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Abstract. The Brezing-Weng method is a general framework to gen-
erate families of pairing-friendly elliptic curves. Here, we introduce an
improvement which can be used to generate more curves with larger dis-
criminants. Apart from the number of curves this yields, it provides an
easy way to avoid endomorphism rings with small class number.
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1 Introduction

Since its birth in 2000, pairing-based cryptography has solved famous
open problems in public key cryptography: the identity-based key-exchange
[8], the one-round tripartite key-exchange [6] and the practical identity-
based encryption scheme [3]. Pairings are now considered not only as tools
for attacking the discrete logarithm problem in elliptic curves [7] but as
building blocks for cryptographic protocols.

However, for these cryptosystems to be practical, elliptic curves with
an efficiently computable pairing and whose discrete logarithm problem
is intractable are required.

There are two general methods for the generation of such curves: the
Cocks-Pinch method, which generates individual curves, and the Brezing-
Weng method, which generates families of curves while achieving better
ρ-values.

Our improvement extends constructions based on these methods by
providing more curves with discriminants larger than what the construc-
tions would normally provide (by a factor typically up to 109 given current
complexity of algorithms for computing the Hilbert class polynomial). In
the Cocks-Pinch method the discriminant can be freely chosen so our
improvement is of little interest in this case; however, the Cocks-Pinch
method is limited to ρ ≈ 2. To achieve smaller ρ-values, one has to use
the Brezing-Weng method where known efficient constructions mostly



deal with small (one digit) discriminants; our improvement then provides
an easy and efficient way to generate several curves with a wide range
of discriminants, extending known constructions while preserving their
efficiency (in particular, the ρ-value).

Curves generated by our improvement, having a larger discriminant,
are possibly be more secure than curves whose endomorphism ring has
small class number (even though, at the time of this writing, no attack
taking advantage of a small class number is known).

In Section 2, we recall the general framework for pairing-friendly el-
liptic curve generation. Then, in Section 3, we present the Brezing-Weng
algorithm and our improvement. Eventually, in Section 4, we study prac-
tical constructions and their efficiency; we also present a few examples.

2 Framework

2.1 The Embedding Degree

Let E be an elliptic curve defined over a prime finite field Fp. We consider
the discrete logarithm problem in some subgroup H of E of large prime
order r. In addition, we assume that r is different from p.

For security reasons, the size of r should be large enough to avoid
generic discrete logarithm attacks. For efficiency reasons, it should also
not be too small when compared to the size of the ground field; indeed,
it would be impractical to use the arithmetic of a very large field to
provide the security level that could be achieved with a much smaller
one. Therefore, the so-called ρ-value

ρ :=
log p
log r

must be as small as possible

We wish to generate such an elliptic curve and ensure that it has an
efficiently computable pairing, that is a non-degenerate bilinear map from
H2 to some cyclic group.

Known pairings on elliptic curves, i.e. the Weil and Tate pairings,
map to the multiplicative group of an extension of the ground field. By
linearity, the non-degeneracy of the pairing (on the subgroup of order r)
forces the extension to contain primitive rth roots of unity. Let Fpk be the
minimal such extension; the integer k is called the embedding degree. It
can also be defined elementarily as

k = min{i ∈ N : r|pi − 1}.
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There are different ways of evaluating pairings, each featuring spe-
cific implementation optimizations. However, all known efficient methods
are based on Miller’s algorithm which relies on the arithmetic of Fpk .
Therefore, the evaluation of a pairing can only be carried out when k is
reasonably small.

In addition, the discrete logarithm problem must be practically in-
tractable in both the subgroup of the curve and the multiplicative group
of the embedding field. At the time of this writing, minimal security can
be provided by the bounds

log2 r ≥ 160 and k log2 p ≥ 1024.

However, these are to evolve and, as the bound on k log2 p is expected to
grow faster than that on log2 r (mainly because of improvements on the
index-calculus attack), we have to consider larger embedding degrees in
order to preserve small ρ-values.

2.2 Curve Generation

In order to generate an ordinary elliptic curve with a large prime order
subgroup and an efficiently computable pairing, we look for suitable values
of the parameters:

– p, the cardinality of the ground field;
– t, the trace of the Frobenius endomorphism of the curve (such that

the curve has p+ 1− t rational points);
– r, the order of the subgroup;
– k, its embedding degree.

Here,“suitable”means that there exists a curve achieving those values.
This consistency of the parameters can be written as the following list of
conditions:

1. p is prime.
2. t is an integer relatively prime to p.
3. |t| ≤ 2

√
p.

4. r is a prime factor of p+ 1− t.
5. k is the smallest integer such that r | pk − 1.

By a theorem of Waterhouse [10], Conditions 1–3 ensure that there
exists an ordinary elliptic curve over Fp with trace t. The last conditions
then imply that its subgroup of order r has embedding degree k.
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When r does not divide k —which is always the case in cryptographic
applications as we want k to be small (for the pairing to be computable)
and r to be large (to avoid generic discrete logarithm attacks)— Condi-
tion 5 is equivalent to r | Φk (p), which is a much more handy equation;
therefore, assuming Condition 4, it is also equivalent to

r | Φk (t− 1) .

To retrieve the Weierstrass equation of a curve with such parame-
ters using the complex multiplication method, we need to look at −D,
the discriminant (which need not be squarefree) of the quadratic order
in which the curve has complex multiplication. Indeed, the complex mul-
tiplication method is only effective when the order has reasonably small
class number. In practice, it is enough for D to be a small positive integer.

Writing the Frobenius endomorphism as an element of the complex
multiplication order leads to the very simple condition

∃y ∈ N, 4p = t2 +Dy2

which ensures that −D is the actual discriminant. It is referred to as the
complex multiplication equation. Note that, instead of being added to the
list, this condition may supersede Condition 3 as it is, in fact, stronger.

Using the cofactor of r, namely the integer h such that p+ 1− t = hr,
the complex multiplication equation can also be written as

Dy2 = 4p− t2 = 4hr − (t− 2)2 .

A remarkable fact is that if both the above equation considered mod-
ulo r and the “original” complex multiplication equation hold, the curve
has a subgroup of order r.

Assuming that p > 5, the third condition implies that p | t if and only
if t = 0. Therefore, as p is expected to be large, we only have to check
whether t 6= 0. This condition is omitted from the list below as it (mostly)
always holds in practical constructions; bear in mind that it is required,
though.

Finally, we can summarize the requirements to generate a pairing-
friendly elliptic curve; we are looking for:

p, r primes
t, y integers
D, k positive integers

such that

r | Dy2 + (t− 2)2

r | Φk (t− 1)
t2 +Dy2 = 4p
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Note that, in the above equations, r can actually be allowed to be a
prime times a small cofactor. Of course, this leads to equivalent conditions
and is thus of little theoritical interest but, in some practical calculations,
r appears to be of such a form and it would be too bad to miss the
corresponding curves.

3 Algorithms

Let us fix D and k as small positive integers. The Cocks-Pinch method
consists in solving the above equations to retrieve values of p, r, t and y;
it proceeds in the following way:

1. Choose a prime r such that the finite field Fr contains
√
−D and z,

some primitive kth root of unity.
2. Put t = 1 + z and y = t−2√

−D
mod r.

3. Take lifts of t and y in Z and put p = 1
4

(
t2 +Dy2

)
.

This algorithm has to be run for different parameters r and z until the
output p is a prime integer; then, the complex multiplication method can
be used to generate an elliptic curve over Fp with p + 1 − t points, a
subgroup of order r and embedding degree k.

Asymptotically, pairing-friendly elliptic curves generated by this algo-
rithm have ρ-value 2.

3.1 The Brezing-Weng Method

The Brezing-Weng method starts similarly by fixing small positive inte-
gers D and k. Then, it looks for solutions to these equations as polyno-
mials p, r, t and y in Q [x]. Once a solution is found, for any integer x,
an elliptic curve with parameters (p (x) , r (x) , t (x) , y (x) , D, k) can be
generated provided that p (x) and r (x) are prime and that t (x) and y (x)
are integers.

To enable this, we expect polynomials p and r to have infinitely many
simultaneous prime values. There is actually a very precise conjecture on
the density of prime values of a family of polynomials:

Conjecture 1 (Bateman and Horn [1]). Let f1, . . . , fs be s distinct
(non-constant) irreducible integer polynomials in one variable with posi-
tive leading coefficient. The cardinality of RN , the set of positive integers
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x less that N such that the fi (x)’s are all prime, has the following asymp-
totic behavior:

cardRN ∼
C (f1, . . . , fs)∏

i deg fi

∫ N

2

du

(log u)s when N →∞,

the constant C (f1, . . . , fs) being defined as

∏
p∈P

(
1− 1

p

)−s
(

1− 1
p

card

{
x ∈ Fp :

∏
i

fi (x) = 0

})

where P denotes the set of prime numbers.

The latter constant quantifies how much the fi’s differ from independent
random number generators, based on their behavior over finite fields.

As we only need a quick computational way of checking polynomials
p and r, we use a weaker corollary, earlier conjectured by Schinzel [9] and
known as hypothesis H, which just consists in assuming that the constant
C (fi) is non-zero. Consider two polynomials, p and r; in that case, the
corollary states that, provided that

gcd {p (x) r (x) : x ∈ Z} = 1,

the polynomials p and r have infinitely many simultaneous prime values.
Actually, there is a subtle difference with the polynomials we are deal-

ing with here: they might have rational coefficients. However, we believe
that the hypothesis of the above conjecture can be slightly weakened as

gcd {p (x) r (x) : x ∈ Z such that p (x) ∈ Z and r (x) ∈ Z} = 1

so to work with families of rational polynomials. Of course, we use the
convention gcd ∅ = 0 (in case there is no x such that both p (x) and r (x)
are integers).

Given small positive integers D and k, the Brezing-Weng method
works as follows:

1. Choose a polynomial r with positive leading coefficient such that
Q [x] / (r) is a field containing

√
−D and z, some primitive kth root of

unity.
2. Put t = 1 + z and y = t−2√

−D
(represented as polynomials modulo r).

3. Take lifts of t and y in Q [x] and put p = 1
4

(
t2 +Dy2

)
.
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This algorithm has to be run for different parameters r and z until the
polynomials p and r satisfy the above conjecture. Then, we might be able
to find values of x at which the instantiation of the polynomials yields a
suitable set of parameters and thus generate an elliptic curve.

To heuristically check whether p and r satisfy the above conjecture,
we compute the gcd of the product p (x) r (x) for those x ∈

{
1, . . . , 102

}
such that p (x) and r (x) are both integers. If this gcd is 1, the hypothesis
of the conjecture is satisfied; otherwise, we assume it is not.

The main feature of this algorithm is that the ρ-value of the generated
curves is asymptotically equal to deg p

deg r ; therefore, a good ρ-value will be
achieved if the parameters (D, k, r, z) can be chosen so that the polyno-
mial p is of degree close to that of r. Because of the way p is defined, the
larger the degree of r is, the more unlikely this is to happen.

Such wise choices are rare and mainly concerned with small discrim-
inants; indeed, when D is a small positive integer,

√
−D is contained in

a cyclotomic extension of small degree which can therefore be taken as
Q [x] / (r), thus providing a r-polynomial with small degree.

There exist a few wise choices for large D (cf. Paragraph 6.4 of [4])
but those are restricted to a small number of polynomials (p, r, t, y) and
do not provide as many families as we would like.

3.2 Our Improvement

The key observation is that, if there exists an elliptic curve with param-
eters (p, r, t, y,D, k), then for every divisor n of y there also exists an
elliptic curve with parameters

(
p, r, t, 1

ny,Dn
2, k
)
. Note that this trans-

formation preserves the ground field and the number of point of the curve,
and therefore its ρ-value.

For one-shot Cocks-Pinch-like methods, this is of little interest since
we could have set the discriminant to be −Dn2 in the first place. How-
ever, for the Brezing-Weng method where good choices of the parameters
(D, k, r, z) are not easily found, it provides a way to generate curves with
a wider range of discriminants with the same machinery that we already
have.

This improvement works as follows:

1. Generate a family (p, r, t, y,D, k) using the Brezing-Weng method.
2. Choose an integer x such that p (x) and r (x) are prime, and t (x) and
y (x) are integers.
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3. Compute the factorization of y (x).
4. Choose a divisor n of y (x) and generate a curve with parameters(

p (x) , r (x) , t (x) , 1
ny (x) , Dn2, k

)
using the complex multiplication

method.

In Step 3, we do not actually have to compute the complete factor-
ization of y (x). Indeed, n cannot be too large in order for the complex
multiplication method with discriminant −Dn2 to be practical. So, we
only have to deal with the smooth part of y (x).

However, to avoid efficiently computable isogenies between the original
curve (with n = 1, as generated by the standard Brezing-Weng method)
and our curve, n must have a sufficiently large prime factor [5]. Indeed,
such an isogeny would reduce the discrete logarithm problem from our
curve to the original curve.

Therefore, we recommend to choose a prime factor n of y (x) as large as
possible among those n such that the complex multiplication method with
discriminant −Dn2 is still practical —i.e. the Hilbert class polynomial is
computable in reasonable time. Nowadays, the computation of the Hilbert
class polynomial for a discriminant with class number approximately 104

is a matter of minutes; we refer to [2] for quantitative statements. As the
class number for discriminant −Dn2 is roughly n, we advise to choose n
in the integer interval

[
103; 105

]
, depending on the available processing

power.
With such an n, the class number of the quadratic order with discrimi-

nant−Dn2 will be reasonably large. This helps avoiding potential (though
not yet known) attacks on curves with principal or nearly-principal en-
domorphism ring.

A toy example. Let D = 8, k = 48 and r = Φk (the cyclotomic
polynomial of order k).

As x is a primitive kth root of unity in Q [x] / (r), put

t (x) = 1 + x and
√
−D = 2

(
x6 + x18

)
.

The Brezing-Weng method outputs polynomials

y (x) =
1
4
(
−x11 + x10 − x7 + x6 + x3 − x2

)
and p =

1
4
(
t2 +Dy2

)
and the degree of p is such that this family has ρ-value 1.375.

For example, if x = 137 then

p (x) = 12542935105916320505274303565097221442462295713

8



which is a prime number and r (x) is a prime number as well. The next
step is to factor y (x) as

y (x) = −1 · 2 · 17 · 1372 · 229 · 9109 · 84191 · 706631

and n can possibly be any product of these factors.
Take for instance n = 17, which results in discriminant −2312 with

class number 16 (as opposed to class number one which would be provided
by the standard Brezing-Weng method, i.e. with n = 1). The Weierstrass
equation of a curve with parameters

(
p (x) , r (x) , t (x) , 1

ny (x) , Dn2, k
)

is
given by the complex multiplication method as

Y 2 = X3 + 935824186433623028047894899424144532036848777X
+ 8985839528233295688881465643014243982999429660;

this being, of course, an equation over Fp(x).

4 Constructions

We already mentioned that n should have a large prime factor. To increase
chances for y to have such factors, we seek constructions where y is a
nearly-irreducible polynomial, i.e. of degree close to that of its biggest (in
terms of degree) irreducible factor.

Many constructions based on the Brezing-Weng method can be found
in Section 6 of the survey article [4]. However, only few involve a nearly-
irreducible y (most of those y are divisible by a power of x). Here, we
describe a generic construction that is likely to provide nearly-irreducible
y’s.

4.1 Generic Construction

Fix an odd prime D and a positive integer k.
The extension Q [x] / (r) has to contain primitive kth roots of unity;

the simplest choice is therefore to consider a cyclotomic extension.
So, let us put r = Φke for some integer e to be determined. Let ζD be

a primitive Dth root of unity; the Gauss sum√(
−1
D

)
D =

D−1∑
i=1

(
i

D

)
ζi
D

shows that, for
√
−D to be in Q [x] / (r), the product ke may be any

multiple of εD where ε = 4 if −1 is a square modulo D, ε = 1 otherwise.
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Therefore, we can use the following setting for the Brezing-Weng
method:

1. Choose an odd prime D and a positive integer k.
2. Put ε = 4 if −1 is a square modulo D, ε = 1 otherwise.
3. Choose a positive integer e such that εD | ke.
4. Choose a positive integer f relatively prime to k.
5. Put r = Φke, z = xef .
6. Use the expression

√
−D = x

ke
ε

D−1∑
i=1

(
i

D

)
xi ke

D mod r

for the computation of y in the Brezing-Weng method.

As the latter polynomial is of large degree, it can be expected to be
quite random once reduced modulo r. Therefore, it is likely to be nearly-
irreducible and so the polynomial y given by the Brezing-Weng method
might also be nearly-irreducible.

To support this expectation, we have computed δ := deg m
deg y where m

is the biggest irreducible factor of y = −1
D (z − 1)

√
−D, the polynomials

for z and
√
−D being given by the above algorithm. There are 4670 valid

quadruplets (D, k, e, f) ∈ {1, . . . , 20}4 (i.e. for which D is an odd prime
and εD | ke); the following table gives the number of valid quadruplets
in this range leading to values of δ with prescribed first decimal.

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
79 27 51 72 26 309 388 320 807 1127 1464

We see that, in this range, more than 70% of valid quadruplets lead to a
y-polynomial whose largest irreducible factor is of degree at least 0.8 deg y.

4.2 Examples

Discriminant 3. Let k = 9, D = 3, e = 1 and f = 4.
The Brezing-Weng method outputs the polynomials

p (x) = 1
3

(
x8 + x7 + x6 + x5 + 4x4 + x3 + x2 + x+ 1

)
y (x) = 1

3

(
x4 + 2x3 + 2x+ 1

)
which represent a family of elliptic curves with ρ-value 1.33.
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To generate a cryptographically useful curve from this family, we look
for an integer x such that p (x) is a prime, r (x) is nearly-prime and
y (x) is an integer; we also have to make sure that p (x)k and r (x) are of
appropriate size for both security and efficiency.

Many such x’s are easily found by successive trials; for instance, in
the integer interval

[
108; 108 + 2 · 106

]
, there are 925 of them, which is

only 6 times less than what a pair of independent random number gener-
ators would be expected to achieve (calculated as

∫ 108+2·106

108 log−2 (x) dx '
5888); 364 of these x’s have a prime factor in the integer interval

[
103; 105

]
,

which can therefore be used as n in our algorithm.
For example, let us put x = 100026508; we obtain:

p (x) = 33404087284979282356159367134485\
14719712300943298532712491943583

r (x) = 3 · 333863844794566584083209683874329354405978154219
y (x) = 47 · 227 · 3529 · 27759659 · 31926380379504181

If we choose n = 3529, the discriminant is −37361523 and has class
number 1176; computations give a Weierstrass equation for the curve:

Y 2 = X3 + 32465585675528475154686711463989\
30389227646675927893599247518644X

+ 10509028022025889317738018597831\
15352914330802852418162001031235

Discriminant 7. Let k = D = 7, r = Φ7 (i.e. e = 1) and f = 3. The
Brezing-Weng method outputs the polynomials

y (x) = 1
7

(
−2x5 − x3 + 2x2 + 2x− 1

)
p (x) = 1

7

(
x10 + x8 − 2x7 + 6x3 − x+ 2

)
which represent a family of elliptic curves with ρ-value 1.66.

For instance, if x = 100082571, we obtain:

p (x) = 1440411212169845436143835468640473323570\
4509305009333005793207022595657279270011

r (x) = 7 · 71 · 2022061384834451573585157936381299162262633341
y (x) = −2 · 5 · 7 · 17 · 31 · 43 · 2713 · 331997537687 · 2007994204551194071

If we choose n = 2713, the discriminant is −51522583 and has class
number 2712; computations give a Weierstrass equation for the curve:

Y 2 = X3 + 5480003837932136059109680288524914164616\
427389835511345216890350693919602080185X

+ 1075077622974369698869856782738812379262\
6891045118992108981946788799710877883221
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