
Oblivious Transfer Based on the McEliece
Assumptions

Rafael Dowsley∗ Jeroen van de Graaf† Jörn Müller-Quade‡

Anderson C. A. Nascimento§

Abstract

We implement one-out-of-two bit oblivious transfer (OT) based on the assump-
tions used in the McEliece cryptosystem: the hardness of decoding random binary
linear codes, and the difficulty of distinguishing a permuted generating matrix of
Goppa codes from a random matrix. To our knowledge this is the first OT reduc-
tion to these problems only. We present two different constructions for oblivious
transfer, one based on cut-and-choose arguments and another one which is based
on a novel generalization of Bennett-Rudich commitments which may be of inde-
pendent interest. Finally, we also present a variant of our protocol which is based
on the Niederreiter cryptosystem.1

Keywords: Oblivious Transfer, McEliece cryptosystem, Post-quantum Security.

1 Introduction
Oblivious transfer [35, 31, 14] is a primitive of central importance in modern cryptog-
raphy as it implies two-party secure computation [20, 23] and multi-party computa-
tion [9]. There exist several flavors of OT, but they are all equivalent [8]. In this work
we focus on the so-called one-out-of-two bit oblivious transfer (OT). This is a two-
party primitive in which a sender (Alice) inputs two bits b0, b1 and a receiver (Bob)
inputs a bit c called the choice bit. Bob receives bc and remains ignorant about bc,
while Alice only receives a confirmation message from Bob after he completed his part
of the protocol successfully. In particular, Alice cannot learn Bob’s choice.
∗The author is with the Computer Science and Engineering Department, University of California at San

Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, USA. This work was done while the author
was with the Department of Electrical Engineering, University of Brasilia. Email: rdowsley@cs.ucsd.edu.
†The author is with he Department of Computer Science, Federal University of Ouro Preto. Instituto

de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. Ouro Preto, Minas Gerais, CEP:
35400-000, Brazil. Email: jvdg@iceb.ufop.br.
‡The author is with the Universität Karlsruhe, Institut für Algorithmen und Kognitive Systeme. Am

Fasanengarten 5, 76128 Karlsruhe, Germany. Email:muellerq@ira.uka.de.
§The author is with the Department of Electrical Engineering, University of Brasilia Campus Darcy

Ribeiro, 70910-900, Brasilia, DF, Brazil. Email: andclay@ene.unb.br.
1A preliminary version of this work appeared at ICITS 2008 [12], this is the full version.

1

OT can be constructed based on computational assumptions, both generic such
as enhanced trapdoor permutations [14, 18, 21] and specific such as factoring [31],
Diffie-Hellman [3, 28, 1], Quadratic or Higher-Order Residuosity, or from the Extended
Riemann Hypothesis [22].
Our result: We build OT based on the two assumptions used in the McEliece cryp-
tosystem [26]:

1. Hardness of decoding of a random linear code (known to be NP-complete [4],
and known to be equivalent to the learning parity with noise (LPN) problem [32])

2. Indistinguishability of the scrambled generating matrix of the Goppa code [25]
from a random one.

It is noteworthy that there exists no black box reduction from public-key encryption
to OT [17]. However, by exploiting some algebraic properties of ciphertexts generated
by the McEliece cryptosystem we bypass the negative results of [17]. We present
two different constructions (with similar complexities): one based on cut-and choose
arguments and another one based on a generalization of Bennett-Rudich commitments
to integers modulo q. Finally, we also present an OT protocol based on the Niederreiter
cryptosystem [29] (the dual of the McEliece cryptosystem).
Comparison to other work: To our knowledge, this is the first oblivious transfer pro-
tocol based on the McEliece assumptions only and, concurrently with [24], the first
computationally secure oblivious transfer protocol not known to be broken by a quan-
tum computer. However, for obtaining a protocol of equivalent complexity, [24] uses
additional assumptions: the random oracle assumption and permuted kernels. Also,
[24] needs Shamir’s zero knowledge proofs [34] which are avoided in our simpler con-
struction.

In this work, we consider only static adversaries, i.e., we assume that either Alice
or Bob is corrupted before the protocol begins.

2 Preliminaries
In this section, we establish our notation and provide some facts from coding theory
and formal definitions of security for oblivious transfer and bit commitment. Then, for
the sake of completeness, we describe the McEliece and Niederreiter cryptosystems
and introduce the assumptions on which their security, and also the security of our
protocol is based.

Henceforth, we will denote by x ∈R D a uniformly random choice of element x
from its domain D; and by ⊕ a bit-wise exclusive OR of strings.

Two sequences {Xn}n∈N and {Yn}n∈N of random variables are called computationally
indistinguishable, denoted X

c
≈ Y , if for every non-uniform probabilistic polynomial-

time distinguisher D there exists a negligible function ε(·) such that for every n ∈ N,

|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| < ε(n)

2

2.1 Security Definition of Oblivious Transfer
Let the sender Alice and the receiver Bob be modeled as probabilistic polynomial time
(PPT) Turing machines A and B, having as their input a security parameter N.

Let us denote by ViewÃ(Ã(z), B(c)) and ViewB̃(A(b0, b1),
B̃(z)) the views of dishonest Alice and Bob, respectively, which represent their inputs z,
results of all local computations, and messages exchanged. Our definition of security
is based on the one shown in [22], suitably adapted to protocols with more than two
messages.

Definition 1 A protocol [A, B](b0, b1; c) is said to securely implement oblivious trans-
fer, if at the end of its execution by the sender Alice and the receiver Bob the following
properties hold:

• Completeness: When the players honestly follow the protocol, Bob outputs bc

while Alice has no output.

• Security for Alice: For every PPT adversary B̃, every input z, and a (sufficiently
long) random tape RB chosen at random, there exists a choice bit c such that
for bc ∈ {0, 1} the distribution (taken over Alice’s randomness) of runs of B̃(z)
using randomness RB with Alice having input bc and bc = 0 is computationally
indistinguishable from the distribution of runs with Alice having input bc and
bc = 1.

• Security for Bob: For any PPT adversary Ã, any security parameter N and any
input z of size polynomial in N, the view that Ã(z) obtains when Bob inputs
c = 0 is computationally indistinguishable from that of when Bob inputs c = 1,
denoted:

ViewÃ(Ã(z), B(0))|z
c
≈ ViewÃ(Ã(z), B(1))|z.

A protocol is said to be secure against honest-but-curious players, if the previous defi-
nition holds in the case Alice and Bob follow the protocol.

2.2 Security Definition of String Commitment
We also need commitment schemes in our constructions. A string commitment proto-
col consists of two stages. In the first one, called Commit, the sender (Alice) provides
the receiver (Bob) with evidence about her input bit-string b. Bob cannot learn it before
the second stage, called Open, where Alice reveals her commitment to Bob, such that
she cannot open a value different from b without being caught with high probability.
Similarly to the notation used for Oblivious Transfer, we denote by ViewÃ(Ã(z), B(a))
and ViewB̃(A(b), B̃(z)) the views of dishonest Alice and Bob, respectively, which rep-
resent their inputs z, results of all local computations, and messages exchanged. Our
definition is based on [27].

Definition 2 A protocol [A, B](b) is said to securely implement string commitment, if
at the end of its execution by the sender Alice and the receiver Bob, which are rep-
resented as PPT Turing machines having as their input a security parameter N, the
following properties hold:

3

• Completeness: when the players honestly follow the protocol, Bob accepts b.

• Hiding: For any PPT adversary B̃, any security parameter N, any input z of
size polynomial in N, and any k ∈ N, after the Commit stage, but before the
Open stage, the view of B̃(z) when Alice inputs b ∈ {0, 1}k is computationally
indistinguishable from the view where Alice inputs any other b′ ∈ {0, 1}k, b′ , b:

ViewB̃(A(b), B̃(z))|z
c
≈ ViewB̃(A(b′), B̃(z))|z

• Binding: For any PPT adversary Ã, any security parameter N and any input z of
size polynomial in N, any k ∈ N, there exists b ∈ {0, 1}k which can be computed
by Alice after the Commit stage, such that the probability that Ã(b′), b′ , b is
accepted by Bob in the Open stage is negligible in N.

A string commitment protocol is unconditionally secure against a player if the prop-
erties in Definition 2 hold even when this player is not computationally bounded.

2.3 McEliece Cryptosystem
The following definition was taken from [30]. The McEliece cryptosystem [26]2 con-
sists of a triplet of probabilistic algorithms McE = (GenMcE,EncMcE,DecMcE) and
M = {0, 1}k.

• Key generation algorithm: The PPT key generation algorithm GenMcE works as
follows:

1. Generate a k×n generator matrix G of a Goppa code, where we assume that
there is an efficient error-correction algorithm Correct which can always
correct up to t errors.

2. Generate a k × k random non-singular matrix S .

3. Generate a n × n random permutation matrix T .

4. Set P = S GT , and output pk = (P, t) and sk = (S ,G,T).

• Encryption algorithm: EncMcE takes a plaintext m ∈ {0, 1}k and the public-key
pk as input and outputs ciphertext c = mP ⊕ e, where e ∈ {0, 1}n is a random
vector of Hamming weight t.

• Decryption algorithm: DecMcE works as follows:

1. Compute cT−1(= (mS)G ⊕ eT−1), where T−1 denotes the inverse matrix of
T .

2. Compute mS = Correct(cT−1).

3. Output m = (mS)S −1.

2There are variants of this scheme that achieve the strongest notions of security for encryption schemes:
IND-CPA [30] and IND-CCA2 [13].

4

2.4 Niederreiter Cryptosystem
The Niederreiter cryptosystem [29] consists of a triplet of probabilistic algorithms
NR = (GenNR,EncNR,DecNR).

• System parameters: n, t ∈ N, where t � n.

• Key Generation Algorithm: The polynomial-time key generation algorithm GenNR
works as follows:

1. Generate a (n − k) × n parity check matrix of a binary irreducible Goppa G
code of maximal dimension k which can efficiently correct up to t errors.

2. Generate a (n − k) × (n − k) random binary non-singular matrix M.

3. Generate a n × n random permutation matrix P.

4. Set H′ = MHP, and output pk = (H′, t) and sk = (M, P,DG), where DG is
an efficient syndrome decoding algorithm for G.

• Encryption algorithm: The polynomial-time encryption algorithm EncNR takes
a plaintext m ∈ {0, 1}n of weight t and the public-key pk as input and outputs the
syndrome s = H′mT .

• Decryption algorithm: The polynomial-time decryption algorithm DecNR takes
as input an ciphertext s, the secret key sk and works as follows:

1. Compute M−1s = HPmT .

2. Compute DG(HPmT) to obtain PmT .

3. Compute mT = P−1PmT and output m.

2.5 Security Assumptions
In this subsection, we briefly introduce and discuss the McEliece assumptions used in
this work.

We assume that there is no efficient algorithm which can distinguish the scram-
bled (according to the description in the previous subsection) generating matrix of the
Goppa code P and a random matrix of the same size. For codes with very high rate
R = k/n there is an efficient distinguisher that can differentiate a Goppa code from a
random code [15], but this is not the range in which the encryption scheme works. For
the other cases, the currently best algorithm is by Courtois et al. [7] and works as fol-
lows: enumerate each Goppa polynomial and verify whether the corresponding code
and the generator matrix G are “permutation equivalent” or not by using the support
splitting algorithm [33], which is nt(1 + o(1))-time algorithm, with n and t as defined
in the previous subsection.

Assumption 1 There exists no PPT algorithm which can distinguish the public-key
matrix P of the McEliece cryptosystem from a random matrix of the same size with
non-negligible probability.

5

We note that this assumption was utilized in [7] to construct a digital signature
scheme.

We also assume that there is no efficient algorithm for solving the Syndrome Decod-
ing Problem. This problem is known to be NP-complete [4], and all currently known
algorithms to solve this problem are exponential. The best algorithms were presented
by Canteaut and Chabaud [6] and recently by Bernstein et al. [5].

Assumption 2 The Syndrome Decoding Problem is hard for every PPT algorithm.

The security of the McEliece cryptosystem and the Niederreiter cryptosystem are
equivalent [11] (the difficulty of breaking the Niederreiter cryptosystem is the same of
breaking the McEliece cryptosystem with the same security parameters).

2.6 Bit Commitment based on the McEliece assumptions
We will also need a bit commitment scheme based on the same assumption. Of course
we could use a modification of the McEliece system which is semantical secure, see
[30]. However, we can do better.

According to a well-known result by Naor [27], bit commitment scheme can be
constructed using a pseudorandom generator. The latter primitive can be built effi-
ciently using the Syndrome Decoding problem as described by Fischer and Stern [16].
Naor’s scheme is unconditionally binding, computationally hiding and meets the com-
pleteness property. So using this construction to obtain bit commitment we are using
only one of the McEliece assumption. In addition, for string commitment Naor’s con-
struction is very efficient.

3 Passively Secure Protocol for OT
For now, assume Alice and Bob to be honest-but-curious. We first sketch the intuition
behind this protocol. We construct it according to the paradigm presented in [3]. Bob
sends to Alice an object which is either a public key, or a randomized public key for
which the decoding problem is difficult. To randomize a public key, we use bitwise-
XOR with a random matrix. Alice, in turn, computes the bitwise-XOR of the received
entity with the same random matrix, hereby obtaining the second “key”. She encrypts
b0 and b1 with the received and computed keys, respectively, and sends the encryptions
to Bob. The protocol is secure for Bob because Alice cannot distinguish a public key
from a random matrix. The protocol is complete because Bob can always decrypt bc.
At the same time, it is also secure for Alice, because Bob is unable to decrypt the
second bit as he cannot decode the random code.

Recall that Alice’s inputs are the bits b0 and b1 while Bob inputs the bit c wishing
to receive bc. Denote the Hamming weight of a vector z by wH(z).

Protocol 1

1. Alice chooses a k × n random binary matrix Q and sends it to Bob.

6

2. Bob generates a secret key (S ,G,T) following the procedures of the McEliece
algorithm, sets Pc = S GT and Pc = Pc ⊕ Q and sends P0, t to Alice.

3. Alice computes P1 = P0 ⊕ Q, then encrypts two random bit strings r0, r1 ∈R

{0, 1}k with P0 and P1, respectively, i.e., for i = 0, 1 : yi = riPi ⊕ ei, where
ei ∈ {0, 1}n, wH(ei) = t. Then she also computes for i = 0, 1:hi ∈R {0, 1}k,
encrypts b0 and b1 as follows: for i = 0, 1 : b̂i = bi⊕〈ri, hi〉 where “〈·, ·〉” denotes
a scalar product modulo 2. Finally, she sends for i = 0, 1 : yi, hi, b̂i to Bob.

4. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, hc〉.

The next theorem formally states the security of the above protocol.

Theorem 1 Protocol 1 is complete and secure for both Alice and Bob against passive
attacks according to Definition 1 under Assumptions 1 and 2.

Given that under passive attacks the players always follow the protocol, we argue
that the properties listed in Definition 1 are satisfied.
Completeness: This follows by observing that Bob always receives a valid encryption
of rc that allows him to compute bc in Step 4.
Security for Alice: Let B̃ be any PPT passively cheating receiver. Let c be the bit
such that b̂c = bc ⊕ 〈rc, hc〉 and yc = rc(Pc ⊕ Q) ⊕ ec. Note that Q is chosen randomly
and independently from Pc, so from B̃’s point of view, learning rc is equivalent to
decoding a random linear code with generating matrix Pc ⊕ Q. This is known to be
hard [4]. It was proven in [19] that 〈r, h〉 is a hard-core predicate for any one-way
function f given f (r) and h. Hence, by Assumption 2, the distribution (taken over
Alice’s randomness) of runs of B̃(z) using randomness R with Alice having input bc

and bc = 0 is computationally indistinguishable from the distribution of runs with
Alice having input bc and bc = 1.
Security for Bob: This follows directly from Assumption 1. Honest-but-curious Alice
is unable to distinguish between P = S GT and a random k × n matrix, and hence she
is also unable to tell Pc = S GT from Pc = S GT ⊕ Q for any c ∈ {0, 1}. This implies
computational indistinguishability of the protocol views for Alice.

Unfortunately, Protocol 1 is not secure if the parties cheat actively. One problem
is that, given a random matrix Q, Bob can come up with two matrices P′, P′′, where
P′ ⊕ P′′ = Q, which are the generating matrices of the codes with some reasonably
good decoding properties. It is clear that in this case, Bob will be able to partially
decode both b0 and b1.

4 Fully Secure Protocol
In order to arm the passive protocol with security against malicious parties, one could
use a general compiler as the one in [18]. However, we present a direct and more
efficient approach:

1. Implement a randomized oblivious transfer in which Bob is forced to choose the
public key before and therefore independent of Q, if not he will be detected with
probability at least 1

2 ;

7

2. Convert the randomized oblivious transfer into an oblivious transfer for specific
inputs with the same characteristics of security;

3. Reduce the probability that a malicious Bob learns simultaneously information
on both b0 and b1.

4.1 Random OT with high probability of B cheating
First, we implement a protocol that outputs two random bits a0, a1 to Alice and outputs
a random bit d and ad to Bob. In this protocol, Alice detects with probability at least
1
2 − ε a malicious Bob that chooses the public key depending on Q.

To achieve this, Bob generates two different McEliece keys by following the same
procedures of protocol 1 and by using two random bits c0, c1. He commits to P0,c0

and P1,c1 . Then, Bob receives two random matrices Q0 and Q1 from Alice, computes
P0,c0 = P0,c0 ⊕Q0 and P1,c1 = P1,c1 ⊕Q1 and sends P0,0, P1,0, t to her. Alice chooses one
of the commitments for Bob to open and checks if the opened information is consistent
with an honest procedure; otherwise, she stops the protocol. Finally, she encrypts a0
and a1 using the matrices associated to the commitment that was not opened.

Protocol 2

1. Bob generates two McEliece secret keys (S 0,G0,T0) and (S 1,G1,T1). He chooses
c0, c1 ∈R {0, 1} and sets P0,c0 = S 0G0T0 and P1,c1 = S 1G1T1. He commits to P0,c0

and P1,c1 .

2. Alice chooses Q0 and Q1 uniformly at random and sends them to Bob.

3. Bob computes P0,c0 = P0,c0 ⊕ Q0 and P1,c1 = P1,c1 ⊕ Q1. He sends P0,0, P1,0, t to
Alice.

4. Alice computes P0,1 = P0,0 ⊕ Q0 and P1,1 = P1,0 ⊕ Q1. Then she chooses the
challenge j ∈R {0, 1} and sends it to Bob.

5. Bob opens his commitment to P j,c j
and sets d = c j.

6. Alice checks the following: P j,c j
must be equal to P j,0 or P j,1, otherwise she

stops the protocol.

7. Alice encrypts two random bit strings r0, r1 ∈R {0, 1}k with P j,0 and P j,1, respec-
tively, i.e., for i = 0, 1 : yi = riP j,i ⊕ ei, where ei ∈ {0, 1}n, wH(ei) = t. Then she
also computes for i = 0, 1: hi ∈R {0, 1}k, encrypts a0, a1 ∈R {0, 1} as follows: for
i = 0, 1 : âi = ai ⊕ 〈ri, hi〉 where “〈·, ·〉” denotes a scalar product. Finally, she
sends for i = 0, 1 : yi, hi, âi to Bob.

8. Bob decrypts rd and computes ad = âd ⊕ 〈rd, hd〉. If Bob encounters a decoding
error while decrypting rd, then he outputs ad = 0.

8

Theorem 2 Assuming that the bit commitment scheme used is secure, protocol 2 im-
plements a randomized oblivious transfer that is complete and secure for Bob against
active attacks according to Definition 1 under Assumptions 1 and 2. Additionally, the
probability that a malicious Bob learns both a0 and a1 is at most 1

2 + ε(n), where ε(n)
is a negligible function.

Completeness: An honest Bob always passes the test of Step 6 and receives a valid
encryption of rd, so he can compute ad.
Security for Alice: In order to obtain simultaneously information on a0 and a1, Bob
must learn r0 and r1. The encryptions of r0 and r1 only depend on P j,0 and P j,1, respec-
tively.

If Bob sends both P0,0 and P1,0 chosen according to the protocol (honest procedure),
then the probability that he learns both inputs of Alice is the same as in the passive
protocol, i.e., it is negligible. If Bob chooses both P0,0 and P1,0 in a malicious way,
then, with overwhelming probability, Alice will stop the protocol in step 6 and Bob
will learn neither r0 nor r1.

The best strategy for Bob is to choose honestly one of the pairs of matrices and
choose the other in a malicious way, thus he can cheat and partially decode both r0
and r1 in case Alice asks him to open the pair of matrices correctly chosen. However,
note that with probability 1

2 , Alice asks him to open the matrix maliciously chosen. In
this case, Bob will be able to open the commitment with the value that Alice expects
in step 6 only with negligible probability. Thus, the probability that a malicious Bob
learns both a0 and a1 is at most 1

2 + ε(n), where ε(n) is a negligible function.
Security for Bob: The commitment to P j,c j = P j,d is not opened, so the security for
Bob follows from Assumption 1 as in the protocol 1.

As long as the commitment is secure, possible differences from the passive scenario
are the following ones:

• Alice could cheat by sending a specially chosen matrix Q. However, by Assump-
tion 1, she cannot tell P j,c j from random, hence her choice of Q will not affect
her ability to learn d;

• For some i ∈ {0, 1}, Alice may use a different matrix instead of P j,i to encrypt
ri in Step 7, hoping that i = d so that Bob will encounter the decoding error
and then complain, hereby disclosing his choice. However, the last instruction
of Step 8 thwarts such attack by forcing Bob to accept with a fixed output “0”.
Sending a “wrong” syndrome is then equivalent to the situation when Alice sets
his input ai = 0.

Thus, it follows that the protocol is secure against Alice.

4.2 Derandomizing the previous protocol
Subsequently, we use the method of [2] to transform the randomized oblivious transfer
into an (ordinary) oblivious transfer with the same characteristics of security.

Protocol 3

9

1. Bob and Alice execute the protocol 2. Alice receives a0, a1 and Bob receives
d, ad.

2. Bob chooses c, sets e = c ⊕ d and sends e to Alice.

3. Alice chooses b0, b1 ∈ {0, 1}, computes f0 = b0 ⊕ ae and f1 = b1 ⊕ ae and sends
f0, f1 to Bob.

4. Bob computes bc = fc ⊕ ad.

Theorem 3 Protocol 3 implements an oblivious transfer with the same characteristics
of security of the protocol 2.

Completeness: fc = bc ⊕ ac⊕e = bc ⊕ ad, so an honest Bob can recover bc because
he knows ad.
Security for Alice: fc = bc ⊕ ac⊕e = bc ⊕ ad, so Bob can recover both b0 and b1 only if
he knows a0 and a1.
Security for Bob: Alice has to discover d in order to compute c, thus the security for
Bob follows from protocol 2.

4.3 Reducing the probability of B cheating
Finally, we use the reduction of [10] to minimize the probability that a malicious Bob
learns both inputs of Alice. In this reduction, protocol 3 is executed s times in parallel,
where s is a security parameter. The inputs in each execution are chosen in such way
that Bob must learn both bits in all executions to be able to compute both inputs of
Alice in protocol 4.

Protocol 4

1. Alice chooses her inputs bits to the oblivious transfer protocol, b0, b1 ∈ {0, 1}.
She also chooses random bits b0,1, . . . , b0,s, b1,1, . . . , b1,s such that b0 = b0,1 ⊕

. . . ⊕ b0,s and b1 = b1,1 ⊕ . . . ⊕ b1,s.

2. Bob chooses c ∈ {0, 1}.

3. Protocol 3 is executed s times, with inputs b0,i, b1,i from Alice and ci = c from
Bob for i = 1 . . . s.

4. Bob computes bc = bc,1 ⊕ bc,2 ⊕ . . . ⊕ bc,s.

Theorem 4 Assuming that the bit commitment scheme used in protocol 2 is secure,
protocol 4 is complete and secure for both Alice and Bob against active attacks ac-
cording to Definition 1 under Assumptions 1 and 2.

Completeness: An honest Bob learns all bc,i for i = 1 . . . s in the s executions of
protocol 3 and therefore he can compute bc.
Security for Alice: Bob must discover both bits in all executions of protocol 3 in
order to learn something simultaneously on b0 and b1. The probability that a malicious

10

Bob learns both bits in an execution of protocol 3 is at most 1
2 + ε(n), where ε(n) is

a negligible function. There exists an n0 such that ε(n) < 1
4 for any n > n0. We can

choose n > n0, so β = 1
2 + ε(n) < 3

4 and the probability that a malicious Bob learns
both b0 and b1 is less than (3

4)s, which is negligible in s. Thus, the protocol is secure
for Alice.
Security for Bob: Alice discovers c if she learns any ci, but this probability is negligi-
ble because the probability that she learns a specific ci in the respective execution of the
protocol 3 is negligible and the number of executions of the protocol 3 is polynomial.

5 OT using BCX (Bit Commitments with XOR)

5.1 Protocol using BCX against malicious parties
Instead of using protocols 2, 3 and 4 to deal with malicious adversaries, we can use
a modification of the BCX (Bit Commitments with XOR) protocol and obtain another
OT construction. The obtained construction’s complexity is similar to our previous
protocol. However, we believe that our generalization of BCX might be of independent
interest and thus present it here.

The BCX protocol is attributed to Bennett and Rudich and is described in [9]. The
scheme is based on any secure commitment protocol and runs as follows: Alice com-
mits to a bit b by committing to pairs of bits b jL and b jR such that b = b jL ⊕ b jR.
The BCX advantage when compared to a traditional commitment is that it enables to
prove linear relations among commitments without revealing them. We modify the
BCX slightly to work with integers modulo q, as described below (where v is a security
parameter of the procedure to prove relations):

• Commitment: In order to commit to some value b ∈ Zq, Bob chooses b jL ∈R Zq

and sets b jR = b − b jL(mod q) for j = 1, . . . , v. Bob commits to b jL and b jR for
j = 1, . . . , v.

• Unveil: In order to unveil the value b, Bob unveils all the 2v commitments. Alice
checks if b = b jL + b jR(mod q) for all j and accepts the value b only if this
condition is satisfied.

• Proving relations: In order to prove a linear relation among u committed values
b1, . . . , bu without revealing them, the parties do the following:

1. Alice specifies u permutations (of v elements each).

2. For l = 1, . . . , u, Bob shuffles the v pairs of commitments related to bl by
using the permutation specified by Alice.

3. For j = 1, . . . , v, Bob evaluates the linear relation using the values (b1
jL, . . . , b

u
jL)

and using the values (b1
jR, . . . , b

u
jR) and denotes the results as Rel jL and Rel jR

respectively.

4. Bob sends Rel jL and Rel jR to Alice for j = 1, . . . , v.

5. Alice checks whether the sum Rel jL + Rel jR is the same for all j.

11

6. For j = 1, . . . , v, Alice asks Bob to open either (b1
jL, . . . , b

u
jL) or (b1

jR, . . . , b
u
jR)

and checks if the result sent previously by Bob is the correct evaluation of
the relation on these values. If the values are not equal, Alice stops the
protocol execution. Otherwise, she accepts that the result of applying the
linear relation on values (b1, . . . , bu) is Rel1L + Rel1R(mod q).

• Coping the Commitment: Each commitment can be used only once to prove
relations. If Bob is committed to some value b, he can obtain a new copy of this
commitment as follow:

1. Bob creates 3v pairs of commitment such that the sum modulo q of each
pair is b.

2. Alice partitions these 3v pairs in 3 subsets of cardinality v that she denoted
as b0, b1, b2. She asks Bob to prove that b0 = b. If he succeeds, b and b0

cannot be used more, but Alice is convinced that b1 = b2 = b. So Bob have
two valid instances of commitment to the value b: b1 and b2.

Note that a cheating Bob trying to prove a false relation between committed values
is caught with overwhelming probability in the security parameter v. Note also that
only one commitment of each pair is unveiled in the procedure to prove relations, so
the values of b1, . . . , bu are not unveiled because they are the sum of the committed
values of the same pair.

Using the above ideas, we can build an OT protocol based on McEliece cryptosys-
tem that is secure against malicious adversaries. We describe the protocol below. We
can interpret each matrix of dimension k × n as a binary string of length nk and use
the above variant of Bennett-Rudich commitments computing the operations modulo
q = 2nk.

Protocol 5

1. Bob generates a secret key (S ,G,T) following the procedures of the McEliece
algorithm and commits to the string representation of the public key matrix
S GT using Bennett-Rudich XOR Commitment. Denote the commitment as
d = (d1L, d1R, . . . , dvL, dvR) and define d j = (d jL, d jR).

2. Alice chooses a k × n random binary matrix Q and sends it to Bob.

3. Bob sets Pc = S GT and Pc = Pc ⊕Q and commits to the string representation of
the matrices P0 and P1. Denote the commitments as f = (f1L, f1R, . . . , fvL, fvR)
and g = (g1L, g1R, . . . , gvL, gvR) respectively. Bob sends P0, t to Alice. For
j = 1, . . . , v he also sends the pairs f j = (f jL, f jR) and g j = (g jL, g jR) to Al-
ice, choosing randomly if f j or g j goes first.

4. Alice computes P1 = P0 ⊕ Q, chooses randomly a challenge V of v bits and a
permutation Π on v elements. Alice sends V and Π to Bob.

5. Denote as V j the j-bit of V . For j = 1, . . . , v, Bob does as follows:

12

If V j = 0, then Bob opens the commitments f j and g j. Alice checks if one
of them is the string representation of matrix P0 and the other the string
representation of matrix P1, otherwise she stops the protocol execution.

If V j = 1, then Bob proves using the Bennett-Rudich Commitment scheme
approach (i.e., sending the left and right sums and revealing either the left
or the right commitments according to Alice choices) that dΠ(j) = f j or that
dΠ(j) = g j. If Bob fails to prove this, Alice stops the protocol execution.

6. Alice encrypts two random bit strings r0, r1 ∈R {0, 1}k with P0 and P1, respec-
tively, i.e., for i = 0, 1 : yi = riPi⊕ei, where ei ∈ {0, 1}n, wH(ei) = t. Then she also
computes for i = 0, 1:hi ∈R {0, 1}k, encrypts b0 and b1 as follows: for i = 0, 1 :
b̂i = bi ⊕ 〈ri, hi〉 where “〈·, ·〉” denotes a scalar product modulo 2. Finally, she
sends for i = 0, 1 : yi, hi, b̂i to Bob.

7. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, hc〉. If Bob encounters a decoding
error while decrypting rc, then he outputs bc = 0.

Theorem 5 Assuming the used bit commitment scheme secure, protocol 5 implements
an oblivious transfer that is complete and secure for Alice and Bob against active
attacks according to Definition 1 under Assumptions 1 and 2.

Completeness: An honest Bob always passes the test of Step 5 and receives a valid
encryption of rc, so he can compute bc.
Security for Alice: In order to obtain simultaneously information on b0 and b1, Bob
must learn r0 and r1. The encryptions of r0 and r1 only depend on P0 and P1, respec-
tively.

If Bob follows the protocol instructions to choose P0 and P1, the security to Alice
follows from the passive case. If a cheating Bob does not choose P0 and P1 according
to the protocol procedures, he succeeds in the test of Step 5 only with negligible proba-
bility in the security parameter v. The reason for that is the following. If Alice chooses
V j = 0 in the challenge, she will learn f j and g j and so she may check if they are equal
to P0 and P1. Therefore Alice can check that the values Bob committed to in step 3
are the values corresponding to P0 and P1 that she will use to send the bits. If Alice
chooses V j = 1 in the challenge, she learns that dΠ(j) = f j or dΠ(j) = g j and learns also
what of the two cases happened. Therefore Alice has a way to verify that one of the
matrices committed to in step 3 is equal to S GT that was chosen before Q. This put
together with the previous fact guarantees that one of the public keys used by Alice is
random from Bob’s point of view.
Security for Bob: If Alice chooses V j = 0 in the challenge, she will learn f j and g j

and so she may check if they are equal to P0 and P1. But since f j and g j are sent in a
random order, she learns nothing about c. If Alice chooses V j = 1 in the challenge, she
learns that dΠ(j) = f j or dΠ(j) = g j and learns also what of the two cases happened. But
since f j and g j are sent in a random order and are not unveiled, she cannot compare
the one that is equal to dΠ(j) to the matrices P0 and P1 in order to discover c. So the
security for Bob follows from Assumption 1 as in the protocol 1.

As long as the commitment is secure, possible differences from the passive scenario
are the following ones:

13

• Alice could cheat by sending a specially chosen matrix Q, however by Assump-
tion 1, she cannot tell Pc from random, hence her choice of Q will not affect her
ability to learn c;

• For some i ∈ {0, 1}, Alice may use a different matrix instead of Pi for encrypting
ri in Step 6 hoping that i = c so that Bob will encounter the decoding error
and then complain, hereby disclosing his choice. However, the last instruction
of Step 7 thwarts such attack by forcing Bob to accept with a fixed output “0”.
Sending a “wrong” syndrome is then equivalent to the situation when Alice sets
his input bi = 0.

Thus, it follows that the protocol is secure against Alice.

6 OT based on Niederreiter cryptosystem
Below we describe a variant of the OT protocol using the Niederreiter cryptosystem.
The passive protocol can be implemented as follows.

Protocol 6

1. Alice chooses a (n − k) × n random binary matrix Q and sends it to Bob.

2. Bob generates a secret key (M, P,DG) following the procedures of the Niederre-
iter algorithm, sets Pc = MHP and Pc = Pc ⊕ Q and sends P0, t to Alice.

3. Alice computes P1 = P0 ⊕ Q, then encrypts two random bit strings r0, r1 ∈R

{0, 1}n of weight t with P0 and P1, respectively, i.e., for i = 0, 1 : si = PirT
i .

Then she also chooses for i = 0, 1: hi ∈R {0, 1}n, encrypts b0 and b1 as follows:
for i = 0, 1 : b̂i = bi ⊕ 〈ri, hi〉 where “〈·, ·〉” denotes a scalar product modulo 2.
Finally, she sends for i = 0, 1 : si, hi, b̂i to Bob.

4. Bob decrypts rc and computes bc = b̂c ⊕ 〈rc, hc〉.

Theorem 6 Protocol 6 is complete and secure for both Alice and Bob against passive
attacks according to Definition 1 under Assumptions 1 and 2.

Given that under passive attacks, the players always follow the protocol, we argue
the properties listed in Definition 1.
Completeness: As in the McEliece protocol, Bob can always decrypt rc and so com-
pute bc in Step 4.
Security for Alice: Let B̃ be any PPT passively cheating receiver.

Let c be the bit such that b̂c = bc ⊕ 〈rc, hc〉 and sc = (Pc ⊕ Q)rT
c . Note that Q is

chosen randomly and independently from Pc, so from B̃’s point of view, learning rc is
equivalent to decoding a random linear code with parity check matrix Pc ⊕ Q. By the
same arguments as in McEliece version, 〈r, h〉 is a hard-core predicate for this function
and the security for Alice follows from assumption 2 .
Security for Bob: This follows directly from Assumption 1 and the equivalence of
McEliece’s and Niederreiter’s cryptosystems security [11]. Honest-but-curious Alice

14

is unable to distinguish between P = MHP and a random (n− k)× n matrix, and hence
she is also unable to tell Pc = MHP from Pc = MHP ⊕ Q for any c ∈ {0, 1}. This
implies computational indistinguishability of the protocol views for Alice.

In order to achieve security against malicious parties, we can use the same approach
used in the protocol version that utilizes the McEliece’s cryptosystem.

7 Conclusions
In this paper we presented the first protocol for implementing oblivious transfer based
solely on the McEliece assumption. We also presented the first oblivious transfer pro-
tocol based on the Niederreiter cryptosystem. Our protocols are secure in the so-called
half-simulation paradigm. We state as an open problem to obtain fully simulatable
oblivious transfer protocols based on the McEliece assumptions.

Acknowledgments The authors acknowledge previous discussions with Kirill Mo-
rozov and Hideki Imai.

References
[1] W. Aiello, Y. Ishai, O. Reingold. Priced Oblivious Transfer: How to Sell Digital

Goods. EUROCRYPT 2001, pp. 119–135.

[2] D. Beaver. Precomputing Oblivious Transfer. CRYPTO 1995, pp. 97–109.

[3] M. Bellare, S. Micali. Non-Interactive Oblivious Transfer and Applications.
CRYPTO 1989, pp. 547–557.

[4] E.R. Berlekamp, R.J. McEliece, H.C.A van Tilborg. On the Inherent Intractability
of Certain Coding Problems. IEEE Transactions on Information Theory, vol. 24,
pp.384–386, 1978.

[5] D. J. Bernstein and T. Lange and C. Peters. Attacking and Defending the
McEliece Cryptosystem. PQCrypto 2008, pp. 31–46.

[6] A. Canteaut, F. Chabaud. A New Algorithm for Finding Minimum-weight Words
in a Linear Code: Application to Primitive Narrow-sense BCH Codes of Length
511. IEEE Transactions on Information Theory, vol. 44(1), pp.367–378, 1998.

[7] N. Courtois, M. Finiasz, N. Sendrier. How to Achieve a McEliece Digital Signa-
ture Scheme. ASIACRYPT 2001, pp. 157–174.

[8] C. Crépeau. Equivalence Between Two Flavors of Oblivious Transfers. CRYPTO
1987, pp. 350–354.

[9] C. Crépeau, J. van de Graaf, and A. Tapp. Committed Oblivious Transfer and
Private Multi-Party Computations. CRYPTO 1995, pp. 110–123.

15

[10] I. Damgård, J. Kilian, L. Salvail. On the (Im)possibility of Basing Oblivi-
ous Transfer and Bit Commitment on Weakened Security Assumptions. EURO-
CRYPT 1999, pp. 56–73.

[11] R. Deng, Y. Li, X. Wang. The Equivalence of McEliece’s and Niederreiter’s
Public-key Cryptosystems. IEEE Transactions on Information Theory, Vol. 40,
pp. 271–273, 1994.

[12] R. Dowsley, J. van de Graaf, J. Müller-Quade, A. C. A. Nascimento. Oblivious
Transfer Based on the McEliece Assumptions. ICITS 2008, pp. 107–117.

[13] R. Dowsley, J. Müller-Quade, A. C. A. Nascimento. A CCA2 Secure Public Key
Encryption Scheme Based on the McEliece Assumptions in the Standard Model.
CT-RSA 2009. pp. 240–251.

[14] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Con-
tracts. CRYPTO 1982, pp. 205–210.

[15] J. Faugère, V. Gauthier, A. Otmani, L. Perret, J. Tillich. A Distinguisher for High
Rate McEliece Cryptosystems. Cryptology ePrint Archive, Report 2010/331.

[16] J. Fischer, J. Stern. An Efficient Pseudo-Random Generator Provably as Secure
as Syndrome Decoding. EUROCRYPT 1996, pp. 245–255.

[17] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, M. Viswanathan. The Relation-
ship between Public Key Encryption and Oblivious Transfer. FOCS 2000, pp.
325–335.

[18] O. Goldreich. Foundations of Cryptography - Volume 2 (Basic Applications),
Cambridge University Press, 2004.

[19] O. Goldreich, L. A. Levin. Hard-Core Predicates for Any One-Way Function. 21st
ACM STOC, pp. 25–32, 1989.

[20] O. Goldreich, S. Micali, A. Wigderson. How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. 19th ACM STOC,
pp. 218–229, 1987.

[21] I. Haitner. Implementing Oblivious Transfer Using Collection of Dense Trapdoor
Permutations. TCC 2004, pp. 394–409.

[22] Y. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer. EU-
ROCRYPT 2005, pp. 78–95.

[23] J. Kilian. Founding Cryptography on Oblivious Transfer. 20th ACM STOC, pp.
20–31, 1988.

[24] K. Kobara, K. Morozov, R. Overbeck. Oblivious Transfer via McEliece’s PKC
and Permuted Kernels. MMICS 2008, pp. 142–156.

16

[25] R.J. McEliece. The Theory of Information and Coding (Vol. 3 of The Encyclo-
pedia of Mathematics and Its Applications.), Reading, Mass., Addison-Wesley,
1977.

[26] R.J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory.
In Deep Space Network progress Report, 1978.

[27] M. Naor. Bit Commitment using Pseudo-Randomness. CRYPTO 1989, pp. 128–
136.

[28] M. Naor, B. Pinkas. Efficient Oblivious Transfer Protocols, SODA 2001.

[29] H. Niederreiter. Knapsack-type Cryptosystems and Algebraic Coding Theory.
Prob. of Control and Inf. Theory, vol. 15(2), pp. 159–166, 1986.

[30] R. Nojima, H. Imai, K. Kobara, K. Morozov. Semantic Security for the McEliece
Cryptosystem without Random Oracles. WCC 2007.

[31] M. O. Rabin. How to Exchange Secrets by Oblivious Transfer. Technical Memo
TR-81, Aiken Computation Laboratory, Harvard University. 1981.

[32] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. 37th STOC pp. 84–93, 2005.

[33] N. Sendrier. Finding the Permutation Between Equivalent Linear Codes: The
Support Splitting Algorithm. IEEE Transactions on Information Theory, 46(4),
pp. 1193–1203, 2000.

[34] A. Shamir. An Efficient Identification Scheme based on Permuted Kernels.
CRYPTO 1989, pp. 606–609.

[35] S. Wiesner. Conjugate coding. Sigact News, vol. 15, no. 1, pp. 78–88. 1983.

17

