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and non-threshold. One of the important conclusions we arrive at from our study is that allowing 
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several new techniques which are of independent interest. 

Keywords: probabilistic reliability; information theoretic security; mixed adversary. 

Reference to this paper should be made as follows: Patra, A., Choudhury, A., Pandu Rangan, C. 
and Srinathan, K. (xxxx) ‘Unconditionally reliable and secure message transmission in 
undirected synchronous networks: possibility, feasibility and optimality’, Int. J. Applied 
Cryptography, Vol. X, No. Y, pp.000–000. 

Biographical notes: Arpita Patra is currently a Postdoctoral Researcher in the Department of 
Computer Science, University of Aarhus, Denmark. She is currently working on secure 
distributed communication and computation. The work was done when she was a PhD student at 
the Department of Computer Science and Engineering, IIT Madras, under the supervision of 
Professor C. Pandu Rangan. 

Ashish Choudhury is a Visiting Scientist in the Applied Statistics Unit, Indian Statistical Institute 
(ISI) Kolkata. He is currently working on secure distributed communication and computation. 
The work was done when he was a PhD student at the Department of Computer Science and 
Engineering, IIT Madras, under the supervision of Professor C. Pandu Rangan. 

C. Pandu Rangan is currently a Professor at IIT Madras. He is currently working in graph theory, 
game theory and all aspects of cryptography. 

Kannan Srinathan is currently an Assistant Professor at IIIT Hyderabad. He did his PhD at IIT 
Madras. He is interested in cryptography and all aspects of theoretical computer science. 

 

 
 
 
 

 
 
 
 

Comment [t1]: Author: Please 
provide the full mailing address of  
K. Srinathan. 



2 A. Patra et al.  

1 Introduction1 
Achieving reliable and secure communication is a 
fundamental problem in the theory of communication. In 
modern applied network security, there is a lot of emphasis 
on the use of virtual private networks (using cryptography), 
firewalls, virus scanners, etc. However, routers too are 
vulnerable (Zetter, 2005). Two problems have been 
identified if a router node is hacked. The hacker can shut 
down the node or forward incorrect information to  
the adjacent nodes in the network (Dolev et al., 1993; 
Hadzilacos, 1984). Hence, there is a need for considering an 
adversary who can disrupt the network in variety of ways. 
The problem of reliable message transmission (RMT) and 
secure message transmission (SMT) perfectly captures the 
scenario when a specific node in the network intends to send 
a message to another non-adjacent node with the help of 
other nodes and edges in the network, some of which may 
be hacked (corrupted) by an adversary. 

Let a sender S and a receiver R are part of an unreliable 
connected network, where S is connected to R through 
intermediate nodes. To study the cumulative or combined 
effect of the faults in the network, we assume the existence 
of an abstract entity called centralised adversary. For 
example, assume that some hackers have taken complete 
control of say up to tb nodes in the network and could 
manipulate the information and computations of these nodes 
at their will in an arbitrary fashion. In order to study the 
cumulative effect of the actions of these hackers, we may 
further assume that the hackers are colluding in an arbitrary 
fashion and combine all the information available under 
their control to cause maximum damage. Thus, we arrive at 
the abstraction called centralised adversary. The centralised 
adversary can disrupt the communication and computation 
of some of the intermediate nodes in variety of ways. 
Moreover, we assume that the adversary has unbounded 
computing power. 

In the problem of RMT, the sender S has a message m, 
which he wants to reliably send to R. The goal is to design a 
protocol, such that after interacting with S as per the 
protocol, R should correctly output m. Moreover, this 
should happen, even if some of the intermediate nodes are 
under the control of the centralised adversary. The problem 
of SMT has an additional constraint that the adversary 
should get no information about m what so ever, in 
information theoretic sense. Security against such a 
powerful adversary is called information theoretic security 
or non-cryptographic security or Shannon security. Notice 
that if S and R are connected by a direct edge, then RMT 
and PSMT is straight forward: S simply sends the  
message to R. Thus, the goal of RMT (SMT) protocol is to 
simulate a direct, virtual, reliable (secure) link between S 
and R, who are connected through intermediate nodes, even 
in the presence of a computationally unbounded centralised 
adversary. RMT and SMT are well-motivated problems,  
for it being one of the fundamental primitives used by  
all fault-tolerant distributed algorithms like Byzantine 
agreement (Lamport et al., 1982; Lamport, 1983; Feldman 
and Micali, 1988, 1989), multiparty computation (MPC) 

(Yao, 1982; Goldreich et al., 1987; Chaum et al., 1988; 
Ben-Or et al., 1988; Rabin and Ben-Or, 1989; Cramer et al., 
1999), etc. All these popular fault-tolerant distributed 
algorithms assume that the underlying network is a 
complete graph. When the graph is not complete, we can 
simulate the effect of the missing links using RMT/SMT 
protocols. There is another motivation to study SMT 
problem. Currently, all existing public key cryptosystems, 
digital signature schemes are based on the hardness 
assumptions of certain number theoretic problems. With the 
advent of new computing paradigms, such as quantum 
computing and increase in computing speed, may render 
these assumptions ineffective. Hence, it is worthwhile to 
look for information theoretically SMT schemes. 

There are various settings in which RMT and SMT 
problem has been studied extensively in the past. For 
example, the underlying network model may be undirected 
graph (Dolev et al., 1993; Patra et al., 2006; Agarwal et al., 
2006; Kurosawa and Suzuki, 2008), directed graph (Patra  
et al., 2007; Desmedt and Wang, 2003) or hypergraph 
(Franklin and Yung, 1995; Desmedt and Wang, 2003; 
Renault and Tomala, 2008). The communication in the 
network could be synchronous (Dolev et al., 1993; Sayeed 
and Abu-Amara, 1996) or asynchronous (Sayeed and  
Abu-Amara, 1995). The faults could be passive, fail-stop, 
Byzantine or sometimes mixed/hybrid faults (Garay and 
Perry, 1992). The number of faulty nodes may be bounded 
by a fixed constant (threshold adversary) (Dolev et al., 
1993; Sayeed and Abu-Amara, 1996) or the potential sets of 
faulty nodes may be described by a collection of subsets of 
nodes (non-threshold adversary) (Kumar et al., 2002), while 
the adversary may be mobile (Ostrovsky and Yung, 1991) 
or adaptive (Dolev et al., 1993; Sayeed and Abu-Amara, 
1996). The protocols can be perfect, having no error (Dolev 
et al., 1993; Kurosawa and Suzuki, 2008) or may be 
unconditional, having negligible error probability (Franklin 
and Yung, 1995; Desmedt and Wang, 2003; Renault and 
Tomala, 2008; Patra et al., 2008; Srinathan et al., 2009). In 
general, we may use the following parameters to categorise 
the different settings in which RMT and SMT problem can 
be studied: 

1 underlying network 

2 type of communication 

3 adversary capacity 

4 type of faults 

5 type of security. 

The taxonomy of settings in which RMT and SMT can be 
studied is listed in Table 1. For example, one may ask: what 
is the necessary and sufficient condition for perfectly  
SMT over an undirected graph thwarting a threshold 
adaptive adversary? In this way, hundreds of different 
models/settings can be formulated and many of them are 
used in practice. 

Irrespective of the settings in which RMT and SMT are 
studied, the following issues are common: 
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1 Possibility: What is the necessary and sufficient 
condition for the existence of a protocol in a given 
network? 

2 Feasibility: Once the existence of a protocol is  
ensured then does there exist a polynomial time 
efficient protocol on the given network? 

3 Optimality: Given a message of specific length,  
what is the minimum communication complexity 
(lower bound) needed by any protocol to transmit the 
message and how to design a protocol whose total 
communication complexity matches the lower bound 
on the communication complexity? 

Table 1 The taxonomy of the settings in which RMT/SMT 
can be studied 

Underlying 
network 

Type of 
communication Adversary capacity 

Undirected graph Synchronous Threshold adaptive 
Directed graph Asynchronous Threshold mobile 
Undirected 
hypergraph 

 Non-threshold 
adaptive 

Directed 
hypergraph 

 Non-threshold mobile 

Types of faults Type of security 

Byzantine Perfect 
Fail-stop Unconditional 
Passive  
Mixed  

In this paper, we study the above issues in the context of 
unconditional RMT and SMT in undirected synchronous 
network. We call unconditional RMT and SMT as URMT 
and USMT respectively. Moreover, we consider two 
different types of adversary, namely threshold adaptive 
mixed adversary and non-threshold adaptive mixed 
adversary. We now define URMT and USMT. More formal 
and rigorous definition will appear in Section 2. 

1 An RMT protocol is called δ-reliable, for any  
0 < δ < 1/2, if at the end of the protocol, R correctly 
outputs S’s message, except with probability δ. 
Moreover, this should hold, irrespective of the 
behaviour of the adversary. 

2 An SMT protocol is called ε-secure, for any 0 < ε < 1/2, 
if at the end of the protocol, the adversary does not get 
any information about S’s message, except with 
probability ε. 

3 A message transmission protocol is called (ε, δ)-secure, 
if it is ε-secure and δ-reliable. 

4 An RMT protocol is called perfectly reliable also called 
as PRMT, if it is 0-reliable. 

 

5 An RMT protocol is called unconditionally reliable 
also called as URMT, if it is δ-reliable. Any URMT 
protocol is also called as statistically RMT protocol, 
where we want δ to be negligible small. 

6 A message transmission protocol is called perfectly 
secure, also called as PSMT, if it is (0, 0)-secure. 

7 A message transmission protocol is called 
unconditionally secure, also called as USMT, if it is  
(0, δ)-secure. Any USMT protocol is also called as 
statistically SMT protocol, where we want δ to be 
negligible small. 

1.1 Motivation of our work 

The PRMT and PSMT problem has been studied 
extensively over the past three decades in both directed and 
undirected network model, tolerating threshold and  
non-threshold adversary (see Dolev et al., 1993; Sayeed and 
Abu-Amara, 1996; Desmedt and Wang, 2003; Srinathan  
et al., 2004; Narayanan et al., 2006; Kumar et al., 2002; 
Agarwal et al., 2006; Patra et al., 2006; Srinathan et al., 
2007b; Fitzi et al., 2007; Ashwinkumar et al., 2008; 
Kurosawa and Suzuki, 2008; Patra et al., 2009). The issue of 
possibility, feasibility and optimality has been completely 
resolved for PRMT and PSMT in undirected network 
model, tolerating threshold adversary. Moreover, the issue 
of possibility has been completely resolved for PRMT and 
PSMT tolerating non-threshold adversary. However, not too 
much is known about URMT and USMT. 

It is a well-known fact that in several problem domains 
randomisation helps to a great extent in arriving at more 
efficient and simpler solutions than their deterministic 
counterpart. The problem domains range from famous 
number theoretic randomised primality testing algorithms to 
various distributed computation tasks like verifiable secret 
sharing (VSS) (Rabin and Ben-Or, 1989; Cramer et al., 
1999), MPC (Cramer et al., 1999; Beerliová-Trubíniová and 
Hirt, 2006; Damgård and Nielsen, 2007) to name a few. In 
this work, we focus on the effect of randomisation on 
PRMT and PSMT problems. 

Intuitively, the allowance of a small probability of error 
in the transmission (only in the reliability) should result in 
improvements in both the fault tolerance as well as the 
efficiency aspects of reliable and secure protocols. What 
exactly is the improvement? – This is the central question 
addressed in this paper. More specifically, in this paper, we 
address issues related to possibility, feasibility and 
optimality in the context of URMT and USMT in undirected 
synchronous networks. Furthermore, we consider two 
different types of adversaries, namely threshold adaptive 
mixed adversary and non-threshold adaptive mixed 
adversary. 

Our results show that allowance of a small probability of 
error in the transmission (only in the reliability) 
significantly improves the existing complexity measures of 
PRMT and PSMT, namely connectivity requirement, 
communication complexity and the number of interactions 
between S and R during the protocol. 
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Remark 1 (a note on adversary model): Since, in this paper, 
we deal with both threshold and non-threshold adversary, 
for easy understanding, we divide the paper into two parts. 
The first part deals with threshold adversary while the 
second part deals with non-threshold adversary. 

Remark 2 (a note on the terminology URMT and USMT):  
In Srinathan et al. (2007a), the authors have used  
the terms PPRMT and PPSMT for URMT and USMT 
respectively. The reason for the change of terminology in 
this paper is as follows: in the literature of secure MPC, 
protocols with negligible error probability are usually 
referred as unconditional MPC (Beerliová-Trubíniová and 
Hirt, 2006, 2008; Damgård and Nielsen, 2007). Since 
URMT and USMT protocols will be used as a black box in 
unconditional MPC to simulate a virtual complete network, 
we prefer to change the terminology from PPRMT and 
PPSMT to URMT and USMT respectively. 

2 Network model and definitions 
We now specify the network model and definitions that are 
used in this paper in the context of threshold adversary. The 
underlying network is a connected synchronous network 
represented by an undirected graph where S and R are two 
non-adjacent nodes of the graph. All the edges in the 
network are reliable and secure but the nodes can be 
corrupted. 

We assume the presence of a threshold adversary 

( ), , , ,
b o f pt t t tA  having unbounded computing power, who can 

corrupt any disjoint set of tb, to, tf and tp nodes in the graph 
(excluding S and R) in Byzantine, omission, fail-stop and 
passive fashion respectively. We now formally define these 
four types of corruptions. 

Definition 1 – fail-stop corruption: A node P is said to be 
fail-stop corrupted if the adversary can crash P at will at any 
time during the execution of the protocol. But as long as P 
is alive, P will honestly follow the protocol and the 
adversary will have no access to any information or internal 
state of P. Once P is crashed, then it will remain inactive for 
the rest of the protocol execution. 

Definition 2 – omission corruption: We say that a node P is 
omission corrupted, if the adversary can crash P at will at 
any time during the execution of the protocol. But as long as 
P is alive, it will follow the instructions of the protocol 
honestly. The adversary can eavesdrop the internal data of P 
but cannot make P to deviate from the proper execution of 
the protocol. A blocked node P can again become alive at 
some later stage of the protocol and start following the 
protocol honestly. 

Definition 3 – passive corruption: A node P is said to be 
passively corrupted if the adversary has full access to the 
information and internal state of P. But P honestly follows 
the protocol execution. 
 
 

Definition 4 – Byzantine corruption: A node P is said to be 
Byzantine corrupted if the adversary fully control the 
actions of P. The adversary will have full access to the 
computation and communication of P and can force P to 
deviate from the protocol and behave arbitrarily. 

The fail-stop error models a hardware failure caused by 
any natural calamity or manual shutdown. Also the nodes 
which are fail-stop corrupted cannot be passively listened by 
the adversary. On the other hand, nodes corrupted in 
omission fashion can be eavesdropped by the adversary. 
Thus, omission error can be considered as a combination of 
fail-stop and passive corruption with the exception that 
unlike fail-stop error, a node which is crashed once due 
omission error may become alive during later stages of the 
protocol. Note that though omission adversary has 
eavesdropping capability, it also has blocking capability. 
Thus, it is stronger than passive and fail-stop corruption. 
But it weaker than Byzantine corruption. Since Byzantine 
and omission corrupted nodes can also be eavesdropped, the 
maximum number of nodes which can be eavesdropped by 
the adversary is bounded by tb + to + tp. 

We assume that the adversary is a centralised adversary 
and can collectively pool the data from the nodes under its 
control and use it according to his own choice in any 
manner. The adversary is adaptive (Cramer et al., 1999). 
Thus, he is allowed to dynamically corrupt nodes during the 
protocol execution depending on the data seen so far from 
the corrupted nodes. So before the protocol execution, it is 
not known in advance which nodes are going to be 
influenced by adversary and in what way the nodes will be 
corrupted by the adversary. Also, once a node is under the 
control of the adversary in some fashion, then it will remain 
corrupted in the same fashion throughout the protocol. 

Following the approach of Dolev et al. (1993), we 
abstract away the network and concentrate on solving 
URMT and USMT problem for a single pair of processors, 
the sender S and the receiver R, connected by n parallel and 
synchronous bi-directional channels w1, w2, ..., wn, also 
known as wires. The reason for such an abstraction is as 
follows: suppose some intermediate node between S and R 
is under the control of the adversary. Then all the paths 
between S and R which passes through that node are also 
compromised. Hence, all the paths between S and R passing 
through that node can be modelled by a single wire between 
S and R. In the worst case, the adversary can compromise 
an entire wire in certain fashion by controlling a single node 
on the wire. 

Hence, ( ), , ,b o f pt t t tA  having unbounded computing power 

can corrupt up to tb, to, tf and tp wires in Byzantine, 
omission, fail-stop and passive fashion respectively. 
Moreover, we assume that the wires that are under the 
control of the adversary in Byzantine, omission, fail-stop 
and passive fashion are mutually disjoint. Any protocol in 
the network operates as a sequence of phases, where a phase 
is a communication from S to R or vice-versa. 
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Throughout this paper, we use m to denote the message 
that S wishes to send to R. The message is assumed to be a 
sequence of ℓ elements from the finite field F with ℓ ≥ 1. 

Without loss of generality, we assume that m is selected 
uniformly and randomly from F. The size of F is a function 

of δ which is the error probability of the URMT and USMT 
protocol. In our protocols, we show how to set the size of F 

as a function of δ so that we could bound the error 
probability by δ. Since we measure the size of the message 
in terms of the number of field elements, we also measure 
the communication complexity in units of field elements. In 
any message transmission protocol, S selects a message m 
uniformly and randomly from F at the beginning. At the end 

of the protocol, R outputs .m′  We now give the following 
definitions: 

Definition 5 – broadcast: If some information is sent over 
all the wires then it is said to be ‘broadcast’. If x is 
‘broadcast’ over at least 2tb + to + tf + 1 wires, then at most tf 
+ to wires may crash and fail to deliver x, where as at most tb 
wires may deliver incorrect x. But at least tb + 1 wires will 
deliver correct x. So receiver will be able to correctly 
recover x by taking majority among the received values. 

Definition 6 – PRMT (Dolev et al., 1993): In perfectly 
reliable message transmission (PRMT) over a sufficiently 
connected network N = (V, E), tolerating mixed adversary 

( ), , , ,
b o f pt t t tA  S ∈ V intends to transmit a message m which is 

a sequence of ℓ (ℓ ≥ 1) field elements from a finite field F to 

R ∈ V using some protocol, such that after interacting in 
phases as per the protocol, the following condition must 
hold: 

• Perfect reliability: R should correctly output m′ = m 
with probability 1. 

Definition 7 – PSMT (Dolev et al., 1993): The problem of 
perfectly secure message transmission (PSMT) over a 
sufficiently connected network N requires perfect reliability 
of PRMT and the following additional condition: 

• Perfect secrecy: The message should be hidden from 
the adversary in information theoretic sense. More 
formally, let adv(m, r) denote the view of the adversary 
during the protocol, when the message sent by S is m 
and r is the random coin flips of the adversary. Then, 
we require that for every two messages m1, m2 and 
every r, 

( ) ( )1 2Pr , Pr , 0.
c

adv m r c adv m r c= − = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  

The probabilities are taken over the coin flips of the 
honest parties, and the sum is over all possible values of 
the adversary’s view. 

 

Definition 8 – URMT (Franklin and Wright, 2000): The 
problem of URMT is same as PRMT, except that it  
should satisfy a weaker notion of perfect reliability, called 
unconditional reliability or statistical reliability, which is as 
follows: 

• Unconditional reliability: R should correctly output 
m m′ =  with probability at least 1 – δ, where  
0 < δ < 1/2. The probability is over the choice of m, the 
coin flips of S and R and the adversary. 

Definition 9 – USMT (Franklin and Wright, 2000): USMT 
requires unconditional reliability property of URMT and 
perfect secrecy property of PSMT. 

Notice that ‘unconditional reliability’ says that R can output 
a wrong message with small probability δ. We now define a 
strictly stronger notion of ‘unconditional reliability’ which 
we call as ‘strong unconditional reliability’. A URMT 
protocol that achieves ‘strong unconditional reliability’ 
always outputs the correct message; otherwise, it fails with 
output NULL, but it never outputs an incorrect message. 
Precisely, in an URMT protocol that achieves ‘strong 
unconditional reliability’, R can detect whether he has 
correctly received the message sent by S or not. 

Definition 10 – strong unconditional reliability: R should 
either correctly receive S’s message or otherwise output 
NULL, where the probability of receiving correct message 
is at least 1 – δ, where 0 < δ < 1/2. 

Definition 11 – strong URMT: Strong URMT satisfies 
strong unconditional reliability property instead of 
unconditional reliability. 

Definition 12 – strong USMT: Strong USMT requires 
perfect secrecy of PSMT and should satisfy strong 
unconditional reliability. 

Our single phase URMT and USMT protocols presented in 
this paper are strong URMT and strong USMT protocols. 

Definition 13 – communication optimal URMT/USMT 
protocol: Let Π be an r (r ≥ 1) phase URMT (USMT) 
protocol which reliably (securely) sends a message m 
containing ℓ (ℓ ≥ 1) field elements by communicating O(b) 
field elements, over an n-(S, R)-connected network. If the 
lower bound on the communication complexity of any r 
phase URMT (USMT) protocol to send m over such a 
network is Ω(b) field elements, then Π is said to be a 
communication optimal URMT (USMT) protocol to reliably 
(securely) send m. 

Definition 14 – Reed-Solomon (RS) codes (MacWilliams 
and Sloane, 1978): For message block M = (m1 m2 ... mk) 
over F, we define RS polynomial as PM(x) = m1 + m2x + 

m3x2 + ... + mkxk–1. Let α1, α2, ..., αL, L > k, denote a 
sequence of L distinct and fixed elements from F. Then 

vector C = (c1 c2 ... cL) where ci = PM(αi), 1 ≤ i ≤ L is called 
the (RS) codeword of size L for the message block M. 
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The error correcting and detecting capability of RS codes is 
given by the following theorem. 

Theorem 1 (MacWilliams and Sloane, 1978; Desmedt and 
Wang, 2003): Let C denote the RS codeword for a message 
block of size k, where | C | = L. Let a receiver receive  
C′  where C′  differ from C in at most tb locations. Then,  
RS decoding can correct up to c Byzantine errors in C′  and 
simultaneously detect additional d Byzantine errors in C′  
iff L – k ≥ 2c + d, where c + d ≤ tb. 

2.1 Why to study mixed adversary 

In a typical large network, certain nodes may be strongly 
protected and few others may be moderately/weakly 
protected. An adversary may only be able to  
fail-stop/(eavesdrop in) a strongly protected node, while he 
may affect in a Byzantine fashion a weakly protected node. 
Thus, we may capture the abilities of an adversary in a more 
realistic manner by considering four possible different types 
of corruption, namely Byzantine, omission, fail-stop and 
passive. Also, it is better to grade different kinds of 
disruption done by adversary and consider them separately, 
rather than treating every kind of fault as Byzantine fault as 
this is an ‘overkill’. The last point will be made clear when 
we will present our results in the subsequent sections. 

3 Existing results and our contribution 
We now present the existing results for PRMT, PSMT, 
URMT and USMT in undirected networks, tolerating 
threshold adaptive adversary. 

3.1 Existing literature in threshold adversarial 
model 

RMT and SMT problem was first formulated by Dolev et al. 
(1993). Specifically, Dolev et al. (1993) presented the first 
ever characterisation (POSSIBILITY) for PRMT and PSMT 
on an undirected synchronous network tolerating threshold 
adaptive Byzantine adversary, .

btA  Dolev et al. (1993) 

abstracted the network in terms of channels and 
concentrated on solving PRMT and PSMT problem for a 
single pair of processors, the sender S and the receiver R, 
connected by n parallel and synchronous bi-directional 
channels w1, w2, ..., wn, also known as wires.2 The existing 
results for PRMT and PSMT in undirected synchronous 
networks tolerating threshold adaptive Byzantine ( )btA  and 

mixed ( ), , ,b o f pt t t t
⎛ ⎞⎜ ⎟
⎝ ⎠
A  adversary are summarised in Table 2 

and Table 3. 

 

Table 2 Connectivity requirement and lower bounds for PRMT and PSMT in undirected networks 

Model Connectivity requirement between S and R (n) Lower bound on communication complexity 

( )2 b

n
n t−Ω  for r = 1, 2 (Srinathan et al., 2004) PRMT (Byzantine 

adversary) 
n ≥ 2tb + 1, ∀r ≥ 1 (Dolev et al., 1993) 

( )
b

n
n t−Ω  for r ≥ 3 (Srinathan et al., 2007b) 

n ≥ 3tb + 1 for r = 1 (Dolev et al., 1993) ( )3 b

n
n t−Ω  for r = 1 (Fitzi et al., 2007; Srinathan et al., 2007b) PSMT (Byzantine 

adversary) 
n ≥ 2tb + 1 for r ≥ 2 (Dolev et al., 1993) ( )2 b

n
n t−Ω  for r ≥ 2 (Srinathan et al., 2007b) 

( )(2 )b o f

n
n t t t− + +Ω  for r = 1, 2 (Srinathan, 2006) PRMT (mixed 

adversary) 
n ≥ 2tb + to + tf + 1, ∀r ≥ 1 (Srinathan, 2006) 

( )( )
( )

f o

b o f

n t t
n t t t

− −

− + +Ω  for r ≥ 3 (Srinathan, 2006) 

n ≥ 3tb + 2to + tf + tp + 1 for r = 1 (Srinathan, 
2006) ( )(3 2 )b o f p

n
n t t t t− + + +Ω  for r = 1 (Srinathan, 2006) PSMT (mixed 

adversary) 

n ≥ 2tb + to + tf + tp + 1 for r ≥ 2  
(Choudhury et al., 2008) ( )(2 )b o f p

n
n t t t t− + + +Ω  for r ≥ 2 (Srinathan, 2006) 

Note: r denotes number of phases and ℓ denotes the message size in terms of field elements. 
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Table 3 Protocols with optimum communication complexity 

Model Communication complexity  
in terms of field elements Number of phases Remarks 

( )2 b

n
n tO −  ≤ 2 • ℓ ≥ n; polynomial computation and communication 

complexity (Srinathan et al., 2004). 
PRMT (Byzantine 
adversary) 

( )
b

n
n tO −  3 • ℓ ≥ n2; polynomial computation and communication 

complexity (Patra et al., 2006). 

( )3 b

n
n tO −  1 • ℓ ≥ n; polynomial computation and communication 

complexity (Fitzi et al., 2007). 

( )2 b

n
n tO −  2 • ℓ is exponential; exponential computation and 

communication complexity (Agarwal et al., 2006). 

( )2 b

n
n tO −  3 • ℓ ≥ n2; polynomial computation and communication 

complexity (Patra et al., 2006). 

PSMT (Byzantine 
adversary) 

( )2 b

n
n tO −  2 • ℓ ≥ n2; polynomial computation and communication 

complexity (Kurosawa and Suzuki, 2008). 

( )(2 )b o f

n
n t t tO − + +  1 • ℓ ≥ n; polynomial computation and communication 

complexity (Srinathan, 2006). 
PRMT (mixed 
adversary) 

( )( )
(2 )

f o

b o f

n t t
n t t tO − −

− + +  ( )( )( )log f o

f o

t t
n t tO +

− +  • ℓ ≥ n2; polynomial computation and communication 
complexity (Ashwinkumar  
et al., 2008). 

PSMT (mixed 
adversary) ( )(2 )b o f p

n
n t t t tO − + + +  4 • ℓ ≥ n; polynomial computation and communication 

complexity (Choudhury et al., 2008). 

Note: ℓ is the message size in terms of field elements and n is the corresponding connectivity requirement from Table 2. 
 

The problem of URMT and USMT in undirected 
synchronous networks in the presence of threshold adaptive 
Byzantine adversary 

btA  was first defined and solved by 

Franklin and Wright (1998).3 As one of the key results, they 
have proved that over undirected graphs, URMT (USMT) 
tolerating 

btA  is possible if and only if PRMT (PSMT) 

tolerating 
btA  is possible! Subsequent works on URMT and 

USMT include Franklin and Wright (2000), Wang and 
Desmedt (2001), and Desmedt and Wang (2003). However, 
all these results try to address the issue of possibility and 
feasibility of URMT and USMT protocols and that too only 
in the presence of threshold Byzantine adversary. In 
Kurosawa and Suzuki (2007) have addressed the issue of 
optimality of single phase USMT in undirected networks 
tolerating threshold Byzantine adversary. Most recently, 
Srinathan and Pandu Rangan (2006) and Shankar et al. 
(2008) have given the characterisation for the possibility of 
URMT in arbitrary directed graphs tolerating non-threshold 
and threshold Byzantine adversary respectively. In 
Srinathan et al. (2009) have given the characterisation for 
the possibility of USMT in arbitrary directed graphs 
tolerating non-threshold adversary. However, to the best of 
our knowledge, no research work has ever simultaneously 
addressed the issue of possibility, feasibility and optimality 
of URMT and USMT protocols in any network model 
tolerating threshold mixed adversary. 

3.2 Our contribution in threshold adversarial model 

As mentioned earlier, any reliable/secure protocol is 
analysed by the connectivity requirement of the network, 

the number of phases required by the protocol, the total 
number of field elements communicated by S and R 
throughout the protocol and the computation done by S and 
R. The trade-offs among these parameter are well studied  
in the literature in the context of PRMT and PSMT in 
undirected synchronous network tolerating threshold 
Byzantine adversary (Patra et al., 2006; Srinathan et al., 
2007b; Agarwal et al., 2006; Kurosawa and Suzuki, 2008). 
In this paper, we investigate the trade-off for URMT and 
USMT in the presence of threshold adaptive mixed 
adversary, which is to our knowledge, the first attempt in 
the literature of URMT and USMT. 

So we present characterisation, lower bound on 
communication complexity and protocols that matches the 
lower bound for URMT and USMT. In summary, for 
URMT we show the following: 

• URMT between S and R tolerating ( ), , ,b o f pt t t tA  is 

possible iff the network is (2tb + to + tf + 1)-(S, R)-
connected. 

• Any single phase URMT protocol tolerating 

( ), , , ,
b o f pt t t tA  from S to R over n ≥ 2tb + to + tf + 1 wires 

communicates ( )( )b o f

n
n t t t− + +Ω  field elements to reliably 

transmit (with high probability) ℓ field elements. 

We also design single phase polynomial time 
communication optimal URMT protocol whose 
communication complexity satisfies our proven lower 
bound. As a corollary, we show that our single phase 
URMT protocol has a special property that it achieves 
reliability with constant factor overhead (i.e., sending ℓ 
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field elements by communicating O(ℓ) field elements) 
when executed only under the presence of Byzantine 
adversary (i.e., to = tf = tp = 0). 

• Any multiphase URMT protocol, from S to R over  
n ≥ 2tb + to + tf + 1 wires communicates (ℓ) field 
elements to reliably transmit (with high probability) ℓ 
field elements. 

An ( )log f o

f o

t t
n t tO +

− −  phase PRMT protocol which sends ℓ 

field elements by communicating O(ℓ) field elements is 
presented in Ashwinkumar et al. (2008). The protocol of 
Ashwinkumar et al. (2008) is also a valid multiphase URMT 
protocol (since any PRMT protocol is by default a URMT 
protocol with δ = 0) satisfying the communication 
complexity lower bound for multiphase URMT. The design 
of a bit optimal multiphase URMT protocol with lesser 
number of phases is left as an open problem. 

For USMT problem, we show the following: 

• Any single phase USMT protocol that achieves perfect 
secrecy (with negligible error probability of δ > 0 in 
reliability) tolerating ( ), , ,b o f pt t t tA  is possible iff there 

exists n ≥ 2tb +2to + tf + tp +1 vertex disjoint paths 
between S and R. 

• Any single phase USMT protocol over  
n ≥ 2tb + 2to + tf + tp + 1 vertex disjoint paths between S 
and R, tolerating ( ), , , ,

b o f pt t t tA  must communicate 

(2 2 )b o f t p

n
n t t t +− + +

⎛ ⎞Ω⎜ ⎟
⎝ ⎠

 field elements in order to securely 

send an ℓ-field element message with very high 
probability. 

We also design polynomial time communication 
optimal single phase USMT protocol whose 
communication complexity satisfies the above lower 
bound for single phase USMT. This shows that our 
lower bound is tight. 

• Multiphase USMT between S and R in an undirected 
network tolerating ( ), , ,b o f pt t t tA  is possible if and only if 

the network is (tb +max(tb, tp) + to + tf +1)-(S, R)-
connected. 

• Any r-phase (r ≥ 2) USMT protocol which securely 
sends ℓ field elements in the presence of ( ), , ,b o f pt t t tA  

needs to communicate ( )b o f tp

n
n t t t +− + +

⎛ ⎞Ω⎜ ⎟
⎝ ⎠

 field elements, 

where S and R are connected by n ≥ (tb + max(tb, tp) + 
to + tf + 1) vertex disjoint paths. We also design 
polynomial time communication optimal four-phase 
USMT protocol whose communication complexity 

satisfies the above lower bound for multiphase USMT. 
This shows that our lower bound is tight. 

Our four-phase USMT protocol against ( ), , ,b o f pt t t tA  has a 

special property that it achieves secrecy with constant factor 
overhead (sending ℓ field elements by communicating O(ℓ) 
field elements) when executed only under the presence of 
Byzantine adversary (i.e., to = tf = tp = 0). However, against 
only Byzantine adversary, USMT with constant factor 
overhead in communication complexity can be achieved in 
two-phases itself. One such protocol is also presented in this 
paper. We now tabulate the results on URMT and USMT in 
Table 4 and Table 5. 

Remark 3: In any URMT and USMT protocol, the 
communication complexity should be a function of δ which 
is the error probability of the protocol. However, in the 
results summarised in Table 4 and Table 5, δ is not 
appearing explicitly in the communication complexity 
expressions. The reason is that the communication 
complexity expressions are given in terms of field elements. 
This is done for the ease of comparing the communication 
complexities of URMT and USMT protocols with the 
communication complexities of PRMT and PSMT protocols 
(in terms of field elements). 

In any URMT and USMT protocol, the field size is always a 
function of δ as illustrated in our protocols. In general the 
field size will have the following form | |

cn
δ=F  where c is 

some small constant. Now, we may set δ to be  
2–Ω(κ) (we may call κ as security parameter). This gives 

( )| | 2
c cn n κ

δ
Ω= =F  which implies a single field element 

from F can be represented by O(log(n) + κ) bits. For PRMT 

and PSMT the only restriction on the size of the underlying 
field is that | F | ≥ n. So any field element can be represented 

by O(log(n)) bits. So, the communication complexity 
figures presented in terms of field elements in Table 2 and 
Table 3 can be represented in terms of bits by multiplying 
O(log(n)). Similarly, the communication complexity figures 
presented in terms of field elements in Table 4 and Table 5 
can be represented in terms of bits by multiplying  
O(log(n) + κ). 

Now, comparing Table 2 with Table 4 and Table 3 with 
Table 5, we find that allowing a negligible error probability 
has tremendous effect on reliable and SMT in terms of 
POSSIBILITY, FEASIBILITY and OPTIMALITY. Many 
practical scenarios can be shown where no optimal PRMT 
or PSMT protocol exist but optimal URMT and USMT 
protocol does exist, thus, showing the power of allowing 
negligible error probability in the reliability of the protocols 
(without sacrificing perfect secrecy). 
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Table 4 Connectivity requirement and lower bound on communication complexity for URMT and USMT 

Model Connectivity (n) Lower bounds 

URMT (Byzantine adversary) n ≥ 2tb + 1, ∀r ≥ 1 (Franklin and Wright, 1998) ( )
b

n
n t−Ω  for r = 1∗ 

( )2 b

n
n t−Ω  for r = 1∗ USMT (Byzantine adversary) n ≥ 2tb + 1, ∀r ≥ 1 (Franklin and Wright, 1998) 

( )
b

n
n t−Ω  for r ≥ 2∗ 

( )( )b o f

n
n t t t− + +Ω  for r = 1∗ URMT (mixed adversary) n ≥ 2tb + to + tf + 1, ∀r ≥ 1∗ 

Ω(ℓ) for r ≥ 2∗ 
n ≥ 2tb + 2to + tf + tp + 1 for r = 1∗ ( )(2 2 )b o f p

n
n t t t t− + + +Ω  for r = 1∗ USMT (mixed adversary) 

n ≥ tb + max(tb, tp) + to + tf + 1 for r ≥ 2∗ ( )( )b o f p

n
n t t t t− + + +Ω  for r ≥ 2∗ 

Notes: r denotes number of phases and ℓ is the message size in terms of field elements. All the ∗ marked results are presented in 
this paper. 

Table 5 Protocols with optimum communication complexity 

Model Communication complexity Number of phases Remarks 

URMT (Byzantine adversary) ( )
b

n
n tO −  1 ℓ ≥ n2∗ 

( )2 b

n
n tO −  1 ℓ ≥ n∗ USMT (Byzantine adversary) 

O(ℓ) 2 ℓ ≥ n2∗ 

( )( )b o f

n
n t t tO − + +  1 ℓ ≥ n(tb + 1) ∗ URMT (mixed adversary) 

O(ℓ) ( )( )( )log f o

f o

t t
n t tO +

− +  
ℓ ≥ n2  

(Ashwinkumar et al., 2008) 

( )(2 2 )b o f p

n
n t t t tO − + + +  1 ℓ ≥ n∗ USMT (mixed adversary) 

( )( )b o f p

n
n t t t tO − + + +  4 ℓ = n2 if tp ≥ tb or ℓ = (tb – tp)n2 

if tb > tp∗ 

Notes: ℓ is the message size in terms of field elements. n denotes respective connectivity requirement specified in Table 4. All the 
∗ marked results are presented in this paper. 

 
3.3 Techniques used 

The techniques used for designing PRMT and PSMT 
protocols are completely different from the techniques used 
for designing URMT and USMT protocols. The existing 
URMT and USMT protocols (Franklin and Wright, 1998; 
Desmedt and Wang, 2003) use the idea of information 
theoretic authentication schemes and check vectors along 
with error correcting codes. The check vectors are 
introduced in Rabin and Ben-Or (1989) for information 
checking (IC) protocols, which are used to generate IC 
signatures. The IC signatures can be used as a semi digital 
signature (Cramer et al., 1999; Rabin and Ben-Or, 1989). 
Using these ideas, one can design feasible URMT and 
USMT protocols in undirected networks tolerating mixed 
adversary. However, the resultant protocols will be 
cumbersome and will not be communication optimal against 
mixed adversary. To design optimal protocols against  
mixed adversary, we introduce a new technique, called 

extrapolation technique. Using extrapolation technique, we 
can design communication optimal URMT protocol  
against mixed adversary. By using a slight variant of 
extrapolation technique, we can also design communication 
optimal USMT protocol tolerating mixed adversary. The 
extrapolation technique is first of its kind and is of 
independent interest. 

4 URMT in undirected network tolerating 

( ), , ,b o f pt t t tA  

In this section, we characterise the possibility of single 
phase URMT tolerating ( ), , , .

b o f pt t t tA  We then prove the 

lower bound on the communication complexity of any 
single phase URMT protocol tolerating ( ), , ,b o f pt t t tA  and 

show that our bound is asymptotically tight by designing a 
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communication optimal single phase URMT protocol whose 
total communication complexity matches this bound. We 
then briefly discuss multiphase URMT tolerating 

( ), , , .
b o f pt t t tA  Finally, the section ends with the comparison of 

our results on URMT with the existing results for PRMT. 

4.1 Characterisation for single phase URMT 

The existing characterisation for URMT tolerating threshold 
adaptive Byzantine adversary 

btA  in undirected network is 

as follows. 

Theorem 2 (Franklin and Wright, 1998): Any r ≥ 1 phase 
URMT between S and R against an adaptive Byzantine 
adversary 

btA  is possible iff the network is (2tb + 1)-(S, R)-

connected. 

The characterisation for URMT tolerating mixed adversary 
is as follows. 

Theorem 3: Any r ≥ 1 phase URMT between S and R 
against a threshold adaptive mixed adversary ( ), , ,b o f pt t t tA  is 

possible iff the network is (2tb + to + tf + 1)-(S, R)-
connected. 

Proof: If part: Consider a network which is  
(2tb + to + tf + 1)-(S, R)-connected. So there exists  
n ≥ 2tb + to + tf + 1 wires between S and R. To send a 
message m, S simply broadcasts m to R over the n wires. It 
is easy to see that R will receive m with probability one by 
taking majority.5 

Only if part: We now show that if the network is not  
(2tb + to + tf + 1)-(S, R)-connected, then no URMT protocol 
exists. Assume that a URMT protocol Π exists in a network 
N that is not (2tb + to + tf + 1)-(S, R)-connected. Consider 
the network ,′N  induced by N, on deleting (to + tf) vertices 
from a minimal vertex cutset of N. This can be viewed as an 
adversary crashing the communication over to + tf wires, 
which are under its control in omission and fail-stop fashion 
respectively. It follows that ′N  is not (2tb + 1)-(S, R)-
connected. Evidently, if Π is a URMT protocol on N, then 

′Π  is a URMT protocol on ,′N  where ′Π  is the protocol 
Π restricted to the nodes in .′N  However, from Theorem 2, 

′Π  is non-existent. Thus, Π is impossible too.  

Significance of Theorem 3: Theorem 3 strictly generalises 
Theorem 2 because we obtain the latter by substituting  
to = tf = 0 in the former. Now consider a network, which is 
4-(S, R)-connected. From Theorem 2, on this network, any 
URMT protocol can tolerate at most one Byzantine fault. 
However, according to Theorem 3, it is possible to tolerate 
one additional faulty node, which can be either omission or 
fail-stop faulty. Thus, our characterisation shows 
availability of more fault tolerance in comparison to the 
existing results. This is one of the motivations for studying 
URMT and USMT in the context of mixed adversary. 

Comparison 1 (possibility of PRMT vs. possibility of 
URMT): From Table 2 (third row), for the existence of any  
r ≥ 1 phase PRMT against ( ), , , ,

b o f pt t t tA  there should exist n 

≥ 2tb + to + tf + 1 wires between S and R. From Theorem 3, 
the same number of wires are required even for the 
existence of URMT protocol against ( ), , , .

b o f pt t t tA  This 

shows that allowing a negligible error probability in the 
reliability does not help in the possibility of RMT. 

Though allowing a negligible error does not affect the 
connectivity requirement of the network for RMT protocols, 
in the sequel, we show that allowance of a negligible error 
probability in transmission significantly reduces the 
communication complexity in comparison to perfect (zero 
error) transmission. 

4.2 Lower bound on communication complexity of 
single phase URMT protocol 

We now prove the lower bound on the communication 
complexity of any single phase URMT protocol tolerating 
mixed adversary ( ), , , .

b o f pt t t tA  

Theorem 4: Any single phase URMT protocol, from S to R 
over n ≥ 2tb + to + tf + 1 wires, communicates 

( )( )b o f

n
n t t t− + +Ω  field elements to transmit a message 

containing ℓ field elements tolerating ( ), , , .
b o f pt t t tA  

Proof: In any single phase URMT protocol, the 
concatenation of the information sent over n wires can be 
viewed as an (probabilistic) error correcting code which can 
correct tb Byzantine errors and to + tf erasures with an 
arbitrarily high probability. Without loss of generality, the 
domain of the set of possible values of the data sent along a 
wire can be assumed to be the same for all the wires.4 Let S 

be the set of possible values of the data sent along the wires. 
Thus, each codeword can be viewed as concatenation of n 
elements from S which can be represented by n log | S | bits. 

Now, the removal of any (tb + to + tf) elements from each of 
the codewords, which corresponds to an adversary blocking 
tb + to + tf wires (a Byzantine adversary can also block 
communication) should result in shortened codewords that 
are all distinct. For if any two are identical, then the original 
codewords could have differed only in at most (tb + to + tf) 
elements, implying that there exist two codewords c1 and c2 
and an adversarial strategy such that the receiver’s view is 
the same on the receipt of c1 and c2. Specifically, without 
loss of generality assume that c1 and c2 differ only in their 
last (tb + to + tf) elements. That is, c1 = α ◦ β and c2 = α ◦ γ, 
where ◦ denotes concatenation and | β | = | γ | = (tb + to + tf) 
elements. Now, consider the two cases: 
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a c1 is sent and the adversary corrupts it to α ◦ ⊥ by 
completely blocking the last (tb + to + tf) elements 
(wires) 

b c2 is sent and the adversary again corrupts it to α ◦ ⊥. 

Thus, R can not distinguish between the receipt of c1 and c2 
with probability greater than 1

2 ,  which violates the property 
of URMT (in any URMT protocol, receiver should be able 
to receive the message with probability more than 1

2).  
Therefore, all shortened codewords containing n – (tb + to + 
tf) elements from S are distinct. This implies that there are 

same number of shortened codewords as original 
codewords. But the number of shortened codewords  
can be at most ( ( ))| | .b o fn t t tC − + += S  Now each shortened 
codeword can be represented by logC = (n – (tb + to + tf)) 
log | S | bits. Since, for error-correction, we need to 

communicate the longer codeword containing n log | S | bits, 

reliable communication of shortened codeword of k = logC 
bits incurs a communication cost of at least n log | S |  

bits. Hence, communication of a single bit incurs 
communication of ( ( ))b o f

n
n t t t− + +  bits. So to communicate ℓ 

elements from a field F, represented by ℓ log | F | bits, 

( )( ( )) log | |
b o f

n
n t t t− + +Ω F  bits need to be sent. Since log | F | 

bits represents one field element from F, communicating ℓ 

elements from F requires communicating ( )( ( ))b o f

n
n t t t− + +Ω  

field elements.  

Remark 4: In any URMT protocol designed over a field F, 

the size of the field depends upon the error probability δ of 
the protocol (this is demonstrated in next section). From 
Theorem 4, any URMT protocol to send ℓ field elements 

from F need to communicate ( )( ( )) log | |
b o f

n
n t t t− + +Ω F  bits. 

Thus, the communication complexity of any single phase 
URMT protocol is a function of δ as well (since | F | is a 

function of δ), though it is not explicitly mentioned in the 
expression derived in Theorem 4. It should also be noted 
that communication complexity explicitly depends upon the 
message size ℓ. 

Comparison 2 (communication complexity of single phase 
PRMT and URMT): While the lower bound on the 
communication complexity of any single phase PRMT 

tolerating mixed adversary is ( )( (2 ))b o f

n
n t t t− + +Ω  field 

elements (see Table 2, third row), the same for URMT is 

( )( ( ))b o f

n
n t t t− + +Ω  field elements (Theorem 4). Recall that as 

pointed out in Comparison 1, the connectivity requirement 
for both PRMT and PSMT is n ≥ 2tb + to + tf + 1. Assuming 

n = 2tb + to + tf + 1, the lower bound for single phase PRMT 
and URMT become Ω(nℓ) and ( )

b

n
tΩ  field elements 

respectively. Now if tb = Θ(n) then the lower bound for 
single phase URMT becomes Ω(ℓ) field elements. This 
implies that for tb = Θ(n), communication of ℓ field 
elements requires transmission of Ω(nℓ) field elements for 
PRMT and Ω(ℓ) field elements for URMT. Now, notice that 
PRMT and URMT tolerating an adaptive Byzantine 
adversary ( )0

bt o f pt t t= = =A  requires n ≥ 2tb + 1. If  

n = 2tb + 1, then tb = Θ(n) holds. Hence, the conclusion is 
that in the presence of 

btA  the lower bounds on the 

communication complexity of any single phase PRMT and 
URMT are Ω(nℓ) and Ω(ℓ) field elements respectively. 

In the next section, we design a single phase communication 
optimal URMT protocol. The same protocol when executed 
in the presence of 

btA  communicates O(ℓ) field elements 

for sending ℓ field elements and thus achieves reliability 
with constant factor overhead. 

4.3 Single phase communication optimal URMT 
protocol tolerating ( ), , ,b o f pt t t tA  

Let S and R be connected by n = 2tb + to + tf + 1 wires, 
denoted as W = {w1, w2, ..., wn}, of which at most tb, to, tf 
and tp are under the control of ( ), , ,b o f pt t t tA  in Byzantine, 

omission, fail-stop and passive fashion respectively. We 
now present a communication optimal single phase  
URMT protocol URMT_Single_Phase, which delivers a 
message containing (tb + 1)n field elements by 
communicating O(n2) field elements in single phase with 
(arbitrarily) high probability. This shows that the lower 
bound on the communication complexity of single phase 
URMT proved in the previous section is asymptotically 
tight. URMT_Single_Phase has a special feature that it 
achieves reliability with constant factor overhead, when 
executed only in the presence of Byzantine adversary 

btA  

(i.e., to = tf = tp = 0). Let δ be a bound on the probability that 
the protocol may fail to deliver the correct message. We 
require the size of the field F to be at least 

3
.n

δ  The message 

block is represented by: 

1 1 2 1 2         .
b b bn n n t n t n t n nm m m m m m m m+ + + +⎡ ⎤= ⎣ ⎦… … … …  

Remark 5: Our single phase protocol URMT_Single_Phase 
is a strong URMT protocol (see Definition 11). 

Before presenting the protocol, we describe a novel 
technique, called as extrapolation technique which we use 
in designing the protocol URMT_Single_Phase. 

Extrapolation technique 

We visually represent m as a rectangular array A of size  
(tb + 1) × n where the jth row, 1 ≤ j ≤ tb + 1 contains the 
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elements m(j–1)n+1, m(j–1)n+2, ..., m(j–1)n+n. For each column i of 
A, 1 ≤ i ≤ n we do the following: we construct the unique tb 
degree polynomial qi(x) passing through the points (1, mi), 
(2, ),..., ( 1, )

bn i b t n im t m+ ++  where , ,...,
bi n i t n im m m+ +  belong 

to the ith column A. Then qi(x) is evaluated at tb + to + tf 
values of x namely, x = tb + 2, tb + 3, ..., n to obtain 

( )1 2, ,..., .
b o f

i i t t t ic c c + +
 Finally, we obtain a square array D of 

size n × n containing n2 elements, where 

( ) ( ) ( )

1 2

( 1) 1 ( 1) 2 ( 1)

1 2

11 12 1

1 2

1 2

b b b

b o f b o f b o f

n

j n j n j n n

t n t n t n n

n

j j jn

t t t t t t t t t n

m m m

m m m

m m m A
D c c c C

c c c

c c c

− + − + − +

+ + +

+ + + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
… … … …

…

… … … …
…

…
… … … …

…

… … … …
…

 

where C is the sub-matrix of D containing last tb + to + tf 
rows. Thus, D is the row concatenation of matrix A of size 
(tb +1) × n (containing elements of m) and matrix C. The 
elements of C are obtained from A using the above 
described technique which will be referred subsequently by 
extrapolation technique. Notice that the n values along each 
column of D lies on a tb degree polynomial. So for  
1 ≤ i ≤ n, each column of D can be viewed as an n length RS 
codeword for a message block of size tb + 1, consisting of 
the coefficients of qi(x). We now prove certain properties of 
the array D. 

Lemma 1: In D, all the n elements of any column can be 
uniquely generated from any tb + 1 elements of the same 
column. 

Proof: The proof follows from the simple observation that 
the n elements along any column of D lie on a tb degree 
polynomial and any tb + 1 points on a tb degree polynomial 
are enough to reconstruct the tb degree polynomial.  

Lemma 2: The elements of message m can be uniquely 
determined from any tb + 1 rows of D. 

Proof: From the construction of D, the elements of m are 
arranged in the first tb +1 rows. If the first tb + 1 rows are 
known then the lemma holds trivially. On the other hand, if 
some other tb + 1 rows are known, then from Lemma 1, ith 
column, 1 ≤ i ≤ n, of D can be completely generated from  
tb + 1 elements of the same column. Hence, knowledge of 
any tb + 1 rows can reconstruct the whole matrix D and 
hence, the message m (which is just the first tb + 1 rows of 
D).  

Lemma 3: Modification of tb elements along any column of 
D is detectable. 

Proof: Recall that in D, the ith column denotes an  
L = n = 2tb + to + tf + 1 length RS codeword for a block of 
size k = tb + 1. So by substituting these values, along with  
c = 0 in Theorem 1, the maximum number of errors d that 
can be detected is tb + to + tf. In other words, the values 
along ith column lie on a unique tb degree polynomial qi(x). 
Now suppose tb values along ith column are changed in such 
a manner that they lie on some other tb degree polynomial 

( ),iq x′  where ( ) ( ).i iq x q x′≠  Since both qi(x) and ( )iq x′  are 
of degree tb, they can match on additional tb common points. 
But still there are at least n – 2tb = to + tf + 1 points which lie 
on the original polynomial qi(x) (but not on ( )).iq x′  Hence, 
any attempt to interpolate a tb degree polynomial passing 
through the elements of ith column (in which at most tb 
values has been changed) will not reconstruct any tb degree 
polynomial. This clearly indicates that tb values are changed 
along the column. Hence, the lemma holds.  

We are now ready to describe our single phase URMT 
protocol called URMT_Single_Phase, which is given in 
Table 6. 

Lemma 4: In URMT_Single_Phase, if any wj ∈ W\(F ∪ B) 
is contradicted by at least (tb – | B |) + 1 wires from the set 
W\(F ∪ B), then the polynomial pj(x) over wj has been 
changed by adversary or in effect wj is Byzantine corrupted. 

Proof: The wires in B are already identified to be Byzantine 
corrupted and hence neglected by R. Also the wires in F 
delivers nothing and hence neglected by R. So among the 
remaining W\(F ∪ B) wires, at most (tb – | B |) could  
be Byzantine corrupted. Also, there cannot be any 
contradiction between two honest wires (which has 
correctly delivered the values to R) and hence, any honest 
wire can be contradicted by at most (tb –| B |) wires. Thus, if 
a wire is contradicted by at least (tb – | B |) + 1 wires then it 
is Byzantine corrupted.  

Lemma 5: In the protocol URMT_Single_Phase, if the 
adversary corrupts a polynomial over wire wj in such a way 
that wj is not removed during step 1 of message recovery, 
then R will always be able to detect it at the end of step 3 of 
message recovery and outputs ‘NULL’. 

Proof: We consider the worst case, where to + tf wires 
(which are omission and fail-stop corrupted) crash and fail 
to deliver any information. So R will receive information 
over 2tb + 1 wires of which at most tb could be Byzantine 
corrupted. At the beginning of step 3 of message recovery, 
there are at least tb + 1 rows present in .D′  This follows 
from the fact there always exist tb + 1 honest wires which 
will deliver correct polynomials to R. As mentioned in 
Lemma 4, any honest wire will be contradicted by at most 
(tb − | B |) wires and hence will not be removed by R during 
step 1 of message recovery. So the coefficients of the 
polynomials corresponding to these honest wires will be 
present in .D′  
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Now if wj (which has delivered a faulty polynomial 
( ) ( ))j jp x p x′ ≠  is not removed during step 1 of message 

recovery, then during step 2 of message recovery, the 
coefficients of ( )jp x′  are inserted in the jth row of .D′  

Since ( ) ( ),j jp x p x′≠  there exists at least one coefficient in 

( )jp x′  which is different from the corresponding coefficient 

in pj(x). Let pj(x) differs from ( )jp x′  in the coefficient of xi. 

Then (i + 1)th column of D′  differs from the (i + 1)th 
column of original D at jth position. In a similar manner, the 
(i + 1)th column of D′  may differ from the (i + 1)th column 
of original D in at most tb locations (including jth location). 
This is because in the worst case, out of the 2tb + 1 wires, 
the adversary may change the polynomials along at most tb 
wires (which are Byzantine corrupted), such that the 
coefficient of xi in all these changed polynomials differ from 
their corresponding coefficient of xi in the original 
polynomials. So, in the worst case, at most tb elements of 
the (i + 1)th column of D′  can be different from (i + 1)th 
column of D. The proof now follows from Lemma 3. 
Hence, R will detect that at most tb of the received 
polynomials are incorrect and outputs ‘NULL’.  

Lemma 6: In URMT_Single_Phase, if the test in step 4 of 
message recovery succeeds for all the n columns of ,D′  
then R will never output ‘NULL’ and always recovers m 
correctly. 

Proof: As explained in previous Lemma, at the beginning of 
step 4 of message recovery, there will be at least tb + 1 rows 
present in .D′  Now if the test in step 4 succeeds for all the n 
columns of ,D′  it implies that all the rows present in D′  are 
same as the corresponding rows in the original D. The proof 
now follows from Lemma 2. It is easy to see that R does not 
output ‘NULL’ in this case. 

Theorem 5: If URMT-Single_Phase is executed over a field 
F with 

3
| | ,n

δ≥F  then URMT_Single_Phase is a strong 

URMT protocol and terminates with message m with 
probability at least 1 – δ. 

Proof: Since no two honest wires contradict each other, 
from Lemma 4, all the wires removed by R during step 1 of 
message recovery are indeed faulty. We now show that if a 
wire is corrupted and delivered incorrect polynomial, then it 
will be contradicted by all the honest wires with high 
probability. This will ensure that the corrupted wire will be 
removed in step 1 of the message recovery. 

Let πij be the probability that a corrupted wire wj will not 
be contradicted by a honest wire wi. This means that the 
adversary can ensure that ( ) ( )j i j ip pα α′=  with a 

probability of πij. Since there are only n – 1 points at which 
these two-polynomials intersect and since αi was selected 
uniformly at random from F, we have 1

| |
n

ijπ −≤ F  for each i, j. 

Thus, the total probability that the adversary can find wi, wj 
such that corrupted wire wj will not be contradicted by an 

honest wire wi is at most 
2 ( 1)

| |,
n n

iji j
π −≤∑ F | which is 

bounded by 
3

| | .
n
F  Since F is chosen such that 

3
| | ,n

δ≥F  it 

follows that a Byzantine corrupted wire wj will not be 
contradicted by any honest wire with probability at most δ. 
In other words, a corrupted ( ) ( ),j jp x p x′ ≠  received over wj 

may be included in D′  with probability at most δ. However, 
if such a ( )jp x′  is included in ,D′  then from Lemma 5, R 

will detect this and will output ‘NULL’. Thus, protocol 
URMT_Single_Phase is a strong URMT protocol and 
outputs correct message m with probability at least 1 – δ.  

Theorem 6: Protocol URMT_Single_Phase reliably sends m 
containing n(tb + 1) field elements by communicating O(n2) 
field elements. In terms of bits, the protocol sends n(tb + 1) 
log | F | bits by communicating O(n2 log | F |) bits. 

Proof: Over each wire, S sends a polynomial of degree n – 1 
and n values. Thus, the total communication complexity is 
O(n2). Since each element from field F can be represented 
by log | F | bits, the communication complexity of the 
protocol is O(n2 log | F |) bits.  

Theorem 7: Protocol URMT_Single_Phase is a single phase 
communication optimal URMT protocol. 

Proof: In Theorem 4, substituting n = 2tb + to + tf + 1 and  
ℓ = n(tb + 1), we find that any single phase URMT protocol 
must communicate Ω(n2) elements to send n(tb + 1) 
elements. Now, from Theorem 6, the communication 
complexity of URMT_Single_Phase is O(n2). Hence our 
protocol has optimal communication complexity. In terms 
of bits, URMT_Single_Phase sends n(tb + 1) log | F | bits by 

communicating O(n2 log | F |) bits where 
3

| | n
δ=F  and δ be 

the maximum probability of R outputting ‘NULL’.  

From the remarks made in Comparison 2, a communication 
optimal URMT protocol tolerating 

btA  should achieve 

message transmission with constant factor overhead. Our 
URMT_Single_Phase is one such communication optimal 
protocol. So we have the following corollary. 

Corollary 1: Protocol URMT_Single_Phase when executed 
in the presence of ,

btA  achieves reliability with “constant 

factor overhead” by sending Θ(n2) field elements with a 
communication complexity of O(n2) field elements. 

Proof: From Theorem 6, URMT_Single_Phase reliably 
sends n(tb + 1) field elements by communicating O(n2) field 
elements when n = 2tb + to + tf + 1. If to = tf = 0, then 
URMT_Single_Phase sends (tb + 1)n = Θ(n2) field elements 
(when to = 0, tf = 0, n = 2tb + 1 and so tb = Θ(n)) by 
communicating O(n2) field elements. Thus, it achieves 
reliability with ‘constant factor overhead’.  
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Table 6 Single phase URMT protocol 

Protocol URMT_Single_Phase – the single phase URMT protocol 

Computation and communication by S: 
1 S generates a rectangular array D containing n2 field elements, from the (tb + 1) × n elements of message m using extrapolation 

technique. S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of degree n – 1, where pj(x) is formed using the jth row of D as follows: 
the coefficient of xi, 0 ≤ i ≤ n – 1 in pj(x) is the (i + 1)th element of jth row of D. 

2 S chooses another n secret, distinct and random field elements, α1, α2, ..., αn, which are independent of the message m and the 
elements of rectangular array D. Over wj, S sends the following to R: the polynomial pj(x), the secret value αj and the n tuple  
{pi(αj )}, for 1 ≤ i ≤ n. Let vji = pi(αj). 

Message recovery by R: 
1 Let F denote the set of wires that delivered nothing and let B denote the set of wires that delivered invalid information (like higher 

degree polynomials, etc.). Note that the wires in B are Byzantine corrupted because omission or fail-stop controlled wires are not 
allowed to modify the information passing over them. R removes all the wires in (F  ∪ B) from W, to work on the remaining wires 
in W\(F ∪ B), out of which at most tb – | B | could be Byzantine corrupted. Let R receive ( ),j jp x α′ ′  and ),jiv′  1 ≤ i ≤ n over  

wj ∈ W\(F ∪ B). We say that wj contradicts wi if: ( )ji i jv p α′ ′ ′≠  where wi, wj ∈ W\(F ∪ B). Among all the wires in W\(F ∪ B), R 

checks if there is a wire contradicted by at least (tb – | B |) + 1 wires. All such wires are Byzantine corrupted and removed (see 
Lemma 4). 

2 To retrieve m, R tries to reconstruct the array D as generated originally by S. Let D′  represents the corresponding array which R 
tries to recover at his end. Corresponding to each wj ∈ W\(F ∪ B), which is not removed in previous step, R fills the jth row of D′  
in the following manner: coefficient of xi, 0 ≤ i ≤ n – 1 in ( )jp x′  occupies (i + 1)th column in the jth row of .D′  

3 After doing the above step for each wj ∈ W\(F ∪ B), which is not removed in step 1 of message recovery, R has at least tb + 1 rows 
inserted in D′  (see Lemma 6). R then checks the validity of these rows as follows: let i1, i2, ..., ik, k ≥ tb + 1 denote the index of the 
rows which are inserted by R in .D′  Let 

1 2
, ,..., ,

k

j j j
i i iy y y  1 ≤ j ≤ n denote the values along jth, 1 ≤ j ≤ n column of .D′  R checks 

whether the points ( ) ( ) ( )1 21 2, , , ,..., ,
k

j j j
ki i ii y i y i y  lie on a tb degree polynomial. Note that at this point, each column will have at least  

tb + 1 elements, which are enough to do the checking. Notice that this check is required only if k > (tb + 1) as tb + 1 points will 
always define a tb degree polynomial. 

4 If the above test fails for at least one column of ,D′  then R outputs ‘NULL’ and halts. Otherwise, R regenerates the complete D′  
correctly and recovers m from the first tb + 1 rows (see Lemma 6). 

 
Remark 6 (a note on message size used in protocol 
URMT_Single_Phase): In protocol URMT_Single_Phase, 
we have assumed that n = 2tb + to + tf + 1, the minimum 
number of wires required for single phase URMT. Out of 
these n wires, at least tb + 1 are honest and will always 
deliver values to R, even if remaining wires simply stop the 
communication. This is why we selected the message size to 
be n(tb + 1). If there are n > 2tb + to + tf + 1 wires, then there 
will be more honest wires and hence accordingly we can 
increase the message size in URMT_Single_Phase, such that 
the communication complexity still satisfies the lower 
bound. 

4.4 Multiphase URMT tolerating ( ), , ,b o f pt t t tA  

We now briefly discuss about the communication 
complexity of multiphase URMT protocols tolerating 

( ), , , .
b o f pt t t tA  

Theorem 8: Any multiphase URMT protocol between S and 
R over n ≥ 2tb + to + tf + 1 wires must communicate Ω(ℓ) 

field elements to send a message containing ℓ field elements 
against ( ), , , .

b o f pt t t tA  

Proof: The lower bound of Ω(ℓ) for sending ℓ field elements 
is obvious, since any URMT protocol must send t least the 
message.  

Theorem 9: Let S and R be connected by n = 2tb + to + tf + 1 
wires. Then there exists an efficient, polynomial time 
communication optimal URMT protocol which sends a 
message containing ℓ field elements by communicating O(ℓ) 
field elements. 

Proof: Suppose there exists n = 2tb + to + tf +1 wires 
between S and R. Then from Ashwinkumar et al. (2008), 

there exists an efficient ( )log f o

f o

t t
n t tO −

− −  phase PRMT 

protocol which sends ℓ field elements (for suitably large ℓ) 
by communicating O(ℓ) field elements. The PRMT protocol 
of Ashwinkumar et al. (2008) is also a valid multiphase 
URMT (since any PRMT is by default an URMT protocol 
with δ = 0) which satisfies the communication complexity 
lower bound for multiphase URMT.  
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We do not know whether there exists an URMT protocol 
with less number of phases, which sends ℓ field elements by 
communicating O(ℓ) field elements. Design of such a 
protocol is left as an open problem. 

4.5 Comparison of PRMT with URMT 

We now compare the results of URMT presented in this 
section, with the existing results for PRMT. The comparison 
can be listed as follows: 

1 Allowing a negligible error probability in the reliability 
does not alter the connectivity requirement of RMT 
protocols (see Comparison 1). 

2 Allowing a negligible error probability in the reliability 
significantly reduces the communication complexity of 
RMT protocols (see Comparison 2). 

3 In the presence of ,
btA  it is impossible to design any 

single phase PRMT protocol which achieves reliability 
with ‘constant factor overhead’. That is sending ℓ field 
elements by communicating O(ℓ) field elements is 
possible (see Comparison 2). The minimum number of 
phases required by any PRMT protocol to achieve 
reliability with ‘constant factor overhead’ is 3 (Patra  
et al., 2006). However, it is possible to design a single 
phase URMT, which under the presence of only 
Byzantine adversary achieves reliability with ‘constant 
factor overhead’ (see Corollary 1). This again shows 
the power of allowing a negligible error probability in 
the context of phase complexity of RMT. 

5 Single phase USMT tolerating ( ), , ,b o f pt t t tA  

In this section, we prove the necessary and sufficient 
condition for the existence of any single phase USMT 
protocol in the presence of ( ), , , .

b o f pt t t tA  We then prove the 

lower bound on the communication complexity of any 
single phase USMT protocol and show that our bound is 
asymptotically tight by designing a communication optimal 
single phase USMT protocol called USMT_Single_Phase. 

Kurosawa and Suzuki (2007) proved the lower bound on 
the communication complexity of any single phase USMT 
protocol tolerating 

btA  and also presented a near optimum 

single phase USMT protocol whose total communication 
complexity approximately matches the bound given in 
Kurosawa and Suzuki (2007). But the USMT protocol of 
Kurosawa and Suzuki (2007) requires exponential (in n) 
computation. We show that our communication optimal 
USMT protocol USMT_Single_Phase when executed 
against ,

btA  provides a polynomial time communication 

optimal USMT protocol satisfying the lower bound 
presented in Kurosawa and Suzuki (2007). 

Recently in Araki (2008), a polynomial time single 
phase USMT with n = 3tb + 1 (i.e., with non-optimal 

connectivity) is presented tolerating ,
btA  whose 

communication complexity almost satisfies the lower bound 
for single phase USMT given in Kurosawa and Suzuki 
(2007). As a special case of our single phase 
communication optimal USMT protocol 
USMT_Single_Phase, we show that in the presence of 

btA  

(i.e., to = tf = tp = 0), if 3tb + 1 wires are available, then 
protocol USMT_Single_Phase achieves security with 
constant factor overhead; i.e., it securely sends ℓ field 
elements in a single phase by communicating O(ℓ) field 
elements. This significantly improves the communication 
complexity of the single phase USMT of Araki (2008) in 
the same settings. 

From Dolev et al. (1993), any single phase PSMT 
tolerating 

btA  requires n = 3tb + 1 wires between S and R. 

Moreover from Fitzi et al. (2007) and Srinathan et al. 
(2007b), any single phase PSMT over n = 3tb + 1 tolerating 

,
btA  needs to communicate Ω(nℓ) field elements to 

securely send a message containing ℓ field elements. Thus, 
with n = 3tb + 1 wires in the presence of ,

btA  while it is 

impossible to design any single phase PSMT protocol with 
constant factor overhead, it is possible to obtain single 
phase USMT protocol with constant factor overhead. 

Finally, we compare our results on single phase USMT 
with the existing results for single phase PSMT. Our 
comparison shows that allowing a negligible error 
probability only in the reliability, significantly helps in the 
possibility and reducing the communication complexity of 
single phase SMT protocols. 

5.1 Single phase USMT protocol tolerating 

( ), , , :
b o f pt t t tA  characterisation and lower bound 

on communication complexity 

Theorem 10: Any single phase USMT protocol tolerating 

( ), , ,b o f pt t t tA  from S to R over n wires is possible if and only 

if n ≥ 2tb + 2to + tf + tp. Moreover, any such single phase 
USMT protocol is required to communicate 

( )(2 2 )b o f p

n
n t t t t− + + +Ω  field elements in order to send a 

message containing ℓ field elements. 

Remark 7: In any USMT protocol designed over a field F, 

the size of the field depends upon the error probability (in 
reliability) δ of the protocol. Since each field element  
from a field F can be represented by log | F | bits, from 

Theorem 10, any single phase USMT protocol to send ℓ log 

| F | bits, need to communicate ( )(2 2 ) log | |
b o f p

n
n t t t t− + + +Ω F  

bits. Thus, the communication complexity of any single 
phase USMT protocol is a function of δ (since | F | is a 

function of δ), though it is not explicitly mentioned in the 
expression derived in Theorem 10. 
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Proof: We first prove the lower bound on the 
communication complexity. Let Π be any single phase 
USMT over n wires, tolerating ( , , ) ,b f pt t tA  which sends a 

message m containing ℓ ≥ 1 field elements from F. We now 

define the following notations: 

1 M denotes the message space from where S selects the 
message to be sent. In our context, M = Fℓ 

2 m
iT  denotes the set of all possible transmissions that 

can occur on wire Wi ∈ {W1, ..., Wn}, when S transmits 
message m ∈ M using protocol Π 

3 for , 1, ...m m m m
i j i i jj i +≥ ⊆ × × ×M T T T  denotes the set of 

all possible transmissions that can occur over the wires 
{Wi, Wi+1, ..., Wj}, when S transmits message m ∈ M 
using protocol Π 

4 , ,
m

i j m i j∈=M M∪ M  and .m
i m i∈=T T∪ M  We call Ti as 

the capacity of wire Wi and Mi,j as the capacity of the 
set of wires {Wi, Wi+1, ..., Wj}. 

In protocol Π, one element from the set Ti is transmitted 
over each wire Wi, for i = 1, ..., n. Moreover, each element 
of the set Ti can be represented by log | Ti | bits. Thus, if we 
can find out each Ti, then the lower bound on the 

communication complexity of Π is 
1
log | |

n
ii=∑ T  bits. In 

the sequel, we try to compute Ti. 
Since Π is a single phase USMT protocol, it implies that 

the transmission on any set of tb + to + tp wires is 
independent of the message. Otherwise, the adversary will 
also know the secret message by passively listening the 
contents of these wires (recall that the eavesdropping 
capability of ( , , )b f pt t tA  is at most tb + to + tp). Thus, for any 

two-messages m1, m2 ∈ M, it must hold that: 

1 2
1,2 2 1,2 2 .

b o f f p b o f f p

m m
t t t tb to t t t t t tb to t t+ + + + + + + + + + + +=M M  

Notice that the relation above must hold for any selection  
of tb + to + tp wires. We focussed on the set 

{ }1 2 2,...,
b o f b o f pt t t t t t tW W+ + + + + +  just for simplicity. 

Similarly, since Π is a single phase USMT protocol, the 
data sent over any (n – (tb + to + tf)) wires during the 
protocol will always have full information about the secret 
message. This requirement ensures that even if the 
adversary simply blocks all the data that he can, the secret 
message is not lost and therefore the receiver’s ability to 
recover the message is not completely ruled out. Thus, it 
must also hold that: 

1 2
, , 0.

b o f b o f

m m
t t t n t t t n+ + + +∩ = /M M  

We again stress that the above relation must hold for any 
selection of n – (tb + to + tf) wires. We focussed on  

the set { }1,...,
b o ft t t nW W+ + +  just for simplicity. As mentioned 

earlier, 1,2 2b o f b o f p

m
t t t t t t t+ + + + + +M  will be same for all 

messages m. Thus, in order that the above relation holds, it 
must hold that 2 2 1,b o f p

m
t t t t n+ + + +M  is unique for every 

message m. This implies that: 

2 2 1, | | .
b o f pt t t t n+ + + + =M M  

From the definition of Ti and Mi,j, we get: 

2 2 1 2 2 1, | | .
b o f p b o f p

n
i t t t t i t t t t n= + + + + + + + +Π ≥ ≥T M M  

Let g = n – (2tb + 2to + tf + tp). The above inequality holds 
for any selection of g wires D ⊂ {W1, ..., Wn}, where  
| D | = g; i.e., | | .

iW i∈Π ≥TD M  In particular, it holds for 

every selection Dk = {Wkg+1 mod n, Wkg+2 mod n, ..., Wkg+g 
mod n}, with k ∈ {0, ..., n – 1}. 

If we consider all above Dk sets separately, then each 
wire is accounted for exactly g times. Thus, the product of 
the capacities of all Dk yields the capacity of the full wire 
set to the gth power, and since each Dk has capacity at least  
| M |, we get: 

( )1
0 0| | ,

j k

gn n n
k W j i i

−
= ∈ =≤ Π Π = ΠT TDM  

and therefore, 

( ) ( )1
log | | log .

n
ii

n g
=

≤ ∑ TM  

As log(| M |) = ℓ log(| F |), from the above inequality, we 
ge:t 

( ) ( ) ( )
( )1

log log
log .

2 2
n

ii
b o f p

n n
g n t t t t=

⎛ ⎞⎛ ⎞
⎜ ⎟≥ ≥⎜ ⎟⎜ ⎟ ⎜ ⎟− + + +⎝ ⎠ ⎝ ⎠

∑ T
F F

 

As mentioned earlier, ( )
1
log

n
ii=∑ T  denotes the lower 

bound on the communication complexity of protocol Π in 
bits. From the above inequality, we find that the  
lower bound on the communication complexity of protocol 

Π is ( )log
(2 2 )b o f p

n
n t t t t− + + +

⎛ ⎞⎜ ⎟
⎝ ⎠

F  bits. Now each field element from F 

can be pre-presented by log(| F |) bits. Thus, the lower 

bound on the communication complexity of protocol Π is 

( )(2 2 )b o f p

n
n t t t t− + + +  field elements. This completes the 

derivation of lower bound on the communication 
complexity of single phase USMT tolerating ( ), , , .

b o f pt t t tA  

We now derive the necessary condition for the 
possibility of single phase USMT protocol directly from the 
lower bound expression. 

Since the communication complexity of any single 
phase USMT protocol should be positive, we have n – (2tb + 
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2to + tf + tp) > 0, which gives n > 2tb + 2to + tf + tp.  
This proves the necessity condition. To prove the 
sufficiency condition, we design a communication optimal 
single phase USMT protocol USMT_Single_Phase with  
n = 2tb + 2to + tf + tp + 1 wires in next section. This 
completes the theorem.  

Comparison 3 (possibility of single phase PSMT and 
USMT): From Srinathan (2006), single phase PSMT 
protocol tolerating ( ), , ,b o f pt t t tA  is possible iff there exists n ≥ 

3tb + 2to + tf + tp + 1 wires between S and R. But from 
Theorem 10, we find that single phase USMT tolerating 

( ), , ,b o f pt t t tA  is possible iff there exists n ≥ 2tb + 2to + tf + tp + 1 

wires between S and R. This shows that allowing a 
negligible error probability (only in the reliability), 
significantly helps in the possibility of single phase SMT 
protocols. 

Comparison 4 (communication complexity of single phase 
USMT and PSMT): In Srinathan (2006), it is shown that any 
single phase PSMT tolerating ( ), , ,b o f pt t t tA  over n ≥ 3tb + 2to 

+ tf + tp + 1 wires has to communicate ( )(3 2 )b o f p

n
n t t t t− + + +Ω  

field elements to send a message containing ℓ field 
elements. From Theorem 10, any single phase USMT 
tolerating ( ), , ,b o f pt t t tA  over n ≥ 2tb + 2to + tf + tp + 1 wires 

has to communicate ( )(2 2 )b o f p

n
n t t t t− + + +Ω  field elements to 

send a message containing ℓ field elements. Let us fix  
n = 3tb + 2to + tf + tp + 1 such that both PSMT and USMT is 
possible [notice that with n = 2tb + 2to + tf + tp + 1 USMT is 
possible but PSMT is not possible (Srinathan, 2006)].  
With n = 3tb + 2to + tf + tp + 1, the lower bounds for PSMT 

and USMT become Ω(nℓ) and ( )
b

n
tΩ  field elements 

respectively. Specifically, if we consider 
btA  then n must be 

at least 3tb + 1 for PSMT to be possible (notice that USMT 
requires only 2tb + 1 wires tolerating ).

btA  With n = 3tb + 1, 

the lower bounds for PSMT and USMT become Ω(nℓ) and 
Ω(ℓ) field elements respectively for now tb = Θ(n). Hence, 
with n = 3tb + 1 while USMT can be achieved with constant 
factor overhead tolerating ,

btA  PSMT can not be achieved. 

This shows the power of allowing a negligible error 
probability (only in the reliability) in single phase SMT. 

In the sequel, we design a single phase communication 
optimal USMT protocol, whose total communication 
complexity matches the bound proved in Theorem 10, thus 
showing that the bound is tight. 

5.2 Single phase communication optimal USMT 
tolerating ( ), , ,b o f pt t t tA  

We now present a single phase communication optimal 
USMT protocol USMT_Single_Phase which securely sends 
a message containing tb + to + tf + tp + 1 = Θ(n) field 

elements by communicating O(n2) field elements, where S 
and R are connected by n = 2tb + 2to + tf + tp + 1 wires. This 
shows that the lower bound on the communication 
complexity, established in Theorem 10 is asymptotically 
tight. We require the field size 

32| | ,n
δ≥F  to bound the error 

probability by δ in USMT_Single_Phase. We first briefly 
recall an algorithm from Srinathan et al. (2004), which we 
have used as a black-box in our USMT protocol. 

Consider the following problem: suppose S and R  
by some means agree on a sequence of n values  
x = [x1x2 ... xn] ∈ Fn such that the adversary only knows n – f 

values in x. But neither S nor R knows the identity of the 
values which are known to the adversary. The goal is for S 
and R to agree on a sequence of f values [y1 y2 ... yf] ∈ Ff, 

such that the adversary has no information about [y1 y2 ... yf] 
in information theoretic sense. This is achieved by the 
following algorithm (Srinathan et al., 2004): 

Algorithm EXTRANDn,f (x). Let V be a n × f Vandermonde 
matrix with members in F. This matrix is published as a part of 
the algorithm specification. S and R both locally compute the 
product [y1 y2 ... yf] = [x1 x2 ... xn]V. 

Lemma 7 (Srinathan et al., 2004): The adversary has no 
information about [y1 y2 ... yf] computed in algorithm 
EXTRAND in information theoretic sense. 

Proof: The proof follows from the fact that any f × f 
subdeterminant in a n × f Vandermonde matrix is  
non-zero.  

Now we explain a method which is used to establish a one 
time pad between S and R. We call our method as pad 
establishment technique which is very similar to 
extrapolation technique discussed in Section 4. 

Pad establishment technique 

Suppose n = 2tb + 2to + tf + tp + 1. S randomly  
chooses (tb + to + tp + 1) × (n + tp) field elements  
from the field F denoted by 1 2 ( ), ,..., ,

pj j j n tM M M +   

1 ≤ j ≤ tb + to + tp + 1. We then construct a rectangular  
array A of size (tb + to + tp + 1) × (n+ tp) where the jth,  
1 ≤ j ≤ tb + to + tp +1 row contains the elements 

1 2 ( ), ,..., .
pj j j n tM M M +  Now consider the first column  

of A, containing 11 21 ( , , 1)1, ,..., .
b o pt t tM M M +  S constructs the 

unique tb + to + tp degree polynomial q1(x) passing through 
the points (1, M11), (2, M21), ..., (tb + to + tp + 1, 

( , , 1)1).
b o pt t tM +  S then evaluates q1(x) at tb + to + tf values of 

x, namely at x = tb + to + tp + 2, tb + to + tp + 3, ..., n to obtain 
11 21 ( )1, ,..., .

bt to tfc c c + +  S repeats the procedure for all the  

n + tp columns of A. In general, considering the ith,  
1 ≤ i ≤ n + tp column of A consisting of the elements 

1 2 ( , , 1), ,..., ,
b o pi i t t t iM M M +  S constructs the unique tb + to + tp 

degree polynomial qi(x) passing through the points  
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(1, M1i), (2, M2i), ..., ((tb + to + tp + 1), ( 1) ).
b o pt t t iM + + +  Then 

qi(x) is evaluated at tb + to + tf values of x, namely at  
x = tb + to + tp + 2, tb + to + tp + 3, ..., n to obtain 

1 2 ( ), ,..., .
b o fi i t t t ic c c + +  Finally, S obtains a rectangular array 

D of size n × (n + tp) containing n × (n + tp) elements, 
where: 
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( ) ( )( )

( )
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…

 

where C is the sub-matrix of D containing last tb + to + tf 
rows. Thus, D is the row concatenation of matrix A of size 
(tb + to + tp + 1) × (n + tp) and matrix C, whose elements are 
obtained from A. 

Remark 8 (difference between extrapolation technique and 
pad establishment technique): In Extrapolation Technique, 
the size of the matrix A is (tb + 1) × n and its elements 
constitute the message which S wants to reliably send to R. 
On the other hand, in pad establishment technique, the size 
of the matrix A is (tb + to + tp + 1) × (n + tp). Moreover, the 
elements of A are random elements, independent of the 
message that S wants to securely send to R. In extrapolation 
technique, the rest of the rows of matrix D are obtained by 
fitting tb degree polynomials to the elements along each 
column of A, where as in pad establishment technique, the 
rest of the rows of D are obtained by fitting polynomials of 
degree tb + to + tp to the elements along each column of A. 

We now prove the properties of D generated using pad 
establishment technique. 

Lemma 8: In D, all the n = 2tb + 2to + tf + tp + 1 elements  
of any column can be uniquely generated from any  
tb + to + tp + 1 elements of the same column. 

Proof: The proof follows using similar argument as in the 
proof of Lemma 1.  

Lemma 9: In D, if tb elements along any column are 
changed, then it can be always detected. 

Proof: The proof follows using similar argument as in 
Lemma 3.  

We now present our single phase USMT protocol called 
USMT_Single_Phase in Table 7. Let the message be 
denoted by 1 2 1(   ... )

b o f pt t t tm m m m + + + += a and the set of n 

wires be denoted as W= {w1, w2, ..., wn}. 

Lemma 10: In USMT_Single_Phase, if any  
wj ∈ W \ (F ∪ B) is contradicted by at least (tb – | B |) + 1 
wires in the set W \ (F ∪ B), then the polynomial pj(x) over 
wj has been changed by adversary or in other words wj is 
Byzantine corrupted. 

Proof: The proof is similar to the proof of Lemma 4 and is 
omitted.  

Lemma 11: In the protocol USMT_Single_Phase, if the 
adversary corrupts a polynomial over wire wj in such a way 
that wj is not removed during step 2 of message recovery, 
then R will always be able to detect it at the end of step 4 of 
message recovery and outputs ‘NULL’. 

Proof: We consider the worst case, where to + tf wires which 
are omission and fail-stop corrupted, gets crashed and fail to 
deliver any information to R. Thus, R gets information over 
2tb + to + tp + 1 wires, of which at most tb could be 
Byzantine corrupted. Also, out of these wires, at least  
tb + to + tp + 1 are honest and correctly delivered the 
polynomials and values to R. So tb + to + tp + 1 rows 
corresponding to these correct polynomials will be present 
in .D′  This is because an honest wire which has correctly 
delivered the polynomial can be contradicted by at most  
(tb – | B |) wires. Hence, the honest wires will not be 
removed by R during step 2 of message recovery and so the 
coefficients of the polynomials corresponding to these wires 
will be present in .D′  Now, if a wire wj which has delivered 
a faulty polynomial ( ) ( )j jp x p x′ ≠  to R, is not removed 

during step 2 of message recovery, then the coefficients of 
( )jp x′  are inserted in the jth row of .D′  Since 

( ) ( ),j jp x p x′≠  there will be at least one (there can be more 

than one) coefficient in ( ),jp x′  which is different from the 

corresponding coefficient in pj(x). Let pj(x) differs from 
( )jp x′  in the coefficient of xi. Then (i + 1)th column of D′  

differs from the (i + 1)th column of original D at jth 
position. Like this the (i + 1)th column of D′  may differ 
from the (i + 1)th column of original D in at most tb 
locations (including jth location). This is because in the 
worst case, out of the 2tb + to + tp + 1 wires, the adversary 
may change the polynomials along at most tb wires (which 
are Byzantine corrupted), such that the coefficient of xi in all 
these changed polynomials differ from their corresponding 
coefficient of xi in the original polynomials. So, in the worst 
case, at most tb elements of the (i + 1)th column of D′  can 
be different from (i + 1)th column of D. The proof now 
follows from Lemma 9.  

Lemma 12: In USMT_Single_Phase, if the test in step 4 of 
message recovery succeeds for all the n + tp columns of ,D′  
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then R will never output ‘NULL’ and always recovers m 
correctly. 

Proof: As explained in previous lemma, at the beginning of 
step 4, there will be at least tb + to + tp + 1 correct rows 
present in .D′  Now, if the test in step 4 succeeds for all the 
n + tp columns of ,D′  it implies that all the rows present in 
D′  are same as the corresponding rows in the original D. 
From Lemma 8, R will be able to completely regenerate all 
the n + tp columns of original D and hence, recover the 
original array D. Once D is reconstructed, R can easily form 
the list E consisting of the coefficients of all the n 
polynomials pj(x), 1 ≤ j ≤ n. R then correctly constructs the 
vector y by applying EXTRAND algorithm to E and 
recovers m by computing m = d ⊕ y.  

Theorem 11: In USMT_Single_Phase, the mixed adversary 

( ), , ,b o f pt t t tA  gains no information about the message m in 

information theoretic sense. 

Proof: The security of the protocol depends upon the 
security of the one time pad y which is established between 
S and R, which in turn depends upon how much information 
in the array D is information theoretically secure from 

( ), , , .
b o f pt t t tA  From Lemma 8, D can be completely recovered 

from any tb + to + tp +1 rows of D. So if ( ), , ,b o f pt t t tA  can 

completely recover any tb + to + tp + 1 of the n pi(x)’s, then 
adversary will know D and hence y. Without loss of 
generality, assume that ( ), , ,b o f pt t t tA  passively listen the 

wires w1 to 
b o pt t tw + +  (recall that ( ), , ,b o f pt t t tA  can passively 

listen the wires which are under its control in passive, 
omission and Byzantine fashion). Thus, the adversary 
knows the coefficients of pi(x), 1 ≤ i ≤ tb + to + tp and hence, 
the first tb + to + tp rows of D. Furthermore, the adversary 
receives (tb + to + tp) distinct points on each of the 
polynomials p1(x) to pn(x). Specifically, adversary know the 
values pi(αj), where 1 ≤ i ≤ n and 1 ≤ j ≤ tb + to + tp. The 
points on the polynomials p1(x) to ( )

b o pt t tp x+ +  are already 

known to the adversary (the adversary knows these 
polynomials) and hence does not add any new information 
to adversary’s view. On the other hand, ( ), , ,b o f pt t t tA  fall 

short of (n + tp) – (tb + to + tp) = tb + to + tf + tp + 1 points on 
each pi(x), tb + to + tp + 1 ≤ i ≤ n to completely interpolate 
pi(x). 

Now from Lemma 8, all the elements of any column of 
D can be derived from any tb + to + tp + 1 elements of the 
same column. So, the last n – (tb + to + tp + 1) rows of D can 
always be expressed as a linear combination of the first  
tb + to + tp + 1 rows of D. Thus, the polynomials 

2 ( )
b o f pt t t tp x+ + + +  to pn(x) linearly depends upon the 

polynomials p1(x) to 1( ).
b o pt t tp x+ + +  So the points on the 

polynomials 2 ( )
b o pt t tp x+ + +  to pn(x) are linear combinations 

of the points on the polynomials p1(x) to 1( ),
b o pt t tp x+ + +  

which are already known to the adversary and hence can be 
removed from his view. Hence, out of the tb + to + tp points 
on each of the n polynomials that are known to ( ), , , ,

b o f pt t t tA  

only the points on 1( )
b o pt t tp x+ + +  adds new information to 

adversary’s view. For the polynomial 1( ),
b o pt t tp x+ + +  the 

adversary knows only tb + to + tp points that are sent  
through the wires w1 to .

b o pt t tw + +  However, as shown 

above, from these many points, adversary will fall short of  
tb + to + tf + tp + 1 points to completely know 1( )

b o pt t tp x+ + +  

and hence D. So overall, tb + to + tf + tp + 1 elements of D 
are information theoretic secure. The proof now follows 
from the correctness of the EXTRAND algorithm.  

Theorem 12: If 
32| | ,n

δ≥F  then protocol 

USMT_Single_Phase is a strong USMT protocol and 
terminates with the correct message m with probability at 
least 1 – δ. 

Proof: From the protocol, it is easy to see that no two honest 
wires (which has delivered correct values and polynomials) 
contradict each other. From Lemma 10, all the wires 
removed by R during step 2 of message recovery are indeed 
faulty. We now show that if a wire has delivered incorrect 
polynomial, then it will be contradicted by all the honest 
wires with high probability. Let πij be the probability that a 
corrupted wire wj, which has delivered incorrect 

( ) ( )j jp x p x′ ≠  will not be contradicted by an honest wire 

wi. This means that the adversary can ensure that 
( ) ( )j i j ip pα α′=  with a probability of πij. Since there are 

only n – 1 + tp points at which these two-polynomials 
intersect (the degree of pj and jp′  is n – 1 + tp) and since αi 

was selected uniformly at random from F, we have  

πij ≤ n – 1 + tp | F | for each i, j. Thus, the total probability 

that the adversary can find wi, wj such that corrupted wire wj 
will not be contradicted by any honest wire wi is at most 

2 ( 1 )
| |,

.pn n t
iji j

π
− +

≤∑ F  Now n2(n – 1 + tp) < n2(2n) < 2n3. 

Since 
32| | ,n

δ≥F  it follows that corrupted ( ) ( ),j jp x p x′ ≠  

received over a corrupted wire wj can be included in D′  
with probability at most δ. However, if such a ( )jp x′  is 

included in ,D′  then from Lemma 11, R will detect this and 
will output ‘NULL’. Thus, protocol USMT_Single_Phase is 
a strong USMT protocol and outputs correct message with 
probability at least 1 – δ.  

Theorem 13: USMT_Single_Phase securely sends tb + to + tf 
+ tp + 1 = Θ(n) field elements by communicating O(n2) field 
elements. In terms of bits, the protocol securely sends  
(tb + to + tf + tp + 1) log | F | = Θ(n log | F |) bits by 

communicating O(n2 log | F |) bits. Thus, the protocol is 

communication optimal. 
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Proof: Over each wire, S sends a polynomial of degree n – 1 
+ tp and an n tuple. Thus, the total communication 
complexity is n × (n + tp + n) = O(n2). Since each field 
element from field F can be represented by log | F | bits, the 

communication complexity of the protocol is O(n2 log | F |) 

bits. The protocol securely sends (tb + to + tp + tf + 1) = Θ(n) 

field elements because if n = 2tb + 2to + tf + tp + 1, then  
tb + to + tp + tf + 1 = Θ(n). By substituting n = 2tb + 2to + tf + 
tp + 1 and ℓ = Θ(n) in Theorem 10, we get that any single 
phase USMT protocol need to communicate Ω(n2) field 
elements to securely send Θ(n) field elements. However, the 
total communication complexity of our protocol is O(n2). 
Hence, our protocol is communication optimal.  

Table 7 Single phase USMT protocol 

Protocol USMT single phase – the single phase USMT protocol 

Computation and communication by S: 
1 S selects at random (tb + to + tp + 1) × (n + tp) field elements from F denoted by 11 21 1( ), ,..., ,

pn tM M M +  

21 22 2( ) ( 1)1 ( 1)2 ( 1)( ), ,..., ,..., , ,..., ,
p b o p b o p b o p pn t t t t t t t t t t n tM M M M M M+ + + + + + + + + + +  which are independent of each other and the secret message 

m. From these elements S generates the rectangular array D containing n × (n + tp) field elements using pad establishment technique. 
2 S then forms n polynomials pj(x), 1 ≤ j ≤ n, each of degree n – 1 + tp where pj(x) is formed using the jth row of D as follows: the 

coefficient of xi, 0 ≤ i ≤ n – 1 + tp in pj(x) is the (i + 1)th element of jth row of D. 
3 S chooses another n secret and random field elements, α1, α2, ..., αn. Over wj, S sends the following to R: the polynomial pj(x), the 

secret value αj and the n tuple {pi(αj): 1 ≤ i ≤ n}. Let vji = pi(αj). 
4 S then prepares a list E which consist of coefficients of all n polynomials; i.e., concatenation of the rows of D. S finally computes  

1 2 1 ( ), 1[   ... ] EXTRAND ( )
b o f p p b o f pt t t t n n t t t t ty y y y E+ + + + + + + + += =  and broadcasts d = m ⊕ y to R. 

Message recovery by R: 
1 Let F denote the set of wires that delivered nothing and let B denote the set of wires that delivered invalid information (like higher 

degree polynomials, etc.) to R. Note that the wires in B are Byzantine corrupted because omission or fail-stop controlled wires can 
not modify the information passing over them. R removes all the wires in (F ∪ B) from W to work on the remaining wires in  
W \ (F ∪ B) out of which at most tb – | B | could be Byzantine corrupted. 

2 Let R receive ( ),j jp x α′ ′  and the n tuple { :1 }jiv i n′ ≤ ≤  over wj ∈ W \ (F ∪ B). R also correctly receives d = m ⊕ y, which is 

broadcast by S. We say that wj contradicts wi if: ( ),ji i jv p α′ ′ ′≠  where wi, wj ∈ W \ (F ∪ B). Among all the wires in W \ (F ∪ B), R 

checks if there is a wire contradicted by at least (tb – | B |) + 1 wires. All such wires are Byzantine corrupted and removed (see 
Lemma 10). 

3 To retrieve m, R needs the vector y, which in turn is constructed from the list E. So to get the list E, R tries to reconstruct the array D 
as generated originally by S. Let D′  be the array, corresponding to D which R tries to recover at his end. D′  is constructed as 
follows: Corresponding to each wj ∈ W \ (F ∪ B), which is not removed in previous step, R fills the jth row of D′  in the following 
manner: coefficient of xi, 0 ≤ i ≤ n – 1 + tp in ( )jp x′  occupies (i + 1)th column in the jth row of ;D′  i.e., the coefficients of ( )jp x′  are 

inserted in jth row of D′  such that the coefficient of xi in ( )jp x′  occupies (i + 1)th column in the jth row of .D′  

4 After doing the above step for each wj ∈ W \ (F ∪ B), which is not removed in step 2 of message recovery, R will have at least  
tb + to + tp + 1 rows inserted in D′  (see Lemma 12). R then checks the validity of these rows as follows: let i1, i2, ..., ik,  
k ≥ tb + to + tp + 1 denote the index of the rows which are inserted by R in .D′  Let 

1 2
, ,..., ,

k

j j j
i i iy y y  1 ≤ j ≤ n + tp denote the values along 

jth, 1 ≤ j ≤ n column of .D′  R checks whether the points ( ) ( ) ( )1 21 2, , , ,..., ,
k

j j j
ki i ii y i y i y  lie on a tb + to + tp degree polynomial. Note that 

at this point, each column will have at least tb + to + tp + 1 elements, which are enough to do the checking. Moreover, if k is exactly 
equal to tb + to + tp + 1, then the checking will always pass. If the test fails for at least one column of ,D′  then R outputs ‘NULL’ and 
halts. Otherwise, proceed to the next step. 

5 Using the already inserted rows of ,D′  R regenerates the complete D correctly (see Lemma 12). R now knows all the polynomials 
pi(x), 1 ≤ i ≤ n and hence, the list E, which is the concatenation of rows of D. R then computes 

1 2 1 ( ), 1[   ... ] EXTRAND ( )
b o f p p b o f pt t t t n n t t t t ty y y y D+ + + + + + + + += =  and recovers m by computing d = m ⊕ y. 
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5.2.1 Single phase USMT with constant factor 
overhead tolerating 

btA  

From Dolev et al. (1993), any single phase PSMT tolerating 

btA  requires n = 3tb + 1 wires between S and R. Moreover, 

from Fitzi et al. (2007) and Srinathan et al. (2007b), any 
single phase PSMT tolerating 

btA  needs to communicate 

Ω(nℓ) field elements to securely send a message containing 
ℓ field elements over a 3tb + 1-(S, R) connected network. 
We now show that if n = 3tb + 1, then there exists a single 
phase (strong) USMT protocol with error probability of at 
most δ, which sends a message containing ℓ field elements 
by communicating O(ℓ) field elements tolerating .

btA  In 

terms of bits, the protocols securely sends ℓ log | F | bits by 

communicating O(ℓ log | F |) bits, where | F | is a function of 

error probability δ. Thus, we get security with constant 
factor overhead in a single phase, with negligible error 
probability. This is interesting because with n = 3tb + 1 
wires, it is impossible to achieve perfect secrecy with 
constant factor overhead. 

If we execute our single phase USMT protocol 
USMT_Single_Phase against only 

btA  over n = 2tb + 1 

wires (i.e., to = tf = tp = 0), then the protocol securely sends 
tb + 1 = Θ(n) field elements (if n = 2tb + 1, then tb = Θ(n)) 
by communicating O(n2) field elements. However, if  
n = 3tb + 1, then the same protocol can securely send 

2 2( ) ( )bt nΘ = Θ  field elements by communicating O(n2) field 
elements. In terms of bits, the USMT protocol will send  
Θ (n2) log(|F |) bits by communicating O(n2) log(| F |) bits, 

where 
32| | .n

δ≥F  The only change need to be done is in the 

pad establishment technique. Now the array D will be an 
(3tb + 1) × (3tb + 1) array, where the sub-array A will be of 
size (2tb + 1) × (3tb + 1) and will consists of (2tb + 1) × (3tb 
+ 1) random elements. The 2tb + 1 rows of A will be 
extrapolated into sub-array C of size tb × (3tb + 1), by fitting 
2tb degree polynomials passing through the elements of the 
individual columns of A. Now in the protocol, S will 
generate a random pad y of length (tb + 1) × (2tb + 1) from 
the elements of array D and sends a message containing  
(tb + 1) × (2tb + 1) field elements by using y as an one time 
pad. The security of y follows from the fact that now  
(n – tb) = 2tb + 1 elements along tb +1 rows of array A will 
be information theoretically secure from .

btA  The rest of 

the protocol will remain same, except that now in D′  (array 
corresponding to D which is reconstructed at R’s end), there 
will be at least 2tb + 1 rows (for n = 3tb + 1, there will be at 
least 2tb + 1 correct and honest wires). To check the validity 
of the rows inserted in ,D′  R will check whether the 
elements along individual columns of D′  lie on a 2tb degree 
polynomial. The rest of the details are same as in protocol 
USMT_Single_Phase. Thus, we have the following 
theorem: 

Theorem 14: If n = 3tb + 1 and 
32| | ,n

δ≥F  then there exists a 

single phase strong USMT protocol, which securely sends a 
message containing Θ(n2 log(| F |)) bits by communicating 

O(n2 log(|F |)) bits, with an error probability of at most δ, 

tolerating .
btA  

Proof: Follows from the above discussion.  

Recently in Araki (2008), a single phase USMT protocol 
with n = 3tb + 1 and tolerating 

btA  is provided. However, 

the protocol does not provides security with constant factor 
overhead; i.e., the communication complexity of the 
protocol is much more than O(ℓ). Thus, our single phase 
USMT when executed with n = 3tb + 1 tolerating ,

btA  

significantly improves the communication complexity of the 
USMT protocol of Araki (2008) in the same settings. 

5.2.2 Lower bound on communication complexity 
(Kurosawa and Suzuki, 2007) and our 
polynomial time single phase communication 
optimal USMT protocol tolerating 

btA  

In Kurosawa and Suzuki (2007), the authors have shown 
that single phase USMT tolerating 

btA  is possible iff  

n ≥ 2tb + 1. In addition, they have shown that for any single 
phase USMT protocol with n = 2tb + 1, the following must 
hold: 

| 1 | 1i δ
−

≥ +
S

X  (1) 

where S denotes the set of possible secret messages from 
which S intends to send one element to R, Xi denotes the set 
of possible data sent through the ith wire in the protocol and 
0 < δ < 1 2 is the error probability of the protocol. In any 
single phase USMT protocol, one element from Xi is sent 
through the ith channel. Now each element of Xi can be 
represented by log(| Xi |) bits. Similarly, each message from 
S can be represented by log(| S |) bits. Thus, inequality (1) 
says that any single phase USMT protocol must 
communicate Ω(n log(| Xi |)) bits to securely send log(|S |) 
bits with error probability of at most 1

20 .δ< <  
In Kurosawa and Suzuki (2007), the authors have 

proposed a near optimum single phase USMT protocol 
whose total communication complexity approximately 
matches the bound given in inequality (1). However, the 
computation done by R in their protocol is exponential in n. 
We now show that if we execute our single phase  
USMT protocol USMT_Single_Phase against only 

btA  over 

n = 2tb + 1 wires, then it satisfies the lower bound given in 
inequality (1). If we execute our single phase USMT 
protocol USMT_Single_Phase against only 

btA  over  
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n = 2tb + 1 wires (i.e., to = tf = tp = 0), then the  
protocol securely sends tb + 1 = Θ(n) field elements (if  
n = 2tb + 1, then tb = Θ(n)) by communicating O(n2) field 
elements. Recall that the field size | F | must be at least 

32n
δ  

for bounding the error probability of USMT_Single_Phase 
by δ. We select κ > 0 such that δ ≈ 2–κ and express the error 
probability by 2–κ (instead of δ). So now | F | ≥ 2n32κ. So a 

field element can be represented by O(log n + κ) bits.  
Our protocol securely sends O((tb + 1)(log n + κ)) bits  
(if n = 2tb + 1, then tb = Θ(n)) by communicating  
O(n2(log n + κ)) bits. 

We now show that the communication complexity of 
our protocol (with n = 2tb + 1) satisfies the bound given in 
inequality (1). In our protocol message space is 1.bt +F  So 

1bt += FS  and thus, log(| S |) = (tb + 1) log(| F |) = (tb + 1) 

(log n + κ). Substituting δ = 2–κ and value of S in  

inequality (1), we get 
1 1

2
1

tb

i κ

+

−

−
≥ +

F
X  and thus,  

log(| Xi |) ≥ κ + (tb + 1)(log n + κ). So according to the 
lower bound given by inequality (1), our protocol must 
communicate Ω(n(tb + 1)(log n + κ)) = Ω(n2(log n + κ)) bits 
to securely send (tb + 1)(log n + κ) = Θ(n(log n + κ)) bits. 
However, the total communication complexity of our 
protocol is Θ(n2(log n + κ)) bits. 

5.3 Comparison of single phase PSMT with single 
phase USMT 

The comparison between single phase PSMT and single 
phase USMT can be listed as follows: 

• allowing a negligible error probability in the reliability 
significantly helps in the possibility of single phase 
SMT protocols (see Comparison 3) 

• allowing a negligible error probability in the reliability 
significantly reduces the communication complexity of 
single phase SMT protocols (see Comparison 4 and 
Subsection 5.2.1) 

• allowing a negligible error probability in the reliability 
helps in the possibility of single phase SMT protocol 
tolerating which achieves security with constant factor 
overhead against 

btA  (see Theorem 14). 

6 Multiphase USMT tolerating ( ), , ,b o f pt t t tA  

As mentioned earlier, one of the key parameters of any 
SMT protocol is the number of phases. In the context of 
PSMT, it is well known that allowing interaction between S 
and R significantly helps in reducing the connectivity 
requirement and lower bound on communication 
complexity of PSMT protocols (see Table 2 and Table 3). In 
this section, we show that same holds for USMT also. Here, 
we provide the characterisation and lower bound on the 

communication complexity of any multiphase USMT 
protocol. We also design a four-phase USMT protocol 
whose total communication complexity matches the proven 
lower bound, thus, showing that our lower bound is 
asymptotically tight. Comparing these results with the 
results for single phase USMT, we find that allowing 
interaction between S and R significantly reduces the 
connectivity requirement of USMT and also helps in 
reducing the communication complexity of USMT 
protocols. Finally, comparing our results on multiphase 
USMT with the results on multiphase PSMT (given in last 
rows of Table 2 and Table 3), we observe a notable effect  
of allowing a negligible error probability in reliability of 
multiphase SMT protocols. 

6.1 Characterisation for multiphase USMT protocol 
tolerating ( ), , ,b o f pt t t tA  

Theorem 15: Multiphase USMT between S and R in an 
undirected network tolerating a mixed adversary ( ), , ,b o f pt t t tA  

is possible if and only if the network is (tb + max(tb, tp) + to 
+ tf + 1)-(S, R)-connected. 

Proof: 

Necessity: We consider two cases for proving the necessity. 

1 Case 1: tp ≤ tb: In this case, the necessity condition says 
that the network should be (2tb + to + tf + 1)-(S, R)-
connected. Since the condition is necessary for URMT 
(Theorem 3), it is obviously necessary for USMT. 

2 Case 2: tp > tb: In this case, the necessity condition says 
that the network should be (tb + tp + to + tf + 1)-(S, R)-
connected. This condition is necessary for USMT 
because if the network is (tb + tp + to + tf)-(S, R)-
connected, then the adversary may strategise to simply 
block all message through (tb + to + tf) vertex disjoint 
paths and thereby ensure that every value received by R 
is also listened by the adversary. This completely rules 
out the possibility of information-theoretic security. 

Sufficiency: Suppose that network is (tb + max(tb, tp) +  
to + tf + 1)-(S, R)-connected. Then from Menger’s (1927) 
theorem, there exist at least n = (tb + max(tb, tp) + to + tf + 1) 
vertex disjoint paths from S to R. We model these paths as 
wires w1, w2, ..., wn. We now design a three phase USMT 
protocol called USMT_Three_Phase to securely send a 
single field element m ∈ F. The protocol is similar to the 

USMT protocol of Franklin and Wright (2000) and is given 
in Table 8. 

It can be shown that with a probability of at least 

( )1
| |1 , ρ ρ′− =F  and hence, R almost always learns the 

correct message [proof is similar to that of the correctness 
of the USMT protocol of Franklin and Wright (2000)]. 
Since n = tb + max(tb, tp) + to + tf + 1, there exists at least 
one wire say wi, which is not controlled by the adversary. 
So, the corresponding ρi2 is unknown to adversary implying 
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information theoretic security for 2
i

iw H
ρ ρ

∈
= ∑  and 

hence, for m. It is easy to see that the communication 
complexity of USMT_Three_Phase is O(n2) field elements, 
where the field size | F | is set appropriately as a function of 

δ.  

Comparison 5 (possibility of multiphase PSMT and USMT): 
From Table 2 (last row), any r ≥ 2 phase PSMT protocol 
tolerating ( , , , )b o f pt t t tA  is possible iff there exists  

n ≥ 2tb + to + tf + tp + 1 wires between S and R.  
From Theorem 15, any r ≥ 2 phase USMT protocol  
tolerating ( , , , )b o f pt t t tA  is possible iff there exists  

n ≥ tb + max(tb, tp) + to + tf + 1 wires between S and R. 
Therefore, except when either tb = 0 or tp = 0, allowing a 
negligible error probability (only in the reliability), 
significantly helps in the possibility of multiphase SMT 
protocol. 

The protocol USMT_Three_Phase is used to prove the 
sufficiency of Theorem 15. Using it as a black-box, we will 
design a communication optimal multiphase USMT 
protocol. Before that, in the sequel we prove the lower 
bound on the communication complexity of any multiphase 
USMT protocol. 

6.2 Lower bound on the communication complexity 
of multiphase USMT protocol tolerating 

( ), , ,b o f pt t t tA  

We now prove the lower bound on the communication 
complexity of any r-phase (r ≥ 2) USMT protocol which 
sends ℓ field elements tolerating a mixed adversary 

( , , , ) .b o f pt t t tA  Let n ≥ tb + max(tb, tp) + to + tf + 1. Before 

proving the lower bound, we briefly recall the capabilities 
of ( , , , ) .b o f pt t t tA  A Byzantine corrupted wire is actively 

controlled by the adversary. Thus, the adversary fully 
controls a Byzantine corrupted wire and he can even block 
such a wire. However, the most adverse affect caused by a 
Byzantine corrupted wire is when the adversary maliciously 
changes the information passed over such a wire. If the 
adversary simply blocks a wire which is controlled in 
Byzantine fashion, then the adversary is not using its true 
capability. Also, if the adversary blocks a Byzantine 
controlled wire, instead of maliciously changing the 
information passing through such a wire, then both S and R 
will come to know the identity of the blocked wire and will 
remove it from the protocol. Similarly, the most adverse 
affect caused by a omission controlled wire is when the 
adversary passively listen such a wire. Instead, if the 
adversary blocks such a wire (omission controlled wire can 
also be blocked by the adversary), then again both S and R 
will come to know the identity of the wire and will remove 
it. While proving the lower bound on the communication 
complexity, we assume that ( , , , )b o f pt t t tA  will fully utilise its 

capability. Thus, we assume that the adversary either 

eavesdrop or maliciously change the information passing 
through the wires which are controlled in Byzantine fashion. 
Similarly, instead of blocking omission controlled wires, the 
adversary only eavesdrop such wires. Thus, without loss of 
generality, we assume that out of the n wires, ( , , , )b o f pt t t tA  

controls at most b, F and P wires in Byzantine, fail-stop and 
passive fashion respectively, where b ≤ tb, F ≤ tf and P ≤ tb + 
to + tp. 

Theorem 16: Any r-phase (r ≥ 2) USMT protocol which 
securely sends ℓ field elements in the presence ( , , , )b o f pt t t tA  

needs to communicate ( )( )b o f p

n
n t t t t− + + +Ω  field elements. 

Remark 9: In terms of bits, any multiphase USMT  

protocol must communicate ( )( ) log | |
b o f p

n
n t t t t− + + +Ω F  bits 

to securely send ℓ log | F | bits, where | F | is a function of δ 

(the probability of error in the reliability). In the next 
section, we give a concrete communication optimal USMT 
protocol satisfying this bound and show how to set | F | as a 

function of δ. 

Proof: The proof of Theorem 16 follows from Lemma 13 
and Lemma 14, which are proved below. 

Lemma 13: The communication complexity of any 
multiphase USMT protocol to send a message against  
an adversary corrupting up to b (≤ tb), F (≤ tf) and  
P (≤ tb + to + tp) of the wires in Byzantine, fail-stop and 
passive manner respectively is not less than the 
communication complexity of distributing n shares for  
the message such that any set of n – F shares has full 
information about the message while any set of P shares has 
no information about the message. 

To prove the lemma, we begin with defining a weaker 
version of single-phase USMT called USMT with error 
fetection (USMTED). We then prove the equivalence of the 
communication complexity of USMTED protocol to send 
message M and the share complexity of distributing n 
shares for M such that any set of n – F shares has full 
information about M while any set of P shares has no 
information about M. To prove the aforementioned 
statement, we show their equivalence (Claim 1). Finally, we 
will show that the communication complexity of any 
multiphase USMT protocol is at least equal to the 
communication complexity of single-phase protocol 
USMTED (Claim 3). These two equivalence will prove the 
desired equivalence as stated in this lemma. Note that b, F 
and P are bounded by tb, tf and tb + to + tp respectively. 

Definition 15: A single phase USMT protocol is called 
USMTED if it satisfies the following properties: 

1 If the adversary is passive on P wires then R correctly 
and securely receives the message sent by S. 

2 If the adversary maliciously changes the information 
over b wires (b ≤ tb), then R detects it, and aborts. 
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3 If adversary crashes F ≤ tf wires and does no malicious 
corruption, then R recovers message correctly. Else if 
adversary either crashes more than tf wires or do some 
malicious modifications (or both), then R detects it and 
aborts. 

4 The adversary obtains no information about the 
transmitted message in information theoretic sense. 

We next show that the properties of USMTED protocol for 
sending message M is equivalent to the problem of 
distributing n shares for M such that any set of n – F shares 
has full information about M while any set of P shares has 
no information about M. 

Claim 1: Let Π be a USMTED protocol executed over n 
wires between S and R. In an execution of Π for sending a 
message M, the data si, 1 ≤ i ≤ n sent by the S along the 
wires wi, 1 ≤ i ≤ n, form n shares for M such that any set of 
n – F shares has full information about M while any set of P 
shares has no information about M. 

Proof: The fact that any set of P shares have no information 
about M follows directly from property 1 and 4 of definition 
of USMTED. We now show that any set of n – F shares  
has full information about M. The proof is by contradiction. 
For a set of wires A, let Message(M, A) denote the  
set of messages sent along the wires in A during the 
execution of USMTED to send M. Now for any set  
C of honest wires with | C | ≥ n – F, Message(M, C)  
should uniquely determine the message M. Suppose  
not, then there exists another message ′M  such that 

( , ) ( , ).Message C Message C′=M M a By definition the  
fail-stop controlled wires can block all the messages sent 
along the F wires not in C. Thus, for two different 
executions of USMTED to send two distinct message M 
and ,′M  there exists an adversary strategy such that view of 
R at the end of two executions is exactly same. This is a 
contradiction to the property 3 of USMTED protocol Π, 
which must output the correct message if at most F fail-stop 
errors and no malicious corruptions take place.  

The above claim also says that the communication 
complexity of USMTED protocol to send M is same as the 
share complexity (sum of the length of all shares) of 
distributing n shares for a message M such that any set of  
n – F shares has full information about M while any set of P 
shares has no information about the message. Now, we  
step forward to show that the communication complexity  
of USMTED protocol is the lower bound on the 
communication complexity of any multiphase USMT 
protocol. 

Before that we take a closer look at the execution of any 
multi-phase USMT protocol. S and R are modelled as 
polynomial time Turing machines with access to a random 
tape. The number of random bits used by S and R are 
bounded by a polynomial q(n). Let r1, r2 ∈ {0, 1}q(n) denote 
the contents of the random tapes of S and R respectively. 
The message M is an element from the set {0, 1}p(n), where 
p(n) is a polynomial. A transcript for an execution of a 
multiphase USMT protocol Π is the concatenation of all the 
messages sent by S and R along all the wires. 

Table 8 A three-phase USMT protocol 

Protocol USMT_Three_Phase – a three phase USMT protocol 

Phase I: S to R 

• Along wi, 1 ≤ i ≤ n, S sends to R two randomly picked elements ρi1 and ρi2 chosen from F. 
Phase II: R to S 

• Suppose R receives values in syntactically correct form along n n′ ≤  wires. R neglects the remaining ( )n n′−  wires. Let R receive 

1iρ′  and 2iρ′  along wire wi, where wi is not neglected by R. 

• R chooses uniformly at random an element K ∈ F. R then broadcasts to S the following: identities of the ( )n n′−  wires neglected by 

him, the random K and the values 1 2( )i iK ρ ρ′ ′+  for all i such that wi is not neglected by R. 

Phase III: S to R 

• S correctly receives the identities of ( )n n′−  wires neglected by R during Phase II (because irrespective of the values of tb and tp, n is 
at least 2tb + to + tf + 1 and any information which is broadcast over these many wires will be received correctly). S eliminates these 
wires. S also correctly receives K and the values, say 1 2( )i i iu K ρ ρ′ ′= +  for each i, such that wire wi is not eliminated by R. 

• S then computes the set H such that H = {wi | ui = (Kρi1 + ρi2)}. Furthermore, S computes the secret pad ρ where 2.
i

iw H
ρ ρ

∈
= ∑  S 

then broadcasts the set H and the blinded message m ⊕ ρ to R, where m is the single field element, which S wants to send securely to 
R. 

Message recovery by R 

• R correctly receives H and computes his version of ρ′  (which is equal to ρ with very high probability). If z′  is the blinded message 
received, R outputs .m z ρ′ ′= ⊕  
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Definition 16: A passive transcript T (Π, M, r1, r2) is a 
transcript for the execution of the multiphase USMT 
protocol Π with M as the message to be sent, r1, r2 as the 
contents of the random tapes of sender S and the receiver R 
and the adversary remaining passive throughout the 
execution of Π. Let T (Π, M, r1, r2, wi) denote the passive 
transcript restricted to messages exchanged along the wire 
wi. When Π, M, r1, r2 are obvious from the context, we drop 
them and denote the passive transcript restricted to a wire wi 
by Twi. Similarly, TB denote the passive transcript restricted 
to the set of wires in B. 

Given (M, r1, r2) it is possible for S to compute  
T (Π, M, r1, r2) by simulating R with random tape r2. 
Similarly given (M, r1, r2) R can compute T (Π, M, r1, r2) 
by simulating S with random tape r1. Note that although S 
and R require both r1, r2 to generate the transcript, R 
requires only r2 in order to obtain the message M from the 
transcript T (Π, M, r1, r2). This is clear since R does not 
have access to r1 during the execution of Π but still can 
retrieve the message M from the messages exchanged. 

We next define a special type of passive transcript and 
prove its properties. 

Definition 17: A passive transcript TB, with n – F ≤ | B | ≤ n 
is said to be a valid fault-free transcript with respect to R, if 
there exists random string r2 and message M, such that 
USMT protocol Π at R, with r2 as the contents of the 
random tape and TB as the messages exchanged, terminates 
by outputting the message M. 

Definition 18: Two transcripts TB and ,B′T  where  
n – F ≤ | B | ≤ n are said to be adversely close if  
the two transcripts differ only on a set of wires A  
such that | A | ≤ b + (| B | – (n – F)). Formally 

| (| | ( )).
i ii w ww b B n F′≠ ≤ + − −T T  

We next claim an important property of valid fault free 
transcripts. 

Claim 2: No two valid fault-free transcripts TB (Π, M, r1, r2) 
and 1 2( , , , )B r r′ ′ ′Π MT  with two different message inputs  

M, ,′M  can be adversely close to each other, where  
n – F ≤ B ≤ n, irrespective of the value of r1, 1,r′  r2 and 2.r′  

Proof: Suppose there exists r1, 1,r′  r2 and 2r′  and two 
different messages M, ,′M  such that the valid fault-free 
transcripts TB (Π, M, r1, r2) and 1 2( , , , )B r r′ ′ ′Π MT  are 
adversely close. This implies that there is a set of wires A, 
where | A | ≤ b + (| B | – (n – F)), such that the two 
transcripts differ only on messages sent along the  
wires in A. Without loss of generality, assume that the last  
b + (| B | – (n – F)) wires belong to A, with A = X ◦ Y, where 
| X | = b and | Y | = (| B | – (n – F)). If such transcripts exist, 
then adversary can also generate TB (Π, M, r1, r2) by 
simulating S with message M and random coin r1 and 
simulating R with random coin r2. In a similar way, he can 
simulate S and R and generate 1 2( , , , ).B r r′ ′ ′Π MT  

Now consider the following adversary behaviour: in 
each execution of Π, irrespective of the random coins of S, 
R and irrespective of the message selected by S, adversary 
guesses that S wants to send M using randomness r1, while 
R is using randomness 2.r′  Now irrespective of whether 
adversary’s guess is correct or not, adversary blocks the 
messages over the wires in Y and tries to change the 
messages along wires in X such that the view of S becomes 
TB–Y (Π, M, r1, r2) while the view of R becomes 

1 2( , , , ).B Y r r− ′ ′ ′Π MT  
Notice that if either S or R (or both) behaves differently, 

as opposed to adversary’s guess then adversary will not be 
able to generate the above views at S and R’s end and will 
be caught. But in an execution of Π, where S indeed wants 
to send M using randomness r1, while R is using 
randomness 2 ,r′  adversary will be successful in causing  
TB–Y (Π, M, r1, r2) and 1 2( , , , )B Y r r− ′ ′ ′Π MT  to be S and R’s 
view respectively, at the end of the protocol. In such an 
execution, R will end up outputting ,′ ≠M M  which 
violates the property of URMT. This shows a contradiction. 

 

Table 9 Single phase protocol USMTED 

Protocol USMTED 

• S computes the passive transcript T (Π, M, r1, r2) for some random r1 and r2 and sends T (Π, M, r1, r2, wi) to R along wi. 

• If R does not receive information through at least n – F wires then R outputs ERROR and stop. Otherwise, let R receive information 
over the set of wires B = {wi1, wi2, ..., wi} where n – F ≤ | B | ≤ n. R concatenates the values received along these wires to obtain a 
transcript TB (which may be corrupted along tb wires) and does the following: 

 • for each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n) do: 
   If TB is a valid transcript with random tape contents r2 for message M then output M and stop. 

  Output ERROR. 
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Till now, we have shown that a passive transcript over at 
least n – F correct wires allows R to output M correctly. We 
now show how to reduce a multiphase USMT protocol into 
a single phase USMTED protocol. The USMTED protocol 
is given in Table 9. 

Claim 3: The communication complexity of any multiphase 
USMT protocol Π to send M is at least equal to the 
communication complexity of USMTED protocol. 
Moreover protocol USMTED satisfies the properties given 
in Definition 15. 

Proof: Let Π be any multiphase USMT protocol and Πpassive 
denotes an execution of Π where the adversary does only 
eavesdropping and does no other type of corruption  
during the complete execution. It is easy to see that the 
communication complexity of Πpassive is trivially a lower 
bound on the communication complexity of any multiphase 
USMT protocol (where the adversary may do other types of 
corruptions, in addition to eavesdropping). We now show 
that the communication complexity of Πpassive is same as the 
communication complexity of USMTED protocol. Once we 
do this, then the communication complexity of USMTED 
protocol is a trivial lower bound on the communication 
complexity of any multiphase USMT protocol. 

In USMTED, S assumes its random tape to contain r1 
and R’s random tape to contain r2. S also assumes that in Π, 
the adversary will only do eavesdropping and no other type 
of corruption and generates the passive transcript T (Π, M, 
r1, r2). As explained earlier, S can do so by simulating R, 
assuming the content of R’s random tape to be r2. However, 
note that R neither knows M, nor r1, r2, which S has used 
for generating T. S then communicates T to R, by sending 
the components of T restricted to wire wi, along wi. It is easy 
to see that the cost of communicating such a transcript by 
USMTED is same as the communication complexity of 
Πpassive. 

The messages sent along wire wi in USMTED protocol 
is the concatenation of the messages that would have been 
exchanged between S and R along wi in Πpassive. Since 
Πpassive is a special type of execution of USMT protocol Π, 
by the secrecy property of Π, the adversary cannot obtain 
any information about the message M by passively listening 
P ≤ tb + to + tp wires in USMTED protocol. From Claim 2, 
we know that valid transcripts of two different messages 
cannot be adversely close to each other. So irrespective of 
the actions of the adversary, the transcript received by R 
cannot be a valid transcript for any message other than M 
for any value of r2. Hence, if R outputs a message M then it 
is the same message sent by S. Thus, protocol USMTED 
satisfies the properties given in Definition 15.  

Claim 1, along with Claim 3 completes the proof of  
Lemma 13. We now prove the share complexity of 
distributing n shares for a message such that any set of n – F 
shares has full information while any set of P shares has no 
information about the message 

Lemma 14: The share-complexity (that is the sum of length 
of all shares) of distributing n shares for a message of size ℓ 
field elements from F such that any set of n – F shares has 

full information about the message while any set of P shares 

has no information about the message is ( )( ) .n
n F P− −Ω  

Proof: To prove this lemma, we use similar arguments as 
used in deriving the lower bound on the communication 
complexity of single phase USMT. We now define the 
following notations: 

1 M denotes the message space from where the message 

m is selected. In our context, M = Fℓ. 

2 For i = 1, ..., n, m
iX  denotes the set of all possible ith 

share corresponding to message m ∈ M. 

3 For j ≥ i, , 1
m m m m
i j i i j+⊆ × × ×M X X X…  denotes the set of 

all possible {ith, (i + 1)th, ..., jth} shares, corresponding 
to message m ∈ M. 

4 , ,
m

i j m i j∈=M M∪ M  and .m
i m i∈=X X∪ M  We call Xi as 

the capacity of ith share and Mi,j as the capacity of the 
set of {ith, (i + 1)th, ..., jth} shares. 

To generate n shares for message m, one element from the 
set Xi is selected as the ith share, for i = 1, ..., n. Moreover, 
each element of the set Xi can be represented by log | Xi | 
bits. Thus, if we can find out each Xi, then the share 

complexity corresponding to m will be 
1
log

n
ii=∑ X  bits. 

In the sequel, we try to compute Xi. 
From the properties of share distribution, any set of P 

shares is independent of the message. Thus, for any two 
messages m1, m2 ∈ M, it must hold that: 

1 2
1, 1, .m m

F F P F F P+ + + +=M M  

Notice that the relation above must hold for any selection of 
P shares. We focussed on the set of {(F +1)th, ..., (F + P)th} 
shares just for simplicity. Also, from the properties of share 
distribution, any set of n – F shares have full information 
about the message m and uniquely determine m. Thus, it 
must also hold that: 

1 2
1, 1, 0.m m

F n F n+ +∩ = /M M  

We again stress that the above relation must hold for any 
selection of n – F shares. We focussed on the set of  
{(F + 1)th, ..., nth} shares just for simplicity. As mentioned 
earlier, 1,

m
F F P+ +M  will be same for all messages m. Thus, in 

order that the above relation holds, it must hold that 

1,
m
F P n+ +M  is unique for every message m. This implies that: 
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1, | | .F P n+ + =M M  

From the definition of Xi and Mi,j, we get: 

1,1
| | .

n
i F P ni F P + += + +

≥ ≥∏ X M M  

Let g = n – (F + P). The above inequality holds for any set 
of g shares D, where | D | = g; i.e., Πi∈D| Xi | ≥ | M |. In 
particular, it holds for every selection Dk of {(kg + 1)th mod 
n, (kg + 2)th mod n, ..., (kg + g)th mod n} shares, with  
k ∈ {0, ..., n – 1}. 

If we consider all above Dk sets separately, then each of 
the n share is accounted for exactly g times. Thus, the 
product of the capacities of all Dk yields the capacity of the 
full share set to the gth power, and since each Dk has 
capacity at least | M |, we get: 

( )1

0 1
| | ,

k

gn nn
j jk j i

−

= ∈ =
≤ =∏ ∏ ∏X X

D
M  

and therefore, 

( ) ( )1
log log .

n
ii

n g
=

≤ ∑ XM  

As log(| M |) = ℓ log(| F |), from the above inequality, we 
get: 

( ) ( ) ( )
1

log | | log | |
log .

( )
n

ii

n n
g n F P=

⎛ ⎞ ⎛ ⎞
≥ ≥⎜ ⎟ ⎜ ⎟

− +⎝ ⎠ ⎝ ⎠
∑ X

F F
 

As mentioned earlier, ( )1
log

n
ii=∑ X  denotes the share 

complexity in bits of distributing n shares of a message m. 
From the above inequality, we find that the share 

complexity is ( )( )log | |
( )

n
n F P− +Ω F  bits. Now each field element 

from F can be pre-presented by log(| F |) bits. Thus, the 

share complexity is ( )( )
n

n F P− +Ω  field elements.  

Since P ≤ tb + to + tp and F ≤ tf, 

( )
.

b o f p

n n
n F P n t t t t

⎛ ⎞⎛ ⎞ ⎜ ⎟Ω = Ω⎜ ⎟ ⎜ ⎟− −⎝ ⎠ − + + +⎝ ⎠
 

Theorem 16 now follows from Lemma 13 and Lemma 14.  

Comparison 6: (lower bound on communication  
complexity of single phase USMT and PSMT): In Srinathan 
(2006), it is shown that any multiphase PSMT tolerating 

( , , , )b o f pt t t tA  over n ≥ 2tb + to + tf + tp + 1 wires  

has to communicate ( )(2 )b o f p

n
n t t t t− + + +Ω  field elements to 

send a message containing ℓ field elements. From  
Theorem 16, any single phase USMT tolerating ( , , , )b o f pt t t tA  

over n ≥ tb + max(tb, tp) + to + tf + 1 wires has to 

communicate ( )( )b o f p

n
n t t t t− + + +Ω  field elements to send a 

message containing ℓ field elements. Let us fix  
n = 2tb + to + tf + tp + 1 for which both PSMT and USMT is 
possible. With n = 2tb + to + tf + tp + 1, the lower bounds for 

PSMT and USMT become Ω(nℓ) and ( )
b

n
tΩ  field elements 

respectively. Particularly, if we consider 
btA  then n must be 

at least 2tb + 1 for both PSMT and USMT to be possible. 
With n = 2tb + 1, the lower bounds for PSMT and USMT 
become Ω(nℓ) and Ω(ℓ) field elements respectively for now 
tb = Θ(n). Hence, with n = 2tb + 1 while USMT can be 
achieved with constant factor overhead tolerating ,

btA  

PSMT can not be achieved with constant factor overhead 
tolerating .

btA  This shows the power of allowing a 

negligible error probability (only in the reliability) in 
multiphase SMT. 

In the sequel, we design a four-phase communication 
optimal USMT protocol, whose total communication 
complexity matches the bound proved in Theorem 16, thus 
showing that the bound is asymptotically tight. Also our 
four-phase communication optimal USMT protocol has a 
special property that it can achieve security with constant 
factor overhead tolerating .

btA  

6.3 Upper bound on the communication complexity 
of multiphase USMT protocol tolerating 

( , , , )b o f pt t t tA  

Here, we design a communication optimal multiphase 
USMT protocol called USMT_Mixed tolerating ( , , , ) .b o f pt t t tA  

The protocol terminates in four-phases and uses the  
three phase USMT_Three_Phase protocol (described in 
Theorem 15) as a black-box. If tp ≥ tb, then the protocol 
securely sends n2 field elements by communicating  
O(n3) field elements and if tb > tp, then (tb – tp)n2 field 
elements by communicating O(n3) field elements where  
n = tb + max(tb, tp) + to + tf + 1. This shows that the lower 
bound proved in Theorem 16 is asymptotically tight. In the 
protocol, depending upon whether tb ≤ tp or tp < tb, the field 

size | F | is set to at least 
23n

δ  or 
44 ( )b p

b

n t t
tδ

−
 respectively, 

where δ is the error probability of the protocol. Our  
four_phase USMT protocol has a special property  
that it securely sends ℓ field elements by communicating 
O(ℓ) field elements if the fault is only of Byzantine type 
(i.e., to = tf = tp = 0). Thus, it achieves security with 
‘constant factor overhead’ (note that as pointed out in 
Comparison 6 USMT tolerating 

btA  is possible with 

communication complexity satisfying constant factor 
overhead). 

Remark 10: Since n = tb + max(tb, tp) + to + tf + 1, we can 
use USMT_Three_Phase protocol as a black-box in the  
four_phase USMT protocol. We cannot use any  
single phase USMT protocol as a black-box because  
the connectivity requirement for single phase USMT (i.e., 



28 A. Patra et al.  

2tb + 2to + tf + tp + 1) is more than the connectivity 
requirement for multiphase USMT (i.e., tb + max(tb, tp) + to 
+ tf + 1). 

Theorem 17: By setting 
23| | n

δ≥F  (if tp ≥ tb) or 
44 ( )

| | b p

b

n t t
tδ

−
≥F  (if tb > tp), protocol USMT Mixed securely 

transmits the message m with probability at least 1 – δ. 

Proof: For ease of understanding, we first prove the 

theorem when tb > tp. So 
44 ( )

| | .b p

b

n t t
tδ

−
≥F  It is evident from 

the protocol construction that the theorem holds if the 
following are true: 

1 for all 1 ≤ i ≤ n, i iρ ρ′ =  with probability ( )41 δ≥ −  

2 for all 1 ≤ i ≤ n, i iy y′ =  with probability ( )41 δ≥ −  

3 if the wire wi were indeed Byzantine corrupt (i.e., the n2 
tuple sent over wi is changed by the adversary), then wi 
∈ Lfault with probability ( )41 δ≥ −  

4 the protocol URMT_Single_Phase successfully sends 
the vector d with probability ( )41 .δ≥ −  

The error probability of the protocol depends upon the error 
probability of the above four events. If each of the above are 
true, then our protocol’s failure probability is bounded by δ. 
We now prove that each of the above four conditions are 
true. 

Claim 4: In USMT_Mixed, for all 1 ≤ i ≤ n, i iρ ρ′ =  with 

probability ( )41 .δ≥ −  

Proof: In USMT_Mixed, 1 ≤ i ≤ n, ρi’s are sent using n 
parallel execution of the three phase protocol 
USMT_Three_Phase. From the proof of Theorem 15,  
the error probability of a single execution of 
USMT_Three_Phase protocol is at most 1

| | .F  Hence, the 

total error probability of n parallel executions of 
USMT_Three_Phase to communicate ρi, 1 ≤ i ≤ n is at most 

| | .
n
F  If 4| | ,n

δ≥F  then the total error probability of n parallel 

executions of USMT_Three_Phase is at most 4 .δ  Since, 
44 ( ) 4| | ,b p

b

n t t n
tδ δ

−
≥ >F  the claim holds.  

Claim 5: In USMT_Mixed, for all 1 ≤ i ≤ n, i iy y′ =  with 

probability ( )41 .δ≥ −  

Proof: Similar to the proof of the previous claim (i.e.,  
Claim 4).  

Claim 6: In USMT_Mixed, if wire wi is corrupted (i.e., at 
least one of the value rij, 1 ≤ j ≤ n2 is changed by the 
adversary) and for all i, i iρ ρ′ =  and i iy y′ =  then wi ∈ Lfault 

with probability ( )41 .δ≥ −  

Proof: From the security argument of USMT_Three_Phase 
protocol, the adversary gains no information about ρi, yi for 
all 1 ≤ i ≤ n. Assume that the adversary has changed the n2 
tuple over wire wi. Thus, at least one of the n2 ’sijr ′  received 

by S over wi is different from the corresponding original rij. 
Moreover, assume that wi is not marked as faulty by S. This 

implies that 
2 2

1 1
.

n nj j
i i ij i ij ij j

y r r yρ ρ
= =

′ ′= = =∑ ∑  As inferred 

by the expression, yi and iy′  are the y-values (evaluated at  
x = ρi) of the polynomials of degree n2 constructed using rij, 
1 ≤ j ≤ n2 and ,ijr′  1 ≤ j ≤ n2 as coefficients respectively. 

Since the two-polynomials (constructed using rij’s and ’sijr′  

as coefficients) are of degree n2, there can be at most n2 
such ρi’s, at which the two-polynomials can have the same 
value. So, if the adversary can correctly guess one of these 
n2 ρi’s, then wi will not be marked as faulty by S. However, 
ρi is chosen uniformly by R from F. Thus, with probability 

at most n2 | F |, the protocol fails to detect the faulty wire. In 

order to bound this error probability by 4 ,δ  we require | F | 

to be at least 
24 .n

δ  Since, 
4 24 ( ) 4| | ,b p

b

n t t n
tδ δ

−
≥ >F  the claim 

holds.  

Claim 7: In USMT_Mixed, the single phase URMT protocol 

URMT_Single_Phase which is executed in parallel ( )b p

b

n t t
t
−  

times to reliably send d, fails with probability at most 4 .δ  

Proof: In USMT_Mixed, if tb > tp, then d is sent  

during Phase IV using 
( )b p

b

n t t
t
−

 parallel executions of 

URMT_Single_Phase protocol. If δ ′  is the failure 
probability of a single execution of URMT_Single_Phase, 
then the total failure probability to send d is at most 

( ) .b p

b

n t t
t

δ ′−  To obtain ( )
4 ,b p

b

n t t
t

δ δ′−
≤  we require 4 ( ) .b

b p

t
n t t

δδ −
′ ≤  

Now from Theorem 5, if 
3

| | n
δ ′=F  then the error probability 

of URMT_Single_Phase is at most .δ ′  So in order to bound 
the error probability of URMT_Single_Phase by 

4 ( ) ,b

b p

t
n t t

δδ −
′ ≤  we require 

44 ( )
| | .b p

b

n t t
tδ

−
≥F  which is true. 

Hence, the claim follows.  

Thus, Theorem 17 is true if tb > tp and 
44 ( )

| | .b p

b

n t t
tδ

−
≥F  If tp ≥ 

tb, then USMT_Mixed will have an error probability of at 
most δ, if the error probability of each of first three events 
mentioned in Theorem 17 is at most 3 .δ  This is because 4th 

event does not occur, as d is broadcasted in this case during 
Phase IV, instead of sending it using single phase URMT. It 
is easy to check that by setting 

23| | ,n
δ≥F  the theorem holds 

for tb ≤ tp.  
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Table 10 A four-phase communication optimal USMT protocol 

Protocol USMT_Mixed 

A communication optimal 4-phase USMT protocol tolerating ( , , , )b o f pt t t tA  

The message m is a sequence of n2 field elements if tb ≤ tp, otherwise the message is a sequence of (tb – tp)n2 field elements. 
Phase I and III (R to S) 

• R selects at random n3 elements, rij, 1 ≤ i ≤ n, 1 ≤ j ≤ n2 from field F. R also randomly selects ρ1, ρ2, ..., ρn from F. 

• R computes 
2

1
,

n j
i i ijj

y rρ
=

= ∑  1 ≤ i ≤ n. Note that j
iρ  is jth power of ρi. 

• R sends to S over wi, 1 ≤ i ≤ n, the n2 field elements rij, 1 ≤ j ≤ n2. R also sends ρi, yi, 1 ≤ i ≤ n to S using 2n parallel invocations of 
the three phase USMT_Three_Phase protocol (described in Theorem 15) as there are total 2n elements to send. Hence, Phase I, II and 
Phase III are used to run 2n parallel executions of USMT_Three_Phase protocol. 

Phase IV (S to R) 

• Let S receive ,ijr′  1 ≤ j ≤ n2 along wire wi. S adds wi to a list Lerasure, if S does not receive any information over wi. 

• Let S receive iρ′  and ,iy′  1 ≤ i ≤ n after the 2n parallel executions of the three phase USMT_Three_Phase protocol initiated by R. 

For each i, such that wi ∉ Lerasure, S verifies whether 
2

?

1
.

n j
i i ijj

y rρ
=

′ ′ ′=∑  If 
2

1
,

n j
i i ijj

y rρ
=

′ ′ ′≠ ∑  then S adds wire wi to the set of faulty 

wires, denoted by Lfaulty. S sets Lhonest = W \ (Lfaulty ∪ Lerasure). If tp ≥ tb, then S computes a random pad 21 2( , ,..., )nZ z z z=  of size n2 
field elements from the n2 | Lhonest | field elements which are received over the wires in Lhonest as follows: 

( )2 2
2

, ,1
honest

ij i honestn L nZ EXTRAND r w L j n′= ∈ ≤ ≤  

 However, if tb > tp, then S computes a random pad Z of length (tb – tp)n2 as follows: 

( ) ( )2 2
2

, ,1
honest b p

ij i honestn L t t nZ EXTRAND r w L j n−
′= ∈ ≤ ≤  

• S computes d = m ⊕ Z. If tp ≥ tb then d is of size n2, so S broadcasts d to R. On the other hand, if tb > tp then d consists of (tb – tp)n2 

field elements. In this case, S reliably sends d to R by invoking ( )b p

b

t t
t n−

∗  parallel executions of single phase URMT_Single_Phase 

protocol (This is possible because n is at least 2tb + to + tf + 1, which is sufficient for single phase URMT. Since 
URMT_Single_Phase protocol reliably sends ntb field elements, vector d consisting of (tb – tp)n2 field elements can be communicated 

by S by invoking the single phase URMT protocol ( )b p

b

t t
t n−

∗  times). S also broadcasts the set Lfaulty and Lerasure to R. 

Message recovery by R. 

R correctly receives Lfaulty and Lerasure and sets Lhonest = W \ (Lfaulty ∪ Lerasure). R correctly receives d with certainty (probability one) when 

tp ≥ tb and with high probability when tb > tp. If tb ≤ tp, then R computes 21 2( , ,..., )nZ z z z=R  of size n2 field elements as follows: 

( )2 2
2

, ,1 .
honest

ij i honestn L nZ EXTRAND r w L j n′= ∈ ≤ ≤R  

If tb > tp, then R computes ZR of size (tb – tp)n2 field elements as follows: 

( ) ( )2 2
2

, ,1 .
honest b p

ij i honestn L t t nZ EXTRAND r w L j n−
′= ∈ ≤ ≤R  

Once ZR is computed, R recovers m by computing m = ZR ⊕ d. 

 
Remark 11: From Theorem 17, the field size should be 

either 
23n

δ  (when tb ≤ tp) or 
44 ( )b p

b

n t t
tδ

−
 (when tb > tp). 

However, in USMT_Mixed, during Phase I, R needs to 
select n3 + n random field elements from F. So, we will set 

the field size as ( )23 3max , nn n δ+  when tb ≤ tp and 
44 ( )b p

b

n t t
tδ

−
 

when tb > tp. 
 

Theorem 18: In USMT_Mixed, the adversary learns no 
information about the message m in information theoretic 
sense. 
Proof: First note that all the n ρi’s and yi’s are  
information theoretically secure from the security of 
USMT_Three_Phase protocol. The proof is now divided 
into the following two cases: 
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1 Case I: If tp ≥ tb: In this case, n = tb + tp + to + tf +1. In 
the worst case, the adversary can passively listen the 
contents over tb + to + tp wires and block tf wires. So 
there will be only one honest wire wi and hence, the 
adversary will have no information about the n2 random 
elements sent over wi. In this case, S generates a 
random pad of length n2 and sends m containing n2 field 
elements, using this pad. Now, the proof follows from 
the correctness of EXTRAND and working of the 
protocol. 

2 Case II: If tb > tp: In this case, n = 2tb + to + tf + 1. In 
the worst case, the adversary can passively listen the 
contents of at most tb + tp + to wires and block tf wires. 
So there are at least (tb – tp) wires which are not under 
the control of the adversary and hence, the adversary 
will have no information about the n2 random elements 
sent over these wires. In this case, S generates a  
random pad of length (tb – tp)n2 and sends m containing 
(tb – tp)n2 field elements, using this pad. Now, the proof 
follows from the correctness of EXTRAND and 
working of the protocol.  

Theorem 19: The communication complexity of 
USMT_Mixed is O(n3) field elements. 

Proof: During Phase I, R sends n2 random field elements 
over each of the n wires causing a communication 
complexity of O(n3) field elements. R also invokes 2n 
parallel executions of USMT_Three_Phase protocol, each 
having a communication complexity of O(n2) field elements 
(see Theorem 15). This incurs total communication cost of 
O(n3) field elements. During Phase IV, S sends d to R. If  
tp ≥ tb, then d will consist of n2 field elements and hence 
broadcasting it to R incurs a communication complexity of 
O(n3). On the other hand, if tb > tp, d consist of (tb – tp)n2 
field elements. In this case, S will send d by invoking 
( )b p

b

t t
t n−

∗  parallel executions of single phase URMT 

protocol. Since, each execution of the single phase URMT 
protocol has a communication complexity of O(n2) field 
elements (see Theorem 6), total communication complexity 

for sending d is 
3( ) ,b p

b

t t n
tO − ∗⎛ ⎞

⎜ ⎟
⎝ ⎠

 which is O(n3). Thus, overall 

communication complexity of USMT_Mixed is O(n3) field 
elements.  

Theorem 20: USMT_Mixed is a four-phase communication 
optimal USMT protocol tolerating ( , , , ) .b o f pt t t tA  

Proof: USMT_Mixed sends (tb – tp)n2 log | F | bits (if tb > tp) 

or n2 log |F| bits (if tb ≤ tp), by communicating O(n3 log |F|) 

bits, where n = tb + max(tb, tp) + to + tf + 1. From  
Theorem 16, if tb ≥ tp (in this case n = 2tb + to + tf + 1), then 
any four-phase USMT protocol needs to communicate  
Ω(n3 log |F|) bits to securely send (tb – tp)n2 log |F| bits. 

Similarly, if tp ≥ tb (in this case, n = tb + tp + to + tf + 1), then 
any four-phase USMT protocol need to communicate  

Ω(n3 log |F|) bits in order to securely send n2 log |F| bits. 

Since total communication complexity of USMT_Mixed in 
both cases is O(n3 log |F|) bits, our protocol is 

communication optimal.  

Corollary 2: If protocol USMT_Mixed is executed  
only in the presence of Byzantine adversary, 

btA  (i.e.,  

to = tf = tp = 0), then it achieves security with ‘constant 
factor overhead’ in four-phases by securely sending Θ(n3) 
field elements with a communication complexity of O(n3) 
field elements. 

Proof: In USMT_Mixed, if to = tp = tf = 0, then it sends  
tbn2 = Θ(n3) field elements in four-phases by 
communicating O(n3) field elements (if to = tf = tp = 0, then 
n = 2tb + 1 and so tb = Θ(n)). Thus, we get secrecy with 
constant factor overhead in four-phases when USMT_Mixed 
is executed under the presence of only Byzantine adversary. 

 

According to Corollary 2, protocol USMT Mixed is able to 
securely send a message with constant factor overhead in 
four-phases tolerating ,

btA  where the size of the message is 

n2tb. However, it is possible to design a two-phase USMT 
protocol, which achieves security with constant factor 
overhead tolerating .

btA  We design one such protocol in the 

next section. 

Remark 12 (note on the message size used in  
protocol USMT_Mixed): In protocol USMT_Mixed, we have 
considered n = tb + max(tb, tp) + to + tf + 1, the minimum 
connectivity required for any multiphase USMT protocol. If 
tp ≥ tb, then this implies that n = tb + tp + to + tf + 1 and so 
there will at least one honest wire, which will not be  
under the control of the adversary. So the n2 random  
values sent over the honest wire will be unknown to the 
adversary and so it can be used as an information theoretic 
secure pad to blind a message of size n2. However, if  
n > tb + max(tb, tp) + to + tf + 1, then there will be more 
honest wires and hence, we can establish a pad of size larger 
than n2 to send a larger size message. For example,  
consider the following settings: tb = tp – 1, to = tf = 0 and  
n = 2(tb + tp). It is easy to see that in these settings, 
multiphase USMT is possible. Moreover, there will be at 
least (tb + tp) honest wires. So the n2 values sent over these 
wires will be unknown to the adversary. So if run protocol 
USMT_Mixed over such a setting then we establish an 
information theoretic secure pad of size (tb + tp)n2 = Θ(n3), 
instead of n2. As a result, we can send a message of size 
Θ(n3) by communicating O(n3), which from Theorem 16 
satisfies the lower bound and hence will be communication 
optimal. Thus, our protocol will be communication optimal 
for all connectivity. If the number of wires is more than  
n = tb + max(tb, tp) + to + tf + 1, then we have to accordingly 
increase the message size and run the protocol. 
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6.4 Two-phase USMT with constant factor overhead 
tolerating 

btA  

The connectivity requirement for any multiphase USMT 
tolerating only Byzantine adversary 

btA  is n ≥ 2tb + 1 (by 

substituting to = tf = tp = 0 in Theorem 15). We now design a 
two-phase USMT protocol called USMT_Byzantine, where 
S and R are connected by n = 2tb +1 wires. The  
protocol securely sends n(tb + 1) = Θ(n2) field elements  
by communicating O(n2) field elements tolerating .

btA  

Thus, we get security with ‘constant factor’ overhead  
in two_phases. We denote the message by 

1 2 ( 1)(   ... ).
bn tm m m m +=  In our protocol, we use following 

two-protocols as black-box. 

1 Protocol URMT_Single_Phase: Described in  
Section 4.3, which reliably sends n(tb + 1) = Θ(n2) field 
elements by communicating O(n2) field elements, 
against ,

btA  where S and R are connected by  

n = 2tb + 1 wires (by substituting to = tf = tp = 0 in 
protocol URMT_Single_Phase). 

2 Protocol USMT_Single_Phase: Described in the section 
5.2, which securely sends (tb + 1) field elements by 
communicating O(n2) field elements against a tb-active 
Byzantine adversary, where S and R are connected by  
n = 2tb + 1 wires (by substituting to = tf = tp = 0 in 
USMT_Single_Phase). 

We now prove the correctness of protocol 
USMT_Byzantine. 

Theorem 21: In protocol USMT Byzantine if 
316| | n

δF  then 

the protocol securely transmits a message containing  
n(tb + 1) field elements from S to R with an error 
probability of at most δ, tolerating .

btA  

Proof: It is evident from the protocol construction that the 
theorem holds if the following are true: 

1 for all 1 ≤ i ≤ n, i iρ ρ′ =  with probability ( )41 δ≥ −  

2 for all 1 ≤ i ≤ n, i iy y′ =  with probability ( )41 δ≥ −  

3 if the wire wi were indeed corrupt, then wi ∈ Lfaulty with 
probability ( )41 δ≥ −  

4 the protocol URMT_Single_Phase fails to send the 
vector d with probability at most 4

δ  

5 the adversary learns no (additional) information about 
the transmitted message m in information theoretic 
sense. 

The error probability of the protocol depends upon the error 
probability of the first four events. It is clear that if each of 
the four-events are true, then the protocol’s failure 

probability is at most δ. We now prove that each of the  
four-events are true. 

Claim 8: In USMT_Byzantine, for all 1 ≤ i ≤ n, i iρ ρ′ =  with 

probability ( )41 .δ≥ −  

Proof: From Theorem 12, we know that if 
32| | ,n

δ ′=F  then 

USMT_Single_Phase securely sends (tb + 1) field elements 
(by substituting to = tf = tp = 0 in USMT_Single_Phase) with 
an error probability of at most .δ ′  In our protocol, R 
securely transmits n = (2tb + 1) ρi’s using the single phase 
USMT protocol. Therefore, R needs to execute 
USMT_Single_Phase in parallel twice in order to securely 
send 2tb + 1 ρi’s (first execution for the first tb + 1 ρi’s and 
second for the remaining tb ρi’s). So if the error probability 
δ ′  of each of the two executions is at most 8 ,δ  then the 

total error probability of two-parallel executions of the 
single phase USMT protocol will be at most 4 .δ  If we want 
the error probability of USMT_Single_Phase to be at most 

8 ,δ  then we require 
316| | .n

δ≥F  Since 
316| | ,n

δ≥F  the claim 

is true.  

Claim 9: In USMT_Byzantine, for all 1 ≤ i ≤ n, i iy y′ =  with 

probability ( )41 .δ≥ −  

Proof: Similar to the proof of the above claim.  

Claim 10: In USMT_Byzantine, if wire wi is corrupted (i.e., 
at least one of the value rij, 1 ≤ j ≤ n is changed by the 
adversary) and for all i, i iρ ρ′ =  and i iy y′ =  then wi ∈ Lfaulty 

with probability ( )41 .δ≥ −  

Proof: From the security of USMT_Single_Phase protocol, 
the adversary gains no information about ρi, yi for all  
1 ≤ i ≤ n. Assume that adversary has changed the n tuple 
over some wire wi and it is not marked as faulty by S. This 

implies that 
1 1

.
n nj j

i i ij i ij ij j
y r r yρ ρ

= =
′ ′= = =∑ ∑  

As inferred by the expression, yi and iy′  are the y-values 
(evaluated at x = ρi) of the polynomials of degree n 
constructed using rij, 1 ≤ j ≤ n and ,ijr′  1 ≤ j ≤ n as 

coefficients. Since the two-polynomials are of degree n, 
there are at most n points of intersection between the two. 
The value ρi is chosen uniformly by R from F. Thus, with 

probability at most | | ,
n
F  the protocol fails to detect a faulty 

wire. In order that this error probability is at most 4 ,δ  we 

require field size to be at least 4 .n
δ  Since 

316 4 ,n n
δ δ>  the 

claim holds.  

Claim 11: The URMT_Single_Phase protocol to reliably 
send the vector d fails with probability of at most 4 .δ  
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Table 11 A two-phase USMT protocol tolerating only Byzantine corruption 

Protocol USMT_Byzantine: a two-phase USMT protocol tolerating 
btA  

Phase I (R to S) 

• R selects at random n2 random elements, say rij, 1 ≤ i, j ≤ n, which are independent of each other and m from the finite field F. R also 

randomly selects ρ1, ρ2, ... ρn from F and computes 
1

.
n j

i i ijj
y rρ

=
= ∑  Note that j

iρ  is jth power of ρi. 

• Through wire wi, R sends the n field elements ri1, ri2, ... rin to S. R also securely sends ρi, yi for all 1 ≤ i ≤ n to S, using four parallel 
invocations of the single phase USMT_Single_Phase protocol (by considering to = tf = tp = 0 and n = 2tb + 1). 

Phase II (S to R) 

• Let S receive the values ,ijr′  1 ≤ j ≤ n along the wire wi, 1 ≤ i ≤ n. Also let S receive iρ′  and ,iy′  1 ≤ i ≤ n after the parallel execution 
of single phase USMT protocol USMT_Single_Phase initiated by R. 

• For each i, S verifies whether 
2

?

1
.

n j
i i ijj

y rρ
=

′ ′ ′=∑  If the test fails, then S adds wire wi to the set of faulty wires, denoted by Lfaulty. 

• S sets Lhonest = W \ Lfaulty. Now, S computes a random pad 1 2 ( 1)( , ,..., )
bn tZ z z z +=  of size n(tb + 1) field elements as follows: 

( ) ( ), 1 ,1
honest b ij i honestn L n tZ EXTRAND r w L j n+ ′= ∈ ≤ ≤  

• S computes d = m ⊕ Z and reliably sends d to R using the single phase URMT_Single_Phase protocol. S also broadcasts the set Lfaulty 
to R. 

Message recovery by R. 

• R correctly receives the set Lfaulty (by taking the majority of the sets received along the wires) and sets Lhonest = W \ Lfaulty. R also 
correctly (probably) receive the vector d (from the correctness of URMT_Single_Phase). 

• R computes the pad 1 2 ( 1)( , ,..., )
bn tZ z z z +=R R R R  of size n(tb + 1) field elements as follows: 

( ) ( ), 1 ,1
honest b ij i honestn L n tZ EXTRAND r w L j n+= ∈ ≤ ≤R  

• R recovers the message by computing m = ZR ⊕ d. 

 
Proof: As mentioned earlier, URMT_Single_Phase fails 
with probability δ, if 

3
| | n

δ≥F  (see Theorem5). So in order 

that URMT_Single_Phase fails with probability of at most 

4 ,δ  we require 
34| | .n

δ≥F  Since 
316| | ,n

δ≥F  which in turn is 

greater that 
34 ,n

δ  the claim is true.  

Theorem 22: In protocol USMT_Byzantine, the adversary 
learns no information about the transmitted message m. 

Proof: From the security of USMT_Single_Phase, (by 
substituting to = tf = tp = 0), we know that the adversary 
gains no information about the ρi’s and yi’s. In the worst 
case, the adversary can passively listen the contents of at 
most tb wires. So there will be at least tb + 1 wires, which 
are not under the control of the adversary. Hence, the 
adversary will have no information about the n random 
elements sent over each of these tb + 1 wires. Now, the 
proof follows from the correctness of EXTRAND 
algorithm.  

Theorem 23: The communication complexity of 
USMT_Byzantine is O(n2) field elements. 

Proof: During Phase I, R sends n2 random field elements to 
S. In addition, R also invokes four-parallel executions  
of the single phase USMT protocol (two for sending ρi’s  
and two for sending yi’s). This involves a communication 

complexity of O(n2) field elements. So, communication 
complexity of Phase I is O(n2) field elements. During  
Phase II, S sends the vector d by executing 
URMT_Single_Phase protocol, which from Theorem 6 
requires communicating O(n2) field elements. Thus, the 
total communication complexity of the protocol is O(n2) 
field elements.  
Theorem 24: Protocol USMT_Byzantine is a communication 
optimal two-phase USMT protocol tolerating Byzantine 
adversary. 

Proof: USMT_Byzantine sends n(tb + 1) log | F | = Θ(n2 log | 

F |) bits (for n = 2tb + 1, tb = Θ(n)) by communicating  

O(n2 log | F |) bits. Hence, it is a communication optimal 

protocol. Moreover, it is phase optimal because from 
Theorem 10, by substituting to = tf = tp = 0, we find that  
any single phase USMT requires a communication 
complexity of O(n3 log(| F |)) bits to securely send n(tb + 1)  

log | F | = Θ(n2 log | F |) bits.  
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6.5 Comparison of multiphase PSMT with 
multiphase USMT 

1 Allowing a negligible error probability only in the 
reliability, significantly helps in the possibility of 
multiphase SMT protocols (see Comparison 5). 

2 Allowing a negligible error probability only in the 
reliability, significantly helps in reducing the lower 
bound on communication complexity of multiphase 
SMT protocols (see Comparison 6). 

3 It is impossible to design any PSMT protocol, 
irrespective of the number of phases, which achieves 
security with constant factor overhead; i.e., securely 
sending ℓ field elements by communicating O(ℓ) field 
elements tolerating 

btA  (see Table 2, second row) in a 

(2tb + 1)-(S, R) connected network. However, there 
exists a two-phase USMT protocol which securely 
sends ℓ field elements by communicating O(ℓ) field 
elements, thus achieving security with constant factor 
overhead (Protocol USMT_Byzantine). Thus, allowing 
a negligible error probability in the reliability without 
sacrificing the security, helps to design a two-phase 
SMT protocol, which achieves security with constant 
factor overhead. 

7 Non-threshold adversary settings 

Till last section, we have considered threshold adversary 
settings, where the corruption done by the adversary is 
bounded by a threshold. We now consider more general 
adversary settings, namely non-threshold adversary settings. 
Informally, a non-threshold adversary is represented by a 
collection of 4-tuples of the form (B, O, F, E), where B, O, 
F and E denotes the set of nodes which can be potentially 
corrupted in Byzantine, omission, fail-stop and passive 
fashion respectively. During the protocol execution, the 
adversary can choose any such 4-tuple from the collection 
for corruption. 

Over the past few decades, non-threshold adversary  
has been considered in the context of many distributed 
computing protocols such as MPC (Hirt and Maurer, 2000; 
Cramer et al., 200b; Beerliová-Trubíniová et al., 2008; Hirt 
et al., 2008), VSS (Gennaro, 1996; Cramer et al., 200a), 
Byzantine agreement (Fitzi and Maurer, 1998; Altmann et 
al., 1999). Non-threshold adversary in the context of PRMT 
and PSMT was first studied in Kumar et al. (2002), where 
the authors have considered undirected networks and only 
Byzantine corruption. In Patra et al. (2007), the authors 
have given the necessary and sufficient condition for  
the existence of PSMT in directed networks tolerating  
non-threshold Byzantine adversary. In Srinathan and  
Pandu Rangan (2006), and Srinathan et al. (2008b), the 
authors have given the necessary and sufficient condition 
for the existence of URMT in an arbitrary directed graph 
tolerating a non-threshold mixed adversary. Recently, in 
Srinathan et al. (2009), the authors have given the complete 

characterisation of USMT in arbitrary directed networks 
tolerating a non-threshold mixed adversary. 

Modelling the adversary by a threshold helps in easy 
characterisation of PSMT. It also helps in analysing 
protocols and proving lower bound on the communication 
complexity (Srinathan et al., 2004). However, as mentioned 
in Kumar et al. (2002), modelling the (dis)trust in the 
network as a threshold adversary does not capture all 
possible scenarios. Moreover, the threshold model may lead 
to a gross overestimation of the connectivity requirement of 
the underlying network [see Kumar et al. (2002), for an 
example]. The necessary and sufficient condition for URMT 
in undirected networks tolerating non-threshold mixed 
adversary can be derived from the characterisation  
of URMT in arbitrary directed networks tolerating  
non-threshold mixed adversary, as given (Srinathan and 
Pandu Rangan, 2006; Patra et al., 2007) because undirected 
networks are a special case of arbitrary directed networks. 
However, the characterisation of URMT for arbitrary 
directed networks, as given in Srinathan and Pandu Rangan 
(2006), and Patra et al. (2007) is indirect and highly  
non-intuitive. Moreover, it is likely to take exponential time 
to verify whether a given directed network and a non-
threshold adversary satisfies the conditions given in 
Srinathan and Pandu Rangan (2006), and Patra et al. (2007) 
for the possibility of URMT. So it is desirable to have a 
direct and simple characterisation of URMT in undirected 
networks tolerating non-threshold adversary. Similarly, the 
characterisation for USMT in arbitrary directed network 
tolerating non-threshold adversary given in Srinathan et al. 
(2009) is indirect and highly non-intuitive. Furthermore, it 
is likely to take exponential time to verify whether a given 
directed network and a non-threshold adversary satisfy the 
conditions given in Srinathan et al. (2009) for the possibility 
of USMT. So instead of deriving the characterisation for 
USMT in undirected networks from the characterisation of 
USMT in arbitrary directed networks, it is desirable to have 
a simple and direct characterisation of USMT in undirected 
networks tolerating non-threshold adversary. So, we now 
proceed to give a direct and simple characterisation of 
URMT and USMT in undirected networks tolerating  
non-threshold mixed adversary. Before that, we present few 
definitions. 

7.1 Model and definitions 

A non-threshold adversary is represented by an adversary 
structure which is an enumeration of all the possible 
snapshots of faults in the network. A single snapshot can be 
described by an ordered quadruple (B, O, F, E), where B, O, 
F, E ⊆ P, which means that the nodes in the set B, O, F and 
E can be corrupted in Byzantine, omission, fail-stop and 
passive fashion respectively. Thus, an adversary structure  
is a collection of such quadruples. The adversary structure  
is monotone in the sense that if (B1, O1, F1, E1) ∈ A, then   

∀(B2, O2, F2, E2) such that B2 ⊆ B1, O2 ⊆ O1, F2 ⊆ F1 and F2 
⊆ F1, we have (B2, O2, F2, E2) ∈ A. Throughout the 
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execution of a protocol, the adversary can corrupt nodes 
from any one element (quadruple) of A in Byzantine, 

omission, fail-stop and passive fashion respectively. 
Moreover, S and R have no information about the quadruple 
before the beginning of the protocol. It is easy to see that a 
threshold adversary ( , , , )b o f pt t t tA  is a special type of A, 

where each (B, O, F, E) in A has the following form:  
| B | ≤ tb, | O | ≤ to, | F | ≤ tf and | E | ≤ tp. We note that A can 
be uniquely represented by listing the elements in its 
maximal basis A  which we define below. 

Definition 19 (maximal basis of A): For any  
monotone adversary structure A, its maximal basis A   
is defined as {( , , , ) | ( , , , )} ,B O F E B O F E= ∈A A  and  
/∃ (W, X, Y, Z) ∈ A such that (W, X, Y, Z) ≠ (B, O, F, E) 
where W ⊇ B, X ⊇ O, Y ⊇ F and Z ⊇ E}. 

7.2 URMT in undirected networks tolerating  
non-threshold adversary 

We now characterise URMT in an undirected graph N 
tolerating an arbitrary non-threshold adversary A. Unlike 

( , , , ) ,b o f pt t t tA  working out a direct characterisation of URMT 

tolerating entire A is highly complex and non-intuitive. 
Rather it is easy to think of a characterisation tolerating 
small sized subsets from A. We now state the following 
important lemma: 

Theorem 25: URMT in an undirected network N tolerating 
a non-threshold adversary A is possible iff URMT is 
possible in N tolerating any A ⊆ A with maximal basis A  
of size two. 

Proof: The only-if direction is obvious. For the if-direction, 
we now show that if an URMT protocol exists while 
tolerating every monotone subset A ⊆ A such that | | 2,=A  
then one can construct an URMT protocol that tolerates A. 
We prove this by induction. Suppose that every monotone 
subset A of A, such that | | 2,=A  is tolerable. Then, to 

show that every monotone subset A of A, such that | | 3=A  
is also tolerable, we argue as follows: for any subset A ⊆ A 

with | | 3,=A  there exist three subsets, each of size two, 

such that any element in A  belongs to exactly two of them. 
Specifically, we may choose to divide 1 2 3{ , , }x x x=A  
(where each xi is an ordered quadruple  
(Bi, Oi, Fi, Ei)) into A1 = {x1, x2}, A2 = {x2, x3} and  
A3 = {x1, x3}. Now by our assumption, we have URMT 
protocols, say Π1, Π2 and Π3 to tolerate A1, A2 and A3 
respectively. We now show how to design URMT protocol 
Π to send a message m, tolerating .A  From Theorem 3, by 
substituting tb = 1 and to = tf = tp = 0, we find that URMT is 
achievable over three wires, out of which one could be 

Byzantine corrupted. Let URMT_Single be such a single 
phase URMT protocol which runs over three wires w1, w2 
and w3, of which one could be Byzantine corrupted. 
Moreover, let URMT_Single transmits αi over wi for  
1 ≤ i ≤ 3, to send message m. We now run the sub-protocols 
Π1, Π2 and Π3 in parallel for transmitting α1, α2 and α3 
respectively. Since every element of A  belongs to at least 
two of the three Ai’s, R gets the correct information in at 
least two of the three sub-protocols with very high 
probability. R can now output m performing the same 
computation, as done in URMT_Single tolerating 1-active 
Byzantine adversary. The correctness of this URMT 
protocol tolerating A  follows from the correctness of the 
single phase URMT tolerating 1-active adaptive Byzantine 
adversary. Therefore, we can conclude that URMT is 
possible tolerating any subset A of A, such that | | 3.=A  

Applying the same procedure, we find that if URMT is 
possible tolerating any subset A of A, such that | | 3=A  
then it is also possible to design an URMT protocol 
tolerating any subset A of A, such that | | 4.=A  This is 

because any 1 2 3 4{ , , , }x x x x=A  (where each xi is an ordered 
quadruple (Bi, Oi, Fi, Ei)) can be divided into three subsets, 
each of size three, such that every element in A  occurs in 
at least two of the subsets. More formally, we can divide A  
into A1 = {x1, x2, x3}, A2 = {x2, x3, x4} and A3 = {x1, x3, x4}. 
Now as in the previous case, we can run three URMT 
protocols (as shown above, these protocols exists) in 
parallel, transmitting α1, α2 and α3 tolerating the adversary 
structures A1, A2 and A3 respectively. Since every element 
of A belongs to at least two of the three Ai’s, R gets the 
correct information in at least two of the three sub-protocols 
and hence recovers the message by performing same 
computation as in single phase URMT tolerating 1-active 
adaptive Byzantine adversary. 

In general, any A ⊆ A whose maximal basis | |A  is of 
size μ > 3, can be divided into three subsets each of size 

2
3 ,μ⎡ ⎤

⎢ ⎥  such that every element of A  occurs in at least two 

of the subsets. The rest now follows from induction.  

Remark 13: The protocol given as a part of sufficiency 
proof in Theorem 25 is an inductive protocol and is 
exponential in the size of A. We leave the issue of designing 
efficient URMT protocol tolerating A as an open problem. 

Theorem 25 shows that in order to get a complete 
characterisation of URMT tolerating the entire adversary 
structure A, it is enough if we characterise URMT tolerating 
every A ⊆ A with maximal basis A  of size two. We do the 
same in next theorem. 

Theorem 26: URMT between S and R in an undirected 
graph N = (V, E) tolerating a non-threshold adversary with 
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maximal basis 1 1 1 1 2 2 2 2{( , , , ), ( , , , )}B O F E B O F E=A  is 
possible iff both the following conditions are satisfied: 

1 for each i ∈ {1, 2}, there exists a path from S to R in 
the network induced by N on the vertices (V \ (Bi ∪ Oi 
∪ Fi)) 

2 there exists a path from S to R in the network induced 
by N on (V \ (B1 ∪ B2 ∪ ((O1 ∪ F1) ∩ (O2 ∪ F2))). 

Proof: 

Necessity: The necessity of the first condition is obvious, 
since otherwise the adversary can simply block the nodes in 
(Bi ∪ Oi ∪ Fi), causing the receiver to be isolated from the 
sender and thus preventing any communication from S to R. 
Suppose that the second condition is not necessary. Since 
the nodes in ((O1 ∪ F1) ∩ (O2 ∪ F2)) can be deemed as non-
existent (since they are ‘guaranteed’ to be corrupt in the 
worst-case), we note that a URMT protocol over a network 
that does not satisfy the second condition can be used to 
design an URMT protocol in an undirected network where S 
and R are connected by two wires, any one of which is 
potentially Byzantine corruptible. But from Theorem 3 such 
an URMT protocol is impossible, thus showing a 
contradiction. We now proceed to prove the sufficiency 
condition. 

Sufficiency: Suppose the conditions of theorem  
are satisfied. Then, there exists three paths (not  
necessarily distinct) pa, pb and pc from S to R, such that pa 
avoids nodes from (B1 ∪ O1 ∪ F1), pb avoids nodes  
from (B2 ∪ O2 ∪ F2), while pc avoids nodes from  
(B1 ∪ B2 ∪ ((O1 ∪ F1) ∩ (O2 ∪ F2))). We now design an 
URMT protocol. To transmit a message m, S sends m along 
the paths pa, pb and pc. Each intermediate node u along these 
paths forwards the message that it received to the 
corresponding neighbour. If nothing is received by the time 
something should have been received (since the network is 
synchronous, strict time-out conditions are feasible) then it 
forwards a new message namely ‘Null-from-u’ to its 
neighbour. R recovers m as follows: If R receives a valid 
message x along the path pc, then x = m, since the path pc 
cannot be Byzantine corrupt. If a ‘Null-from-u’ message is 
received along pc, then if u’s previous node in path pc 
belongs to (O1 ∪ F1), i.e., predecessor(u) ∈ (O1 ∪ F1) then 
R outputs the message that is (guaranteed to be) received 
along path pb. Else if predecessor(u) ∈ (O2 ∪ F2) then R 
outputs the message that is (guaranteed to be) received 
along path pa. However, if nothing is received along the 
path pc, then if R’s previous node in path pc belongs to  
(O1 ∪ F1), i.e., predecessor(R) ∈ (O1 ∪ F1) then R outputs 
the message that is (guaranteed to be) received along path 
pb. Else if predecessor(R) ∈ (O2 ∪ F2) then R outputs the 
message that is (guaranteed to be) received along path pa. It 
is easy to see that R will correctly output m at the end of the 
protocol. This completes the proof of Theorem 26.  

7.3 USMT in undirected networks tolerating  
non-threshold adversary 

We now give the necessary and sufficient condition for 
USMT in undirected networks tolerating a non-threshold 
adversary structure. As in the case of URMT, we first show 
that USMT tolerating the entire adversary structure is 
possible iff USMT is possible tolerating every subset of the 
adversary structure with maximal basis of size two. 

Theorem 27: USMT in a digraph N tolerating a  
non-threshold adversary A is possible iff USMT is possible 
in N tolerating any A ⊆ A with maximal basis A  of size 
two. 

Proof: The proof is similar to the proof of Theorem 25. The 
only-if direction is obvious. For the if-direction, we now 
show that if an USMT protocol exists while tolerating every 
monotone subset A ⊆ A such that | | 2,=A  then one can 
construct an USMT protocol that tolerates A. Suppose that 
every monotone subset A of A, such that | | 2,=A  is 
tolerable. Then, to show that every monotone subset A of 

A, such that | | 3=A  is also tolerable, we argue as follows: 

for any subset A ⊆ A with | | 3,=A  there exist three 

subsets, each of size two, such that any element in A  
belongs to exactly two of them. Specifically, we may 
choose to divide 1 2 3{ , , }x x x=A  (where each xi is an 
ordered quadruple (Bi, Oi, Fi, Ei)) into A1 = {x1, x2}, A2 = 
{x2, x3} and A3 = {x1, x3}. Now by our assumption, we have 
USMT protocols, say Π1, Π2 and Π3 to tolerate A1, A2 and 
A3 respectively. We now show how to design USMT 

protocol Π to send a message m, tolerating .A  
From Theorem 10, USMT is achievable over three 

wires, out of which one could be Byzantine corrupted. Let 
USMT_Single be such a single phase USMT protocol which 
runs over three wires w1, w2 and w3, of which one could be 
Byzantine corrupted. Moreover, let USMT_Single transmits 
αi over chi for 1 ≤ i ≤ 3, to send message m. We now run the 
sub-protocols Π1, Π2 and Π3 in parallel for transmitting α1, 
α2 and α3 respectively. Since every element of A  belongs 
to at least two of the three Ai’s, R gets the correct 
information in at least two of the three sub-protocols with 
very high probability. R can now output m performing the 
same computation, as done in USMT_Single tolerating  
1-active Byzantine adversary. The correctness and secrecy 
of this USMT protocol tolerating A  follows from the 
correctness and secrecy of the single phase USMT 
tolerating 1-active adaptive Byzantine adversary. Therefore 
we can conclude that USMT is possible tolerating any 
subset A of A, such that | | 3.=A  
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Applying the same procedure, we find that if USMT is 
possible tolerating any subset A of A, such that | | 3=A  
then it is also possible to design an USMT protocol 
tolerating any subset A of A, such that | | 4.=A . This is 

because any 1 2 3 4{ , , , }x x x x=A  (where each xi is an ordered 
quadruple (Bi, Oi, Fi, Ei)) can be divided into three subsets, 
each of size three, such that every element in A  occurs in 
at least two of the subsets. More formally, we can divide A  
into A1 = {x1, x2, x3}, A2 = {x2, x3, x4} and A3 = {x1, x3, x4}. 
Now as in the previous case, we can run three USMT 
protocols (as shown above, these protocols exists) in 
parallel, transmitting α1, α2 and α3 tolerating the adversary 
structures A1, A2 and A3 respectively. Since every element 
of A belongs to at least two of the three Ai’s, R gets the 
correct information in at least two of the three sub-protocols 
and hence recovers the message by performing same 
computation as in single phase USMT tolerating 1-active 
adaptive Byzantine adversary. 

In general, any A ⊆ A whose maximal basis | |A  is of 
size μ > 3, can be divided into three subsets each of size 

2
3 ,μ⎡ ⎤

⎢ ⎥  such that every element of A  occurs in at least two 

of the subsets. The rest now follows from induction.  
The above theorem shows that in order to get a complete 

characterisation of USMT tolerating the entire adversary 
structure A, it is enough if we characterise USMT tolerating 
every A ⊆ A with maximal basis A  of size two. We do the 
same in next theorem. 

Theorem 28: USMT between S and R in an  
undirected network N = (V, E) tolerating a  
non-threshold adaptive adversary with maximal basis 

1 1 1 1 1 2 2 2 2 2{( , , , , ), ( , , , , )}B O E F H B O E F H=A  is possible iff 
the network N is such that URMT between S and R is 

possible tolerating A  and for each i ∈ {1, 2}, the removal 
of the nodes from (Bi ∪ Oi ∪ Ei ∪ Fi) does not disconnect S 
and R). 

Proof: 

Necessity: The necessity of URMT is obvious. Also, if there 
exists an i ∈ {1, 2} such that (Bi ∪ Oi ∪ Ei ∪ Fi) 
disconnects S and Rs, then the adversary can ensure that he 
reads all the data that R receives from S (by blocking nodes 
in Fi and passively corrupting the rest of the cut set). Thus, 
any secure communication from S to R will be impossible. 
This completes the necessity proof. We now proceed to 
prove the sufficiency condition. 

Sufficiency: Suppose the conditions of the theorem are true. 
This implies that there are two, not necessarily distinct 
paths, from S to R, say p1 and p2, such that: 

 
 

Path Remarks 

p1 The path p1 does not contain nodes from 
(B1 ∪ O1 ∪ E1 ∪ F1). 

p2 The path p2 does not contain nodes from  
(B2 ∪ O2 ∪ E2 ∪ F2). 

Now consider the following USMT protocol: S chooses six 
random keys K11, K12, K13, K21, K22 and K23 and sends Ki1, 
Ki2 and Ki3 along the path pi, for 1 ≤ i ≤ 2. Now, either R 
receives all the six keys (three of which could be corrupted) 
or he knows whether the first set or the second set in the 
adversary structure is corrupt. In the latter case, R sends to 
S using URMT protocol6 the identity α ∈ {1, 2} of the 
corrupted set; once α is agreed upon, S forwards the 
message along the path pα (which is honest if α is received 
correctly). In the former case, R sends using URMT to S the 
values ρ1 = K11K22 + K23 and ρ2 = K21K12 + K13. Next S 
verifies if the values ρi are correct or not. With high 
probability, S can detect corruption (if any) and inform R 
(using URMT protocol) the identity α ∈ {0, 1, 2} of the 
corrupt wire (here α = 0 represents no corruption detected). 
Furthermore, if α ≠ 0, S sends to R the message m through 
the path pα or else if α = 0, S sends m ⊕ K13 ⊕ K23 to R via 
URMT protocol. Finally, R recovers the message. The 
correctness and secrecy of the protocol is obvious.  

8 Conclusions and open problems 

We have studied the problem of URMT and USMT in the 
presence of mixed adversary. Existing URMT and USMT 
protocols deals with only Byzantine adversary. Moreover, 
the protocols are not optimal in terms of communication 
complexity. In this paper, we initiated the study of URMT 
and USMT tolerating mixed adversary, in both threshold 
and non-threshold settings. We have given the complete 
characterisation of single phase and multiphase URMT 
protocols in undirected networks tolerating threshold mixed 
adversary. We have proved the lower bound on the 
communication complexity of any single phase and  
multiphase URMT protocol. Moreover, we have shown  
that our bounds are asymptotically tight by designing 
communication optimal protocols. Similarly, we have given 
complete characterisation of single phase and multiphase 
USMT protocols in undirected networks tolerating mixed 
adversary. We have proved the lower bound on the 
communication complexity of any single phase and  
multiphase USMT protocol. Moreover, we have shown  
that our bounds are asymptotically tight by designing 
communication optimal protocols. Finally, we have given 
the complete characterisation of URMT and USMT protocol 
tolerating non-threshold adversary. The paper shows that 
allowing a negligible error probability has strong effect in 
the possibility, feasibility and optimality of reliable and 
SMT protocols. 
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Few questions remain unanswered in the paper which 
are as follows: 

1 Our communication optimal URMT and USMT 
protocols against threshold adversary achieve 
communication optimality for sufficiently long 
messages. The next obvious and interesting problem is 
to design communication optimal protocols for 
messages of any length. 

2 Another interesting problem is to find the minimum 
number of phases required by any URMT protocol 
which achieves reliability with constant factor 
overhead under the presence of mixed adversary; i.e., 
sending ℓ field elements with a communicating 
overhead of O(ℓ) field elements. 

3 We have only given the necessary and sufficient 
condition for the presence of URMT and USMT against 
non-threshold adversary. It is an interesting open 
problem to further improve the protocols in terms of 
communication complexity and phase complexity. 

4 In the definition of USMT, we have assumed that there 
is no error is secrecy; i.e., secrecy is perfect. It would 
be interesting to explore the settings in which negligible 
error probability is allowed in secrecy as well. That is 
solving the issues of possibility, feasibility and 
optimality for (ε, δ)-secure protocols are an interesting 
direction. For partial results, the readers are referred to 
Franklin and Wright (2000) and Wang and Desmedt 
(2001). 
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Notes 
1 Few results of this paper appeared in Srinathan et al. (2007a, 

2008a). 
2 The approach of abstracting the network as a collection of n 

wires is justified using Menger’s (1927) theorem which states 
that a graph is c – (S, R)-connected iff S and R are connected 
by at least c vertex disjoint paths. 

3 Franklin and Wright (1998) termed URMT (USMT) as almost 
perfectly reliable (secure) message transmission i.e., APRMT 
(APSMT). 

4 The protocol described here is a naive protocol which does 
not take the advantage of allowing small error probability in 
the reliability. 

5 All the protocols which uses same set of possible values to 
send along all the wires are said to satisfy symmetry property. 
Suppose, however, that there exists a protocol Π that does not 
have this symmetry property among the data sent along the 
wires. Then consider the protocol ′Π  which consists of n 
parallel executions of protocol Π with the identities or 
numbers of the wires being ‘rotated’ by a distance of i in the 
ith execution. Clearly, this protocol achieves the symmetry 
property by ‘spreading the load’; further its message 
expansion factor is equal to that of Π. Thus, one may without 
loss of generality, assume that the domains of all the wires are 
the same. 

6 Note that in an undirected graph, possibility of URMT from S 
to R entails the possibility of URMT from R to S as well. 


