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Abstract

We study the interplay of network connectivity and the issues related to the possibility, feasibility
and optimality for unconditionally reliable message transmission (URMT) and unconditionally secure
message transmission (USMT) in an undirected synchronous network, under the influence of an adap-
tive mixed adversary A(tb,to,tf ,tp), who has unbounded computing power and can corrupt tb, to, tf and
tp nodes in the network in Byzantine, omission, fail-stop and passive fashion respectively. In URMT
problem, a sender S and a receiver R are part of a distributed network, where S and R are connected
by intermediate nodes, of which at most tb, to, tf and tp nodes can be under the control of A(tb,to,tf ,tp).
S wants to send a message m which is a sequence of ` field elements from a finite field F to R. The
challenge is to design a protocol, such that after interacting in phases1 as per the protocol, R should
output m′ = m with probability at least 1− δ, where 0 < δ < 1

2 . Moreover, this should happen, irre-
spective of the adversary strategy of A(tb,to,tf ,tp). The USMT problem has an additional requirement
that A(tb,to,tf ,tp) should not know anything about m in information theoretic sense.

In this paper, we answer the following in context of URMT and USMT: (a) Possibility: when is
a protocol possible in a given network? (b) Feasibility: Once the existence of a protocol is ensured
then does there exists a polynomial time protocol on the given network? (c) Optimality: Given
a message of specific length, what is the minimum communication complexity (lower bound) needed
by any protocol to transmit the message and how to design a protocol whose total communication
complexity matches the lower bound on the communication complexity? Finally we also show that
allowing a negligible error probability significantly helps in the possibility, feasibility and optimality of
both reliable and secure message transmission protocols. To design our protocols, we propose several
new techniques which are of independent interest.
Keywords: Probabilistic Reliability, Information Theoretic Security, Mixed Adversary.

1 Introduction

Achieving reliable and secure communication is a fundamental problem in the theory of communication.
In modern applied network security, there is a lot of emphasis on the use of virtual private networks (using

∗A preliminary version of this paper appeared in INDOCRYPT 2007.
†Work supported by project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Computation

sponsored by Department of Information Technology, Govt. of India.
1A phase is a send from S to R or viceversa.
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cryptography), firewalls, virus scanners, etc. However, routers too are vulnerable [40]. Two problems
have been identified if routers are hacked. The hacker can shut down these nodes or forward incorrect
information [8, 18]. An important problem solved by routers is to find the network graph. Hacked routers
can disrupt this by claiming non-existent nodes as part of the network graph. Hence there is a need for
considering an adversary who can disrupt the network in variety of ways.

The problem of Byzantine nodes disrupting communications was studied in a broader context by
Dolev-Dwork-Waarts-Yung [8] for the first time, by adding the issue of privacy. The research found its
origin from secure multiparty computation. Up to that time, one assumed a complete graph for private
and robust (reliable) communication [2, 16, 29, 39]. The authors in [8] called the above problems as
perfectly reliable message transmission (PRMT) and perfectly secure message transmission (PSMT). In
the problem of perfectly reliable message transmission (PRMT), a sender S is connected to a receiver
R in an unreliable network, by n vertex disjoint paths called wires; S wishes to send a message m
chosen from a finite field F, reliably to R, in a guaranteed manner (with zero error probability), in
spite of the presence of several kinds of faults in the network. The problem of perfectly secure message
transmission (PSMT) has an additional constraint that the adversary should get no information about
m in information theoretic sense. The faults in the network is modeled by an adversary who controls
the actions of nodes in the network in a variety of ways and have unbounded computing power. Security
against such an adversary is called information theoretic security, which is also known as perfect security.

The PRMT and PSMT are well-motivated problems for it being one of the fundamental primitives
used by all fault-tolerant distributed algorithms like Byzantine agreement [23, 22, 9, 10], multiparty
computation [39, 3, 2, 29] etc. All these popular fault-tolerant distributed algorithms assume that the
underlying network is a complete graph, thereby implicitly assuming the existence of a PRMT protocol
that can simulate a complete graph (by filling up the missing links in given incomplete graph) overlayed
in the actual network which is seldom a complete graph itself. There is another motivation to study
PSMT problem. Currently, all existing public key cryptosystems, digital signature schemes are based
on the hardness assumptions of certain number theoretic problems. With the advent of new computing
paradigms, such as quantum computing and increase in computing speed, may render these assumptions
baseless. In that case, one has to look for information theoretically secure message transmission schemes.

There are various settings in which PRMT and PSMT problem has been studied extensively in the
past. For example, the underlying network model may be undirected [8, 27, 1] graph, directed [28, 7] graph
or hypergraph [14]. The communication in the network could be synchronous [8, 31] or asynchronous [30].
The faults could be passive, fail-stop, Byzantine or sometimes mixed/hybrid faults [15]. The number of
faulty nodes may be bounded by a fixed constant (threshold adversary) [8, 31] or the potential sets of
faulty nodes may be described by a collection of subsets of nodes (non-threshold adversary) [19], while
the adversary may be mobile [26] or adaptive [8, 31]. The taxonomy of settings in which PRMT and
PSMT can be studied are listed in Table 1. Any PRMT/PSMT protocol is analyzed by the following

Underlying Network Model Adversary Capacity Adversary Behavior

Undirected Graph
Directed Graph
Undirected Hypergraph
Directed Hypergraph

Threshold Adaptive
Threshold Mobile
Non-Threshold Adaptive
Non-Threshold Mobile

Byzantine
Fail-Stop
Passive
Mixed

Table 1: The taxonomy of the settings in which PRMT/PSMT can be studied.

parameters: (a) connectivity of the underlying network (b) number of phases taken by the protocol,
where a phase is a communication from S to R or vice-versa (c) communication complexity, which is the
total number of field elements communicated by S and R in the protocol (d) amount of computation
done by S and R in the protocol. Irrespective of the settings in which PRMT and PSMT is studied, the
following issues are common:
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(i) Possibility: When is a protocol possible in the given network?

(ii) Feasibility: Once the existence of a protocol is ensured then does there exists a polynomial time
protocol on the given network?

(iii) Optimality: Given a message of specific length, what is the minimum communication complexity
(lower bound) needed by any protocol to transmit the message and how to design a protocol whose
total communication complexity matches the lower bound on the communication complexity?

The issues (a), (b) and (c) has been completely resolved for certain settings. For certain network settings,
these issues has been partly resolved where as for certain settings, nothing is known. For example,
the issues (a), (b) and (c) for PRMT in undirected synchronous networks tolerating threshold adaptive
Byzantine adversary in solved in [8, 27]. Similarly, issues (a), (b), (c) for PSMT in undirected synchronous
networks tolerating threshold adaptive Byzantine adversary in solved in [8, 27, 34, 36, 11, 20]. Desmedt
et.al [7] and Arpita et.al [28] has studied the issues related to the possibility and feasibility of PSMT
protocols in directed networks tolerating threshold adaptive Byzantine adversary. On the other hand,
nobody has addressed the issues (a), (b) and (c) for PSMT in arbitrary directed hypergraphs mobile
mixed adversary. Note that the techniques used to address (a), (b) and (c) in one setting cannot be
directly adapted to address the same issues in other settings. For example, the techniques used to design
feasible PSMT protocols in directed networks [28] are very different from the one which are used to design
PSMT protocols in undirected networks [27].

It’s a well-renowned fact that in numerous situations randomization helps unbelievably in making
the life simple. The testimonials ranges from famous number theoretic randomized primality testing
algorithms to various distributed computation tasks like verifiable secret sharing (VSS) [29], multiparty
computation [6] to name a few. In this work, we focus on to expose the effect of randomization on
PRMT and PSMT problems. We name the probabilistic PRMT and PSMT as unconditionally reliable
message transmission (URMT) and unconditionally secure message transmission (USMT) respectively.
The problem of URMT is identical to the problem of PRMT except that R should correctly receive S’s
message with probability at least 1−δ (for any 0 < δ < 1/2), instead of probability 1, as in case of PRMT.
In USMT, in addition to the conditions of URMT, S’s message must be hidden information theoretically
from the adversary. The difference between PRMT, URMT, PSMT and USMT is summarized in Table 2.

Probability of Error in Reliability (δ) Probability of Error in Security (ε)

PRMT 0 No issue of security

URMT 0 < δ < 1/2 No issue of security

PSMT 0 0

USMT 0 < δ < 1/2 0

Table 2: Difference between the different terminologies used in the paper

Intuitively, the allowance of a small probability of error in the transmission (only in the reliability)
should result in improvements in both the fault tolerance as well as the efficiency aspects of reliable
and secure protocols. What exactly is the improvement? — this is the central question addressed in
this paper. More specifically, in this paper, we address issues related to possibility, feasibility and
optimality in the context of URMT and USMT. Now as in the case of PRMT and PSMT, URMT and
USMT can also be studied in various network settings and adversary model. In this paper, we completely
resolve issues (a), (b) and (c) in the context of URMT and USMT, in undirected synchronous network,
tolerating an adaptive threshold mixed adversary A(tb,to,tf ,tp).

why to study mixed adversary: In a typical large network, certain nodes may be strongly pro-
tected and few others may be moderately/weakly protected. An adversary may only be able to fail-
stop(/eavesdrop in) a strongly protected node, while he may affect in a Byzantine fashion a weakly
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protected node. Thus, we may capture the abilities of an adversary in a more realistic manner using
four parameters tb, to, tf , tp where tb, to, tf , tp are the number of nodes under the influence of the adver-
sary in Byzantine, omission, failstop and passive adversary, respectively (for more formal definition see
Section 2). Also it is better to grade different kinds of disruption done by adversary and consider them
separately, rather than treating every kind of fault as Byzantine fault as this is an “overkill”.

Comparing our results with the existing results for PRMT and PSMT in undirected networks show
that randomness and probabilistic approaches lead to improved fault tolerance, communication, phase
and computational complexities.

1.1 Existing Literature

We first recall the existing results for PRMT and PSMT in undirected synchronous networks tolerating
threshold Byzantine and mixed adversary in Table 3 and Table 4.

Table 3: Connectivity Requirement and Lower Bounds for PRMT and PSMT in Undirected Networks.
r denotes number of phases and ` denotes the message size in terms of field elements

Model Connectivity Requirement Lower Bound
between S and R (n) on Communication Complexity

PRMT(Byzantine Adversary) n ≥ 2tb + 1, ∀r ≥ 1 [8] Ω( n`
n−2tb

) for r = 1, 2 [34]

Ω( n`
n−tb

) for r ≥ 3[36]

PSMT(Byzantine Adversary) n ≥ 3tb + 1 for r = 1 [8] Ω( n`
n−3tb

) for r = 1 [11]

n ≥ 2tb + 1 for r ≥ 2 [8] Ω( n`
n−2tb

) for r ≥ 2 [36]

PRMT(Mixed Adversary) n ≥ 2tb + to + tf + 1, ∀r ≥ 1 [33] Ω
(

n`
n−(2tb+to+tf )

)
for r = 1, 2[33]

Ω
(

(n−tf−to)`

n−(tb+to+tf )

)
for r ≥ 3[33]

PSMT(Mixed Adversary) n ≥ 3tb + 2to + tf + tp + 1 for r = 1 [33] Ω( n`
n−(3tb+2t0+tf +tp)

) for r = 1 [33]

n ≥ 2tb + to + tf + tp + 1 for r ≥ 2 [27] Ω( n`
n−(2tb+t0+tf +tp)

) for r ≥ 2 [33]

The problem of URMT and USMT in undirected synchronous networks in the presence of threshold
adaptive2 Byzantine adversary was first defined and solved by Franklin et al [12]. As one of the key
results, they have proved, that over undirected graphs, URMT (USMT) is possible if and only if PRMT
(PSMT) is possible! Subsequent works on URMT and USMT include [13, 38, 7]. However, all these
results try to address the issue of possibility and feasibility of URMT and USMT protocols and that
too only in the presence of threshold Byzantine adversary. In [21], Kurosawa et.al have addressed the
issue of optimality of USMT protocols in undirected networks tolerating threshold Byzantine adver-
sary. Most recently, Srinathan et.al [35] and Shankar et.al [32] have given the characterization for the
possibility of URMT in arbitrary directed graphs tolerating non-threshold and threshold Byzantine
adversary respectively. However, as far as our knowledge is concerned, no body has ever simultaneously
addressed the issue of possibility, feasibility and optimality of URMT and USMT protocols in any
network model tolerating threshold mixed adversary.

1.2 Our Contribution

As mentioned earlier, any reliable/secure protocol is analyzed by the the connectivity requirement of the
network, the number of phases required by the protocol, the total number of field elements communicated
by S and R throughout the protocol and the computation done by S and R. The trade-offs among these
parameter are well studied in the literature in the context of PRMT and PSMT in undirected synchronous

2By adaptive adversary, we mean an adversary that decides on the set of players to corrupt on the fly during the protocol
execution.
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Table 4: Protocols with Optimum Communication Complexity. ` is the message size in terms of field
elements and n is the corresponding connectivity requirement from Table 3

Model Communication Complexity Number of Remarks
in Terms of Field Elements Phases

PRMT (Byzan-
tine Adversary)

O( n`
n−2tb

) ≤ 2 ` ≥ n [34].

O( n`
n−tb

) 3 ` ≥ n2 [27].

PSMT (Byzan-
tine Adversary)

O
(

n`
n−3tb

)
1 ` ≥ n [11].

O
(

n`
n−2tb

)
2 • Exponential computation

and communication complexity [1].
Polynomial computation and
communication complexity [20]

O
(

n`
n−2tb

)
3 • Polynomial computation

and communication complexity [27].

PRMT (Mixed
Adversary)

O
(

n`
n−(2tb+to+tf )

)
1 ` ≥ n [33].

O
(

(n−tf−to)`

n−(tb+to+tf )

)
log

(
tf +to

n−(tf +to)

)
` ≥ n2 [37].

PSMT (Mixed
Adversary)

O
(

n`
n−(2tb+to+tf +tp)

)
4 ` ≥ n [4]

network tolerating threshold Byzantine adversary [27, 36, 1, 20]. In this paper, we investigate the trade-off
for URMT and USMT in the presence of threshold adaptive mixed adversary, which is to our knowledge,
the first attempt in the literature of URMT and USMT.

So we provide characterization, lower bound on communication complexity and protocols that matches
the lower bound for URMT and USMT. In some of the cases the protocols presented here, achieves their
task in exactly optimal number of phases (the minimum number of phases that is required to achieve the
communication complexity lower bound for a specific message size). Such protocols are simultaneously
communication and phase optimal. In summary, for URMT we show the following:

• URMT between S and R tolerating A(tb,to,tf ,tp) is possible iff the network is (2tb + to + tf + 1)-
(S,R)-connected.

• Any single phase URMT protocol tolerating A(tb,to,tf ,tp) , from S to R over n ≥ 2tb + to + tf + 1
wires communicates Ω( n`

n−(tb+to+tf )) field elements to reliably transmit (with high probability) `

field elements.

• Any multiphase URMT protocol, from S to R over n ≥ 2tb + to + tf + 1 wires communicates Ω(`)
field elements to reliably transmit (with high probability) ` field elements.

We also design polynomial time communication optimal and phase optimal single phase URMT protocol
whose communication complexity satisfy our proven lower bound. As a corollary, we show that our single
phase URMT protocol has a special property that it achieves reliability with constant factor overhead (i.e.
sending ` field elements by communicating O(`) field elements) when executed only under the presence
of Byzantine adversary (i.e., to = tf = tp = 0). An O(log tf+to

n−tf−to
) phase PRMT protocol which sends `

field elements by communicating O(`) field elements is presented in [37]. The protocol of [37] is also a
valid multiphase URMT protocol satisfying the communication complexity lower bound for multiphase
URMT. Design of a bit optimal multiphase URMT protocol with lesser number of phases is left as an
open problem.

For USMT problem, we show the following:

• Any single phase USMT protocol that achieves perfect secrecy (with negligible error probability of
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δ > 0 in reliability), tolerating A(tb,to,tf ,tp) is possible iff there exists n ≥ 2tb + 2to + tf + tp + 1
vertex disjoint paths between S and R.

• Any single phase USMT protocol over n ≥ 2tb + 2to + tf + tp + 1 vertex disjoint paths between
S and R, tolerating A(tb,to,tf ,tp), must communicate Ω( n`

n−(2tb+2to+tf+tp)) field elements in order to
securely send an `-field element message with very high probability.

• Multiphase USMT between S and R in an undirected network tolerating A(tb,to,tf ,tp) is possible if
and only if the network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-connected.

• Any r-phase (r ≥ 2) USMT protocol which securely sends ` field elements in the presence of
A(tb,to,tf ,tp) needs to communicate Ω

(
n`

n−(tb+to+tf+tp)

)
field elements, where S and R are connected

by n ≥ (tb + max(tb, tp) + to + tf + 1) vertex disjoint paths.

We also design polynomial time communication optimal single phase and four phase USMT protocols
whose communication complexity satisfies our proven lower bounds for single phase and multiphase USMT
respectively, thus showing that our bounds are tight. So the single phase USMT is both communication
and phase optimal. Similarly our four phase USMT protocol against A(tb,to,tf ,tp) has a special property
that it achieves secrecy with constant factor overhead (sending ` field elements by communicating O(`)
field elements) when executed only under the presence of Byzantine adversary (i.e. to = tf = tp = 0).
However, against only Byzantine adversary, USMT with constant factor overhead in communication
complexity can be achieved in two phases itself. One such protocol is also presented in this paper. So,
the results on URMT and USMT is tabulated in Table 5 and Table 6.

Remark 1 In any URMT and USMT protocol, the communication complexity should be a function of δ
which is the error probability of the protocol. However, in the results summarized in Table 5 and Table
6, δ is not appearing explicitly in the communication complexity expressions. The reason is that the
communication complexity expressions are given in terms of field elements. This is done for the ease of
comparing the communication complexities of URMT and USMT protocols with the communication com-
plexities of PRMT and PSMT protocols (in terms of field elements). In any URMT and USMT protocol,
the field size is always a function of δ (as illustrated in our protocols). So though the communication
complexity expressions in Table 5 and Table 6 does not contain δ explicitly, they are actually function of
δ.

Table 5: Connectivity Requirement and Lower Bound on Communication Complexity for URMT and
USMT. r denotes number of phases and ` is the message size in terms of field elements. All the ∗ marked
results are presented in this paper.

Model Connectivity (n) Lower Bounds

URMT(Byzantine Adversary) n ≥ 2tb + 1,∀r ≥ 1 [12] Ω( n`
n−tb

) for r = 1 ∗
USMT(Byzantine Adversary) n ≥ 2tb + 1,∀r ≥ 1 [12] Ω( n`

n−2tb
) for r = 1 ∗

Ω( n`
n−tb

) for r ≥ 2 ∗
URMT(Mixed Adversary) n ≥ 2tb + to + tf + 1, ∀r ≥ 1 ∗ Ω

(
n`

n−(tb+to+tf )

)
for r = 1 ∗

Ω(`) for r ≥ 2 ∗
USMT(Mixed Adversary) n ≥ 2tb + 2to + tf + tp + 1 for r = 1 ∗ Ω( n`

n−(2tb+2t0+tf +tp)
) for r = 1 ∗

n ≥ tb + max(tb, tp) + to + tf + 1 for r ≥ 2 ∗ Ω( n`
n−(tb+t0+tf +tp)

) for r ≥ 2 ∗

Now, comparing Table 3 with Table 5 and Table 4 with Table 6, we find that allowing a negligible error
probability has tremendous effect on reliable and secure message transmission in terms of POSSIBILITY,
FEASIBILITY and OPTIMALITY. We show many practical scenarios where no optimal PRMT or
PSMT protocol exist but optimal URMT and USMT protocol do exists, thus showing the power of
allowing negligible error probability in the reliability of the protocols (without sacrificing secrecy).
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Table 6: Protocols with Optimum Communication Complexity. ` is the message size in terms of field
elements. n denotes respective connectivity requirement specified in Table 5. All the ∗ marked results
are presented in this paper.

Model Communication Complexity Number of Phases Remarks

URMT (Byzan-
tine Adversary)

O( n`
n−tb

) 1 ` ≥ n2 ∗.

USMT (Byzan-
tine Adversary)

O
(

n`
n−2tb

)
1 ` ≥ n ∗

O(`) 2 ` ≥ n2 ∗
PRMT (Mixed
Adversary)

O
(

n`
n−(tb+to+tf )

)
1 ` ≥ n(tb + 1) ∗

O(`) O
(
log

(
tf +to

n−(tf +to)

))
` ≥ n2 [37].

USMT (Mixed
Adversary)

O
(

n`
n−(2tb+2to+tf +tp)

)
1 ` ≥ n ∗

O
(

n`
n−(tb+to+tf +tp)

)
4 ` = n2 if tp ≥ tb

or
` = (tb − tp)n2 if tb > tp ∗

1.3 Techniques Used

The techniques used for designing PRMT and PSMT protocols are completely different from the tech-
niques used for designing URMT and USMT protocols. The existing URMT and USMT protocols [12, 7]
use the idea of information theoretic authentication schemes and check vectors along with error correct-
ing codes. The check vectors are introduced in [29] for information checking (IC) protocols, which are
used to generate IC signatures. The IC signatures can be used as a semi digital signature[6, 29]. Using
these ideas, one can design feasible URMT and USMT protocols in undirected networks tolerating
mixed adversary. However, the resultant protocols will be cumbersome and will not be communication
optimal against mixed adversary. To design optimal protocols against mixed adversary, we introduce
a new technique, called Extrapolation Technique. Using Extrapolation Technique, we can design
communication optimal URMT protocol against mixed adversary. By using a slight variant of Ex-
trapolation Technique, we can also design communication optimal USMT protocol tolerating mixed
adversary. The Extrapolation Technique is first of its kind and is of independent interest.

1.4 Organization of the Paper

This paper is mainly divided into four main sections, namely on single phase URMT, multiphase URMT,
single phase USMT and multiphase USMT. A vivid description has been penned down listing the tasks
that can be realized in probabilistic scenarios (URMT/USMT) but can’t be achieved by their perfect coun-
terpart (PRMT/PSMT) and the tasks that are significantly improved by the application of probabilistic
approaches (URMT/USMT) (as compared to PRMT/PSMT) at the end of each section.

2 Network Model, Adversary Model and Definitions

The underlying network is a connected synchronous network represented by an undirected graph where
S and R are two nodes of the graph. A mixed adversary A(tb,to,tf ,tp), with unbounded computing power
controls tb, to, tf and tp nodes in the graph (excluding S, R) in Byzantine, omission, fail-stop and passive
fashion respectively.

Definition 1 ( [17]) Failstop Corruption: A node P is said to be fail-stop corrupted if the adversary
can crash P at will at any time during the execution of the protocol. But as long as P is alive, it will
honestly follow the protocol and the adversary will have no access to any information or internal state of
P. Once P is crashed, then it will remain inactive for the rest of the protocol.
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Definition 2 ( [17]) Omission Corruption: We say that a node P is omission corrupted, if the
adversary can block the working of P at will at any time during the execution of the protocol. But as long
as P is alive, it will follow the instructions of the protocol honestly. The adversary can eavesdrop the
internal data/computation of P but cannot make P to deviate from the proper execution of the protocol.
Once P is blocked, it can again become alive at some later stage of the protocol and start following the
protocol honestly.

Definition 3 Passive Corruption: A node P is said to be passively corrupted if it honestly follows
the protocol. But the adversary will have full access to any information or internal state of P.

Definition 4 Byzantine Corruption: A node P is said to be Byzantine corrupted if the adversary
fully control the actions of P. The adversary will have full access to the computation and communication
of P and can force P to deviate from the protocol and behave arbitrarily.

The fail-stop error models a hardware failure caused by any natural calamity or manual shutdown. Also
the nodes which are fail-stop corrupted cannot be passively listened by the adversary. On the other
hand, nodes corrupted in omission fashion can be eavesdropped by the adversary. Thus omission error
can be considered as a combination of fail-stop and passive corruption with the exception that unlike
fail-stop error, a node which is crashed once due omission error may become alive during later stages
of the protocol. Note that though omission adversary has eavesdropping capability, it also has blocking
capability. Thus it is stronger than passive and failstop corruption. But it weaker than Byzantine
corruption. Thus, the adversary is a mixed adversary, represented as A(tb,to,tf ,tp). Note that a Byzantine
adversary is a special type of mixed adversary where to = tf = tp = 0. Since Byzantine and omission
corrupted nodes can also be eavesdropped, the maximum number of nodes which can be eavesdropped
by the adversary is bounded by tb + to + tp. We assume that the adversary is a centralized adversary
and can collectively pool the data from the nodes under its control and use it according to his own
choice in any manner. The adversary is adaptive [6]. Thus he is allowed to dynamically corrupt nodes
during the protocol execution. Moreover, his choice of nodes (to corrupt) may depend on the data seen
so far. However, the total number of nodes that can be under the control of the adversary throughout
the protocol is bounded by the threshold. Also one a node is under the control of the adversary in some
fashion, then it will remain so throughout the protocol.

Following the approach of Dolev et. al. [8], we abstract away the network and concentrate on solving
URMT and USMT problem for a single pair of processors, the sender S and the receiver R, connected
by n parallel and synchronous bi-directional channels w1, w2, . . . , wn, also known as wires. 3 In the worst
case, the adversary can compromise an entire wire by controlling a single node (say the first node) on the
wire. Hence, A(tb,to,tf ,tp) having unbounded computing power can corrupt upto tb, to, tf and tp wires in
Byzantine, omission, failstop and passive fashion respectively. Moreover, we assume that the wires that
are under the control of the adversary in Byzantine, omission, failstop and passive fashion are mutually
disjoint.

A wire which is controlled in a failstop fashion may fail to deliver any information, but if it delivers
any information then it will be correct. However, the adversary will have no idea about the information
that passed through a wire which is controlled in failstop fashion. Also, once a failstop controlled wire
crashes, then it will remain inactive for the rest of the protocol. A wire which is passively controlled will
always deliver correct information. However, the adversary will also completely know the information,
which passed through a passively controlled wire. A wire which is controlled in omission fashion behaves
in a similar fashion as a failstop controlled wire. However, the adversary will also know the information
that passed through a omission controlled wire. Moreover, a crashed wire which is controlled in omission
fashion, may again become alive later. A Byzantine corrupted wire may deliver correct information
or it may deliver incorrect information. However, in any case, the adversary will completely know the
information, which passed through a Byzantine corrupted wire.

3The approach of abstracting the network as a collection of n wires is justifying using Menger’s theorem [24] which states
that a graph is c− (S,R)-connected iff S and R are connected by at least c vertex disjoint paths.
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Throughout this paper, we use m to denote the message that S wishes to send to R. The message is
assumed to be a sequence of ` elements from the finite field F. The only constraint on F is that its size
must be no less than the number of wires n. Moreover, the size of F is a function of δ which is the error
probability of the URMT and USMT protocol. In our protocols, we show how to set F as a function of
δ, to achieve an error probability of at most δ. Since we measure the size of the message in terms of the
number of field elements, we also measure the communication complexity in units of field elements.

Broadcast: If some information is sent over all the wires then it is said to be “broadcast”. If x is
“broadcast” over at least 2tb + to + tf + 1 wires, then at most tf + to wires may crash and fail to deliver
x (if these wires does not crash, then they will deliver correct x), where as at most tb wires may deliver
incorrect x. But at least tb + 1 wires will deliver correct x. So receiver will be able to correctly receive x
by taking majority vote.

Definition 5 PRMT: In perfectly reliable message transmission (PRMT) over a sufficiently connected
network N = (V, E), tolerating mixed adversary A(tb,to,tf ,tp), S ∈ V intends to transmit a message m
which is a sequence of ` field elements from a finite field F to R ∈ V using some protocol, such that after
interacting in phases as per the protocol, the following condition must hold:
Perfect Reliability: R should correctly output m′ = m with probability 1.

Definition 6 PSMT: The problem of perfectly secure message transmission (PSMT) over a sufficiently
connected network N requires perfect reliability of PRMT and the following condition:
Perfect Secrecy: The message should be hidden from the adversary in information theoretic sense.

Definition 7 URMT: The problem of URMT is same as PRMT, except that it should satisfy a weaker
version of perfect reliability called probabilistic reliability:
Probabilistic Reliability: R should correctly output m′ = m with probability at least 1− δ, for any
0 < δ < 1/2.

Notice that “Probabilistic Reliability” says that R can obtain a wrong message with small probability
δ. We now define a strictly stronger notion of “Probabilistic Reliability” which we call as “Strong
Probabilistic Reliability”. A URMT protocol that achieves “Strong Probabilistic Reliability” always
outputs the correct message ; otherwise it fails with output NULL, but it never outputs an incorrect
message.

Definition 8 Strong Probabilistic Reliability: R should either correctly receive S’s message or
otherwise output NULL, where the probability of receiving correct message is at least 1 − δ, for any
0 < δ < 1/2.

Definition 9 Strong URMT: Strong URMT satisfies “Strong Probabilistic Reliability” property in-
stead of “Probabilistic Reliability”.

Definition 10 USMT: USMT requires probabilistic reliability property of URMT and perfect secrecy
property of PSMT.

Definition 11 Strong USMT: Strong USMT requires perfect secrecy of PSMT and should satisfy
“Strong Probabilistic Reliability”.

All the protocols presented in this paper are strong URMT and strong USMT protocols.

Definition 12 Communication Optimal URMT/USMT Protocol: Let Π be an r (r ≥ 1) phase
URMT (USMT) protocol which reliably (securely) sends a message m containing ` field elements by
communicating O(b) field elements. If the lower bound on the communication complexity of any r phase
URMT (USMT) protocol to send m is Ω(b) field elements, then Π is said to be a communication optimal
URMT (USMT) protocol to reliably (securely )send m.
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3 URMT in Undirected Network Tolerating A(tb,to,tf ,tp)

In this section, we characterize the possibility of single phase URMT tolerating A(tb,to,tf ,tp). We then
prove the lower bound on the communication complexity of any single phase URMT protocol tolerating
A(tb,to,tf ,tp) and show that our bound is tight by designing a communication optimal single phase URMT
whose total communication complexity matches this bound. We then briefly discuss multiphase URMT
tolerating A(tb,to,tf ,tp). Finally, we end the section by comparing our results with the existing results for
PRMT.

3.1 Characterization for single phase URMT

The existing characterization for URMT tolerating threshold adaptive Byzantine adversary in undirected
network is as follows:

Theorem 1 ([12]) Any r ≥ 1 phase URMT between S and R against a tb active adaptive Byzantine
adversary Atb is possible iff the network is (2tb + 1)-(S,R)-connected.

The characterization for URMT tolerating mixed adversary is as follows:

Theorem 2 Any r ≥ 1 phase URMT between S and R against a threshold adaptive mixed adversary
A(tb,to,tf ,tp) is possible iff the network is (2tb + to + tf + 1)-(S,R)-connected.

Proof: If part: Consider a network which is (2tb + to + tf + 1)-(S,R)-connected. So there exists
n ≥ 2tb + to + tf + 1 wires between S and R. To send a message m, S simply broadcasts m to R over the
n wires. It is easy to see that R will receive m with probability one by taking majority 4.
Only if part: We now show that if the network is not (2tb + to + tf +1)-(S,R)-connected, then no URMT
protocol exists. Assume that a URMT protocol Π exists in a network N that is not (2tb + to + tf + 1)-
(S,R)-connected. Consider the network N ′, induced by N , on deleting (to + tf ) vertices from a minimal
vertex cutset of N . This can be viewed as an adversary crashing the communication over to + tf wires,
which are under its control in omission and failstop fashion respectively. It follows that N ′ is not (2tb+1)-
(S,R)-connected. Evidently, if Π is a URMT protocol on N , then Π′ is a URMT protocol on N ′, where
Π′ is the protocol Π restricted to the players in N ′. However, from Theorem 1, Π′ is non-existent. Thus
Π is impossible too. 2

Significance of Theorem 2: Theorem 2 strictly generalizes Theorem 1 because we obtain the latter
by substituting to = tf = 0 in the former. Now consider a network, which is 4-(S,R)-connected. From
Theorem 1, on this network, any URMT protocol can tolerate at most one Byzantine fault. However,
according to Theorem 2, it is possible to tolerate one additional faulty node, which can be either omission
or fail-stop faulty. Thus our characterization shows more fault tolerance in comparison to the existing
results and also shows the motivation for studying URMT and USMT in the context of mixed adversary.

Comparison 1 (Possibility of PRMT vs Possibility of URMT) From Table 3 (third row), for
the existence of any r ≥ 1 phase PRMT against A(tb,to,tf ,tp), there should exist n ≥ 2tb + to + tf +1 wires
between S and R. From Theorem 2, the same number of error is required even for the existence of URMT
protocol against A(tb,to,tf ,tp). This shows that allowing a negligible error probability in the reliability does
not help in the possibility of reliable message transmission protocols.

Though allowing a negligible error helps in the possibility of reliable message transmission protocols, in
the sequel, we show that allowance of a negligible error probability in transmission significantly reduces
the communication complexity in comparison to perfect (zero error) transmission.

4The protocol described here is a naive protocol which does not take the advantage of allowing small error probability in
the reliability.
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3.2 Lower Bound on Communication Complexity of Single phase URMT Protocol

We now prove the lower bound on the communication complexity of any single phase URMT protocol
tolerating mixed adversary A(tb,to,tf ,tp).

Theorem 3 Any single phase URMT protocol, from S to R over n ≥ 2tb+to+tf +1 wires, communicates
Ω( n`

n−(tb+to+tf )) field elements to transmit a message containing ` field elements tolerating A(tb,to,tf ,tp).

Proof: In any single phase URMT protocol, the concatenation of the information sent over n wires can
be viewed as an (probabilistic) error correcting code which can correct tb Byzantine errors and to + tf
erasures with an arbitrarily high probability. Without loss of generality, the domain of the set of possible
values of the data sent along a wire can be assumed to be the same for all the wires 5. Let S be the set of
possible values of the data sent along the wires. Thus, each codeword can be viewed as concatenation of n
elements from S which can be represented by n log |S| bits. Now, the removal of any (tb +to +tf ) elements
from each of the codewords, which corresponds to an adversary blocking tb + to + tf wires ( a Byzantine
adversary can also block communication) should result in shortened codewords that are all distinct. For
if any two are identical, then the original codewords could have differed only in at most (tb + to + tf )
elements, implying that there exist two codewords c1 and c2 and an adversarial strategy such that the
receiver’s view is the same on the receipt of c1 and c2. Specifically, without loss of generality assume
that c1 and c2 differ only in their last (tb + to + tf ) elements. That is, c1 = α ◦ β and c2 = α ◦ γ, where
◦ denotes concatenation and |β| = |γ| = (tb + to + tf ) elements. Now, consider the two cases: (a) c1 is
sent and the adversary corrupts it to α◦ ⊥ by completely blocking the last (tb + to + tf ) elements (wires)
and (b) c2 is sent and the adversary again corrupts it to α◦ ⊥. Thus, R can not distinguish between the
receipt of c1 and c2 with probability greater than 1

2 , which violates the URMT communication property
(in any URMT protocol, receiver should be able to receive the message with probability more than 1

2).
Therefore, all shortened codewords containing n − (tb + to + tf ) elements from S are distinct. This
implies that there are same number of shortened codewords as original codewords. But the number
of shortened codewords can be at most C = |S|(n−(tb+to+tf )). Now each shortened codeword can be
represented by log C = (n− (tb + to + tf )) log |S| bits. Since, for error-correction, we need to communicate
the longer codeword containing n log |S| bits, reliable communication of shortened codeword of k = log C
bits incurs a communication cost of at least n log |S| bits. Hence communication of a single bit incurs
communication of n

(n−(tb+to+tf ) bits. So to communicate ` elements from a field F, represented by ` log |F|
bits, Ω( n`

(n−(tb+to+tf )) log |F|) bits need to be sent. Since log |F| bits represents one field element from F,

communicating ` elements from F requires a communicating Ω( n`
(n−(tb+to+tf )) field elements. 2

Remark 2 In any URMT protocol designed over a field F, the size of the field depends upon the error
probability δ of the protocol (this is demonstrated in next section). From Theorem 3, any URMT protocol
to send ` field elements from F need to communicate Ω( n`

(n−(tb+to+tf )) log |F|) bits. Thus the communi-
cation complexity of any single phase URMT protocol is a function of δ (since |F| is a function of δ),
though it is not explicitly mentioned in the expression derived in Theorem 3. It should also be noted that
communication complexity explicitly depends upon the message size `.

Comparison 2 (Communication Complexity of Single Phase PRMT and URMT:) While the
lower bound on the communication complexity of any single phase PRMT tolerating mixed adversary is
Ω( n`

(n−(2tb+to+tf )) field elements (see Table 3, third row), the same for URMT is Ω( n`
(n−(tb+to+tf )) field

elements (Theorem 3). This clearly shows that allowing a negligible error probability helps in significant
reduction in the communication complexity of reliable protocols.

5Suppose, however, that there is exists a protocol Π that does not have this symmetry property among the data sent
along the wires. Then consider the protocol Π′ which consists of n parallel executions of protocol Π with the identities or
numbers of the wires being “rotated” by a distance of i in the ith execution. Clearly, this protocol achieves the symmetry
property by “spreading the load”; further its message expansion factor is equal to that of Π. Thus, one may without loss of
generality, assume that the domains of all the wires are the same.
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3.3 Upper Bound on Communication Complexity of Single Phase URMT Tolerating
A(tb,to,tf ,tp)

Let S and R be connected by n = 2tb + to + tf + 1 wires, denoted as W = {w1, w2, . . . , wn}, of
which at most tb, to, tf and tp are under the control of A(tb,to,tf ,tp) in Byzantine, omission, failstop
and passive fashion respectively. We now present a communication optimal single phase URMT pro-
tocol URMT Single Phase, which delivers a message containing (tb + 1)n field elements by com-
municating O(n2) field elements in single phase with (arbitrarily) high probability. This shows that
the lower bound on the communication complexity of single phase URMT proved in the previous
section is tight. URMT Single Phase has a special feature that it achieves reliability with con-
stant factor overhead, when executed only under the presence of Byzantine adversary (i.e., to = tf =
tp = 0). Let δ be a bound on the probability that the protocol fails to deliver the correct mes-
sage. We require the size of the field F to be at least n3

δ . The message block is represented by
M = [m1 m2 . . . mn mn+1 mn+2 . . . m2n . . . mtbn+1 mtbn+2 . . . mtbn+n].

Remark 3 Our single phase protocol URMT Single Phase is a strong URMT protocol (see Definition
9).

Before presenting the protocol, we describe a novel technique, called as Extrapolation Technique
which we use in designing the protocol URMT Single Phase.

Extrapolation Technique: We visually represent M as a rectangular array A of size (tb +1)×n where
the jth row, 1 ≤ j ≤ tb + 1 contains the elements m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+n. For each column
i of A, 1 ≤ i ≤ n we do the following: we construct the unique tb degree polynomial qi(x) passing
through the points (1, mi), (2,mn+i), . . . , (tb + 1,mtbn+i) where mi,mn+i, . . . , mtbn+i belong to the ith

column A. Then qi(x) is evaluated at tb + to + tf values of x namely, x = tb + 2, tb + 3, . . . , n to obtain
c1i, c2i, . . . , c(tb+to+tf )i. Finally, we obtain a square array D of size n× n containing n2 elements, where

D =




m1 m2 . . . mi . . . mn

. . . . . . . . . . . . . . . . . .
m(j−1)n+1 m(j−1)n+2 . . . m(j−1)n+i . . . m(j−1)n+n

. . . . . . . . . . . . . . . . . .
mtbn+1 mtbn+2 . . . mtbn+i . . . mtbn+n

c11 c12 . . . c1i . . . c1n

. . . . . . . . . . . . . . . . . .
cj1 cj2 . . . cji . . . cjn

. . . . . . . . . . . . . . . . . .
c(tb+to+tf )1 c(tb+to+tf )2 . . . c(tb+to+tf )i . . . c(tb+to+tf )n




=
[

A
C

]
where

C is the sub-matrix of D containing last tb + to + tf rows. Thus D is the row concatenation of matrix
A of size (tb + 1)× n (containing elements of M) and matrix C, whose elements are obtained from A by
Extrapolation Technique. We now prove certain properties of the array D.

Lemma 1 In D, all the n elements of any column can be uniquely generated from any tb + 1 elements
of the same column.

Proof: The proof follows from the simple observation that the n elements along any column of D lie on
a tb degree polynomial and any tb + 1 points on a tb degree polynomial are enough to reconstruct the tb
degree polynomial. 2

Lemma 2 The elements of message M can be uniquely determined from any tb + 1 rows of D.

Proof: From the construction of D, the elements of M are arranged in the first tb + 1 rows. If the first
tb + 1 rows are known then the lemma holds trivially. On the other hand, if some other tb + 1 rows
are known, then from Lemma 1, ith column, 1 ≤ i ≤ n, of D can be completely generated from tb + 1
elements of the same column. Hence, knowledge of any tb + 1 rows can reconstruct the whole matrix D
and hence the message M (first tb + 1 rows of D). 2
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Lemma 3 Modification of at most tb elements along any column of D is detectable.

Proof: Recall that in D, the values along ith column lie on a unique tb degree polynomial qi(x). Now
suppose tb values along ith column are changed in such a manner that they lie on some other tb degree
polynomial q′i(x), where qi(x) 6= q′i(x). Since both qi(x) and q′i(x) are of degree tb, they can match on
additional tb common points. But still there are at least n − 2tb = to + tf + 1 points which lie on the
original polynomial qi(x) (but not on q′i(x)). Hence any attempt to interpolate a tb degree polynomial
passing through the elements of ith column (in which at most tb values has been changed) will be futile,
clearly indicating that at most tb values are changed along the column. Hence the lemma holds. 2

We are now ready to describe our single phase URMT protocol.

Protocol URMT Single Phase - The Single Phase URMT Protocol

Computation and Communication by S:

1. S generates a rectangular array D containing n2 field elements, from the (tb + 1) × n elements of message M using
Extrapolation Technique. S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of degree n − 1, where pj(x) is
formed using the jth row of D as follows: the coefficient of xi, 0 ≤ i ≤ n−1 in pj(x) is the (i+1)th element of jth row of D.

2. S chooses another n2 field elements at random, say rji, 1 ≤ i, j ≤ n. Over wj , S sends the following to R: the
polynomial pj(x) and the n ordered pairs (rji, pi(rji)), for 1 ≤ i ≤ n. Let vji = pi(rji).

Message Recovery by R:
1. Let F denotes the set of wires that delivered nothing and let B denotes the set of wires that delivered invalid
information (like higher degree polynomials etc.). Note that the wires in B are Byzantine corrupted because omission
or fail-stop controlled wires are not allowed to modify the information passing over them. R removes all the wires in
(F ∪ B) from W, to work on the remaining wires in W \ (F ∪ B), out of which at most tb − |B| could be Byzantine
corrupted. Let R receives p′j(x) and (r′ji, v

′
ji), 1 ≤ i ≤ n over wj ∈ W \ (F ∪ B). We say that wj contradicts wi if:

v′ji 6= p′i(r
′
ji) where wi, wj ∈ W \ (F ∪ B) . Among all the wires in W \ (F ∪ B), R checks if there is a wire contradicted

by at least (tb − |B|) + 1 wires. All such wires are Byzantine corrupted and removed (see Lemma 4).

2. To retrieve M, R tries to reconstruct the array D as generated originally by S. Let D′ represents the corresponding
array which R tries to recover at his end. Corresponding to each wj ∈ W \ (F ∪ B), which is not removed in previous
step, R fills the jth row of D′ in the following manner: coefficient of xi, 0 ≤ i ≤ n− 1 in p′j(x) occupies (i + 1)th column
in the jth row of D′; i.e., the coefficients of p′j(x) are inserted in jth row of D′ such that the coefficient of xi in p′j(x)
occupies (i + 1)th column in the jth row of D′.

3. After doing the above step for each wj ∈ W \ (F ∪ B), which is not removed in step 1 of message recovery,
R has at least tb + 1 rows inserted in D′ (see Lemma 6). R then checks the validity of these rows as follows: let
i1, i2, . . . , ik, k ≥ tb + 1 denote the index of the rows which are inserted by R in D′. Let yj

i1
, yj

i2
, . . . , yj

ik
, 1 ≤ j ≤ n

denote the values along jth, 1 ≤ j ≤ n column of D′. R checks whether the points (i1, y
j
i1

), (i2, y
j
i2

), . . . , (ik, yj
ik

) lie on a
tb degree polynomial. Note that at this point, each column will have at least tb + 1 elements, which are enough to do
the checking.

4. If the above test fails for at least one column of D′, then R outputs “NULL” and halts. Otherwise, R regenerates the
complete D′ correctly and recovers M from the first tb + 1 rows (see Lemma 6).

Lemma 4 In URMT Single Phase, if any wj ∈ W \ (F ∪ B) is contradicted by at least (tb − |B|) + 1
wires from the set W \ (F ∪ B) , then the polynomial pj(x) over wj has been changed by adversary or in
effect wj is Byzantine corrupted.

Proof: The wires in B are already identified to be Byzantine corrupted and hence neglected by R. Also
the wires in F delivers nothing and hence neglected by R. So among the remaining W \ (F ∪B) wires, at
most (tb−|B|) could be Byzantine corrupted. Also there cannot be any contradiction between two honest
wires (which has correctly delivered the values to R) and hence any honest wire can be contradicted by
at most (tb− |B|) wires. Thus if a wire is contradicted by at least (tb− |B|)+1 wires then it is Byzantine
corrupted. 2

Lemma 5 In the protocol, if the adversary corrupts a polynomial over wire wj in such a way that wj is
not removed during step 1 of message recovery, then R will always be able to detect it at the end of step
3 of message recovery and outputs “NULL”.
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Proof: We consider the worst case, where to+tf wires which are omission and failstop controlled crashed
and failed to deliver any information (if they do not crash then they deliver correct information). So R
will receive information over 2tb + 1 wires, of which at most tb could be Byzantine corrupted. At the
beginning of step 3 of message recovery, there are at least tb +1 rows present in D′. This follows from the
fact there always exist tb + 1 honest wires which will deliver correct polynomials to R. As mentioned in
Lemma 4, any honest wire can be contradicted by at most (tb − |B|) wires and hence is not be removed
by R during step 1 of message recovery. So the coefficients of the polynomials corresponding to these
honest wires will be present in D′.

Now if wj (which has delivered a faulty polynomial p′j(x) 6= pj(x)) is not removed during step 1 of
message recovery, then during step 2 of message recovery, the coefficients of p′j(x) are inserted in the jth

row of D′. Since pj(x) 6= p′j(x), there exists at least one coefficient in p′j(x) which is different from the
corresponding coefficient in pj(x). Let pj(x) differs from p′j(x) in the coefficient of xi. Then (i + 1)th

column of D′ differs from the (i + 1)th column of original D at jth position. Also the (i + 1)th column of
D′ may differ from the (i+1)th column of original D in at most tb locations (including jth location). This
is because in the worst case, out of the 2tb + 1 wires, the adversary may change the polynomials along
at most tb wires (which are Byzantine corrupted), such that the coefficient of xi in all these changed
polynomials differ from their corresponding coefficient of xi in the original polynomials. So, in the worst
case, at most tb elements of the (i + 1)th column of D′ can be different from (i + 1)th column of D. The
proof now follows from Lemma 3. Hence R will detect that at atmost tb of the received polynomials are
incorrect and outputs “NULL”. 2

Lemma 6 In URMT Single Phase, if the test in step 4 of message recovery succeeds for all the n
columns of D′, then R will never output “NULL” and always recovers M correctly.

Proof: As explained in previous Lemma, at the beginning of step 4 of message recovery, there will be
at least tb +1 rows present in D′. Now if the test in step 4 succeeds for all the n columns of D′, it implies
that all the rows present in D′ are same as the corresponding rows in the original D. From Lemma 1,
R will be able to completely regenerate all the n columns of original D. The proof now follows from
Lemma 2. It is easy to see that R does not outputs “NULL” in this case.

Theorem 4 If URMT Single Phase is executed over a field F of size |F| ≥ n3

δ , then it is a strong
URMT protocol and terminates with a non-“NULL” output with probability at least 1− δ.

Proof. Since no honest wire contradicts another honest wire, from Lemma 4, all the wires removed by
R during step 1 of message recovery are indeed faulty. We need to show that if a wire is corrupted and
delivered incorrect polynomial, then it will be contradicted by all the honest wires with high probability.
Let πij be the probability that a corrupted wire wj will not be contradicted by a honest wire wi. This
means that the adversary can ensure that pj(rij) = p′j(rij) with a probability of πij . Since there are
only n− 1 points at which these two polynomials intersect, this allows the adversary to guess the value
of rij with a probability of at least πij

n−1 . But since rij was selected uniformly in F, the probability of
guessing it is at most 1

|F| . Therefore we have πij ≤ n−1
|F| for each i, j. Thus the total probability that the

adversary can find wi, wj such that corrupted wire wj will not be contradicted by an honest wire wi is
at most

∑
i,j πij ≤ n2(n−1)

|F| which is bounded by n3

|F| . Since F is chosen such that |F| ≥ n3

δ , it follows that
a Byzantine corrupted wire wj and hence a corrupted p′j(x) 6= pj(x), received over wj can be included in
D′ with probability at most δ. However, if such a p′j(x) is included in D′, then from Lemma 5, R will
detect this and will output ”NULL”. Thus protocol URMT Single Phase is a strong URMT protocol
and outputs a non-”NULL” output with probability at least 1− δ. 2

Theorem 5 URMT Single Phase reliably sends M containing n(tb + 1) field elements by communi-
cating O(n2) field elements. In terms of bits, the protocol sends n(tb + 1) log |F| bits by communicating
O(n2 log |F|) bits.

Proof: Over each wire, S sends a polynomial of degree n − 1 and n ordered pair. Thus the total
communication complexity is O(n2). Since each element from field F can be represented by log |F| bits,
the communication complexity of the protocol is O(n2log|F|) bits. 2
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Theorem 6 URMT Single Phase is a communication and phase optimal URMT protocol.

Proof: It is obvious that URMT Single Phase is a phase optimal protocol. Now we show that
URMT Single Phase is communication optimal also. In Theorem 3, substituting n = 2tb + to + tf + 1
and ` = n(tb+1), we find that any single phase URMT protocol must communicate Ω(n2) elements to send
n(tb + 1) elements. Now, from Theorem 5, the communication complexity of URMT Single Phase is
O(n2). Hence our protocol has optimal communication complexity. In terms of bits, URMT Single
Phase sends n(tb + 1) log |F| bits by communicating O(n2 log |F|) bits where |F| = n3

δ and 1 − δ is the
least probability with which the protocol terminates without ”NULL”. So, our protocol is both phase
and communication optimal. 2

Corollary 1 Protocol URMT Single Phase when executed under the presence of only Byzantine ad-
versary, achieves reliability with “constant factor overhead” by sending Θ(n2) field elements with a com-
munication overhead of O(n2) field elements.

Proof: From Theorem 5, URMT Single Phase reliably sends n(tb + 1) field elements by communi-
cating O(n2) field elements when n = 2tb + to + tf +1. If to = tf = 0, then URMT Single Phase sends
(tb + 1)n = Θ(n2) field elements (when to = 0, tf = 0, n = 2tb + 1 and so tb = Θ(n)) by communicating
O(n2) field elements. Thus it achieves reliability with ”constant factor overhead”. 2

3.4 Multiphase URMT tolerating A(tb,to,tf ,tp)

We now briefly discuss about the communication complexity of multiphase URMT protocols tolerating
A(tb,to,tf ,tp).

Theorem 7 Any multiphase URMT protocol between S and R over n ≥ 2tb + to + tf + 1 wires commu-
nicates Ω(`) field elements to send a message containing ` field elements against A(tb,to,tf ,tp).

Proof: The lower bound of Ω(`) for sending ` field elements is obvious, since any URMT protocol must
send at least the message. An O(log tf+to

n−tf−to
) phase PRMT protocol which sends ` field elements by

communicating O(`) field elements is presented in [37]. The protocol of [37] is also a valid multiphase
URMT, thus satisfying the communication complexity lower bound for multiphase URMT. 2

We do not know whether there exists a URMT protocol with less number of phases, which sends `
field elements by communicating O(`) field elements. Design of such a protocol is left as an open problem.

3.5 Comparison of URMT with PRMT

We now compare the results of URMT presented in this section, with the existing results for PRMT. The
comparison can be listed as follows:

1. Allowing a negligible error probability in the reliability does not help in the possibility of reliable
message transmission protocols (see Comparison 1).

2. Allowing a negligible error probability in the reliability significantly reduces the communication
complexity of reliable message transmission protocols (see Comparison 2).

3. In the presence of only Byzantine adversary (i.e., to = tf = tp = 0), it is impossible to design
any single phase PRMT protocol which achieves reliability with ”constant factor overhead”; i.e.,
sending ` field elements by communicating O(`) field elements. The minimum number of phases
required by any PRMT protocol to achieve reliability with ”constant factor overhead” is 3 [27].
However, it is possible to design a single phase URMT, which under the presence of only Byzantine
adversary, achieves reliability with ”constant factor overhead” (see Corollary 1). This again shows
the power of allowing a negligible error probability in the context of reliable message transmission.

15



4 Single Phase USMT Tolerating A(tb,to,tf ,tp)

In this section, we prove the necessary and sufficient condition for the existence of any single phase USMT
protocol in the presence of mixed adversary. We then prove the lower bound on the communication com-
plexity of any single phase USMT protocol and show that our bound is tight by designing a communication
optimal single phase USMT protocol whose total communication complexity satisfy this bound. As a
special case, we show that in the presence of only Byzantine adversary (i.e., to = tf = tp = 0), if 3tb + 1
wires are available, then our single phase USMT protocol achieves security with constat factor overhead.
Finally we compare our results on single phase USMT with the existing results for single phase PSMT.
Our comparison shows that allowing a negligible error probability only in the reliability, significantly
helps in the possibility and reducing the communication complexity of single phase secure message
transmission protocols.

4.1 Single Phase USMT Protocol Tolerating A(tb,to,tf ,tp): Characterization and Lower
Bound on Communication Complexity

Theorem 8 Any single phase USMT protocol tolerating A(tb,to,tf ,tp) from S to R over n wires is possible
if and only if n > 2tb + 2to + tf + tp. Moreover any such single phase USMT protocol is required to
communicate Ω( n`

n−(2tb+2to+tf+tp)) field elements in order to send a message containing `-field elements.

Remark 4 In any USMT protocol designed over a field F, the size of the field depends upon the error
probability (in reliability) δ of the protocol. Since each field element from a field F can be represented by
log|F| bits, from Theorem 8, any single phase USMT protocol to send `log|F| bits, need to communicate
Ω

(
n`

n−(2tb+2to+tf+tp) log|F|
)

bits. Thus the communication complexity of any single phase USMT protocol
is a function of δ (since |F| is a function of δ), though it is not explicitly mentioned in the expression
derived in Theorem 8.

Proof: We first prove the lower bound on the communication complexity. Since perfect secrecy is
required, the data (or shares) sent along the n wires in any single phase USMT protocol must be such
that information on any set of (tb + to + tp) wires has no information about the secret message, otherwise
the adversary will also know the secret message by passively listening the contents of these wires (recall
that the eavesdropping capability of the adversary is at most tb + to + tp). Similarly, the data (shares)
sent over any (n− (tb + to + tf )) honest wires during the protocol has full information about the secret
message. The latter requirement ensures that even if the adversary simply blocks/corrupts all the data
that he can, the secret message is not lost and therefore the receiver’s ability to recover the message is
not completely ruled out.

Let Xi denotes the ith share of some valid distribution scheme and let m denote the secret message
containing ` field elements. Then m can be viewed as a value drawn uniformly at random from F`. For
any subset A ⊆ {1, 2 . . . n} let XA denote the set of variables {Xi|i ∈ A}. Then the secret m and the
shares Xi are random variables. For a random variable X, let H(X) denote its entropy [5]. Roughly
speaking, entropy quantifies the information contained in a message, usually in bits or bits/symbol. Since
m is drawn uniformly at random from F`, we have H(m) = `.

Since in any single phase USMT protocol, the data sent along any set B consisting of (n−(tb+to+tf ))
honest wires have full information about m, we have

H(m|XB) = 0.

Consider any subset A ⊂ B such that |A| = (tb + to + tp). Since the data sent along the wires in A is
insufficient to retrieve any information about the message m we get

H(m|XA) = H(m).

From the chain rule of the entropy [5], for any two random variable X1, X2, we have H(X1, X2) =
H(X2) + H(X1|X2). Here H(X1, X2) denotes the joint entropy of X1, X2. Informally, the joint entropy
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measures how much entropy is contained in a joint system of two random variables. Similarly, H(X1|X2)
denotes conditional entropy of X1 on X2. Informally, it quantifies the remaining entropy (i.e. uncertainty)
of X1 given that the value of a second random variable X2 is known. Substituting X1 = m|XA and
X2 = XB−A, we get

H(m|XA, XB−A) = H(XB−A) + H(m|XA|XB−A)

From the properties of joint entropy [5], for any two variables X1, X2, we have H(X1, X2) ≥ H(X1) and
H(X1, X2) ≥ H(X2). Thus, H(m|XA, XB−A) ≥ H(m|XA). Substituting in the above equation, we get

H(m|XA) ≤ H(m|XA|XB−A) + H(XB−A)
≤ 0 + H(XB−A) because m can be known completely from XA and XB−A

Consequently, H(m) ≤ H(XB−A) because H(m|XA) = H(m). Therefore for all the sets C of cardinality
|B| − |A| = ((n− (tb + to + tf ))− (tb + to + tp)) = n− (2tb + 2to + tf + tp), we have

H(XC) ≥ H(m)∑

i∈C

H(Xi) ≥ H(m)

Summing the above equation over all possible sets of size n− (2tb + 2to + tf + tp) we get

∑

C

∑

i∈C

H(Xi) ≥
(

n

n− (2tb + 2to + tf + tp)

)
H(m)

Now in all the possible
(

n
n−(2tb+2to+tf+tp)

)
subsets of size n − (2tb + 2to + tf + tp), each of the term

H(Xi), 1 ≤ i ≤ n will appear
(

n−1
n−(2tb+2to+tf+tp)−1

)
times. So we get

(
n− 1

n− (2tb + 2to + tf + tp)− 1

) n∑

i=1

H(Xi) ≥
(

n

n− (2tb + 2to + tf + tp)

)
H(m.)

Thus
n∑

i=1

H(Xi) ≥ n

n− (2tb + 2to + tf + tp)
H(m).

Now, right hand side of the equation is nothing but
(

n`
n−(2tb+2to+tf+tp)

)
because H(m) = `. Since∑n

i=1 H(Xi) defines the information content over n wires, which is sent during any single phase USMT
protocol, the lower bound on the communication complexity of any single phase USMT protocol is
Ω

(
n`

n−(2tb+2to+tf+tp)

)
. The proof of the lower bound completes at this point. We now derive the necessary

condition for the possibility of single phase USMT protocol directly from the lower bound expression.
Since the communication complexity of any single phase USMT protocol should be positive, we have

n − (2tb + 2to + tf + tp) > 0, which gives n > 2tb + 2to + tf + tp. This proves the necessity condition.
To prove the sufficiency condition, we design a communication optimal single phase USMT protocol
USMT Single Phase with n = 2tb +2to + tf + tp +1 wires in next section. This completes the theorem.
2

Comparison 3 (Possibility of Single Phase USMT and PSMT) From [33], a single phase PSMT
protocol tolerating A(tb,to,tf ,tp) is possible iff there exists n ≥ 3tb +2to + tf + tp +1 wires between S and R.
Comparing this with Theorem 8, we find that allowing a negligible error probability (only in the reliability),
significantly helps in the possibility of single phase secure message transmission protocols.
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Comparison 4 (Communication Complexity of Single Phase USMT and PSMT) In [33], it is
shown that any single phase PSMT tolerating A(tb,to,tf ,tp) over n ≥ 3tb + 2to + tf + tp + 1 wires has to

communicate Ω
(

n`
n−(3tb+2to+tf+tp)

)
field elements to send a message containing ` field elements. Com-

paring this with Theorem 8, we find that allowing a negligible error probability (only in the reliability),
significantly helps in reducing the communication complexity of single phase secure message transmission
protocols.

In the sequel, we design a single phase communication optimal USMT protocol, whose total communica-
tion complexity matches the bound proved in Theorem 8, thus showing that the bound is tight.

4.2 Upper Bound on the Communication Complexity of Single Phase USMT Toler-
ating A(tb,to,tf ,tp)

We now present a single phase communication optimal USMT protocol USMT Single Phase which
securely sends a message containing tb + to + tf + tp + 1 = Θ(n) field elements by communicating O(n2)
field elements, where S and R are connected by n = 2tb + 2to + tf + tp + 1 wires. This shows that the
lower bound on the communication complexity, established in Theorem 8 is tight. We require the field
size |F| ≥ 2n3

δ , to realize an error probability of at most δ in USMT Single Phase.

Remark 5 In [21], the authors have designed an optimal single phase USMT protocol tolerating a tb
active Byzantine adversary Atb, where S and R are connected by n = 2tb + 1 wires. Their protocol is
based on secret sharing against cheaters [25]. However, our single phase optimal USMT tolerates mixed
adversary and is designed using a different technique. It is not an extension of the protocol given in [21].

We first briefly recall an algorithm from [34], which we have used as a black-box in our USMT proto-
col. Consider the following problem: Suppose S and R by some means agree on a sequence of n values
x = [x1x2 . . . xn] ∈ Fn such that the adversary only knows n− f values in x. But neither S nor R knows
the identity of the values which are known to the adversary. The goal is for S and R to agree on a
sequence of f values [y1 y2 . . . yf ] ∈ Ff , such that the adversary has no information about [y1 y2 . . . yf ]
in information theoretic sense. This is achieved by the following algorithm [34]:

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde matrix with members in F. This
matrix is published as a part of the algorithm specification. S and R both locally compute the
product [y1 y2 . . . yf ] = [x1 x2 . . . xn]V .

Lemma 7 ( [34]) The adversary has no information about [y1 y2 . . . yf ] computed in algorithm EX-
TRAND in information theoretic sense.

Proof: The proof follows from the fact that any f × f sub-determinant in a n× f Vandermonde matrix
is non-zero. 2

Now we explain a method which is used to establish a one time pad between S and R and used in
our single phase USMT protocol. We call our method as Pad Establishment Technique which is very
similar to Extrapolation Technique discussed in section 3.

Pad Establishment Technique: Suppose n = 2tb + 2to + tf + tp + 1. We first randomly choose
(tb + to + tp + 1) × (n + tp) field elements from the field F denoted by Mj1, Mj2, . . . ,Mj(n+tp), 1 ≤ j ≤
tb + to + tp + 1. We then construct a rectangular array A of size (tb + to + tp + 1) × (n + tp) where the
jth, 1 ≤ j ≤ tb+to+tp+1 row contains the elements Mj1,Mj2, . . . , Mj(n+tp). Now consider the first column
of A, containing M11,M21, . . . , M(tb+to+tp+1)1. We construct the unique tb+to+tp degree polynomial q1(x)
passing through the points (1,M11), (2,M21), . . . , (tb + to + tp +1,M(tb+to+tp+1)1). We then evaluate q1(x)
at tb+to+tf values of x, namely at x = tb+to+tp+2, tb+to+tp+3, . . . , n to obtain c11, c21, . . . , c(tb+to+tf )1.
We repeat the procedure for all the n + tp columns of A. In general, considering the ith, 1 ≤ i ≤ n + tp
column of A consisting of the elements M1i,M2i, . . . ,M(tb+to+tp+1)i, we construct the unique tb + to + tp
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degree polynomial qi(x) passing through the points (1,M1i), (2,M2i), . . . , ((tb+to+tp+1),M(tb+to+tp+1)i).
Then qi(x) is evaluated at tb + to + tf values of x, namely at x = tb + to + tp + 2, tb + to + tp + 3, . . . , n
to obtain c1i, c2i, . . . , c(tb+to+tf )i. Finally, we obtain a rectangular array D of size n× (n + tp) containing
n× (n + tp) elements, where

D =




M11 M12 . . . M1i . . . M1(n+tp)

M21 M22 . . . M2i . . . M2(n+tp)

. . . . . . . . . . . . . . . . . .
Mj1 Mj2 . . . Mji . . . Mj(n+tp)

. . . . . . . . . . . . . . . . . .
M(tb+to+tp+1)1 M(tb+to+tp+1)2 . . . M(tb+to+tp+1)i . . . M(tb+to+tp+1)(n+tp)

c11 c12 . . . c1i . . . c1(n+tp)

c21 c22 . . . c2i . . . c2(n+tp)

. . . . . . . . . . . . . . . . . .
cj1 cj2 . . . cji . . . cj(n+tp)

. . . . . . . . . . . . . . . . . .
c(tb+to+tf )1 c(tb+to+tf )2 . . . c(tb+to+tf )i . . . c(tb+to+tf )(n+tp)




=
[

A
C

]
where

C is the sub-matrix of D containing last tb + to + tf rows. Thus D is the row concatenation of matrix A
of size (tb + to + tp + 1)× (n + tp) and matrix C, whose elements are obtained from A.

Remark 6 (Difference between Extrapolation Technique and Pad Establishment Technique)
: In Extrapolation Technique, the size of the matrix A is (tb +1)×n and its elements constitutes the
message, that S wants to reliably send to R. On the other hand, in Pad Establishment Technique,
the size of the matrix A is (tb + to + tp +1)× (n+ tp). Moreover, the elements of A are random elements,
independent of the message that S wants to securely send to R. In Extrapolation Technique, the rest
of the rows of matrix D are obtained by fitting tb degree polynomials to the elements along each column
of A, where as in Pad Establishment Technique, the rest of the rows of D are obtained by fitting
polynomials of degree tb + to + tp to the elements along each column of A. The reason for these differences
if that Extrapolation Technique is used in reliable protocol, where there is no issue of secrecy. But
Pad Establishment Technique is used for secure protocol, where at most tb + to + tp wires can be
passively listened by the adversary.

Since Pad Establishment Technique is similar to the Extrapolation Technique, all the properties
of later holds for the former. For the sake of completeness, we mention them.

Lemma 8 In D, all the n = 2tb + 2to + tf + tp + 1 elements of any column can be uniquely generated
from any tb + to + tp + 1 elements of the same column.

Proof: The proof follows using similar argument as in the proof of Lemma 1. 2

Lemma 9 In D, if at most tb elements along any column are changed, then it can be always detected.

Proof: The proof follows using similar argument as in Lemma 3. 2

We now present our single phase USMT protocol called USMT Single Phase. Let the message be
denoted by m = (m1 m2 . . . mtb+to+tf+tp+1) and the set of n wires be denoted as W = {w1, w1, . . . , wn}.

Lemma 10 In USMT Single Phase, if any wj ∈ W \ (F ∪B) is contradicted by at least (tb− |B|) + 1
wires in the set W \ (F ∪ B), then the polynomial pj(x) over wj has been changed by adversary or in
effect wj is Byzantine corrupted.

Proof: The proof is similar to the proof of Lemma 4 and is omitted. 2

Lemma 11 In the protocol, if the adversary corrupts a polynomial over wire wj in such a way that wj

is not removed during step 2 of message recovery, then R will always be able to detect it at the end of
step 4 of message recovery and outputs “NULL”.
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Protocol USMT Single Phase - The Single Phase USMT Protocol

Computation and Communication by S

1. S selects at random (tb + to + tp + 1) × (n + tp) field elements from F denoted by
M11, M12, . . . , M1(n+tp), M21, M22, . . . , M2(n+tp), . . . , M(tb+to+tp+1)1, M(tb+to+tp+1)2, . . . , M(tb+to+tp+1)(n+tp),
which are independent of each other and the secret message m. From these elements S generates the rectangular
array D containing n× (n + tp) field elements using Pad Establishment Technique.

2. S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of degree n− 1 + tp where pj(x) is formed using the jth row of
D as follows: the coefficient of xi, 0 ≤ i ≤ n− 1 + tp in pj(x) is the (i + 1)th element of jth row of D.

3. S chooses another n secret and random field elements, α1, α2, . . . , αn, which are independent of the message m
and the elements of rectangular array D. Over wj , S sends the following to R: the polynomial pj(x), the secret
value αj and the n tuple {pi(αj)}, for 1 ≤ i ≤ n. Let vji = pi(αj).

4. S then prepares a list E which consist of coefficients of all n polynomials; i.e., concatenation of the rows of D. S
finally computes y = [y1 y2 . . . ytb+to+tf +tp+1] = EXTRANDn(n+tp),tb+to+tf +tp+1(E) and broadcasts d = m⊕ y
to R.

Message Recovery by R

1. Let F denotes the set of wires that delivered nothing and let B denotes the set of wires that delivered invalid
information (like higher degree polynomials etc.) to R. Note that the wires in B are Byzantine corrupted because
omission or fail-stop controlled wires are not allowed to modify the information passing over them. R removes all
the wires in (F ∪ B) from W to work on the remaining wires in W \ (F ∪ B) out of which at most tb − |B| could
be Byzantine corrupted.

2. Let R receives p′j(x), α′j and the n tuple {v′ji}, 1 ≤ i ≤ n over wj ∈ W \ (F ∪ B). R also correctly receives
d = m⊕ y, which is broadcast by S. We say that wj contradicts wi if: v′ji 6= p′i(α

′
j), where wi, wj ∈ W \ (F ∪ B) .

Among all the wires in W \ (F ∪ B), R checks if there is a wire contradicted by at least (tb − |B|) + 1 wires. All
such wires are Byzantine corrupted and removed (see Lemma 10).

3. To retrieve m, R needs the vector y, which in turn is constructed from the list E. So to get the list E, R tries to
reconstruct the array D as generated originally by S. Let D′ be the array, corresponding to D which R tries to
recover at his end. D′ is constructed as follows: Corresponding to each wj ∈ W \ (F ∪ B), which is not removed
in previous step, R fills the jth row of D′ in the following manner: coefficient of xi, 0 ≤ i ≤ n − 1 + tp in p′j(x)
occupies (i +1)th column in the jth row of D′; i.e., the coefficients of p′j(x) are inserted in jth row of D′ such that
the coefficient of xi in p′j(x) occupies (i + 1)th column in the jth row of D′.

4. After doing the above step for each wj ∈ W \ (F ∪ B), which is not removed in step 2 of message recovery, R
will have at least tb + to + tp + 1 rows inserted in D′ (see Lemma 12). R then checks the validity of these rows
as follows: let i1, i2, . . . , ik, k ≥ tb + to + tp + 1 denote the index of the rows which are inserted by R in D′. Let
yj

i1
, yj

i2
, . . . , yj

ik
, 1 ≤ j ≤ n + tp denote the values along jth, 1 ≤ j ≤ n column of D′. R checks whether the points

(i1, y
j
i1

), (i2, y
j
i2

), . . . , (ik, yj
ik

) lie on a tb + to + tp degree polynomial. Note that at this point, each column will
have at least tb + to + tp + 1 elements, which are enough to do the checking.

5. If the above test fails for at least one column of D′, then R outputs “NULL” and halts. Otherwise, using the
already inserted rows of D′, R regenerates the complete D correctly (see Lemma 12). R now knows all the
polynomials pi(x), 1 ≤ i ≤ n and hence the list E, which is the concatenation of rows of D. R then computes
y = [y1 y2 . . . ytb+to+tf +tp+1] = EXTRANDn(n+tp),tb+to+tf +tp+1(D) and recovers m by computing m = d⊕ y.

Proof: We consider the worst case, where to + tf wires which are omission and failstop controlled, gets
crashed and fail to deliver any information to R. Thus R gets information over 2tb + to + tp + 1 wires, of
which at most tb could be Byzantine corrupted. Also, out of these wires, at least tb + to + tp +1 are honest
and correctly delivered the polynomials and values to R. So tb + to + tp + 1 rows corresponding to these
correct polynomials will be present in D′. This is because an honest wire which has correctly delivered the
polynomial can be contradicted by at most (tb − |B|) wires. Hence the honest wires will not be removed
by R during step 2 of message recovery and so the coefficients of the polynomials corresponding to these
wires will be present in D′. Now if a wire wj which has delivered a faulty polynomial p′j(x) 6= pj(x) to
R is not removed during step 2 of message recovery, then the coefficients of p′j(x) are inserted in the
jth row of D′. Since pj(x) 6= p′j(x), there will be at least one (there can be more than one) coefficient
in p′j(x), which is different from the corresponding coefficient in pj(x). Let pj(x) differs from p′j(x) in
the coefficient of xi. Then (i + 1)th column of D′ differs from the (i + 1)th column of original D at jth

position. Also the (i + 1)th column of D′ may differ from the (i + 1)th column of original D in at most
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tb locations (including jth location). This is because in the worst case, out of the 2tb + to + tp + 1 wires,
the adversary may change the polynomials along at most tb wires (which are Byzantine corrupted), such
that the coefficient of xi in all these changed polynomials differ from their corresponding coefficient of xi

in the original polynomials. So, in the worst case, at most tb elements of the (i + 1)th column of D′ can
be different from (i + 1)th column of D. The proof now follows from Lemma 9. Hence R will detect that
at atmost tb of the received polynomials are incorrect and outputs “NULL”. 2

Lemma 12 In USMT Single Phase, if the test in step 4 of message recovery succeeds for all the n+tp
columns of D′, then R will never output “NULL” and always recovers m correctly.

Proof: As explained in previous Lemma, at the beginning of step 4, there will be at least tb + to + tp + 1
correct rows present in D′. Now if the test in step 4 succeeds for all the n + tp columns of D′, it implies
that all the rows present in D′ are same as the corresponding rows in the original D. From Lemma 8, R
will be able to completely regenerate all the n + tp columns of original D and hence recover the original
array D. Once D is reconstructed, R can easily form the list E consisting the coefficients of all the n
polynomials pj(x), 1 ≤ j ≤ n. R then correctly constructs the vector y by applying EXTRAND algorithm
to E and recovers m by computing m = d⊕ y. It is easy to see that R does not outputs “NULL” in this
case. 2

Theorem 9 In USMT Single Phase, the mixed adversary A(tb,to,tf ,tp) gains no information about the
message m in information theoretic sense.

Proof: The security of the protocol depends upon the security of the one time pad y which is established
between S and R, which in turn depends upon how much information in the array D is information
theoretically secure from A(tb,to,tf ,tp). From Lemma 8, D can be completely recovered from any tb + to +
tp+1 rows of D. So if A(tb,to,tf ,tp) can completely recover any tb+to+tp+1 of the n pi(x)’s, then adversary
will know D and hence y. Without loss of generality, assume that A(tb,to,tf ,tp) passively listen the wires w1

to wtb+to+tp (recall that A(tb,to,tf ,tp) can passively listen the wires which are under its control in passive,
omission and Byzantine fashion). Thus the adversary knows the coefficients of pi(x), 1 ≤ i ≤ tb + to + tp
and hence the first tb + to + tp rows of D. Furthermore the adversary receives (tb + to + tp) distinct
points on each of the polynomials p1(x) to pn(x). Specifically, adversary know the values pi(αj), where
1 ≤ i ≤ n and 1 ≤ j ≤ tb + to + tp. The points on the polynomials p1(x) to ptb+to+tp(x) are already known
to the adversary (the adversary knows these polynomials) and hence does not add any new information
to adversary’s view. On the other hand, A(tb,to,tf ,tp) fall short of (n+tp)−(tb+to+tp) = tb+to+tf +tp+1
points on each pi(x), tb + to + tp + 1 ≤ i ≤ n to completely interpolate pi(x).

Now from Lemma 8, all the elements of any column of D can be derived from any tb + to + tp + 1
elements of the same column. So, the last n− (tb + to + tp + 1) rows of D can always be expressed as a
linear combination of the first tb + to + tp +1 rows of D. Thus, the polynomials ptb+to+tf+tp+2(x) to pn(x)
linearly depends upon the polynomials p1(x) to ptb+to+tp+1(x). So the points on the the polynomials
ptb+to+tp+2(x) to pn(x) are linear combinations of the points on the polynomials p1(x) to ptb+to+tp+1(x),
which are already known to the adversary and hence can be removed from his view. Hence out of
the tb + to + tp points on each of the n polynomials that are known to A(tb,to,tf ,tp), only the points
on ptb+to+tp+1(x) adds new information to adversary’s view. For the polynomial ptb+to+tp+1(x), the
adversary knows only tb + to + tp points that are sent through the wires w1 to wtb+to+tp . However, as
shown above, from these many points, adversary will fall short of tb + to + tf + tp +1 points to completely
know ptb+to+tp+1(x) and hence D. So overall, tb + to + tf + tp +1 elements of D are information theoretic
secure. The proof now follows from the correctness of the EXTRAND algorithm. 2

Theorem 10 If |F| ≥ 2n3

δ , then protocol USMT Single Phase is a strong USMT protocol and termi-
nates with a non-“NULL” output with probability at least 1− δ.

Proof: From the protocol, it is easy to see that no honest wire (which has delivered correct values and
polynomials) can contradict another honest wire. From Lemma 10, all the wires removed by R during
step 2 of message recovery are indeed faulty. We now need to show that if a wire has delivered incorrect

21



polynomial, then it will be contradicted by all the honest wires with high probability. Let πij be the
probability that a corrupted wire wj , which has delivered incorrect p′j(x) 6= pj(x) will not be contradicted
by an honest wire wi. This means that the adversary can ensure that pj(αi) = p′j(αi) with a probability
of πij . Since there are only n− 1 + tp points at which these two polynomials intersect (the degree of pj

and p′j is n − 1 + tp), this allows the adversary to guess the value of αi with a probability of at least
πij

n−1+tp
. But since αi was selected uniformly in F, the probability of guessing it is at most 1

|F| . Therefore

we have πij ≤ n−1+tp
|F| for each i, j. Thus the total probability that the adversary can find wi, wj such

that corrupted wire wj will not be contradicted by any honest wire wi is at most
∑

i,j πij ≤ n2(n−1+tp)
|F| .

Now n2(n − 1 + tp) < n2(2n) < 2n3. Since |F| ≥ 2n3

δ , it follows that corrupted p′j(x) 6= pj(x), received
over a corrupted wire wj can be included in D′ with probability at most δ. However, if such a p′j(x)
is included in D′, then from Lemma 11, R will detect this and will output ”NULL”. Thus protocol
USMT Single Phase is a strong USMT protocol and outputs a non-”NULL” output with probability
at least 1− δ. 2

Theorem 11 USMT Single Phase securely sends tb + to + tf + tp + 1 = Θ(n) field elements by
communicating O(n2) field elements. In terms of bits, the protocol securely sends (tb + to + tf + tp +
1)log|F| = Θ(nlog|F|) bits by communicating O(n2log|F|) bits. Thus, the protocol is communication
optimal.

Proof: Over each wire, S sends a polynomial of degree n − 1 + tp and an n tuple, along with a secret
value α. Thus the total communication complexity is n × (n + tp + n) = O(n2). Since each field
element from field F can be represented by log |F| bits, the communication complexity of the protocol
is O(n2log|F|) bits. The protocol securely sends (tb + to + tp + tf + 1) = Θ(n) field elements because if
n = 2tb + 2to + tf + tp + 1, then tb + to + tp + tf + 1 = Θ(n). By substituting n = 2tb + 2to + tf + tp + 1
and ` = Θ(n) in Theorem 8, we get that any single phase USMT protocol need to communicate Ω(n2)
field elements to securely send Θ(n) field elements. However, the total communication complexity of our
protocol is O(n2). Hence our protocol is communication optimal. 2

4.2.1 Single Phase USMT with Constant Factor Overhead Tolerating Atb

From [8], any single phase PSMT tolerating Atb requires n = 3tb + 1 wires between S and R. Moreover
from [11, 36], any single phase PSMT toleratingAtb needs to communicate Ω(n`) field elements to securely
send a message containing ` field elements. We now show that if n = 3tb + 1, then there exists a single
phase (strong) USMT protocol with error probability of at most δ, which sends a message containing
` field elements by communicating O(`) field elements tolerating Atb . In terms of bits, the protocols
securely sends ` log |F| bits by communicating O(` log |F|) bits, where |F| is a function of error probability
δ. Thus we get security with constant factor overhead in a single phase, with negligible error probability.
This is interesting because with n = 3t+1 wires, it is impossible to achieve perfect secrecy with constant
factor overhead.

If we execute our single phase USMT protocol USMT Single Phase against onlyAtb over n = 2tb+1
wires (i.e., to = tf = tp = 0), then the protocol securely sends tb +1 = Θ(n) field elements (if n = 2tb +1,
then tb = Θ(n)) by communicating O(n2) field elements. However, if n = 3tb +1, then the same protocol
can securely send Θ(t2b) = Θ(n2) field elements by communicating O(n2) field elements. In terms of bits,
the USMT protocol will send Θ(n2) log(|F|) bits by communicating O(n2) log(|F|) bits, where |F| ≥ 2n3

δ .
The only change need to be done is in the Pad Establishment Technique. Now the array D will be
an (3tb + 1)× (3tb + 1) array, where the sub-array A will be of size (2tb + 1)× (3tb + 1) and will consists
of (2tb + 1) × (3tb + 1) random elements. The 2tb + 1 rows of A will be extrapolated into sub-array C
of size tb × (3tb + 1), by fitting 2tb degree polynomials passing through the elements of the individual
columns of A. Now in the protocol, S will generate a random pad y of length (tb + 1) × (2tb + 1) from
the elements of array D and sends a message containing (tb + 1)× (2tb + 1) field elements by using y as
an one time pad. The security of y follows from the fact that now (n− tb) = 2tb +1 elements along tb +1
rows of array A will be information theoretically secure from Atb . The rest of the protocol will remain
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same, except that now in D′ (array corresponding to D which is reconstructed at R’s end), there will be
at least 2tb + 1 rows (for n = 3tb + 1, there will be at least 2tb + 1 correct and honest wires). To check
the validity of the rows inserted in D′, R will check whether the elements along individual columns of D′

lie on a 2tb degree polynomial. The rest of the details are same as in protocol USMT Single Phase.
Thus we have the following theorem:

Theorem 12 If n = 3tb +1 and |F| ≥ 2n3

δ , then there exists a single phase strong USMT protocol, which
securely sends a message containing Θ(n2 log(|F|)) bits by communicating O(n2 log(|F|)) bits, with an
error probability of at most δ.

Proof: Follows from the above discussion. 2

4.3 Comparison of Single Phase PSMT with Single phase USMT

The comparison between single phase PSMT and single phase USMT can be listed as follows

• Allowing a negligible error probability only in the reliability, significantly helps in the possibility
of single phase secure message transmission protocols (see Comparison 3).

• Allowing a negligible error probability only in the reliability, significantly reduces the communication
complexity of single phase secure message transmission protocols (see Comparison 4).

5 Multiphase USMT Tolerating A(tb,to,tf ,tp)

As mentioned earlier, one of the key parameters of any secure message transmission protocol is the number
of phases. In the context of PSMT, it is well known that allowing interaction between S and R significantly
helps in reducing the connectivity requirement and lower bound on communication complexity of PSMT
protocols (see Table 3 and Table 4). In this section, we show that same holds for USMT also. In
this section, we provide the characterization and lower bound on the communication complexity of any
multiphase USMT protocol. We also design a four phase USMT protocol whose total communication
complexity matches the proven lower bound, thus showing that the bound is tight. Comparing these
results with the results for single phase USMT, we find that allowing interaction between S and R
significantly helps in the connectivity requirement of USMT and also helps in reducing the communication
complexity of USMT protocols.

5.1 Characterization for Multiphase USMT Protocol Tolerating A(tb,to,tf ,tp)

Theorem 13 Multiphase USMT between S and R in an undirected network tolerating a mixed adversary
A(tb,to,tf ,tp) is possible if and only if the network is (tb + max(tb, tp) + to + tf + 1)-(S,R)-connected.

Proof:Necessity: We consider two cases for proving the necessity.

1. Case 1: tp ≤ tb: In this case, the necessity condition says that the network should be (2tb + to +
tf + 1)-(S,R). Since the condition is necessary for URMT (Theorem 2), it is obviously necessary
for USMT.

2. Case 2: tp > tb: In this case, the the necessity condition says that the network should be (tb +
tp + to + tf + 1)-(S,R)-connected. This condition is necessary for USMT because if the network is
(tb + tp + to + tf )-(S,R)-connected, then the adversary may strategize to simply block all message
through (tb + to + tf ) vertex disjoint paths and thereby ensure that every value received by R is
also listened by the adversary. This completely rules out the possibility of information-theoretic
security.
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Sufficiency: Suppose that network is (tb+max(tb, tp)+to+tf +1)-(S,R)-connected. Then from Menger’s
theorem [24], there exist at least n = (tb + max(tb, tp) + to + tf + 1) vertex disjoint paths from S to R.
We model these paths as wires w1, w2, . . . , wn. We now design a three phase USMT protocol called
SECURE to securely send a single field element M ∈ F. The protocol is similar to the USMT protocol
of [13].

Protocol SECURE - A Three Phase USMT Protocol
Phase I: S to R
• Along wi, 1 ≤ i ≤ n, S sends to R two randomly picked elements ρi1 and ρi2 chosen from F.

Phase II: R to S
• Suppose R receives values in syntactically correct form along n′ ≤ n wires. R neglects the remaining (n − n′) wires.
Let R receives ρ′i1 and ρ′i2 along wire wi, where wi is not neglected by R.

• R chooses uniformly at random an element K ∈ F. R then broadcasts to S the following: identities of the (n − n′)
wires neglected by him, the random K and the values (Kρ′i1 + ρ′i2) for all i such that wi is not neglected by R.

Phase III: S to R
• S correctly receives the identities of (n− n′) wires neglected by R during Phase II (because irrespective of the value
of tb and tp, n is at least 2tb + to + tf +1. So any information which is broadcast over n wires will be received correctly).
S eliminates these wires. S also correctly receives K and the values, say ui = (Kρ′i1 + ρ′i2) for each i, such that wire wi

is not eliminated by R.

• S then computes the set H such that H = {wi|ui = (Kρi1 + ρi2)}. Furthermore, S computes the secret pad ρ where
ρ =

∑
wi∈H ρi2. S then broadcasts the set H and the blinded message M⊕ ρ to R, where M is the single field element,

which S wants to send securely to R.

Message Recovery by R
• R correctly receives H and computes his version of ρ′. If z′ is the blinded message received, R outputs M = z′ ⊕ ρ′.

It can be shown that with a probability of at least
(
1− 1

|F|
)
, ρ′ = ρ and hence R almost always learns

the correct message (Proof is similar to that of the correctness of the USMT protocol of [13]). Since
n = tb + max(tb, tp) + to + tf + 1, there exists at least one wire say wi, which is not controlled by the
adversary. So, the corresponding ρi2 is unknown to adversary implying information theoretic security for
ρ =

∑
wi∈H ρi2 and hence for M. It is easy to see that the communication complexity of SECURE is

O(n2) field elements, where the field size |F| is set appropriately as a function of δ. 2

Comparison 5 (Possibility of Multi Phase USMT and PSMT) From Table 3 (last row), any
r ≥ 2 phase PSMT protocol tolerating A(tb,to,tf ,tp) is possible iff there exists n ≥ 2tb + to + tf + tp +1 wires
between S and R. Comparing this with Theorem 13, we find that except when either tb = 0 or tp = 0,
allowing a negligible error probability (only in the reliability), significantly helps in the possibility of
multiphase secure message transmission protocol.

Comparison 6 (Communication Complexity of Multi Phase USMT and PSMT) From Table
3 (last row), any r ≥ 2 phase PSMT protocol tolerating A(tb,to,tf ,tp) needs to communicate Ω( n`

n−(2tb+t0+tf+tp))
field elements to securely send a message containing ` field elements, where S and R are connected by
n ≥ 2tb+to+tf +tp+1 wires. Comparing this with Theorem 13, we find allowing a negligible error proba-
bility (only in the reliability), significantly helps in reducing the communication complexity of multiphase
secure message transmission protocols.

The protocol SECURE is used to prove the sufficiency of Theorem 13. Using it as a black-box, we
will design a more communication efficient multiphase USMT protocol. Before that, we prove the lower
bound on the communication complexity of any multiphase USMT protocol in the next section.
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5.2 Lower Bound on the Communication Complexity of Multiphase USMT Protocol
Tolerating A(tb,to,tf ,tp)

We now prove the lower bound on the communication complexity of any r-phase (r ≥ 2) USMT protocol
which sends ` field elements tolerating a mixed adversary A(tb,to,tf ,tp). Let n ≥ tb+max(tb, tp)+to+tf +1.
To prove the lower bound, we use entropy based argument, which is used in [36] for proving the lower
bound on the communication complexity of PSMT protocols.

Before proving the lower bound, we briefly recall the capabilities ofA(tb,to,tf ,tp). A Byzantine corrupted
wire is actively controlled by the adversary. Thus the adversary fully controls a Byzantine corrupted wire
and he can even block such a wire. However, the most adverse affect caused by a Byzantine corrupted
wire is when the adversary maliciously changes the information passed over such a wire. If the adversary
simply blocks a wire which is controlled in Byzantine fashion, then the adversary is not using its true
capability. Also, if the adversary blocks a Byzantine controlled wire, instead of maliciously changing
the information passing through such a wire, then both S and R will come to know the identity of the
blocked wire and will remove it from the protocol. Similarly, the most adverse affect caused by a omission
controlled wire is when the adversary passively listen such a wire. Instead, if the adversary blocks such
a wire (omission controlled wire can also be blocked by the adversary), then again both S and R will
come to know the identity of the wire and it will be removed from the protocol. While proving the lower
bound on the communication complexity, we assume that A(tb,to,tf ,tp) will fully utilize its capability. Thus
we assume that the adversary either eavesdrop or maliciously change the information passing through
the wires which are controlled in Byzantine fashion. Similarly, instead of blocking omission controlled
wires, the adversary only eavesdrop such wires. Thus, without loss of generality, we assume that out
of the n wires, A(tb,to,tf ,tp) controls at most b, F and P wires in Byzantine, failstop and passive fashion
respectively, where b ≤ tb, F ≤ tf and P ≤ tb + to + tp.

Theorem 14 Any r-phase (r ≥ 2) USMT protocol which securely sends ` field elements in the presence
A(tb,to,tf ,tp) needs to communicate Ω

(
n`

n−(tb+to+tf+tp)

)
field elements.

Remark 7 In terms of bits, any multiphase USMT protocol must communicate Ω
(

n`
n−(tb+to+tf+tp) log |F|

)

bits to securely send ` log |F| bits, where |F| is a function of δ (the probability of error in the reliability).
In the next section, we give a concrete communication optimal USMT protocol satisfying this bound and
show how to set |F| as a function of δ.

Proof: The proof follows from Lemma 13 and Lemma 14, which are proved below.

Lemma 13 The communication complexity of any multi-phase USMT protocol to send a message against
an adversary corrupting up to b(≤ tb), F (≤ tf ) and P (≤ tb + to + tp) of the wires in Byzantine, Fail-stop
and passive manner respectively is not less than the communication complexity of distributing n shares
for the message such that any set of n − F correct shares has full information about the message while
any set of P shares has no information about the message.

To prove the lemma, we begin with defining a weaker version of single-phase USMT called USMT with
Error Detection (USMTED). We then prove the equivalence of communication complexity of USMTED
protocol to send message M and the share complexity of distributing n shares for M such that any set of
n−F correct shares has full information about M while any set of P shares has no information about M.
To prove the aforementioned statement, we show their equivalence (Claim 1). Finally, we will show that
communication complexity of any multiphase USMT protocol is at least as same as the communication
complexity of single-phase protocol USMTED (Claim 3). These two equivalence will prove the desired
equivalence as stated in this lemma. Note that b, F and P are bounded by tb, tf and tb+to+tp respectively.

Definition 13 A single phase USMT protocol is called USMTED if it satisfies the following properties:

1. If the adversary is passive on P wires then R correctly and securely receives the message sent by S.
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2. If the adversary maliciously changes the information over b wires (b ≤ tb), then R detects it, and
aborts.

3. If adversary crashes F ≤ tf wires and does no malicious corruption, then R recovers message
correctly. Else if adversary either crashes more than tf wires or do some malicious modifications
(or both), then R detects it and aborts.

4. The adversary obtains no information about the transmitted message in information theoretic sense.

We next show that the properties of USMTED protocol for sending message M is equivalent to the
problem of distributing n shares for M such that any set of n − F correct shares has full information
about M while any set of P shares has no information about M.

Claim 1 Let Π be a USMTED protocol executed over n wires between S and R. In an execution of Π for
sending a message M, the data si, 1 ≤ i ≤ n sent by the S along the wires wi, 1 ≤ i ≤ n, form n shares
for M such that any set of n− F correct shares has full information about M while any set of P shares
has no information.

Proof: The fact that any set of P shares have no information about M follows directly from property 1
and 4 of definition of USMTED. We now show that any set of n− F correct shares has full information
about M. The proof is by contradiction. For a set of wires A, let Message(M, A), denotes the set of
messages sent along the wires in A during the execution of USMTED to send M. Now for any set C of
honest wires with |C| ≥ n − F , Message(M, C) should uniquely determine the message M. Suppose
not, then there exists another message M′ such that Message(M, C) = Message(M′, C). By definition
the fail-stop controlled wires can block all the messages sent along the F wires not in C. Thus for two
different executions of USMTED to send two distinct message M and M′, there exists an adversary
strategy such that view of R at the end of two executions is exactly same. This is a contradiction to the
property 3 of USMTED protocol Π, which must output the correct message if at most F fail-stop errors
and no malicious corruption take place. 2

The above claim also says that the communication complexity of USMTED protocol to send M is
same as the share complexity (sum of the length of all shares) of distributing n shares for a message M
such that any set of n − F correct shares has full information about M while any set of P shares has
no information about the message. Now we step forward to show that the communication complexity
of USMTED protocol is the lower bound on the communication complexity of any multiphase USMT
protocol.

Before that we take a closer look at the execution of any multi-phase USMT protocol. S and R are
modeled as polynomial time Turing machines with access to a random tape. The number of random bits
used by the S and R are bounded by a polynomial q(n). Let r1, r2 ∈ {0, 1}q(n) denote the contents of the
random tapes of S and R respectively. The message M is an element from the set {0, 1}p(n), where p(n)
is a polynomial. A transcript for an execution of a multiphase USMT protocol Π is the concatenation of
all the messages sent by S and R along all the wires.

Definition 14 A passive transcript T (Π,M, r1, r2) is a transcript for the execution of the multiphase
USMT protocol Π with M as the message to be sent, r1, r2 as the contents of the random tapes of
sender S and the receiver R and the adversary remaining passive throughout the execution of Π. Let
T (Π,M, r1, r2, wi) denote the passive transcript restricted to messages exchanged along the wire wi. When
Π,M, r1, r2 are obvious from the context, we drop them and denote the passive transcript restricted to a
wire wi by Twi. Similarly, TB denote the passive transcript restricted to the set of wires in B.

Given (M, r1, r2) it is possible for S to compute T (Π,M, r1, r2) by simulating R with random tape r2.
Similarly given (M, r1, r2) R can compute T (Π,M, r1, r2) by simulating S with random tape r1. Note
that although S and R require both r1, r2 to generate the transcript, R requires only r2 in order to
obtain the message M from the transcript T (Π,M, r1, r2). This is clear since R does not have access to
r1 during the execution of Π but still can retrieve the message M from the messages exchanged.

We next define a special type of passive transcript and prove its properties.
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Definition 15 A passive transcript TB, with n − F ≤ |B| ≤ n is said to be a valid fault-free transcript
with respect to R, if there exists random string r2 and message M, such that USMT protocol Π at R,
with r2 as the contents of the random tape and TB as the messages exchanged, terminates by outputting
the message M.

Definition 16 Two transcripts TB and T ′B, where n − F ≤ B ≤ n are said to be adversely close if
the two transcripts differ only on a set of wires A such that |A| ≤ b + (|B| − (n − F )). Formally
|{wi|Twi 6= T ′wi

}| ≤ b + (|B| − (n− F )).

Claim 2 Two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M′, r′1, r
′
2) with two different mes-

sage inputs M,M′, cannot be adversely close to each other, where n− F ≤ B ≤ n.

Proof: Suppose two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M
′
, r
′
1, r

′
2) are adversely close,

then there is a set of wires A, where |A| ≤ b+(|B|− (n−F )), such that the two transcripts differ only on
messages sent along the wires in A. Without loss of generality, assume that the last b + (|B| − (n− F ))
wires belong to A, with A = X ◦ Y , where |X| = b and |Y | = (|B| − (n − F )). Consider the following
two executions of Π where the contents of S’s and R’s random tapes are r1, r2 respectively

• S wants to send M. S and R executes Π while the adversary block the wires in Y to deliver any
message. As TB−Y (Π,M, r1, r2) is a valid transcript with respect to M, R terminates with output M.

• S wants to send M. S and R executes Π. The adversary block the messages over the wires in Y and
changes the messages along wires in X such that the view of S is TB−Y (Π,M, r1, r2) but the view of R is
TB−Y (Π,M′, r′1, r

′
2). Since TB−Y (Π,M′, r′1, r

′
2) is a valid transcript with respect to M′, R will terminate

with output M′.

The two scenarios differ only in the adversarial behavior and in the contents of R’s random tape. In
both the scenarios S wanted to send message M. But the message received by receiver R in the second
case is an incorrect message M′. Thus, with only probability 1/2, R will output the correct message M.
This is a contradiction because Π is a USMT protocol. 2

Till now, we have shown that a transcript over at least n − F correct wires allows R to output
M correctly. We now show how to reduce a multiphase USMT protocol into a single phase USMTED
protocol.

Protocol USMTED

• S computes the passive transcript T (Π,M, r1, r2) for some random r1 and r2 and sends T (Π,M, r1, r2, wi) to R along
wi.

• If R does not receives information through at least n − F wires then R outputs ERROR and stop. Otherwise, let R
receives information over the set of wires B = {wi1 , wi2 , . . . , wiα} where n − F ≤ |B| ≤ n. R concatenates the values
received along these wires to obtain a transcript TB (which may be corrupted along tb wires) and does the following:

• for each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n) do:

If TB is a valid transcript with random tape contents r2 for message M then output M and stop.

Output ERROR.

Claim 3 The Communication complexity of any multiphase USMT protocol Π to send M is at least as
same as the communication complexity of USMTED protocol. Moreover protocol USMTED satisfies
the properties given in Definition 13.

Proof: Let Π be any multiphase USMT protocol and Πpassive denotes an execution of Π where the
adversary does only eavesdropping and do no other type of corruption during the complete execution. It is
easy to see that the communication complexity of Πpassive is trivially a lower bound on the communication
complexity of any multiphase USMT protocol (where the adversary may do other type of corruption,
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in addition to eavesdropping). We now show that the communication complexity of Πpassive is same
as the communication complexity of USMTED protocol. Once we do this, then the communication
complexity of USMTED protocol is a trivial lower bound on the communication complexity of any
multiphase USMT protocol.

In USMTED, S assumes its random tape to contain r1 and R’s random tape to contain r2. S also
assumes that in Π, the adversary will only do eavesdropping and no other type of corruption and generates
the passive transcript T (Π,M, r1, r2). As explained earlier, S can do so by simulating R, assuming the
content of R’s random tape to be r2. However, note that R neither knows M, nor r1, r2, which S has
used for generating T . S then communicates T to R, by sending the components of T restricted to wire
wi, along wi. It is easy to see that the cost of communicating such a transcript by USMTED is same
as the communication complexity of Πpassive.

The messages sent along wire wi in USMTED protocol is the concatenation of the messages that
would have been exchanged between S and R along wi in Πpassive. Since Πpassive is a special type of
execution of USMT protocol Π, by the secrecy property of Π, the adversary cannot obtain any information
about the message M by passively listening P ≤ tb + to + tp wires in USMTED protocol. From Claim 2,
we know that valid transcripts of two different messages cannot be adversely close to each other. So
irrespective of the actions of the adversary, the transcript received by R cannot be a valid transcript for
any message other than M for any value of r2. Hence if R outputs a message M then it is the same
message sent by S. Thus protocol USMTED satisfies the properties given in Definition 13. 2

Claim 1, along with Claim 3 completes the proof of Lemma 13. We now prove the share complexity
of distributing n shares for a message such that any set of n−F correct shares has full information while
any set of P shares has no information about the message

Lemma 14 The share-complexity (that is the sum of length of all shares) of distributing n shares for a
message of size ` field elements from F such that any set of n − F correct shares has full information
about the message while any set of P shares has no information about the message is Ω( n`

(n−F−P )).

Proof: Let Xi denotes the ith share. For any subset A ⊆ {1, 2 . . . n}, let XA denotes the set of variables
{Xi|i ∈ A}. Let M be a value drawn uniformly at random from Fl. Then the secret M and the shares
Xi are random variables. Let H(X) for a random variable denote its entropy. Let H(X|Y ) denotes
the entropy of X conditional on Y . The conditional entropy measures how much entropy a random
variable X has remaining if we have already learned completely the value of a second random variable
Y [5]. Since M is a value drawn uniformly at random from F`, we have H(M) = `. Since any set B
consisting of n− F correct shares has full information about M, we have H(M|XB) = 0. Consider any
subset A ⊂ B such that |A| = P . Since any set of P shares has no information about M, we have
H(M|XA) = H(M). From the chain rule of the entropy [5], for any two random variable X1, X2, we
have H(X1, X2) = H(X2) + H(X1|X2). Substituting X1 = M|XA and X2 = XB−A, we get

H(M|XA, XB−A) = H(XB−A) + H(M|XA|XB−A)

From the properties of joint entropy [5], for any two variables X1, X2, we have H(X1, X2) ≥ H(X1) and
H(X1, X2) ≥ H(X2). Thus, H(M|XA, XB−A) ≥ H(M|XA). Substituting in the above equation, we get

H(M|XA) ≤ H(M|XA|XB−A) + H(XB−A)
≤ 0 + H(XB−A) because M can be known completely fromXA and XB−A

Consequently, H(M) ≤ H(XB−A) because H(M|XA) = H(M). Since |B| = n− F and |A| = P , we get
|B −A| = n− F − P . So for any set C of size |B −A| = n− F − P ,

H(XC) ≥ H(M) ⇒
∑

i∈C

H(Xi) ≥ H(M)
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Since there are
(

n
n−F−P

)
possible subsets of cardinality n− F − P , summing the above equation over all

possible subsets of cardinality n− F − P we get

∑

C

∑

i∈C

H(Xi) ≥
(

n

n− F − P

)
H(M)

Now in all the possible
(

n
n−F−P

)
subsets of size n− F − P , each of the term H(Xi) appears

(
n−1

n−F−P−1

)
times. So

(
n− 1

n− F − P − 1

) n∑

i=1

H(Xi) ≥
(

n

n− F − P

)
H(M) ⇒

n∑

i=1

H(Xi) ≥ n

n− F − P
H(M)

This implies that
∑n

i=1 H(Xi) ≥ n`
n−F−P because H(M) = `. But

∑n
i=1 H(Xi) denotes the share com-

plexity of M. Thus the share-complexity for any M ∈ F` is Ω
(

n`
n−F−P

)
. 2

Since P ≤ tb + to + tp and F ≤ tf , Ω
(

n`
n−F−P

)
= Ω

(
n`

n−(tb+to+tf+tp)

)
. Theorem 14 now follows from

Lemma 13 and Lemma 14. 2

5.3 Upper Bound on the Communication Complexity of MultiPhase USMT Protocol
Tolerating A(tb,to,tf ,tp)

Here we design a communication optimal multiphase USMT protocol called USMT Mixed tolerating
mixed adversary. The protocol terminates in four phases and uses the three phase SECURE protocol
(described in Theorem 13) as a black-box. If tp ≥ tb, then the protocol securely sends n2 field elements
by communicating O(n3) field elements and if tb > tp, then (tb − tp)n2 field elements by communicating
O(n3) field elements where n = tb + max(tb, tp) + to + tf + 1. This shows that the lower bound proved
in Theorem 14 is tight. In the protocol, depending upon whether tb ≤ tp or tp < tb, the field size |F| is
set to at least 3n2

δ or 4n4(tb−tp)
δtb

respectively, where δ is the error probability of the protocol. Our four
phase USMT protocol has a special property that when executed only under the presence of Byzantine
adversary (i.e., to = tf = tp = 0), it securely sends ` field elements by communicating O(`) field elements.
Thus it achieves security with ”constant factor overhead”.

Remark 8 Since n = tb + max(tb, tp) + to + tf + 1, we can use SECURE protocol as a black-box in the
four phase USMT protocol. We cannot use any single phase USMT protocol as a black-box because the
connectivity requirement for single phase USMT is much more than tb + max(tb, tp) + to + tf + 1. We
require the SECURE protocol to securely send (with very high probability) certain values in our four
phase USMT protocol.

Theorem 15 By setting |F| ≥ 3n2

δ (if tp ≥ tb) or |F| ≥ 4n4(tb−tp)
δtb

(if tb > tp), protocol USMT Mixed
reliably transmits the message M with probability at least 1− δ.

Proof. For ease of understanding, we first prove the theorem when tb > tp. So |F| ≥ 4n4(tb−tp)
δtb

. It is
evident from the protocol construction that the theorem holds if the following are true:

1. For all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1− δ
4).

2. For all 1 ≤ i ≤ n, y′i = yi with probability ≥ (1− δ
4).

3. If the wire wi were indeed Byzantine corrupt (i.e., the n2 tuple sent over wi is changed by the
adversary), then wi ∈ Lfault with probability ≥ (1− δ

4).

4. The protocol URMT Single Phase successfully sends the vector d with probability ≥ (1− δ
4).
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Protocol USMT Mixed
A Communication Optimal 4-Phase USMT Protocol Tolerating A(tb,to,tf ,tp)

The message M is a sequence of n2 field elements if tb ≤ tp, otherwise it is a sequence of (tb − tp)n2 field elements.

Phase I (R to S)

• R selects at random n3 elements, rij , 1 ≤ i ≤ n, 1 ≤ j ≤ n2 from field F. R also randomly selects ρ1, ρ2, . . . ρn

from F.
• R computes yi =

∑n2

j=1 ρj
i rij , 1 ≤ i ≤ n. Note that ρj

i is jth power of ρi.

• R sends to S over wi, 1 ≤ i ≤ n, the n2 field elements rij , 1 ≤ j ≤ n2. R also sends ρi, yi, 1 ≤ i ≤ n to S using
2n parallel invocations of the three phase SECURE protocol (described in Theorem 13) as there are total 2n
elements to send. Hence Phase I, II and Phase III are used to do 2n parallel executions of SECURE protocol.

Phase IV (S to R)

• Let S receives r′ij , 1 ≤ j ≤ n2 along wire wi. S adds wi to a list Lerasure, if S does not receive any information
over wi.

• Let S receives ρ′i and y′i, 1 ≤ i ≤ n after the 2n parallel executions of the three phase SECURE protocol initiated

by R. For each i, such that wi 6∈ Lerasure, S verifies whether y′i
?
=

∑n2

j=1 ρ′i
j
r′ij . If y′i 6=

∑n2

j=1 ρ′i
j
r′ij , then S adds

wire wi to the set of faulty wires, denoted by Lfaulty. S sets Lhonest = W \ (Lfaulty ∪ Lerasure). If tp ≥ tb, then
S computes a random pad Z = (z1, z2, . . . , zn2) of size n2 field elements from the n2|Lhonest| field elements which
are received over the wires in Lhonest as follows:

Z = EXTRANDn2|Lhonest|,n2(r′ij |wi ∈ Lhonest)

. However, if tb > tp, then S computes a random pad Z of length (tb − tp)n2 as follows:

Z = EXTRANDn2|Lhonest|,(tb−tp)n2(r′ij |wi ∈ Lhonest)

.

• S computes d = M ⊕ Z. If tp ≥ tb then d is of size n2, so S broadcasts d to R. On the other hand, if tb > tp

then d consists of (tb − tp)n2 field elements and S reliably sends d to R by invoking
(tb−tp)

tb
∗n parallel executions

of single phase URMT Single Phase protocol (This is possible because n is at least 2tb + to + tf + 1, which is
sufficient for single phase URMT. Since URMT Single Phase protocol reliably sends ntb field elements, vector
d consisting of (tb − tp)n2 field elements can be communicated by S by invoking the single phase URMT protocol
(tb−tp)

tb
∗ n times). S also broadcasts the set Lfaulty and Lerasure to R.

Message recovery by R. R correctly receives Lfaulty and Lerasure and sets Lhonest = W \ (Lfaulty ∪ Lerasure). R
correctly receives d with certainty (probability one) when tp ≥ tb and with high probability when tb > tp. If tb ≤ tp,
then R computes ZR = (z1, z2, . . . , zn2) of size n2 field elements as follows:

ZR = EXTRANDn2|Lhonest|,n2(rij |wi ∈ Lhonest).

If tb > tp, then R computes ZR of size (tb − tp)n2 field elements as follows:

ZR = EXTRANDn2|Lhonest|,(tb−tp)n2(rij |wi ∈ Lhonest).

Once ZR is computed, R recovers M by computing M = ZR ⊕ d.

The error probability of the protocol depends upon the error probability of the first four events. If
each of the above are true, then the protocol’s failure probability is bounded by δ. We now prove that
each of the above four conditions are true.

Claim 4 In USMT Mixed, for all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1− δ
4).

Proof: In USMT Mixed, ρi’s are sent using n parallel execution of the three phase SECURE protocol.
From the proof of Theorem 13, the error probability of a single execution of SECURE protocol is at most
1
|F| . Hence the total error probability of n parallel executions of SECURE to communicate ρi, 1 ≤ i ≤ n

is at most n
|F| . If |F| ≥ 4n

δ , then the total error probability of n parallel executions of SECURE is at

most δ
4 . Since, |F| ≥ 4n4(tb−tp)

δtb
> 4n

δ , the claim holds. 2

Claim 5 In USMT Mixed, for all 1 ≤ i ≤ n, y′i = yi with probability ≥ (1− δ
4).
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Proof: Similar to the proof of the previous claim. 2

Claim 6 In USMT Mixed, if wire wi is corrupted (i.e., at least one of the value rij , 1 ≤ j ≤ n2 is
changed by the adversary) and for all i, ρ′i = ρi then wi ∈ Lfault with probability ≥ (1− δ

4).

Proof. From the security argument of SECURE protocol, the adversary gains no information about
ρi, yi for all 1 ≤ i ≤ n. Assume that the adversary has changed the n2 tuple over some wire wi. Thus, at
least one of the n2 r′ij ’s received by S over wi is different from the corresponding original rij . Moreover,

assume that wi is not marked as faulty by S. This implies that yi =
∑n2

j=1 ρj
i rij =

∑n2

j=1 ρj
i r
′
ij = y′i. As

inferred by the expression, yi and y′i are the y-values (evaluated at x = ρi) of the polynomials of degree
n2 constructed using rij , 1 ≤ j ≤ n2 and r′ij , 1 ≤ j ≤ n2 as coefficients respectively. Since the two
polynomials (constructed using rij ’s and r′ij ’s as coefficients) are of degree n2, there can be at most n2

such ρi’s, at which the two polynomials can have the same value. So, if the adversary can correctly guess
one of these n2 ρi’s, then wi will not be marked as faulty by S. However, ρi is chosen uniformly by R
from F. Thus, with probability at most n2

|F| , the protocol fails to detect the faulty wire. In order that this

error probability is at most δ
4 , we require |F| to be at least 4n2

δ . Since, |F| ≥ 4n4(tb−tp)
δtb

> 4n2

δ , the claim
holds. 2

Claim 7 In USMT Mixed, the single phase URMT protocol URMT Single Phase which is parallely
executed n(tb−tp)

tb
times to reliably send d, fails with probability at most δ

4 .

Proof: In USMT Mixed, if tb > tp, then d is sent during Phase IV using n(tb−tp)
tb

parallel executions of
URMT Single Phase protocol. If δ′ is the failure probability of a single execution of URMT Single Phase,
then the total failure probability to send d is at most n(tb−tp)δ′

tb
. To obtain n(tb−tp)δ′

tb
≤ δ

4 , we require

δ′ ≤ δtb
4n(tb−tp) . Now from Theorem 4, if |F| = n3

δ′ then the error probability of URMT Single Phase is

at most δ′. So in order that the error probability of URMT Single Phase is at most δ′ ≤ δtb
4n(tb−tp) , we

require |F| ≥ 4n4(tb−tp)
δtb

, which is true. Hence the claim follows. 2

Thus Theorem 15 is true if tb > tp and |F| ≥ 4n4(tb−tp)
δtb

. If tp ≥ tb, then USMT Mixed will have an
error probability of at most δ, if the error probability of each of first three events mentioned in Theorem 15
is at most δ

3 . This is because 4th event does not occur, as d is broadcasted in this case during Phase IV,
instead of sending it by single phase URMT. It is easy to check that by setting |F| ≥ 3n2

δ , the theorem
holds for tb ≤ tp. 2

Remark 9 From Theorem 15, the field size should be either 3n2

δ or 4n4(tb−tp)
δtb

. However, in USMT Mixed,
during Phase I, R needs to select n3 random field elements from F. So depending upon δ, we will set
the field size as max(n3, 3n2

δ ). Setting field size like this will not affect the working of the protocol.

Theorem 16 In USMT Mixed, the adversary learns no information about the message M in infor-
mation theoretic sense.

Proof: To begin with, we first note than from the security of SECURE protocol, all the n ρi’s and yi’s
are information theoretically secure. The proof is now divided into the following two cases:

1. Case I: If tp ≥ tb: In this case, n = tb + tp + to + tf + 1. In the worst case, the adversary can
passively listen the contents over tb + to + tp wires and block tf wires. So there will be only one hon-
est wire wi and hence the adversary will have no information about the n2 random elements sent over
wi. In this case, S generates a random pad of length n2 and sends M containing n2 field elements, us-
ing this pad. The proof follows from the correctness of EXTRAND algorithm and working of the protocol.

2. Case II: If tb > tp: In this case, n = 2tb + to + tf + 1. In the worst case, the adversary can passively
listen the contents of at most tb+tp+to wires and block tf wires. So there are at least (tb−tp) wires which
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are not under the control of the adversary and hence the adversary will have no information about the n2

random elements sent over these wires. In this case, S generates a random pad of length (tb − tp)n2 and
sends M containing (tb− tp)n2 field elements, using this pad. The proof now follows from the correctness
of EXTRAND algorithm and working of the protocol. 2

Theorem 17 The communication complexity of USMT Mixed is O(n3) field elements.

Proof: During Phase I, R sends n2 random field elements over each of the n wires causing a communi-
cation complexity of O(n3) field elements. R also invokes 2n parallel executions of SECURE protocol,
each having a communication complexity of O(n2) field elements (see Theorem 13). This incurs total
communication overhead of O(n3) field elements. During Phase IV, S sends d to R. If tp ≥ tb, then d
will consist of n2 field elements and hence broadcasting it to R incurs a communication complexity of
O(n3). On the other hand, if tb > tp, d consist of (tb− tp)n2 field elements. In this case, S will send d by
invoking (tb−tp)

tb
∗n parallel executions of single phase URMT protocol. Since, each execution of the single

phase URMT protocol has a communication complexity of O(n2) field elements (see Theorem 5), total
communication complexity for sending d is O

(
(tb−tp)∗n3

tb

)
, which is O(n3). Thus, overall communication

complexity of USMT Mixed is O(n3) field elements. 2

Theorem 18 USMT Mixed is a four phase communication optimal USMT protocol tolerating A(tb,to,tf ,tp).

Proof: USMT Mixed sends (tb − tp)n2 log |F| bits (if tb > tp) or n2 log |F| bits (if tb ≤ tp), by
communicating O(n3 log |F|) bits, where |F| is either 4n4(tb−tp)

δtb
(if tb > tp) or 3n2

δ (if tp ≥ tb) and n =
tb +max(tb, tp)+ to + tf +1. From Theorem 14, if tb ≥ tp (in this case n will be 2tb + to + tf +1), then any
four phase USMT protocol needs to communicate Ω(n3 log |F|) bits to securely send (tb−tp)n2 log |F| bits.
Similarly, if tp ≥ tb (in this case, n will be tb + tp + to + tf +1), then any four phase USMT protocol need
to communicate Ω(n3 log |F|) bits in order to securely send n2 log |F| bits. Since total communication
complexity of USMT Mixed in both cases is O(n3 log |F|) bits, our protocol is communication optimal.
2

Corollary 2 If protocol USMT Mixed is executed only under the presence of Byzantine adversary
(i.e., to = tf = tp = 0), then it achieves security with “constant factor overhead” in four phases by
securely sending Θ(n3) field elements with a communication overhead of O(n3) field elements.

Proof: In USMT Mixed, if to = tp = tf = 0, then it sends tbn
2 = Θ(n3) field elements in four phases

by communicating O(n3) field elements (if to = tf = tp = 0, then n = 2tb + 1 and so tb = Θ(n)). Thus
we get secrecy with constant factor overhead in four phases when USMT Mixed is executed under the
presence of only Byzantine adversary. 2

According to Corollary 2, protocol USMT Mixed is able to securely send a message with constant
factor overhead in four phases against a tb active Byzantine adversary, where the size of the message is
n2tb. However, it is possible to design a two phase USMT protocol, which achieves security with constant
factor overhead under the presence of Byzantine adversary. We design one such protocol in the next
section.

5.4 Two Phase USMT with Constant Factor Overhead Tolerating Atb

The connectivity requirement for any multiphase tolerating only a tb-active Byzantine adversary is n ≥
2tb + 1 (by substituting to = tf = tp = 0 in Theorem 13). We now design a two phase USMT protocol
called USMT Byzantine, where S and R are connected by n = 2tb + 1 wires. The protocol securely
sends n(tb+1) = Θ(n2) field elements by communicating O(n2) field elements against a tb active Byzantine
adversary. Thus we get security with “constant factor” overhead in two phases. Thus the protocol is
both communication and phase optimal. We denote the message by m = (m1 m2 . . . mn(tb+1)). In our
protocol, we use following two protocols as black-box.
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1. Protocol URMT Single Phase: Described in section 3.3, which reliably sends n(tb + 1) = Θ(n2)
field elements by communicating O(n2) field elements, against a tb-active Byzantine adversary,
where S and R are connected by n = 2tb + 1 wires (by substituting to = tf = tp = o in protocol
URMT Single Phase).

2. Protocol USMT Single Phase: Described in the section 4.2, which securely sends (tb +1) field el-
ements by communicating O(n2) field elements against a tb-active Byzantine adversary, where S and
R are connected by n = 2tb +1 wires (by substituting to = tf = tp = 0 in USMT Single Phase).

Protocol USMT Byzantine: A Two Phase USMT Protocol Tolerating tb-active Byzantine Adversary

Phase I (R to S)

• R selects at random n2 random elements, say rij , 1 ≤ i, j ≤ n, which are independent of each other and m from
the finite field F. R also randomly selects ρ1, ρ2, . . . ρn from F and computes yi =

∑n
j=1 ρj

i rij . Note that ρj
i is jth

power of ρi.

• Through wire wi, R sends the n field elements ri1, ri2, . . . rin to S. R also securely sends ρi, yi for all 1 ≤ i ≤ n to S,
using four parallel invocations of the single phase USMT Single Phase protocol (by considering to = tf = tp = 0
and n = 2tb + 1).

Phase II (S to R)

• Let S receive the values r′ij , 1 ≤ j ≤ n along the wire wi, 1 ≤ i ≤ n. Also let S receive ρ′i and y′i, 1 ≤ i ≤ n after
the parallel execution of single phase USMT protocol initiated by R.

• For each i, S verifies whether y′i
?
=

∑n
j=1 ρ′i

j
r′ij . If the test fails, then S adds wire wi to the set of faulty wires,

denoted by Lfaulty.

• S sets Lhonest = W \ Lfaulty. Now, S computes a random pad Z = (z1, z2, . . . , zn(tb+1)) of size n(tb + 1) field
elements as follows:

Z = EXTRANDn|Lhonest|,n(tb+1)(r
′
ij |wi ∈ Lhonest)

• S computes d = m⊕Z and reliably sends d to R using the single phase URMT Single Phase protocol. S also
broadcasts the set Lfaulty to R.

Message recovery by R.

• R correctly receives the set Lfaulty (by taking the majority of the sets received along the wires) and sets Lhonest =
W \ Lfaulty. R also correctly (probably) receive the vector d (from the correctness of URMT Single Phase).

• R computes the pad ZR = (zR
1 , zR

2 , . . . , zR
n(tb+1)) of size n(tb + 1) field elements as follows:

ZR = EXTRANDn|Lhonest|,n(tb+1)(rij |wi ∈ Lhonest)

• R recovers the message by computing m = ZR ⊕ d.

We now prove the correctness of protocol USMT Byzantine.

Theorem 19 In protocol USMT Byzantine if |F| ≥ 16n3

δ then the protocol securely transmits a mes-
sage containing n(tb + 1) field elements from S to R with an error probability of at most δ.

Proof: It is evident from the protocol construction that the theorem holds if the following are true:

1. For all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1− δ
4).

2. For all 1 ≤ i ≤ n, y′i = yi with probability ≥ (1− δ
4).

3. If the wire wi were indeed corrupt, then wi ∈ Lfault with probability ≥ (1− δ
4).

4. The protocol URMT Single Phase fails to send the vector d with probability at most δ
4 .

5. The adversary learns no (additional) information about the transmitted message m in information
theoretic sense.
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The error probability of the protocol depends upon the error probability of the first four events. It is
clear that if each of the four events are true, then the protocol’s failure probability is at most δ. We now
prove each of the four events are true.

Claim 8 In USMT Byzantine, for all 1 ≤ i ≤ n, ρ′i = ρi with probability ≥ (1− δ
4).

Proof: From Theorem 10, we know that if |F| = 2n3

δ′ , then USMT Single Phase securely sends (tb + 1)
field elements (by substituting to = tf = tp = 0 in USMT Single Phase) with an error probability
of at most δ′. In our protocol, R securely transmits n = (2tb + 1) ρi’s using the single phase USMT
protocol. Therefore, R needs to parallely execute USMT Single Phase twice in order to securely send
2tb + 1 ρi’s (first execution for the first tb + 1 ρi’s and second for the remaining tb ρi’s). So if the error
probability δ′ of each of the two executions is at most δ

8 , then the total error probability of two parallel
executions of the single phase USMT protocol will be at most δ

4 . If we want the error probability of
USMT Single Phase to be at most δ

8 , then we require |F| ≥ 16n3

δ . Since |F| ≥ 16n3

δ , the claim is true.
2

Claim 9 In USMT Byzantine, for all 1 ≤ i ≤ n, y′i = yi with probability ≥ (1− δ
4).

Proof: Similar to the proof of the above claim. 2

Claim 10 In USMT Byzantine, if wire wi is corrupted (i.e., at least one of the value rij , 1 ≤ j ≤ n
is changed by the adversary) and for all i, ρ′i = ρi then wi ∈ Lfault with probability ≥ (1− δ

4).

Proof. From the security of USMT Single Phase protocol, the adversary gains no information about
ρi, yi for all 1 ≤ i ≤ n. Assume that adversary has changed the n tuple over some wire wi and it is
not marked as faulty by S. This implies that yi =

∑n
j=1 ρj

i rij =
∑n

j=1 ρj
i r
′
ij = y′i. As inferred by the

expression, yi and y′i are the y-values (evaluated at x = ρi) of the polynomials of degree n constructed
using rij , 1 ≤ j ≤ n and r′ij , 1 ≤ j ≤ n as coefficients. Since the two polynomials are of degree n, there
are at most n points of intersection between the two. The value ρi is chosen uniformly by R from F.
Thus, with probability at most n

|F| , the protocol fails to detect a faulty wire. In order that this error

probability is at most δ
4 , we require field size to be at least 4n

δ . Since, |F| ≥ 16n3

δ (which in turn is > 4n
δ ),

the claim holds. 2

Claim 11 The URMT Single Phase protocol to reliably send the vector d fails with probability of at
most δ

4 .

Proof: As mentioned earlier, URMT Single Phase fails with probability δ, if |F| ≥ n3

δ (see Theorem4).
So in order that URMT Single Phase fails with probability of at most δ

4 , we require |F| ≥ 4n3

δ . Since
|F| ≥ 16n3

δ , which in turn is greater that 4n3

δ , the claim is true. 2

Theorem 20 In protocol USMT Byzantine, the adversary learns no information about the transmitted
message m.

Proof. From the security of USMT Single Phase, (by substituting to = tf = tp = 0), we know that
the adversary gains no information about the ρi’s and yi’s. In the worst case, the adversary can passively
listen the contents of at most tb wires. So there will be at least tb + 1 wires, which are not under the
control of the adversary. Hence the adversary will have no information about the n random elements
sent over these tb + 1 wires. The proof follows from the correctness of EXTRAND algorithm. 2

Theorem 21 The communication complexity of USMT Byzantine is O(n2) field elements.

Proof: During Phase I, R sends n2 random field elements to S. In addition, R also invokes four parallel
executions of the single phase USMT protocol (two for sending ρi’s and two for sending yi’s). This involves
a communication complexity of O(n2) field elements. So communication complexity of Phase I is O(n2)
field elements. During Phase II, S sends the vector d by executing URMT Single Phase protocol,
which from Theorem 5 requires communicating O(n2) field elements. Thus the total communication
complexity of the protocol is O(n2) field elements. 2
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Theorem 22 USMT Byzantine is a communication optimal two phase USMT protocol tolerating
Byzantine adversary.

Proof: USMT Byzantine sends n(tb + 1) log |F| = Θ(n2 log |F|) bits (for n = 2tb + 1, tb = Θ(n)) by
communicating O(n2 log |F|) bits. Thus the extra overhead in obtaining security is “constant”. Hence
it is a communication optimal protocol. Moreover it is phase optimal because from Theorem 8, by
substituting to = tf = tp = 0, we find that any single phase USMT requires a communication overhead
of O(n3 log(|F|)) bits to securely send n(tb + 1) log |F| = Θ(n2 log |F|) bits. 2

5.5 Comparison of MultiPhase USMT with MultiPhase PSMT

1. Allowing a negligible error probability only in the reliability, significantly helps in the possibility
of multiphase secure message transmission protocols (see Comparison 5).

2. Allowing a negligible error probability only in the reliability, significantly helps in reducing the
communication complexity of multiphase secure message transmission protocols (see Comparison
6).

3. It is impossible to design any PSMT protocol, which irrespective of the number of phases, achieves
security with constant factor overhead; i.e., securely sending ` field elements by communicating
O(`) field elements tolerating only a Byzantine adversary (see Table 3, last row, by substituting
to = tf = tp = 0). However, there exists a two phase USMT protocol which securely sends ` field
elements by communicating O(`) field elements, thus achieving security with constant factor over-
head (Protocol USMT Byzantine). Thus allowing a negligible error probability in the reliability
without sacrificing the security, helps to design a two phase secure message transmission protocol,
which achieves security with constant factor overhead.

6 Conclusion and Open Problems

We have studied the problem of URMT and USMT in the presence of mixed adversary. Existing URMT
and USMT protocols deals only with Byzantine adversary. Moreover, the protocols are not optimal in
terms of communication complexity. In this paper, we initiated the study of URMT and USMT tolerating
mixed adversary. We have given the complete characterization of single phase and multiphase URMT
protocols in undirected networks tolerating mixed adversary. We have proved the lower bound on the
communication complexity of any single phase and multi phase URMT protocol. Moreover, we have
shown that our bounds are tight. Similarly, we have given complete characterization of single phase and
multiphase USMT protocols in undirected networks tolerating mixed adversary. We have proved the
lower bound on the communication complexity of any single phase and multi phase USMT protocol.
Moreover, we have shown that our bounds are tight. The paper shows that allowing a negligible error
probability has strong effect in the possibility, feasibility and optimality of reliable and secure message
transmission protocols.

Our protocols achieve communication optimality for sufficiently long messages. The next obvious and
interesting problem is to design communication optimal protocols for messages of any length. Another
interesting problem is to find the minimum number of phases required by any URMT protocol which
achieves reliability with constant factor overhead under the presence of mixed adversary; i.e., sending `
field elements with a communicating overhead of O(`) field elements.
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