
Oblivious Transfer based on the McEliece Assumptions

Rafael Dowsley∗ Jeroen van de Graaf† Jörn Müller-Quade‡

Anderson C. A. Nascimento§

March 27, 2008

Abstract

We implement one-out-of-two bit oblivious transfer (OT) based on the assumptions
used in the McEliece cryptosystem: the hardness of decoding random binary linear
codes, and the difficulty of distinguishing a permuted generating matrix of Goppa codes
from a random matrix. To our knowledge this is the first OT reduction to these problems
only.

1 Introduction

Oblivious transfer [30, 26, 11] is a primitive of central importance in modern cryptogra-
phy as it implies two-party secure computation [15, 19] and multi-party computation [9].
There exist several flavors of OT, but they are all equivalent [8]. In this work, we focus
on the so-called one-out-of-two oblivious transfer (OT). This is a two-party primitive
where a sender (Alice) inputs two bits b0, b1 and a receiver (Bob) inputs a bit c called the
choice bit. Bob receives bc and remains ignorant about b1−c, while Alice only receives a
confirmation message from Bob after he completed his part of the protocol successfully.
In particular, Alice cannot learn Bob’s choice.

OT can be constructed based on computational assumptions, both generic such as
enhanced trapdoor permutations [11, 13, 16] and specific such as factoring [26], Diffie-
Hellman [3, 24, 1], Quadratic or Higher-Order Residuosity, or from the Extended Rie-
mann Hypothesis [17].
Our result: We build OT based on the two assumptions used in the McEliece cryptosys-
tem [22]: (1) hardness of decoding of a random linear code (known to be NP-complete [4],
and known to be equivalent to the learning parity with noise (LPN) problem [27]); and
(2) indistinguishability of the scrambled generating matrix of the Goppa code [21] from
a random one.
Comparison to other work: To our knowledge, this is the first oblivious transfer
protocol based on the McEliece assumptions only and, concurrently with [18], the first
computationally secure oblivious transfer protocol not known to be broken by a quan-
tum computer. However, for obtaining a protocol of equivalent complexity, [18] uses
additional assumptions: the random oracle assumption and permuted kernels. Also,

∗Department of Electrical Engineering, University of Brasilia. Campus Universitario Darcy
Ribeiro,Brasilia, CEP: 70910-900, Brazil, Email:rafaeldowsley@redes.unb.br

†Laboratrio de Computao Cientfica, Universidade Federal de Minas Gerais, CEP 31270-901, Brazil. E-
mail: jvdg@ufmg.br

‡Universität Karlsruhe, Institut fuer Algorithmen und Kognitive Systeme. Am Fasanengarten 5, 76128
Karlsruhe, Germany. E-mail: muellerq@ira.uka.de

§Department of Electrical Engineering, University of Brasilia. Campus Universitario Darcy
Ribeiro,Brasilia, CEP: 70910-900, Brazil. E-mail: andclay@ene.unb.br

1

[18] needs Shamir’s zero knowledge proofs [29] which are avoided in our simpler con-
struction. Our protocol is unconditionally secure for Bob and computationally secure
for Alice.

In this work, we consider only static adversaries, i.e., we assume that either Alice or
Bob is corrupted before the protocol begins.

2 Preliminaries

In this section, we establish our notation and provide some facts from coding theory
and formal definitions of security for oblivious transfer and bit commitment. Then,
for the sake of completeness, we describe the McEliece cryptosystem and introduce the
assumptions on which its security, and also the security of our protocol is based.

Henceforth, we will denote by x ∈R D a uniformly random choice of element x from
its domain D; and by ⊕ a bit-wise exclusive OR of strings. All logarithms are to the
base 2.

Two sequences {Xn}n∈N and {Yn}n∈N of random variables are called computationally
indistinguishable, denoted X

c
= Y , if for every non-uniform probabilistic polynomial-time

distinguisher D there exists a negligible function ε(·) such that for every n ∈ N,

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < ε(n)

2.1 Security Definition of Oblivious Transfer

Let us denote by V iewÃ(Ã(z), B(c)) and V iewB̃(A(b0, b1), B̃(z)) the views of dishonest
Alice and Bob, respectively, which represent their inputs z, results of all local compu-
tations, and messages exchanged. Our definition of security is based on the one shown
in [17] (conveniently adapted to protocols with more than two messages).

Definition 1. A protocol [A, B](b0, b1; c) is said to securely implement oblivious trans-
fer, if at the end of its execution by the sender Alice and the receiver Bob which are
modelled as probabilistic polynomial time (PPT) Turing machines having as their input
a security parameter N , the following properties hold:

• Completeness: when the players honestly follow the protocol, Bob outputs bc while
Alice has no output.

• Security for Alice: For every PPT adversary B̃, every input z, and a (sufficiently
long) random tape RB chosen at random, there exists a choice bit c such that
for bc ∈ {0, 1} the distribution (taken over Alice’s randomness) of runs of B̃(z)
using randomness RB with Alice having input bc and bc = 0 is computationally
indistinguishable from the distribution of runs with Alice having input bc and bc =
1.

• Security for Bob: For any PPT adversary Ã, any security parameter N and any
input z of size polynomial in N , the view that Ã(z) obtains when Bob inputs c = 0
is computationally indistinguishable from that of when Bob inputs c = 1, denoted:

V iewÃ(Ã(z), B(0))|z c
= V iewÃ(Ã(z), B(1))|z.

A protocol is said to be secure against honest-but-curious players, if the previous
definition holds in the case Alice and Bob follow the protocol. An oblivious-transfer
protocol is unconditionally secure against a player if the given properties hold even
when this player is not computationally bounded.

2

2.2 Security Definition of String Commitment

We also need commitment schemes in our constructions. A string commitment protocol
consists of two stages. In the first one, called Commit, the sender (Alice) provides the
receiver (Bob) with evidence about her input bit-string b. Bob cannot learn it before the
second stage, called Open, where Alice reveals her commitment to Bob, such that she
cannot open a value different from b without being caught with high probability. Let us
denote by V iewÃ(Ã(z), B(a)) and V iewB̃(A(b), B̃(z)) the views of dishonest Alice and
Bob, respectively, which represent their inputs z, results of all local computations, and
messages exchanged. Our definition is based on [23].

Definition 2. A protocol [A, B](b) is said to securely implement string commitment, if
at the end of its execution by the sender Alice and the receiver Bob, which are represented
as PPT Turing machines having as their input a security parameter N , the following
properties hold:

• Completeness: when the players honestly follow the protocol, Bob accepts b.

• Hiding: For any PPT adversary B̃, any security parameter N , any input z of size
polynomial in N , and any k ∈ N, after the Commit stage, but before the Open stage,
the view of B̃(z) when Alice inputs b ∈ {0, 1}k is computationally indistinguishable
from the view where Alice inputs any other b′ ∈ {0, 1}k, b′ 6= b:

V iewB̃(A(b), B̃(z))|z c
= V iewB̃(A(b′), B̃(z))|z

• Binding: For any PPT adversary Ã, any security parameter N and any input z of
size polynomial in N , any k ∈ N, there exists b ∈ {0, 1}k which can be computed by

Alice after the Commit stage, such that the probability that Ã(b′), b′ 6= b is accepted
by Bob in the Open stage is negligible in N .

A string commitment protocol is unconditionally secure against a player if the prop-
erties in Definition 2 hold even when this player is not computationally bounded.

2.3 McEliece Cryptosystem

The folowing definition was taken from [18]. The McEliece cryptosystem [22] consists
of a triplet of probabilistic algorithms ME = (GenME, EncME, DecME) and M = {0, 1}k.

• Key generation algorithm: The PPT key generation algorithm GenME works as
follows:

1. Generate a k × n generator matrix G of a Goppa code, where we assume
that there is an efficient error-correction algorithm Correct which can always
correct up to t errors.

2. Generate a k × k random non-singular matrix S.

3. Generate a n× n random permutation matrix T.

4. Set P = SGT, and output pk = (P, t) and sk = (S,G,T).

• Encryption algorithm: EncME takes a plaintext m ∈ {0, 1}k and the public-key pk
as input and outputs ciphertext c = mP⊕ e, where e ∈ {0, 1}n is a random vector
of Hamming weight t.

• Encryption algorithm: DecME works as follows:

1. Compute cT−1(= (mS)P⊕ eT−1), where T−1 denotes the inverse matrix of
T.

2. Compute mS = Correct(cT−1).

3. Output m = (mS)S−1.

3

2.4 Security Assumptions

In this subsection, we briefly introduce and discuss the McEliece assumptions used in
this work. First, we assume that there is no efficient algorithm which can distinguish the
scrambled (according to the description in the previous Subsection) generating matrix of
the Goppa code P and a random matrix of the same size. Currently, the best algorithm
by Courtois et al. [7] works as follows: enumerate each Goppa polynomial and verify
whether the corresponding code and the generator matrix G are “permutation equiv-
alent” or not by using the support splitting algorithm [28], which is nt(1 + o(1))-time
algorithm, with n and t as defined in the previous subsection.

Assumption 3. There is no PPT algorithm which can distinguish the public-key ma-
trix P of the McEliece cryptosystem from a random matrix of the same size with non-
negligible probability.

We note that this assumption was utilized in [7] to construct a digital signature
scheme.

The underlying assumption on which McEliece is the hardness of decoding random
linear codes. This problem is known to be NP-complete [4], and all currently known
algorithms to solve this problem are exponential. In particular, for small number of
errors, the best one was presented by Canteaut and Chabaud [6].

Assumption 4. The Syndrome Decoding Problem problem is hard for every PPT algo-
rithm.

2.5 String Commitment from Syndrome Decoding

We will need a bit commitment scheme based on the same assumption. Of course we
could use a modification of the McEliece system which is semantical secure, see [25].
However, we can do better.

According to a well-known result by Naor [23], bit commitment scheme can be con-
structed using a pseudorandom generator. The latter primitive can be built efficiciently
using the Syndrome Decoding problem as described by Fischer and Stern [12]. Naor’s
scheme is unconditionally binding, computationally hiding and meets the completeness
property. So using this construction we are using only one of the McEliece assumption.
In addition, for string commitment Naor’s construction is very efficient.

3 Passively Secure Protocol for OT

For now, assume Alice and Bob to be honest-but-curious. We first sketch the intuition
behind this protocol. We construct it according to the paradigm presented in [3]. Bob
sends to Alice an object which is either a public key or a randomized public key for
which the decoding problem is difficult. To randomize a public key, we use bitwise-XOR
with a random matrix. Alice, in turn, computes the bitwise-XOR of the received entity
with the same random matrix, hereby obtaining the second “key”. She encrypts b0 and
b1 with the received and computed keys, respectively, and sends the encryptions to Bob.
The protocol is secure for Bob because Alice cannot distinguish a public key from a
random matrix. The protocol is complete because Bob can always decrypt bc. At the
same time, it is also secure for Alice, because Bob is unable to decrypt the second bit
as he cannot decode the random code.

Recall that Alice’s inputs are the bits b0 and b1 while Bob inputs the bit c wishing
to receive bc.

Protocol 5.

1. Alice chooses a k × n random binary matrix Q and sends it to Bob.

2. Bob generates a secret key (S, G, T) following the procedures of the McEliece
algorithm, sets Pc = SGT and P1−c = Pc ⊕Q and sends P0, t to Alice.

4

3. Alice computes P1 = P0⊕Q, then encrypts two random bit strings r0, r1 ∈R {0, 1}k

with P0 and P1, respectively, i.e., for i = 0, 1 : yi = riPi ⊕ zi, where zi ∈ {0, 1}n,
wH(zi) = t, computes for i = 0, 1: mi ∈R {0, 1}k, encrypts b0 and b1 as follows:
for i = 0, 1 : b̂i = bi ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a scalar product and finally
sends for i = 0, 1 : yi, mi, b̂i to Bob.

4. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, mc〉.
The next theorem formally states the security of the above protocol.

Theorem 6. Protocol 5 is complete and secure for both Alice and Bob against passive
attacks according to Definition 1 under Assumptions 3 and 4.

Proof. Given that under passive attacks, the players always follow the protocol, we
argue the properties listed in Definition 1.
Completeness: This follows by observing that Bob always receives a valid encryption
of rc that allows him to compute bc in Step 4.
Security for Alice: Let B̃ be any PPT passively cheating receiver. Let c be the bit
such that b̂1−c = b1−c ⊕ 〈r1−c, m1−c〉 and y1−c = r1−c(Pc ⊕Q) ⊕ z1−c. Note that Q is

chosen randomly and independently from Pc, so from B̃’s point of view, learning r1−c

is equivalent to decoding a random linear code with generating matrix Pc ⊕Q. This is
known to be hard [4]. It was proven in [14] that 〈r, m〉 is a hard-core predicate for any
one-way function f given f(r) and m. Hence, by Assumption 4, the distribution (taken
over Alice’s randomness) of runs of B̃(z) using randomness R with Alice having input
bc and bc = 0 is computationally indistinguishable from the distribution of runs with
Alice having input bc and bc = 1.
Security for Bob: This follows directly from Assumption 3. Honest-but-curious Alice is
unable to distinguish between P = SGT and a random k × n matrix, and hence she is
also unable to tell Pc = SGT from P1−c = SGT ⊕ Q for any c ∈ {0, 1}. This implies
computational indistinguishability of the protocol views for Alice.

Unfortunately, Protocol 5 is not secure if the parties cheat actively. One problem
is that, given a random matrix Q, Bob can come up with two matrices P ′, P ′′, where
P ′ ⊕ P ′′ = Q, such that they are the generating matrices of the codes with some
reasonably good decoding properties. It is clear that in this case, Bob will be able to
partially decode both b0 and b1.

4 Fully Secure Protocol

In order to arm the passive protocol with security against malicious parties we will do
the following:

1. Implement a randomized oblivious transfer in which Bob is forced to choose his
the public key before and therefore independent of Q, if not he will be detected
with probability at least 1

2
.

2. Convert the randomized oblivious transfer into an oblivious transfer for specific
inputs with the same characteristics of security;

3. Reduce the probability that a malicious Bob learns both b0 and b1.

4.1 Random OT with high probability of B cheating

First, we implement a protocol that outputs two random bits a0, a1 to Alice and outputs
a random bit d and ad to Bob. In this protocol, Alice detects with probability at least
1
2
− ε a malicious Bob that chooses the public key dependenting of Q.
To achieve this, Bob generates two different McEliece keys by following the same

procedures of protocol 5 and by using two random bits c0, c1. He commits to P0,c0

and P1,c1 . Then, Bob receives two random matrices Q0 and Q1 from Alice, computes

5

P0,1−c0 = P0,c0 ⊕ Q0 and P1,1−c1 = P1,c1 ⊕ Q1 and sends P0,0, P1,0, t to her. Alice
chooses one of the commitments for Bob to open and checks if the opened information
is consistent with an honest procedure; otherwise, she stops the protocol. Finally, she
encrypts a0 and a1 using the matrices associated to the commitment that was not
opened.

Protocol 7.

1. Bob generates two McEliece secret keys (S0, G0, T0) and (S1, G1, T1). He chooses
c0, c1 ∈R {0, 1} and sets P0,c0 = S0G0T0 and P1,c1 = S1G1T1. He commits to
P0,c0 and P1,c1 .

2. Alice chooses Q0 and Q1 uniformly at random and sends them to Bob.

3. Bob computes P0,1−c0 = P0,c0⊕Q0 and P1,1−c1 = P1,c1⊕Q1. He sends P0,0, P1,0, t
to Alice.

4. Alice computes P0,1 = P0,0 ⊕ Q0 and P1,1 = P1,0 ⊕ Q1. Then she chooses the
challenge j ∈R {0, 1} and sends it to Bob.

5. Bob opens his commitment to P1−j,c1−j and sets d = cj

6. Alice checks the following: P1−j,c1−j must be equal to P1−j,0 or P1−j,1, otherwise
she stops the protocol.

7. Alice encrypts two random bit strings r0, r1 ∈R {0, 1}k with Pj,0 and Pj,1, respec-
tively, i.e., for i = 0, 1 : yi = riPj,i ⊕ zi, where zi ∈ {0, 1}n, wH(zi) = t, computes
for i = 0, 1: mi ∈R {0, 1}k, encrypts a0, a1 ∈R {0, 1} as follows: for i = 0, 1 :
âi = ai ⊕ 〈ri, mi〉 where “〈·, ·〉” denotes a scalar product and finally sends for
i = 0, 1 : yi, mi, âi to Bob.

8. Bob decrypts rd and computes ad = âd ⊕ 〈rd, md〉. If Bob encounters a decoding
error while decrypting rd, then he outputs ad = 0.

Theorem 8. Assuming the used bit commitment scheme secure, protocol 7 implements
a randomized oblivious transfer that is complete and secure for Bob against active attacks
according to Definition 1 under Assumptions 3 and 4. Additionally, the probability that
a malicious Bob learns both a0 and a1 is at most 1

2
+ ε(n) where ε(n) is a negligible

function.

Proof. Completeness: An honest Bob always passes the test of Step 6 and receives a
valid encryption of rd, so he can compute ad.
Security for Alice: In order to discover a0 and a1, Bob must learn r0 and r1. The
encryptions of r0 and r1 only depend on Pj,0 and Pj,1, respectively.

If Bob sends both P0,0 and P1,0 chosen according to the protocol (honest procedure),
then the probability that he learns both inputs of Alice is the same as in the passive
protocol, i.e., it is negligible. If Bob chooses in a malicious way both P0,0 and P1,0, then
with overwhelming probability Alice will stop the protocol in step 6 and Bob will learn
neither r0 nor r1.

The best strategy for Bob is to choose honestly one of the matrices and choose the
other in a malicious way, thus he can cheat and partially decode both r0 and r1 in case
Alice asks him to open the matrix correctly chosen. However, note that with probability
1
2
, Alice asks him to open the matrix maliciously chosen. In this case, Bob will be able

to open the commitment with the value that Alice expects in step 6 only with negligible
probability. Thus, the probability that a malicious Bob learns both a0 and a1 is at most
1
2

+ ε(n) where ε(n) is a negligible function.
Security for Bob: The commitment to Pj,cj = Pj,d is not opened, so the security for
Bob follows from Assumption 3 as in the protocol 5.

As long as the commitment is secure, possible differences from the passive scenario
are the following ones:

6

• Alice could cheat by sending a specially chosen matrix Q, however by Assump-
tion 3, she cannot tell Pj,cj from random, hence her choice of Q will not affect her
ability to learn d;

• For some i ∈ {0, 1}, Alice may use a different matrix instead of Pj,i for encrypting
ri in Step 7 hoping that i = d so that Bob will encounter the decoding error and
then complain, hereby disclosing his choice. However, the last instruction of Step 8
thwarts such attack by forcing Bob to accept with a fixed output “0”. Sending
a “wrong” syndrome is then equivalent to the situation when Alice sets his input
ai = 0.

Thus, it follows that the protocol is secure against Alice.

4.2 Derandomizing the previous protocol

Subsequently, we use the method of [2] to transform the randomized oblivious transfer
into an (ordinary) oblivious transfer with the same characteristics of security.

Protocol 9.

1. Bob and Alice execute the protocol 7. Alice receives a0, a1 and Bob receives d, ad.

2. Bob chooses c, sets e = c⊕ d and sends e to Alice.

3. Alices chooses b0, b1 ∈ {0, 1}, computes f0 = b0⊕ ae and f1 = b1⊕ a1⊕e and sends
f0, f1 to Bob.

4. Bob computes bc = fc ⊕ ad.

Theorem 10. Protocol 9 implements an oblivious transfer with the same characteristics
of security of the protocol 7.

Proof. Completeness: fc = bc ⊕ ac⊕e = bc ⊕ ad, so an honest Bob can recover bc

because he knows ad.
Security for Alice: f1⊕c = b1⊕c ⊕ a1⊕c⊕e = b1⊕c ⊕ a1⊕d, so Bob can recover both b0

and b1 only if he knows a0 and a1.
Security for Bob: Alice has to discover d in order to compute c, thus the security for
Bob follows from the protocol 7.

4.3 Reducing the probability of B cheating

Finally, we use the reduction of [10] to minimize the probability that a malicious Bob
learns both inputs of Alice. In this reduction, protocol 9 is executed s times in parallel,
where s is a security parameter. The inputs in each execution are chosen in such way
that Bob must learn both bits in all executions to be able to compute both inputs of
Alice in protocol 11.

Protocol 11.

1. Alice chooses b0, b1 ∈ {0, 1} and b0,1, b0,2, . . . , b0,s, b1,1, b1,2, . . . , b1,s ∈R {0, 1} such
that b0 = b0,1 ⊕ b0,2 ⊕ . . .⊕ b0,s and b1 = b1,1 ⊕ b1,2 ⊕ . . .⊕ b1,s.

2. Bob chooses c ∈ {0, 1}.
3. Protocol 9 is executed s times, with inputs b0,i, b1,i from Alice and ci = c from

Bob for i = 1 . . . s.

4. Bob computes bc = bc,1 ⊕ bc,2 ⊕ . . .⊕ bc,s.

Theorem 12. Assuming that the bit commitment scheme used in protocol 7 is secure,
protocol 11 is complete and secure for both Alice and Bob against active attacks according
to Definition 1 under Assumptions 3 and 4.

7

Proof. Completeness: An honest Bob learns all bc,i for i = 1 . . . s in the s executions
of protocol 9 and therefore he can compute bc.
Security for Alice: Bob must discover both bits in all executions of protocol 9 in
order to learn something simultaneously on b0 and b1. The probability that a malicious
Bob learns both bits in an execution of protocol 9 is at most 1

2
+ ε(n), where ε(n) is

a negligible function. There exists an n0 such that ε(n) < 1
4

for any n > n0. We can
choose n > n0, so β = 1

2
+ ε(n) < 3

4
and the probability that a malicious Bob learns

both b0 and b1 is less than (3
4
)s, which is negligible in s. Thus, the protocol is secure

for Alice.
Security for Bob: Alice discovers c if she learns any ci, but this probability is negligible
because the probability that she learns a specific ci in the respective execution of the
protocol 9 is negligible and the number of executions of the protocol 9 is polynomial.

Acknowledgements The authors acknowledge previous discussions with Kirill Mo-
rozov and Hideki Imai.

References

[1] W. Aiello, Y. Ishai, O. Reingold: Priced Oblivious Transfer: How to Sell Digital
Goods. In EUROCRYPT’01, pp. 119–135, 2001.

[2] D. Beaver: Precomputing Oblivious Transfer. CRYPTO 1995: 97-109.

[3] M. Bellare, S. Micali: Non-Interactive Oblivious Transfer and Applications,
CRYPTO’89, LNCS 435, pp. 547-557, 1990.

[4] E.R. Berlekamp, R.J. McEliece, H.C.A van Tilborg, “On the Inherent Intractability
of Certain Coding Problems,” IEEE Trans. Inf. Theory, vol. 24, pp.384–386, 1978.

[5] A. Blum, M. Furst, M. Kearns and R. J. Lipton, “Cryptographic primitives based
on hard learning problems,” Proc. CRYPTO ’93, LNCS 773, pp. 278–291, 1994.

[6] A. Canteaut, F. Chabaud “A new algorithm for finding minimum-weight words in a
linear code: application to primitive narrow-sense BCH codes of length 511,” IEEE
Trans. Inf. Theory, vol. 44(1), pp.367–378, 1998.

[7] N. Courtois, M. Finiasz, N. Sendrier: How to Achieve a McEliece Digital Signature
Scheme. In: Asiacrypt’2001, LNCS 2248, pp. 157–174, 2001.

[8] C. Crépeau, “Equivalence between two flavors of oblivious transfers,” Proc.
CRYPTO ’87, LNCS, vol. 293, pp. 350–354, 1988.

[9] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp: “Committed Oblivious
Transfer and Private Multi-Party Computations,” Proc. CRYPTO ’95, pp. 110.

[10] Ivan Damg̊ard, Joe Kilian, Louis Salvail: On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. EUROCRYPT
1999 : 56-73.

[11] Even, S., Goldreich, O., and Lempel, A.: A randomized protocol for signing con-
tracts. In: Proceedings CRYPTO ’82. Plenum Press (1983) 205–210.

[12] Jean-Bernard Fischer, Jacques Stern: An Efficient Pseudo-Random Generator
Provably as Secure as Syndrome Decoding. EUROCRYPT 1996 : 245-255.

[13] O. Goldreich, “Foundations of Cryptography - Volume 2 (Basic Applications),”
Cambridge University Press, 2004.

[14] O. Goldreich, L. A. Levin. Hard-Core Predicates for Any One-Way Function. In
21st ACM Symposium on the Theory of Computing, pages 25-32, 1989.

[15] Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game, or: A
completeness theorem for protocols with honest majority. In: Proc. 19th ACM
STOC. ACM Press (1987) 218–229.

8

[16] I. Haitner: implementing Oblivious Transfer Using Collection of Dense Trapdoor
Permutations. In: TCC’04, LNCS 2951, pp. 394–409, 2004.

[17] Y. Kalai: Smooth Projective Hashing and Two-Message Oblivious Transfer. In
EUROCRYPT’05, LNCS 3494, pp. 78–95, 2005.

[18] K. Kobara, K. Morozov, R. Overbeck, Oblivious Transfer via McEliece’s PKC and
Permuted Kernels, Cryptology ePrint Archive 2007/382.

[19] Kilian, J.: Founding Cryptography on Oblivious Transfer. In: 20th ACM STOC.
ACM Press (1988) 20–31.

[20] K. Kobara and H. Imai: Semantically Secure McEliece Cryptosystems – Conver-
sions for McEliece PKC. In: PKC 2001, LNCS 1992, pp. 19–35, 2001.

[21] R.J. McEliece, “The Theory of Information and Coding (Vol. 3 of The Encyclopedia
of Mathematics and Its Applications.), Reading, Mass., Addison-Wesley, 1977.

[22] R.J. McEliece: A Public-Key Cryptosystem Based on Algebraic Coding Theory. In
Deep Space Network progress Report, 1978.

[23] Naor, M.: Bit Commitment using Pseudo-Randomness. In: Advances in
Cryptology–CRYPTO ’89. LNCS, vol. 435. Springer-Verlag (1990) 128–136.

[24] M. Naor and B. Pinkas: Efficient Oblivious Transfer Protocols, SODA’01 (SIAM
Symposium on Discrete Algorithms).

[25] R. Nojima, H. Imai, K. Kobara, K. Morozov, “Semantic Security for the McEliece
Cryptosystem without Random Oracles,” Accepted to WCC ’07, Versailles, France,
April 2007.

[26] Rabin, M.O.: How to Exchange Secrets by Oblivious Transfer. Technical Memo
TR-81, Aiken Computation Laboratory, Harvard University (1981).

[27] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography”, Proc. 37th STOC, pp. 84-93, 2005.

[28] N. Sendrier, “Finding the Permutation Between Equivalent Linear Codes: The
Support Splitting Algorithm,” IEEE Trans. Inf. Theory, 46(4), pp.1193–1203, 2000.

[29] A. Shamir. An efficient identification scheme based on permuted kernels. In Proc.
of Crypto89, volume 435 of LNCS, pages 606609. Springer Verlag, 1990.

[30] S. Wiesner, ”Conjugate coding,” Sigact News, vol. 15, no. 1, 1983, pp. 78–88;
original manuscript written circa 1970.

9

