the game G against the
challenger C. While this language captures the event that the attacker wins the game, it is not sufficient for
describing the winning event within more complex executions because the bad sequence of symbols may be
interleaved with other actions. To capture this, we define an extended bad language to be those strings of L

I/O

Fdum
T

that contain as a subsequence a string of B
I/O
T,G, and denote it as Bext

T,G.
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Step 3: Defining the ideal functionality. In order to define the class of canonical functionalities that capture
the game G we need first to show that the extended bad language Bext

T,G defined in step 2 is polynomial-time
decidable. Then, given the decider D for the language, we define the canonical functionality FG that captures
the game G by requiring that validate(w) = 0 if and only if w ∈ Bext

T,G; in other words, the function validate()
simulates the decider D, and whenever the decider accepts the functionality halts.

We now show that the translation detailed above is sound.

Theorem 4.1. Assume that a scheme Σ implements a task T and G is a consistency game for T . It holds that
if πΣ UC-realizes some F & FG, then Σ satisfies the property defined by G.

4.2.2 Ideal functionalities from hiding games

Let G be a hiding game for a cryptographic task T . We show how to define a canonical functionality for the
task that implies the hiding property. In this case, our methodology proceeds in two steps: we first define an
environment and an ideal world simulator based on the game G. Second, based on the environment’s operation
we define the canonical functionality by appropriately modifying the suppress function.
Step 1: Defining the environment and simulator. As in the case of consistency games, we define an envi-
ronment ZA

G and simulator SΣ
G based on the operation of the challenger C, the attacker A, the judge J and the

scheme Σ. The transformation is identical to the one in step 1 in Section 4.2.1.
Step 2: Defining the canonical functionality. During any execution of the environment ZA

G with SΣ
G , it

holds that the environment issues an ACTION symbol with input xb where b is a random bit selected by ZA
G

and x0, x1 were provided by the attacker A (which is simulated by ZA
G). Assuming that x0 = 〈xL

0 , xR
0 〉 and

x1 = 〈xL
1 , xR

1 〉 and the game G contains the test xL
0 = xL

1 and xR
0 6= xR

1 , we define the suppress function for
symbol a = (ACTION,P, xb) where b ∈ {0, 1} by suppress(a) = 〈xL

b , (−)|x
R
b |〉 (recall that suppress(a) � xb).

Theorem 4.2. Suppose that a cryptographic scheme Σ implements a cryptographic task T and G is a hiding
game for T . Then it holds that if πΣ UC-realizes some F & FG, then Σ satisfies the hiding property defined by
game G.

5 Applying the Methodology

We now apply our methodology to a variety of cryptographic tasks, including digital signatures, oblivious
transfer, commitments and ZK proofs of knowledge. In some cases the canonical functionalities we derive
are equivalent to the ones that have been identified before, where in others their differences point to subtle
definitional problems in their previous formulations (despite successive revisions).

5.1 Digital signatures

The basic requirements for digital signatures, completeness, consistency and unforgeability, were first formu-
lated in [GMR88]4. Each property is specified by a consistency game. In this section we show how to translate
these traditional notions into the corresponding canonical functionalities. Following Figure 1, any canonical
signature functionality FSIG is defined for two types of roles, the signer S and the verifier V , with three actions,
KEYGEN, SIGN, VERIFY. We denote the canonical signature functionality class as FSIG.

5.1.1 Unforgeability

Definition 5.1 (Unforgeability [GMR88]). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is unforgeable
if for all PPT A, Pr[(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);φ← verify(vk,m, σ) : φ = 1 and A
never submitted m to the sign(vk, sk, ·) oracle ] ≤ negl(λ).

4Consistency is implied in the GMR specification, as pointed out by Canetti [Can04].
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The above definition can be formulated as a consistency game Guf for the task SIG as follows: the chal-
lenger C uses algorithms gen(), sign(), verify() as oracles, and interacts with the adversary A: the challenger
C queries the gen() oracle and obtains 〈sk, vk〉, and then sends such vk to A; each time upon receiving m from
the A, the challenger C queries the sign() oracle with m and obtains σ, and then returns σ to A; upon receiving
from A a pair 〈m′, σ′〉, C queries the verify() oracle with 〈m′, σ′, vk〉 and obtains the verification result. The
judge J decides that A wins the game if m′ has never been queried before and the verification result is 1.
Step 1. Based on the game Guf described above, we can construct an environment ZA

uf and the corresponding
ideal world adversary SΣ

uf as follows. In order to simulate the game, the environment first picks S and V from
the namespace at random as well as a random sid . The environment sends (KEYGEN, 〈S, sid〉) to party S and
receives (KEYGENRETURN, 〈S, sid〉, vk); then the environment simulates A on input vk ; when A queries m
to its signing oracle, the environment sends (SIGN, 〈S, sid〉,m) to party S and returns the output of S to A.
Once A outputs a pair 〈m,σ〉, the environment sends (VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to some party V
and receives the verification result φ. In the case that m has never been queried and φ = 1, the environment
terminates with 1; otherwise with 0.

We next define the ideal-world adversary SΣ
uf . Each time SΣ

uf receives (LEAKKEYGEN, 〈S, sid〉) from the
ideal functionality, it runs (vk, sk) ← gen(1λ) and sends (INFLKEYGEN, 〈S, sid〉, vk) to the functionality.
When SΣ

uf receives (LEAKSIGN, 〈S, sid〉,m) from the ideal functionality, it runs σ ← sign(vk, sk,m), and
sends (INFLSIGN, 〈S, sid〉, σ) to the functionality. When SΣ

uf receives (LEAKVERIFY, 〈V, sid〉, 〈m,σ, vk〉)
from the ideal functionality, it runs φ ← verify(vk, sk,m, σ), and sends (INFLVERIFY, 〈V, sid〉, φ) to the
functionality.

Step 2. For any adversary A and signature scheme Σ we define L
I/O

Fdum
SIG ,ZA

uf ,S
Σ
uf

(cf. Section 3.2) with ZA
uf ,SΣ

uf

as defined in step 1. We next define the set of strings B
I/O
SIG,uf as the subset of

⋃
A,Σ L

I/O

Fdum
SIG ,ZA

uf ,S
Σ
uf

that contains
exactly those strings for which the environment returns 1.

Lemma 5.2. (1) B
I/O
SIG,uf =

w

∣∣∣∣∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(SIGN, 〈S, sid〉,m1)(SIGNRETURN, 〈S, sid〉, σ1) · · ·
(SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)
(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN, 〈V, sid〉, 1)

such that m′ 6∈ {m1, . . . ,m`}

, and

(2) B
I/O
SIG,uf is decidable in polynomial time.

In order to obtain the bad language for the unforgeability property we extend B
I/O
SIG,uf as follows: Bext

SIG,uf ={
w ∈ L

I/O

Fdum
SIG

∣∣∣∃w′ ∈ B
I/O
SIG,uf s.t. w′ 4 w

}
. We observe that Bext

SIG,uf is also decidable in polynomial time.

Step 3. Next we define the class of ideal functionalities that corresponds to the unforgeability property.

Definition 5.3 (Canonical Functionality Fuf ). The functionality Fuf ∈ FSIG equals F suppress,validate
SIG , where (1)

suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN, VERIFY}, suppress((ACTION,P, x)) =
x, (i.e., the same as in Fdum

SIG ), and (2) validate(w) = 0 if and only if w ∈ Bext
SIG,uf .

Based on Theorem 4.1, we have the following corollary:

Corollary 5.4. If πΣ(SIG) realizes some F & Fuf , then Σ(SIG) is unforgeable.

Further, we show that for unforgeability the other direction also holds – i.e., the transformation is tight.

Theorem 5.5. If Σ(SIG) is unforgeable, then πΣ(SIG) realizes Fuf .

5.1.2 Completeness

Definition 5.6 (Completeness). A scheme Σ(SIG) = 〈gen, sign, verify〉 is complete if for all PPT A,

Pr[m← A(1λ); (vk, sk)← gen(1λ);σ ← sign(vk, sk,m);φ← verify(vk,m, σ) : φ = 0] ≤ negl(λ).
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The above definition can be modeled as a consistency game, Gcomp as follows. The challenger C uses
algorithms gen(), sign(), verify() as oracles, and interacts with completeness attacker A: after receiving m
produced by A, the challenger C queries the gen() oracle and obtains sk, vk; then C queries the sign() oracle
with sk,m and obtains σ; later C queries the verify() oracle with 〈m,σ, vk〉 to obtains the verification result.
The judge J decides that A wins the game if the verification result is 0.
Step 1. Based on the game Gcomp described above, we can construct an environment ZA

comp and the cor-
responding ideal world adversary SΣ

comp. The environment ZA
comp here is similar to the environment ZA

uf ;
the environment first picks S and V from the namespace at random as well as a random sid . The environ-
ment simulates A with input 1λ and obtains m; it then sends (KEYGEN, 〈S, sid〉) to party S and receives
(KEYGENRETURN, 〈S, sid〉, vk) from the party S; later the environment sends (SIGN, 〈S, sid〉,m) to party S
and receives σ; the environment inputs (VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to V and receives the verifica-
tion result. If the verification result φ = 0, the environment terminates with 1; otherwise with 0. The adversary
SΣ

comp is defined similarly to the adversary SΣ
uf in the previous section.

Step 2. For any completeness attacker A and scheme Σ, the environment ZA
comp, the adversary SΣ

comp, and the

dummy canonical signature functionality together give rise to the language L
I/O

Fdum
SIG ,ZA

comp,SΣ
comp

. We consider

the subset of strings B
I/O
SIG,comp of the union of all the I/O languages quantified over all possible completeness

attackers A and schemes Σ that contains exactly those strings for which the environment returns 1. Formally,

B
I/O
SIG,comp

def=
⋃
A,Σ

L
I/O

Fdum
SIG ,ZA

comp,SΣ
comp

We next prove the following characterization of this language as well as determine its time complexity:

Lemma 5.7. (1) B
I/O
SIG,comp =

w

∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(SIGN, 〈S, sid〉,m)(SIGNRETURN, 〈S, sid〉, σ)
(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0)

 (2)

B
I/O
SIG,comp is decidable in polynomial time.

In order to obtain the bad language for the completeness property we extend B
I/O
SIG,comp as follows:

Bext
SIG,comp =

{
w ∈ L

I/O

Fdum
SIG

∣∣∣ ∃w′ ∈ B
I/O
SIG,comp s.t. w′ 4 w

}
We observe that Bext

SIG,comp is also decidable in polynomial time.
Step 3. We now define the class of ideal functionalities that corresponds to the completeness property.

Definition 5.8 (Canonical Functionality Fcomp). The functionality Fcomp ∈ FSIG equals F suppress,validate
SIG ,

where (1) suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN, VERIFY}, suppress((ACTION,
P, x)) = x, (i.e., the same as in Fdum

SIG ), and (2) validate(w) = 0 if and only if w ∈ Bext
SIG,comp.

The following corollary follows from Theorem 4.1.

Corollary 5.9. If πΣ(SIG) realizes some F & Fcomp, then Σ(SIG) is complete.

The other direction also holds in this case:

Theorem 5.10. If Σ(SIG) is complete, then πΣ(SIG) realizes Fcomp.

5.1.3 Consistency

Definition 5.11 (Consistency). A scheme Σ(SIG) = 〈gen, sign, verify〉 is consistent if for all PPT A,

Pr[(vk,m, σ)← A(1λ);φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2] ≤ negl(λ).
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The above definition can also be modeled by a consistency game, Gcons, as follows. The challenger C uses
algorithms gen(), sign(), verify() as oracles, and interacts with the consistency attacker A: C simulates A
on input 1λ to obtain 〈vk,m, σ〉 and then calls the the verify() oracle with 〈m,σ, vk〉 twice and obtains the
verification results φ1 and φ2 respectively. The judge J decides that A wins the game if the two verification
results are different, i.e., φ1 6= φ2.
Step 1. Based on the game Gcons described above, we can construct an environment ZA

cons and the correspond-
ing ideal world adversary SΣ

cons as follows. The environment first picks S and two V ’s from the namespace at
random as well as a random sid . Then the environment simulates A to obtain 〈vk,m, σ〉 and gives the symbols
(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉) and (VERIFY, 〈V2, sid〉, 〈m,σ, vk〉) to obtain the symbols (VERIFYRETURN,
〈V1, sid〉, φ1) and (VERIFYRETURN, 〈V2, sid〉, φ2). In the case that φ1 6= φ2, the environment terminates with
1 otherwise with 0. SΣ

cons is defined similarly to SΣ
uf .

Step 2. For any consistency attacker A and scheme Σ, the environment ZA
cons, the ideal adversary SΣ

cons, and
the dummy canonical signature functionality together give rise to the language L

I/O

Fdum
SIG ,ZA

cons,SΣ
cons

. We consider

the subset of strings B
I/O
SIG,cons of the union of all the I/O languages quantified over all possible consistency

attackers A and schemes Σ that contains exactly those strings for which the environment returns 1. Formally,

B
I/O
SIG,cons

def=
⋃
A,Σ

L
I/O

Fdum
SIG ,ZA

cons,SΣ
cons

We next prove the following characterization of this language as well as determine its time complexity:

Lemma 5.12. (1) B
I/O
SIG,cons =

w

∣∣∣∣∣∣
w = (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)

(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2)
such that φ1 6= φ2

,

and (2) B
I/O
SIG,cons is decidable in polynomial time.

In order to obtain the bad language for the consistency property we extend B
I/O
SIG,cons as follows:

Bext
SIG,cons =

{
w ∈ L

I/O

Fdum
SIG

∣∣∣ ∃w′ ∈ B
I/O
SIG,cons s.t. w′ 4 w

}
We observe that Bext

SIG,cons is also decidable in polynomial time.
Step 3. We proceed next to define the canonical functionality that corresponds to the consistency property.

Definition 5.13 (Canonical Functionality Fcons). The functionality Fcons ∈ FSIG equals F suppress,validate
SIG ,

where (1) suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN, VERIFY}, suppress((ACTION,
P, x)) = x, (i.e., the same as in Fdum

SIG ), and (2) validate(w) = 0 if and only if w ∈ Bext
SIG,cons.

The following corollary also follows from Theorem 4.1:

Corollary 5.14. If πΣ(SIG) realizes some F & Fcons, then Σ(SIG) is consistent.

In the case of consistency, the other direction also holds:

Theorem 5.15. If Σ(SIG) is consistent, then πΣ(SIG) realizes Fcons.

Remark 5.16. We first recall the definition of consistency as given in [Can04]. We call it “weak consistency”
as it restricts the adversary by requiring honest key generation.

Definition 5.17. A scheme Σ(SIG) = 〈gen, sign, verify〉 is weakly consistent if for all PPT attackers A,

Pr
[

(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);
φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2

]
≤ negl(λ).
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We now construct a counterexample Σ′ which satisfies completeness, unforgeability and weak consistency
as defined above, but in which the corresponding πΣ′ does not realize FSIG in [Can04] (or the FSIG that is
produced from our translation methodology).

Let Σ be a scheme that satisfies completeness, unforgeability and weak consistency. We modify such Σ
into Σ′: (1) prepend a bit b to the verification key; if b = 0 then the verification procedure remains the same;
if b = 1 then the verification procedure accepts its input message-signature pair with probability 1/2; (2)
the key generation algorithm returns a verification key starting with bit 0. Notice that Σ′ still satisfies the
three properties, completeness, unforgeability and weak consistency, since the honest key generation will never
return a verification key starting with bit 1. According to Theorem 2 in [Can04], the corresponding πΣ′ would
realize FSIG. This, however, does not hold. When the signer is corrupted at the beginning of the execution,
a verification key vk′ with starting bit 1 can be chosen and then two verification requests with the same input
〈m,σ, vk′〉 will return different verification results with non-negligible probability — 1/2 in this case.

Remark 5.18. Both Canetti’s [Can04] FCan
SIG and our canonical signature functionalityFSIG can be realized

by a signature protocol where the underlying signature scheme is CMA-secure, i.e., satisfies unforgeability,
correctness, and consistency.

The two functionalities by themselves are equivalent in the UC sense. This can be done by showing that
the dummy protocol in the FSIG-hybrid world realizes unconditionally FCan

SIG as well as the dummy protocol
in the FCan

SIG -hybrid world realizes unconditionally our FSIG. The proof requires the construction of two ideal
world simulators, one that interacts with the ideal functionality FSIG and simulates the view of any environ-
ment operating in the FCan

SIG hybrid world as well as a simulator that interacts with the functionality FCan
SIG and

simulates the view of any environment that operates in the FSIG hybrid world. The proof is very similar to
the corresponding proof regarding the oblivious transfer primitive given in Appendix B where we demonstrate
that our canonical oblivious transfer ideal functionality is UC equivalent to that of [CLOS02]); we refer to that
section for more details.

We note that a different formulation of digital signatures appeared in [Can05] that is stricter compared to
[Can04] and the one we present here in the sense that the adversary is not informed of signing or verify actions
when they are served by the functionality. As argued in [Can05] the difference in terms of what a digital
signature aims to achieve as a cryptographic component is superficial. Nevertheless, functionalities like these
could be captured by extending our definitional framework.

5.1.4 The canonical ideal signature functionality

The (canonical) ideal signature functionality FSIG = Fuf ∧Fcomp ∧Fcons and is shown in Figure 4. In light of
Theorem 3.7 we obtain the following:
Corollary 5.19. If πΣ(SIG) realizes some F & Fuf ∧Fcomp∧Fcons, then the signature scheme Σ(SIG) satisfies
the game-based properties of unforgeability, completeness, and consistency.

Canonical Signature Functionality FSIG

Actions: KEYGEN, SIGN, VERIFY

Well-formedness (WFSIG): Any (SIGN, 〈S, sid〉, ·) symbol must be preceded by a (KEYGEN, 〈S, sid〉) symbol.

Public and Secret Outputs (POSIG, SOSIG): For all w, a, POSIG(w, a) = ε, and SOSIG(w, a) = ε.

Suppress and Validate: (1) suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN, VERIFY},
suppress((ACTION,P, x)) = x, (2) validate(w) = 1 iff w 6∈ Bext

SIG,uf and w 6∈ Bext
SIG,comp and w 6∈ Bext

SIG,cons.

Figure 4: Ideal functionality for digital signature based on the canonical functionality template.

Comparison to previous signature functionalities. As shown before, the canonical functionalityFSIG from Fig-
ure 4 is UC-equivalent to the digital signature ideal functionality of [Can04] (refer to Remark 5.18). Never-
theless our canonical functionality capturing the consistency property as described above is derived (cf. Sec-
tion 5.1.3) from a game-based definition for consistency that is different from the one in [Can04]. The reason
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is that the consistency formulation given there falls short of capturing the intended properties for the digital
signature task in the UC setting. We elaborate on this issue below.

Recall that a first rendering of FSIG [Can01] failed to capture the consistency property, as pointed out
in [BH04]. The latter work, however, did not capture consistency fully either as was in turn pointed out in
[Can04], which performed a thorough investigation between the correspondence of the game-based security
formulation of the Goldwasser et al. [GMR88] notion for digital signatures and the FSIG ideal functionality.
Indeed, a correspondence theorem was shown in [Can04] establishing that any digital signature scheme secure
in the GMR sense would result in a UC-secure signature protocol.

However, as we now show with the help of our methodology, this correspondence does not stand. In fact,
when one applies our translation methodology to the three game-based definitions that are put forth in [Can04]
to capture the [GMR88] notion of security, the resulting functionality is not the FSIG functionality as defined
above. This is due to the fact that the consistency game as defined in [Can04] (cf. page 12, Definition 1)
assumes an honest key generation. More specifically, if our consistency game translation is applied to that
game, it results in the following bad language (see Lemma 5.12):

(BI/O
SIG,cons)

′ =

w

∣∣∣∣∣∣∣∣
w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)

(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2)

such that φ1 6= φ2


It follows that the corresponding canonical functionality F ′

cons would have a validate predicate that checks
for verification inconsistency only in the case that a KEYGEN symbol has been recorded in the history of the
functionality. This is too restrictive as it precludes corrupted signers that may never register a KEYGEN symbol
with the functionality (and in fact this is exactly the issue pointed out in [Can04] regarding the previous work
of [BH04]).

It is easy to see that the resulting (weaker) canonical functionality F ′
SIG = Fuf ∧ Fcomp ∧ F ′

cons resides at
a lower point compared to FSIG in the FSIG lattice. This is due to the fact that Bext

SIG,cons ⊇ (Bext
SIG,cons)

′ where

(Bext
SIG,cons)

′ is the extended bad language that corresponds to the bad language (BI/O
SIG,cons)

′. Furthermore, as
shown in Remark 5.16, it is possible to design a digital signature scheme Σ′ so that its corresponding protocol
πΣ′ UC-realizes F ′

SIG but fails to realize FSIG. This scheme passes the game-based formulation in [Can04]
and, based on our methodology, it will UC-realize F ′

SIG; nonetheless, FSIG will not be realized by this digital
signature. As a result, the appropriate formulation of the consistency game (from which we derive the language
B

I/O
SIG,cons) is the one presented in Definition 5.11, and this provides the exact game-based correspondence to

the FSIG canonical functionality.

5.2 Oblivious transfer

We consider the 1-out-of-2 version of oblivious transfer [Rab81, EGL85, Cré87]. The FOT functionality is
defined for two roles, the sender S and the receiver R. The actions, well-formedness, and public and secret out-
puts of FOT are given in Figure 5. We next describe the three constituent canonical functionalities of oblivious
transfer that correspond to its three basic properties: correctness, sender privacy and receiver privacy.

5.2.1 Correctness

In order to obtain the bad language for correctness, we observe that for every two messages (m0,m1) from the
sender and every selection bit i from the receiver, the value the receiver obtains should be equal to mi. Based
on this, we identify the set of strings that are inconsistent with the correctness property as:

B
I/O
OT,corr =

w

∣∣∣∣∣∣∣∣∣∣
w = abc or bac
where a = (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉),

b = (TRANSFER, 〈〈S, R, sid〉, R〉, i),
c = (TRANSFERRETURN, 〈〈S, R, sid〉, R〉,m′),

such that m′ 6= mi
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The corresponding extended bad language is Bext
OT,corr =

{
w ∈ L

I/O

Fdum
OT

∣∣∣ ∃w′ ∈ B
I/O
OT,corr such that w′ 4 w

}
.

Observe that Bext
OT,corr is decidable in polynomial time. Now the correctness class can be defined:

Definition 5.20 (Canonical Functionality Fcorr). The functionality Fcorr ∈ FOT equals F suppress,validate
OT , where

(1) suppress() satisfies that for all x, suppress((TRANSFER,P, x)) = x, (i.e., the same as in Fdum
OT ), and (2)

validate(w) = 0 if and only if w ∈ Bext
OT,corr.

5.2.2 Sender privacy

In order to capture sender privacy, we modify suppress() to withhold the sender’s input from the adversary.
This results in the following canonical functionality:

Definition 5.21 (Canonical Functionality Fssec). The functionality Fssec ∈ FOT equals F suppress,validate
OT , where

(1) validate() = 1 always, and (2) suppress(a) = (−)|m0|+|m1|, for a = (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉).

5.2.3 Receiver privacy

Similarly, we capture receiver privacy by suppressing the receiver’s input:

Definition 5.22 (Canonical Functionality Frsec). The functionality Frsec ∈ FOT equals F suppress,validate
OT , where

(1) validate() = 1 always, and (2) suppress(a) = (−)|i|, for a = (TRANSFER, 〈〈S, R, sid〉, R〉, i).

5.2.4 The canonical ideal OT functionality

Based on the above, we obtain the canonical functionality FOT = Fssec ∧ Frsec ∧ Fcorr, see Figure 5.

Canonical Oblivious Transfer Functionality FOT

Action: TRANSFER

Well-formedness (WFOT): Any TRANSFERRETURN symbol should be preceded by a TRANSFER symbol.

Public and Secret Outputs (POOT, SOOT): For all w, a, POOT(w, a) = ε.
For all w, SOOT(w, (TRANSFER, 〈〈S, R, sid〉, R〉, i)) = mi if w contains (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉)
and SOOT(w, (TRANSFER, 〈〈S, R, sid〉, S〉, 〈m0,m1〉)) = mi if w contains (TRANSFER, 〈〈S, R, sid〉, R〉, i).

Suppress and Validate: (1) suppress() satisfies that for all x suppress((TRANSFER,P, x)) = ε, and (2)
validate(w) = 1 if w 6∈ Bext

OT,corr.

Figure 5: Ideal functionality for oblivious transfer based on the canonical functionality template.

Comparison to previous OT functionalities. As shown in Appendix B, FOT from Figure 5 is UC-equivalent
to the oblivious transfer functionality as defined in [CLOS02], but different from the corresponding functional-
ity given in [Can05]. We elaborate on this below, which highlights a larger issue in the way ideal functionalities
interact with the adversary in the UC framework.

In [Can05], the notion of “delayed output” was introduced as a mechanism to enable the ideal-world ad-
versary to delay the output of a certain action any amount time necessary to make the view of the environment
indistinguishable to the real world’s. This is important, as failing to provide such capability to the adversary
may enable an impossibility result due to the existence of environments that can tell the real world from the
ideal by simply observing the failure of the simulator to “synchronize” with the protocol flow in the real world.

Now, while the delayed output artifact successfully serves functionalities such as zero-knowledge and com-
mitments (that turn out to be identical to our corresponding canonical versions), that is not the case for obliv-
ious transfer. This is due to the fact that the basic action in oblivious transfer requires the input contribution
from both the sender and the receiver prior to producing output. This asks for a more finely grained inter-
action between the ideal functionality and the ideal-world adversary. In our setting this is captured by the
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LEAKTRANSFER symbols that are sent to the adversary whenever a TRANSFER symbol is submitted by either
the sender or the receiver (and note that none of these symbols produce output to the receiver).

In contrast, in the OT functionality of [Can05] such notifications are handled with two delayed outputs,
something that forces the ideal functionality to wait when the receiver’s input is submitted in case the sender
has not submitted his input yet (cf. [Can05], Figure 25, page 108). Effectively, this creates a problem for OT
protocols where the receiver is supposed to send the first message: in such case the environment can distinguish
the real world from the ideal world by activating the receiver without activating the sender and observing the
network communication. This would not affect our canonical formulation of the OT functionality that notifies
the ideal world adversary using the LEAKTRANSFER symbols whenever either party provides input.

5.3 Commitments

Following Figure 1, any canonical functionality for commitment, FCOM, is defined for two types of roles, the
committer C and the verifier V , with two actions, COMMIT and OPEN. The WFCOM predicate and POCOM,SOCOM

mappings for FCOM are defined in Figure 6. Based on these functions the dummy functionality Fdum
COM is defined

(cf. Definition 3.3).

5.3.1 Correctness

In order to obtain the bad language for correctness, we observe that any committed value that is opened to
should be accepted. Based on this, we identify the set of strings that are inconsistent with the correctness
property as follows:

B
I/O
COM,corr =

{
w

∣∣∣∣ w = (COMMIT, 〈C, V, sid〉,m)(COMMITRETURN, 〈C, V, sid〉)
(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m, 0〉)

}
The bad language can further be extended as: Bext

COM,corr = {w ∈ L
I/O

Fdum
COM

| ∃w′ ∈ B
I/O
COM,corr such that w′ 4 w}.

The class of ideal functionalities that corresponds to the correctness property can now be defined as follows:

Definition 5.23 (Canonical FunctionalityFcorr). The functionalityFcorr ∈ FCOM equalsF suppress,validate
COM , where

(1) suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,corr.

5.3.2 Binding

The binding property basically states that any committed value that is opened to a different one should not be
accepted. Based on this, we identify the set of strings that are inconsistent with the binding property as follows:

B
I/O
COM,bind =

w

∣∣∣∣∣∣
w = (COMMIT, 〈C, V, sid〉,m)(COMMITRETURN, 〈C, V, sid〉)

(OPEN, 〈C, V, sid〉)(OPENRETURN, 〈C, V, sid〉, 〈m′, 1〉)
such that m 6= m′ for some m,m′


which can be extended as: Bext

COM,bind = {w ∈ L
I/O

Fdum
COM

∣∣∣ ∃w′ ∈ B
I/O
COM,bind such that w′ 4 w }. We now define

the class of ideal functionalities that corresponds to the binding property.

Definition 5.24 (Canonical FunctionalityFbind). The functionalityFbind ∈ FCOM equalsF suppress,validate
COM where

(1) suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,bind.

5.3.3 Hiding

For this property there is a natural hiding game. We apply our translation methodology to the game to obtain
the corresponding ideal functionality class.
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Definition 5.25 (Hiding). A commitment scheme Σ(COM) = 〈commit, verify〉 is hiding if for all PPT attackers
A = (A1,A2), it holds that Pr[(m0,m1, st) ← A1(1λ); b r← {0, 1}; (c, ξ) ← commit(mb); b∗ ← A2(st , c) :
b∗ = b ∧m0 6= m1] ≤ 1

2 + negl(λ).

The above definition can be modeled as a hiding game Ghide for the task COM as follows. The challenger
C is allowed to use algorithms commit(), verify() as oracles, and interacts with the attacker A = (A1,A2).
First A1 produces a tuple 〈m0,m1〉, where m0 6= m1. In response, the challenger randomly chooses a bit b and
queries the commit() oracle with mb to obtain 〈c, ξ〉. Then, C sends c to A2 to obtain b∗ as a guess of b. The
judge J decides that A wins the game if b∗ = b. We next proceed to apply the methodology in Section 4.2.2.
Step 1. We construct an environment ZA

hide and the corresponding ideal world adversary SΣ
hide based on the

game Ghide described above. In order to simulate the game, the environment first picks C, V from the names-
pace at random as well as a random sid . Then it requests the corruption of the party V and simulates A1 on input
1λ. Once A1 produces 〈m0,m1〉,ZA

hide flips a random coin b, gives to C the symbol (COMMIT, 〈C, V, sid〉,mb)
and waits for the transmission from C to V that contains the commitment c. Then, ZA

hide simulates A2 on input
c to obtain b∗ and terminates with 1 if and only if b = b∗ and m0 6= m1. The ideal world adversary SΣ

hide,
whenever it receives (LEAKCOMMIT, 〈C, V, sid〉,m), executes commit() on m and communicates the output
of the protocol to the environment (similarly, it simulates the real world in any other respect).
Step 2. Based on the environment ZA

hide we define the functionality class that corresponds to the hiding game:

Definition 5.26 (Canonical FunctionalityFhide). The functionalityFhide ∈ FCOM equalsF suppress,validate
COM , where

(1) validate() = 1 always, and (2) suppress(a) = (−)|m| for a = (COMMIT, 〈C, V, sid〉,m).

Based on Theorem 4.2, we have the following corollary:

Corollary 5.27. If πΣ(COM) realizes some F & Fhide, then Σ(COM) satisfies hiding.

We note that in this case the converse of the above corollary does not hold as hiding is not sufficiently strong
to imply the UC-realization of Fhide.

5.3.4 The canonical ideal commitment functionality

The (canonical) ideal commitment functionality FCOM = Fcorr∧Fbind∧Fhide, is instantiated in Figure 6, based
on the canonical functionality template.

Canonical Commitment Functionality FCOM

Actions: COMMIT and OPEN

Well-formedness (WFCOM): Symbols COMMITRETURN should be preceded by COMMIT, OPENRETURN preceded
by OPEN, OPEN by COMMIT, and OPENRETURN by COMMITRETURN.

Public and Secret Outputs (POCOM, SOCOM): For all w, a, SOCOM(w, a) = ε.
For all w, we have two cases (1) POCOM(w, (COMMIT, 〈C, V, sid〉,m)) = ε, and (2) POCOM(w, (OPEN, 〈C, V, sid〉)) =
m if w contains (COMMIT, 〈C, V, sid〉,m).

Suppress and Validate: (1) suppress() satisfies that for all m suppress((COMMIT,P,m)) = ε, and
suppress((OPEN,P)) = ε, and (2) validate(w) = 1 if w 6∈ Bext

COM,corr and w 6∈ Bext
COM,bind.

Figure 6: Ideal functionality for commitment based on the canonical functionality template.

Remark 5.28. FCOM can be shown to be equivalent (in the sense of UC-emulation) to the commitment function-
ality as it appears in [Can05], in a way similar to the one used to show the equivalence between our canonical
OT functionality and the one in [CLOS02]. As such, FCOM is unrealizable in the plain model. Interestingly, the
pairwise conjunction of its constituent functionalities is in fact realizable (refer to Figure 3 for the realizability
“horizon”). We leave the specification of the corresponding protocols as an exercise.
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5.4 Zero-knowledge proofs

Following Figure 1, the canonical functionality for zero-knowledge [GMR89, BG92], FR
ZK, is defined for two

types of roles, the prover P and the verifier V , with a single action PROVE. We denote the zero-knowledge
proof functionality class as FR

ZK. (Sometimes we omit the reference to R in the notation for simplicity.) The
WFZK predicate for FR

ZK, requires that a PROVE symbol should precede PROVERETURN. The public output
POZK returns 〈x, φ〉 whenever (PROVE, 〈P, V, sid〉, 〈x,w〉) is in the history, where φ = 1 if and only if 〈x,m〉
belongs to the relation that parameterizes the zero-knowledge task, and φ = 0 otherwise. Based on the above
the dummy functionality Fdum

ZK is defined (cf. Definition 3.3).

5.4.1 Completeness

In order to obtain the bad language for completeness, we observe that any (x,m) ∈ R should be accepted; the
set of strings that are inconsistent with the completeness property are as follows:

B
I/O
ZK,comp =

w

∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, 0〉)
such that (x,m) ∈ R


We further extend B

I/O
ZK,comp as follows: Bext

ZK,comp =
{

w ∈ L
I/O

Fdum
ZK

∣∣∣ ∃w′ ∈ B
I/O
ZK,comp such that w′ 4 w

}
. The

class of ideal functionalities that corresponds to the completeness property is as follows:

Definition 5.29 (Canonical Functionality FR
comp). The functionality FR

comp ∈ FR
ZK equals F suppress,validate

ZK

where (1) suppress() is same as in Fdum
ZK , and (2) validate(w) = 0 if and only if w ∈ Bext

ZK,comp.

5.4.2 Soundness

In order to obtain the bad language for soundness, we observe that any (x,m) 6∈ R should not be accepted;
therefore, the set of strings that are inconsistent with the completeness property are:

B
I/O
ZK,sound =

w

∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, 1〉)
such that (x, m) 6∈ R


We extend B

I/O
ZK,sound as follows: Bext

ZK,sound =
{

w ∈ L
I/O

Fdum
ZK

∣∣∣ ∃w′ ∈ B
I/O
ZK,sound such that w′ 4 w

}
. We next

define the class of ideal functionalities for soundness:

Definition 5.30 (Canonical Functionality FR
sound). The functionality FR

sound ∈ FR
ZK equals F suppress,validate

ZK

where (1) suppress() is same as in Fdum
ZK , and (2) validate(w) = 0 if and only if w ∈ Bext

ZK,sound.

We note that the soundness notion that FR
sound captures is the “strong” one, as stipulated by the knowledge

extraction property.

5.4.3 Zero-knowledge

To capture the zero-knowledge property, we suppress the input from the prover; based on the template in
Figure 1, we obtain the following functionality.

Definition 5.31 (Canonical Functionality FR
zk). The functionality FR

zk ∈ FR
ZK equals F suppress,validate

ZK , where (1)
validate() = 1 always, and (2) suppress(a) = (−)|x|+|m| for a = (PROVE, 〈P, V, sid〉, 〈x,m〉).

5.4.4 The canonical ideal ZK functionality

The ZK functionality equals FR
comp ∧ FR

sound ∧ FR
zk, which turns out to be equivalent (in the sense of UC-

emulation) to the zero-knowledge functionality as it appears in [Can05].
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Canonical Zero-Knowledge Functionality FR
ZK

Action: PROVE

Well-formedness (WFZK): Symbols PROVERETURN should be preceded by PROVE.

Public and Secret Outputs (POZK, SOZK): For all w, a, SOZK(w, a) = ε.
For all w, POZK(w, (PROVE, 〈P, V, sid〉, 〈x,m〉)) = 〈x, φ〉, where φ = 1 iff (x, m) ∈ R and φ = 0 otherwise.

Suppress and Validate: (1) suppress() satisfies that for all statement-witness pair (x,m), suppress((PROVE,
P, 〈x, m〉)) = ε, and (2) validate(w) = 1 if w 6∈ Bext

ZK,comp and w 6∈ Bext
ZK,sound.

Figure 7: Ideal functionality for zero-knowledge, based on the canonical functionality template.
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A The Universal Composability Framework

The UC framework was proposed by Canetti for defining the security and composition of protocols [Can01].
In this framework one first defines an “ideal functionality” of a protocol, and then proves that a particular
implementation of this protocol operating in a given computational environment securely realizes this ideal
functionality. The basic entities involved are n players P1, . . . , Pn, an adversary A, and an environment Z .
The real execution of a protocol π, run by the players in the presence of A and an environment machine Z ,
with input z, is modeled as a sequence of activations of the entities. The environment Z is activated first,
generating in particular the inputs to the other players. Then the protocol proceeds by having A exchange
messages with the players and the environment. Finally, the environment outputs one bit, which is the output
of the protocol.

The security of the protocols is defined by comparing the real execution of the protocol to an ideal process
in which an additional entity, the ideal functionality F , is introduced; essentially, F is an incorruptible trusted
party that is programmed to produce the desired functionality of the given task. The players are replaced by
dummy players, who do not communicate with each other; whenever a dummy player is activated, it forwards
its input to F . Let A denote the adversary in this idealized execution. As in the real-life execution, the output
of the protocol execution is the one-bit output of Z . Now a protocol π securely realizes an ideal functionality
F if for any real-life adversary A there exists an ideal-execution adversary S such that no environment Z , on
any input, can tell with non-negligible probability whether it is interacting with A and players running π in
the real-life execution, or with S and F in the ideal execution. More precisely, if the two binary distribution
ensembles, REALπ,A,Z and IDEALF ,S,Z , describing Z’s output after interacting with adversary A and play-
ers running protocol π (resp., adversary S and ideal functionality F), are computationally indistinguishable
(denoted REALπ,A,Z

c
≈ IDEALF ,S,Z ). For further details on the UC framework refer to [Can05].

B Equivalence of our OT and CLOS formulation

Here we show that our functionality FOT = Fcorr ∧ Fssec ∧ Frsec is equivalent to the one in [CLOS02], call it
FCLOS
OT (refer to page 23, Figure 1 in [CLOS02]; we consider 1-out-of-2 OT here). First are some observations.

Note that in the CLOS setting, the adversary is allowed to know all the communication between the functionality
and the dummy parties except for the secret information, and it is in charge of message delivery. (Note also
that “... and (sid) to S,...” is redundant because the simulator is allowed to learn the header of the message.)
Further, the Corrupt item is not explicitly shown in their functionality.

To show the equivalence, we consider the “dummy” protocol πdummy, which just forwards the input/output
communication between the functionality and the environment, and we show that πdummy in the FCLOS

OT -hybrid
world (resp., FOT-hybrid world) realizes functionality FOT (resp., FCLOS

OT ).

We first show that πdummy in the FCLOS
OT -hybrid world realizes functionality FOT. We need to construct a

simulator S such that no Z can tell with non-negligible probability whether it interacts with A and πdummy
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in the FCLOS
OT -hybrid world or with S and FOT. The simulator S invokes a copy of A internally, and

simulates for A the interaction with Z and the protocol πdummy in the FCLOS
OT -hybrid world.

In the case that no party is corrupted, whenever S receives (LEAKTRANSFER, 〈〈S, R, sid〉, S〉) symbol
from the “outside” functionalityFOT (which means the functionality has an input (TRANSFER, 〈〈S, R, sid〉, S〉,
〈x0, x1〉) from the dummy sender), S sends (sender, sid , ·) to the internally simulatedFCLOS

OT ; note thatA
is allowed to see (sender, sid) but not its contents. Whenever S receives (LEAKTRANSFER, 〈〈S, R, sid〉,
R〉) from the FOT (which means the functionality has an input (TRANSFER, 〈〈S, R, sid〉, R〉, i) from the
dummy receiver), S sends (receiver, sid , ·) to the simulated FCLOS

OT ; note again that A can read the
header (receiver, sid) but not the contents of the message. Now S simulates the inside functionality
to send (sid , ·) to the internally simulated receiver; again, note that A can read (sid) but not the content.
WheneverA delivers the command (sid , ·), S sends the outside functionality the symbol (INFLTRANSFER,
〈〈S, R, sid〉, R〉).

Next we discuss the cases where corruptions occur. Whenever A corrupts a party by sending a cor-
ruption command (Corrupt, S), S sends (CORRUPT, S) to the outside functionality FOT. As a result, the
outside functionality will return historyS to S and also S will be removed from the binding array, which
means that S will be allowed to revise some part in history; note that such a revision should not vio-
late the correctness restrictions defined by the extended bad languages (otherwise the validate predicate
will trigger an error symbol which immediately would cause the simulation to fail). S reads historyS and
if (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x0, x1〉) has been recorded, then it simulates the inside functionality to
reveal (x0, x1) to A. In the case that A further supplies a pair (x′0, x

′
1), and no (sid , ·) has been deliv-

ered to the receiver, S by using (PATCH, history), will revise (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x0, x1〉) into
(TRANSFER, 〈〈S, R, sid〉, S〉, 〈x′0, x′1〉); we note that the symbol (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x0, x1〉) is
allowed to be revised because the corresponding binding is empty given that party S is corrupted. Further,
we note that at the moment the (sid , ·) is delivered to the internal receiver, S will send an INFLTRANSFER
symbol to the outside functionality, and a TRANSFERRETURN symbol will be returned to the environment
as described above. Now, although (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x0, x1〉) is not marked, for the sake of
the simulation, S will not revise this symbol into (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x′0, x′1〉), as otherwise the
correction restriction would be violated.

Next we consider case when the receiver is corrupted. Whenever A sends a command (Corrupt, R)
to the inside functionality, S sends (CORRUPT, R) to the outside functionality FOT. Now the outside
functionality returns historyR to S and R will be removed from the binding array, and accordingly, S will
be allowed to revise some parts of history; based on historyR, S reconstructs the receiver’s input and output
and simulates the inside functionality to reveal such input and output to A.

This completes the construction of the simulator. We note that the simulation is perfect.
We now show the other direction, i.e., that πdummy in the FOT-hybrid world realizes FCLOS

OT . We again need
to construct a simulator S such that no Z can distinguish the two worlds with non-negligible probability.
The construction is very similar to the one above. The simulator S invokes a copy of A internally, and
simulates for A the interaction with Z and πdummy in the FOT-hybrid world. S interacts with the outside
functionality FCLOS

OT .
In the case of no corruptions, wheneverZ inputs (sender, sid , x0, x1) to the dummy sender, S delivers

the input to the outside functionality and learns the header (sender, sid), and it simulates the inside func-
tionality FOT to send (LEAKTRANSFER, 〈〈S, R, sid〉, S〉) to A. Whenever Z inputs (receiver, sid , i) to
the dummy receiver, S delivers the input to the outside functionality and learns the header (receiver, sid).
Now the functionality returns (sid , xi) for the receiver, and further it simulates the inside functionality FOT
to send (LEAKTRANSFER, 〈〈S, R, sid〉, R〉) to A. If both are received, and A returns (INFLTRANSFER,
〈〈S, R, sid〉, R〉) to the inside functionality, S delivers (sid , xi), which is produced by the outside func-
tionality, to the receiver.

Next we discuss the cases when corruptions occur. Whenever A corrupts a party by sending a corrup-
tion symbol (CORRUPT, S), S sends (Corrupt, S) to the outside functionality FCLOS

OT . Now the outside
functionality will return (x0, x1) if there is an input (sender, sid , x0, x1). S can construct historyS based
on (x0, x1) and return it toA. Similarly, wheneverA sends out (CORRUPT, R), S can issue a (Corrupt, R)
command and learn the receiver’s input and output, and based on them construct historyR for A. In the
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case that the sender is corrupted and no output has been received by the receiver, historyS can be revised
into (TRANSFER, 〈〈S, R, sid〉, S〉, 〈x′0, x′1〉); note that this would not violate the correctness restriction.
Now S operates as follows: S holds the input (receiver, sid , i) and until receives the revised information
(x′0, x

′
1) from A; then S delivers (receiver, sid , i) to the outside functionality and obtains the response

which will be (sid , x′i), and S delivers it to the receiver.
This concludes the simulation, and the simulation is perfect.

C Proofs

(Proof of Proposition 3.4). To prove the proposition, we need to show that (1) FT is associative, (2) FT has
an identity Fdum

T , and (3) FT is commutative.
First we show ∧ is associative. That is for all F1 = F suppress1,validate1

T ,F2 = F suppress2,validate2
T ,F3 =

F suppress3,validate3
T ∈ FT , we need to show (F1 ∧ F2) ∧ F3 = F1 ∧ (F2 ∧ F3). For any a = (ACTION,P, x),

we let suppress12(a) = suppress1(ACTION,P, (suppress2(a)) and let suppress23(a) = suppress2(ACTION,P,
(suppress3(a)). For (F1 ∧ F2) ∧ F3, we have suppress(12)3(a) = suppress12(ACTION,P, (suppress3(a))) =
suppress1(ACTION,P, (suppress2(ACTION,P, (suppress3(a))))). ForF1∧(F2∧F3), we have suppress1(23)(a)
= suppress1(ACTION,P, (suppress23(a))) = suppress1(ACTION,P, (suppress2(ACTION,P, (suppress3(a))))).
So suppress(12)3(a) = suppress1(23)(a). Further validate predicates follow logical conjunction operation, and
we have validate(12)3() = (validate1()∧validate2())∧validate3() = validate1()∧(validate2()∧validate3()) =
validate1(23)(). Together, we have (F1 ∧ F2) ∧ F3 = F1 ∧ (F2 ∧ F3).

Second, we show FT has an identityFdum
T . LetF0 = Fdum

T = F suppress0,validate0
T , then we have for any a =

(ACTION,P, x), suppress0(a) = x, and validate0() = 1. We need to show for all F1 = F suppress1,validate1
T ∈

FT , it holds thatF1∧F0 = F1 = F0∧F1. Now we have suppress10(a) = suppress1(ACTION,P, suppress0(a)) =
suppress1(ACTION,P, x) = suppress1(a), and suppress01(a) = suppress0(ACTION,P, suppress1(a)) =
suppress1(a); that is suppress10(a) = suppress1(a) = suppress10(a). Further we have validate10() = validate1()
∧validate0() = validate1()∧1 = validate1(), and validate01() = validate0()∧validate1() = 1∧validate1() =
validate1(); that is validate10() = validate1() = validate01(). Together, we have F1 ∧ F0 = F1 = F0 ∧ F1.

Third, we show FT is commutative. That is for allF1 = F suppress1,validate1
T ,F2 = F suppress2,validate2

T ∈ FT ,
we need to show F1 ∧ F2 = F2 ∧ F1. Note that for any a = (ACTION,P, x), the suppress() functions sub-
stitute with “–” the same locations of x. We let x12 = suppress12(a) = suppress1(ACTION,P, (suppress2(a))
and let x21 = suppress21(a) = suppress2(ACTION,P, (suppress1(a)). The same locations in both x12 and
x21 are substituted with “–” from x. So x12 = x21, i.e., suppress12(a) = suppress21(a). Further we know
validate1() ∧ validate2() = validate2() ∧ validate1() because validate predicates follow logical conjunction
operation. Together, we have F1 ∧ F2 = F2 ∧ F1.

Together we show (FT ,∧) is a commutative monoid with the dummy functionality Fdum
T as the identity

element.

(Proof of Theorem 3.6). Consider a task T , and its well-formedness predicate WFT . We construct a scheme
Σ that implements T such that πΣ realizes the dummy functionality Fdum

T . We first give description for πT ,
then we design the scheme Σ; the protocol πΣ will be obtained by implementing all actions of πT with the
algorithms of Σ. A πT entity P maintains an array history, initially empty, which is used to record the entity’s
action symbols. In particular, when P receives a symbol (ACTION,P, x) from the environment, it records
the symbol into its history, runs the predicate WFT over history, and if the predicate returns 0, then the input
is ignored, and the input will be removed from its history. Whenever required by the action, the πT entity
returns an output symbol (ACTIONRETURN,P, y), using the WFT predicate to ensure well-formedness. We
next describe the scheme Σ implementing the cryptographic task T . Recall that for each action T specifies a
domain and range; given that we are only interested in designing a protocol realizing the dummy functionality
we will simply define each action of Σ to map every input of the action domain D

(λ)
i to an element of the action

range R
(λ)
i . This captures the case of a non-interactive action. For interactive actions, say between two parties,
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Σ provides a two party protocol where the two parties coordinate according to the input-output behavior of the
action. This completes the description of Σ that together with πT defines the protocol πΣ.

Next, we construct an ideal world adversary S such that no environment Z can distinguish an execution
involving πΣ and the real world adversary from an execution of Fdum

T and the ideal world adversary. The
construction of S is as follows: S will simply perform a faithful simulation of the real world execution with
the protocol πΣ and the real-world adversary. This is possible as the canonical dummy functionality relays
all (valid) I/O from the environment without any modifications. We next prove that no environment Z can
distinguish the ideal from the real world for the above simulator S and in fact the simulation is perfect.

Observe that the only difference between the real world execution and the ideal world execution is the
fact that the verification of the well-formedness predicate in the real world is distributed amongst the parties
whereas in the ideal world it is handled by the canonical functionality. Observe that if the combined history of
all parties in an ideal world execution is well-formed then the local history of each party in the real world will
also be well-formed (as the same WFT predicate is used globally and locally and the predicate is only sensitive
in the order of symbols). Note that the reverse direction is not necessarily true; indeed a set of well-formed local
histories may not be composed to a global history that is well-formed (and this may provide an opportunity for
an adversarial environment to distinguish the real from the ideal world). Nevertheless, this is not the case due to
the fact that a Σ scheme, specifically the coordination component of the protocol implementation of interactive
actions, will ensure that the composition (according to the real order of events as induced by the adversary) of
the local histories of all parties in a real world execution will result in a well-formed global history.

In the case of corrupted parties observe that the composed global history of a real world execution might
cease to be well-formed as it may not include the local histories of corrupted parties (which are handled in-
ternally by the adversary). This discrepancy, however, will not result in any distinguishing advantage as the
simulator S has the power to insert symbols in the canonical functionality’s history that follow the actions of
corrupted parties and thus maintain the well-formedness of the functionality’s history.

Based on the above we conclude that the ideal world adversary S is performing a perfect simulation of the
ideal world when interacting with Fdum

T and thus πΣ is a UC-realization of Fdum
T .

(Proof of Theorem 3.7). Let π be a protocol that UC-realizes F and let F ′ be any functionality such that F ′ .
F which means that F = F ′∧F ′′ for some F ′′ ∈ FT . Let F ′ = F suppress1,validate1

T ,F ′′ = F suppress2,validate2
T ∈

FT . To prove the theorem, it suffices to prove the following statement that any protocol π that UC-realizes F
also UC-realizes F ′.

To prove that π UC-realizes F ′, we need to show that for any A′ there is an ideal world adversary S ′ such
that for all Z ′, IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . Notice that based on the condition that protocol π realizes F ,
for any A there is an ideal world adversary S such that for all Z , IDEALF ,S,Z ≈ REALπ,A,Z .

Given a real world adversary A′ for the protocol π, there exists an S from the premise of the theorem that
simulates it in the ideal world interacting with F . We construct an S ′ that interacts with F ′ as follows: S ′ sim-
ulates S in its interface with the functionality F ′ with the following modification: each time when F ′ has input
a = (ACTION,P, x) it gives to the adversary the symbol (LEAKACTION,P, x1) where x1 = suppress1(a);
given this symbol, S ′ computes x2 = suppress2(ACTION,P, x1) and gives the symbol (LEAKACTION,P, x2)
to S. This completes the description of S ′.

Given an environment Z ′ we will show that IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . From the premise of the
theorem we know that IDEALF ,S,Z′ ≈ REALπ,A′,Z′ , thus it suffices to show IDEALF ,S,Z′ ≈ IDEALF ′,S′,Z′ .

To each run of F with S and Z ′ we can correspond a run of F ′ with S ′ and Z ′; observe that the corre-
spondence will preserve the history of the canonical functionality, i.e., the history of F in the run with S and
Z ′ will be the same in the corresponding run of F ′ with S ′ and Z ′ (the environment is the same in both cases
and S ′ operates identically to S in terms of the way it influences the functionality). Thus, given that the event
that validate2(history) = 0 happens with negligible probability over all runs of F with S and Z ′ (since this a
real world simulation and whenever this event happens the functionality F returns an error symbol), it follows
that it also happens with negligible probability over the runs of F ′ with S ′ and Z ′. Consider the event that
Z ′ returns 1 over all runs of F with S and Z ′ and observe that its probability is the same to the event that
Z ′ returns 1 over all runs of F ′ with S ′ and Z ′ where both events are taken over the conditional space where
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validate2(history) = 1. Given that validate2(history) = 0 is a negligible probability event in either space the
proof of the theorem follows.

(Proof skeleton of Theorem 4.1). By contradiction, assume scheme Σ does not satisfy the property defined by
game G. This means there exists an attacker A winning the game. To finish the proof, we need to present an
environment Z which can distinguish the real from the ideal world with non-negligible probability. Based on
the successful attacker A, we use Z = ZA

G as defined in step 1 in Section 4.2.1. Note that in the real world, A
is a successful attacker against the schemeΣ, so Z outputs 1 with non-negligible probability. However in the
ideal world, the winning case would cause any canonical functionality F & FG to halt, so the environment Z
can never output 1. Therefore the constructed Z distinguishes the two worlds with non-negligible probability.
This finishes the proof.

(Proof skeleton of Theorem 4.2). By contradiction, assume Σ does not satisfy the hiding property defined by
G, i.e., there exists a successful attacker A who can guess the hidden bit b with non-negligible probability
higher than 1/2. Now we need to construct an environment that distinguish the real from the ideal world with
non-negligible probability. Based on the successful attacker A, we use Z = ZA

G as defined. Notice that in
the real world, the protocol transcripts will be based on the bit B, and given A is a successful attacker, Z will
output 1 with probability bounded away from 1/2 by a non-negligible fraction; on the other hand, in the ideal
world for any canonical functionality F & FG, since any such functionality will suppress “sensitive” part of
the input which stops b from the adversary S; now no matter how the adversary S is designed (note that S has
adversarial role in this proof), the simulated protocol transcripts will be independently of b, therefore even an
unbounded A will not be able to influence the output based on b. It follows that Z will output 1 with probability
1/2. It follows that Z distinguishes the two worlds with non-negligible probability.

(Proof of Lemma 5.2). (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First
we need to show B

I/O
SIG,uf ⊆ Y . Let w be any string in B

I/O
SIG,uf ; then it holds that there exist A,Σ such that w

equals the history string in the ideal world execution of the environmentZA
uf with adversary SΣ

uf and the dummy
functionality Fdum

SIG . Based on the definition of the environment ZA
uf and the adversary SΣ

uf , we know that the
symbols (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)(SIGNRETURN, 〈S, sid〉, σ1) · · ·
(SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN, 〈V, sid〉, 1)
will be recorded into history in the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,uf ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the ideal

world execution of ZA
uf with adversary SΣ

uf and the dummy functionality Fdum
SIG it holds that history = w. Given

that w ∈ Y , there exist string w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)
(SIGNRETURN, 〈S, sid〉, σ1) · · · (SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)
(VERIFYRETURN, 〈V, sid〉, 1). Define gen output 〈vk, sk〉. Define sign that upon input mi returns σi for
1 ≤ i ≤ `; Define A output 〈m′, σ′〉; Define verify that upon input 〈m′, σ′, vk〉 returns 1. It follows im-
mediately that the history string that in the ideal world execution of ZA

uf with adversary SΣ
uf and the dummy

functionality Fdum
SIG would equal w.

(2) It is easy to show the language B
I/O
SIG,uf is decidable.

(Proof of Theorem 5.5). Given that no forger A can win the unforgeability game above, we need to show that
there exists a adversary S such that no Z can distinguish the two worlds. The adversary S is designed as the
generic adversary for signature task.

Assume πΣ(SIG) cannot realize Fuf , i.e. for all S there exists an environment Z can distinguish the two
worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further simu-
lates the real world for the copy of Z .

26



We let F denote the event that in a run of πΣ(SIG) with Z , signer is honest, verification key vk is produced
by the signer, m is not signed by the signer, and 〈vk,m, σ〉 is valid. Observe that if event F does not occur, the
simulated Z cannot distinguish the two worlds. However, based on assumption above, Z can distinguish the
two worlds with non-negligible probability, which means event F must occur with non-negligible probability,
i.e., A is a successful forger.

(Proof of Lemma 5.7). (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First
we need to show B

I/O
SIG,comp ⊆ Y . Let w be any string in B

I/O
SIG,comp; then it holds that there exist A,Σ such

that w equals the history string in the ideal world execution of the environment ZA
comp with adversary SΣ

comp

and the dummy functionality Fdum
SIG . Based on the definition of the environment ZA

comp and the adversary
SΣ

comp, we know that the symbols (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m)
(SIGNRETURN, 〈S, sid〉, σ) (VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0) will be recorded into
history in the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,comp ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the

ideal world execution ofZA
comp with adversary SΣ

comp and the dummy functionalityFdum
SIG it holds that history =

w. Given that w ∈ Y , there exist w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m)
(SIGNRETURN, 〈S, sid〉, σ)(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0). Define gen output
〈vk, sk〉. Define sign that upon input m returns σ; Define A output 〈m,σ〉; Define verify that upon input
〈m, σ〉 returns 0. It follows immediately that the history string that in the ideal world execution of ZA

comp with
adversary SΣ

comp and the dummy functionality Fdum
SIG would equal w.

(2) It is easy to show the language B
I/O
SIG,comp is decidable.

(Proof of Theorem 5.10). Given that no attacker A can win the completeness game above, we need to show
that there exists an ideal world adversary S such that no Z can distinguish the two worlds. The adversary S is
designed as the generic adversary for the signature task (that performs a simulation of the real-world).

Assume πΣ(SIG) cannot realize Fcomp, i.e. for all S there exists an environment Z can distinguish the
two worlds with non-negligible probability. We construct A by simulating a copy of Z inside; and A further
simulates the real world for the copy of Z . The adversary A will output the plaintext m that corresponds to the
following event F :

F is defined as the event that in a run of πΣ(SIG) withZ , an honest signer, the verification key vk is produced
by the signer, m is signed by the signer into σ based on the vk, and 〈vk,m, σ〉 verifies to 0. Observe that if
the event F does not occur, the simulated Z cannot distinguish the two worlds. However Z can distinguish
the two worlds with non-negligible probability, which means that the event F must occur with non-negligible
probability, i.e., A is a successful completeness attacker.

(Proof of Lemma 5.12). (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First
we need to show B

I/O
SIG,cons ⊆ Y . Let w be any string in B

I/O
SIG,cons; then it holds that there exist A,Σ such that

w equals the history string in the ideal world execution of the environment ZA
cons with adversary SΣ

cons and the
dummy functionality Fdum

SIG . Based on the definition of the environment ZA
cons and the adversary SΣ

cons, we
know that the symbols (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)
(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2) where φ1 6= φ2 will be recorded into history
in the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show B
I/O
SIG,cons ⊇ Y . Let w be any string in Y . We will construct A,Σ such that

in the ideal world execution of ZA
cons with adversary SΣ

cons and the dummy functionality Fdum
SIG it holds that

history = w. Given that w ∈ Y , there exist string w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)
(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN,
〈V2, sid〉, φ2) with φ1 6= φ2. Define gen output 〈vk, sk〉. Define A output 〈m,σ〉; Define verify that upon
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input 〈m,σ, vk〉 returns φ1 for the first time and φ2 for the second time. It follows immediately that the history
string that in the ideal world execution of ZA

cons with adversary SΣ
cons and the dummy functionality Fdum

SIG would
equal w.

(2) It is easy to show the language B
I/O
SIG,cons is decidable.

(Proof of Theorem 5.15). Given that no attacker A can win the consistency game above, we need to show that
there exists an ideal world adversary S such that no Z can distinguish the two worlds. The adversary S is
designed as the generic ideal world adversary (that performs a simulation of the real-world).

Assume πΣ(SIG) cannot realize Fcons, i.e., for all S there exists an environment Z that can distinguish the
two worlds with non-negligible probability. A operates by simulating a copy of Z in the real world; it returns
m,σ, vk based on an event F as defined below.

We let F denote the event that in a run of πΣ(SIG) withZ , the same tuple 〈vk,m, σ〉 is verified with different
results in two verifications. Observe that if event F does not occur, the simulated Z cannot distinguish the two
worlds. However Z can distinguish the two worlds with non-negligible probability, which means event F must
occur with non-negligible probability, i.e., A is a successful consistency attacker.
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