
Attacking Reduced Round SHA-256

Somitra Kumar Sanadhya and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

14th January, 2008

Abstract. The SHA-256 hash function has started getting attention recently by the cryptanalysis community due to the
various weaknesses found in its predecessors such as MD4, MD5, SHA-0 and SHA-1. At FSE ’06, Mendel et al. presented
a message pair which they claimed is a colliding message pair for 18-step SHA-256 with standard IV and differential
path for 19-step near collision for SHA-256. We note that the message pair presented by Mendel et al. is not a valid
colliding pair for 18 step SHA-256 with the standard IV. We make two contributions in this work. First we describe
message modification techniques and use them to obtain an algorithm to generate message pairs which collide for the
actual SHA-256 reduced to 18 steps. Our second contribution is to present differential paths for 19, 20, 21, 22 and 23
steps of SHA-256. We construct parity check equations in a novel way to find these characteristics. Further, the 19-step
differential path presented here is constructed by using only 15 local collisions, as against the previously known 19-step
near collision differential path which consists of interleaving of 23 local collisions. Our 19-step differential path can also
be seen as a single local collision at the message word level.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the research community since past decade
and a half. Many hash functions were broken in this time, most notable among them are MD4, MD5, SHA-0 and
theoretical break of SHA-1. This has directed the attention of the cryptology community to the SHA-2 family of
hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [7] were the first to study local collisions
in the SHA-2 family. They reported a 9-round local collision and estimated the probability of the differential path to
be 2−66. This probability estimate was later improved by [12] and [8]. Sanadhya and Sarkar [17] recently presented
16 new 9-round local collisions for SHA-2 family of hash functions. The message expansion of SHA-256 was studied
by Mendel et al [12], who reported (i) a message pair which they claimed is a colliding pair for 18-step SHA-256
with standard IV, (ii) a differential path for 1-bit near collision for 19-step SHA-256 and (iii) a message pair which
gives rise to a pseudo collision for 22-step SHA-256. We note that the message pairs provided for (i) and (iii) are
not valid. One of the authors of [12], Christian Rechberger, has in [15] provided us a modified IV for (iii). We
note that no correction for (i) has been provided. See Section D. Further, only the differential path (and not the
message pair) is provided for the 19-step near collision. An earlier work [11] studied a very simplified variant of
SHA-256. The encryption mode of SHA-256 is analyzed in [23] and is not relevant to collision search attacks.

Our Contributions: We make two independent contributions in this work :

1. We construct a 18-step collision characteristic using one of the local collisions from [17]. We describe message
modification techniques to find messages following this differential characteristic. Using these techniques, we
provide an algorithm to generate pairs of messages which collide for 18 step SHA-256 with the standard IV.
We show two such pairs of messages.

2. We show multiple differential paths for attacking up to 23-step SHA-256. In obtaining these differential paths,
we use coding theoretic methods in a novel way. There were no colliding differential paths known for SHA-
256 beyond 18 rounds. Previously known best differential path was for 19-step SHA-256 which used 23 local
collisions and gave rise to a near collision. In contrast, our 19-step characteristic uses only 15 local collisions and
is an exact collision path. All the 15 local collisions start in the same word and therefore this differential path
can also be seen as consisting of a single local collision with the starting word difference having a weight of 15



bits. In addition there are no impossible conditions caused by the fIF and fMAJ functions for the differential
paths reported here. Therefore the search for actual colliding message pairs following these paths is likely to
be easier.

We also show that neutral bit technique may not be of much help in finding actual colliding pair of messages
while message modification methods seem to hold much more promise.

Note : We have recently noted that a work titled “Collisions for step-reduced SHA-256” has been accepted at
FSE 2008. We have contacted one of the authors of this work but have not received a response till the date (14th
Jan, 2008) of submission of this paper. Consequently, we are not aware of the results or the methodology used
there. For the 18-step collision in the present work, we use a local collision presented in [17] and for longer round
differential paths, we use two different local collisions. In most of the previous works on SHA-256, the local collision
by Gilbert and Handschuh [7] has been used. If the FSE 2008 paper also uses the GH local collision and reports
18-round collisions, then our first contribution reporting 18-round collisions is of independent interest. Regarding
our second contribution, we expect our technique of forming parity check equations and results on longer round
differential paths to be new.

2 Notation

In this paper we use the following notation:

– mi ∈ {0, 1}32, Wi ∈ {0, 1}32, W ′

i ∈ {0, 1}32 for any i.

– The colliding message pair is: {m0, m1, m2, . . .m15} and {m′

0, m′

1, m′

2, . . .m′

15}.

– The expanded message pair is: {W0, W1, W2, . . .W63} and {W ′

0, W ′

1, W ′

2, . . .W ′

63}.

– ⊕: bitwise XOR.

– +: addition modulo 232.

– ∆Wi = Wi ⊕ W ′

i

– ROTRn(x): Right rotation of a 32 bit quantity x by n bits.

– SHRn(x): Right shift of a 32 bit quantity x by n bits.

3 The SHA-256 Hash Function

The newest members of SHA family of hash functions were standardized by US NIST in 2002 [18]. There are 2
differently designed functions in this standard: the SHA-256 and SHA-512. In addition, the standard also specifies
2 truncated versions of these two functions: the SHA-224 and SHA-384. The number in the name of the hash
function refers to the length of message digest produced by that function. In this work we are interested in reduced
round collision attacks against SHA-256. Since SHA-224 is obtained by truncating last 32 bits from the output of
SHA-256, all the reduced round attack against SHA-256 are also valid for SHA-224. Next we describe SHA-256 in
detail.

The round function of SHA-256 hash function is shown in Figure 1. Eight registers are used in the evaluation of
SHA-256. The initial value in the registers is specified by an 8x32 bit IV. In Step i, the 8 registers are updated from
(ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1







































































(1)



Fig. 1. Round function of SHA-256 hash function

+

+

+

+

+

+

+

ai−1 bi−1 ci−1 di−1 ei−1 fi−1 gi−1 hi−1

ai bi ci di ei fi gi hi

∑

0

∑

1

fIF

Ki

fMAJ

Wi

The fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x)

The functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

Round i uses a 32 bit word Wi which is derived from the message and a constant word Ki. There are 64 rounds
in all. The hash function operates on a 512 bit message specified as 16 words of 32 bits. Given the message words
m0, m1, . . . m15, the Wi ’s are computed using the equation:

Wi =

{

mi for 0 ≤ i ≤ 15
σ1(mi−2) + mi−7 + σ0(mi−15) + mi−16 for 16 ≤ i ≤ 63

(2)

The functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined as (0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19). All additions in Equations 1 and 2 are modulo 232.

The output hash value of a one block (512 bit) message is obtained by chaining the IV with the register
values at the end of the final round as per the Merkle-Damg̊ard construction [6,13]. A similar strategy is used for
multi-block messages, where the IV for next block is taken as the hash output of the previous block.

4 Collision Attacks Against Hash Functions

The aim of a hash function attack is to produce two different messages both of which map to the same hash output.
This is done by employing differential attack against the hash function in question. First a suitable difference of
messages is found such that a pair of messages having that difference is likely to collide to the same hash value with
high probability. For example, if a given message differential {∆W0,∆W1, . . . ∆W15} is likely to generate colliding



pairs with probability 1

28 then one needs to try roughly 28 different pairs {W0,W1, . . . ,W15} and {W ′

0,W
′

1, . . . W
′

15}
having the given difference to get a colliding pair of messages.

However, the probability of the specified differential to generate a collision is likely to be very low for most of
the practical hash functions. Hence some sophisticated methods are used to search for the right (colliding) pair,
rather than generating them at random. Message modification techniques [22,20] and neutral bit technique [1] are
the two widely used methods to find colliding message pairs.

We next describe some terms and techniques used in the differential attack on hash functions.

4.1 Local Collision

To analyze a hash function, it is advantageous to consider its linearized version. That is, all the non-linear com-
ponents in the hash function design are first replaced by their linear approximations. Since the resulting design is
linear, we have h(x) ⊕ h(x ⊕ ∆x) = h(∆x) where h is one step of the hash function evaluation. Therefore we can
look at the behavior of the differential of the messages ∆x on the linearized hash function rather than considering a
pair of messages x and x⊕∆x operated on by a step of linearized hash function, and then taking their differential.

The simplified version of the hash function is then analyzed for a small number of steps. The technique is to
introduce a small perturbation in the message at the first step and then correct it by suitable differences in the
messages in next few steps. After introducing some message differences for few rounds it is possible to completely
cancel the effect of the original perturbation. A sequence of message word differences which cancel their own effect
locally are said to construct a “local collision”. All the message words are considered to be unrestricted during the
search for local collisions. Finally many local collisions are interleaved to obtain (reduced round) colliding pair of
messages.

Attacks on the SHA-0 and SHA-1 hash functions use the 5-step local collision obtained by Chabaud and
Joux [4]. For SHA-256, a 9-step local collision by Gilbert and Handschuh [7] and sixteen 9-step local collisions by
Sanadhya and Sarkar [17] are known. We discuss the case of SHA-256 local collisions in more detail.

4.2 Local Collisions in SHA-256

Let the first step in SHA-2 be denoted by Step 0. If a 9-step local collision is started at step i, it defines the 9
word differences Wj ⊕ W ′

j for i ≤ j ≤ i + 8. We use two types of local collisions in the present work. The first is
due to Gilbert and Handschuh [7] and the second is one of the 16 local collisions presented in [17]. From among
the 16, we choose the 5th local collision because of the following two reasons :

1. It is one of the 4 which are suitable for getting 18-step collision, as explained later (the others being 7th, 14th

and 16th).
2. It has the highest probability among these 4.

We call the two local collisions the GH local collision and the SS5 local collision respectively. The other three
local collisions from [17] are denoted by SS7, SS14 and SS16.

The following approximations are used in these local collisions :

1. Operator + is approximated by ⊕.
2. In GH, fIF and fMAJ are approximated by zero function. This causes certain impossible conditions while

searching for the message pair following this differential path, as has been observed in [12].
3. In SS5, fIF and fMAJ are approximated by their middle arguments. These linear approximations avoid two

types of impossible conditions encountered when using GH local collision.

See [17] for details on other local collisions.
All the local collisions mentioned above are:

• GH : {x,Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), 0, x, Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS5 : {x,Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), Σ0(x) ⊕ Σ1(x), 0, Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS7 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), Σ0(x)⊕ Σ0(Σ1(x)), x ⊕ Σ0(x) ⊕ Σ1(x), 0, x ⊕ Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS14 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), x ⊕ Σ1(x)⊕ Σ0(Σ1(x)), Σ1(x), Σ0(x) ⊕ Σ1(x), Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS16 : {x,Σ0(x)⊕Σ1(x), Σ0(x)⊕Σ1(x)⊕ Σ0(Σ1(x)), x⊕Σ1(x), x⊕Σ0(x)⊕Σ1(x), x⊕Σ0(x)⊕Σ1(x), 0, 0, x}

Note that in all the above local collisions, Σ0 and Σ1 are used as operators on 32 bit quantities, and x is any 32
bit message word difference. Once a starting message difference x is chosen, next 8 words must have the difference
in accordance with the local collision.



4.3 Differential Path

The introduction of the message differentials causes the internal registers of hash function to differ too. The
propagation of the differences in the registers creates a “differential path”. For SHA-256, the differential path for
k steps can be completely specified by differences in the 8 registers for these k steps along with the k message
differences corresponding to the same steps. The term “linear characteristic” is also widely used in literature to
refer to the differential path. We also use it interchangeably with differential path.

If the differential path includes steps in which the message expansion is involved, then the message words for
some steps are computed on the basis of previous message words. In such a case, the message expansion is also
linearized. If the register differences are all zero at the last step of the differential path then such a path is said
to be a “colliding differential path”. The differential of the messages for a colliding differential path are called as
“colliding message differential”.

The differential path holds for the linearized version of the hash function with probability 1, but with much
less probability for the actual hash function.

5 Attacking 18 rounds of SHA-256

It is possible to get up to 18 step reduced round collisions for SHA-256 using a single local collision. Such an idea
has already been used in [12] and mentioned in [17]. We describe this for clarity of exposition.

First of all, note that any local collision under consideration spans 9 steps and the message expansion of SHA-
256 does not play any role in the first 16 steps. Therefore if a local collision spans from Step i to Step (i + 8), and
if we take ∆W0 = ∆W1 = . . .= ∆Wi−1 = ∆Wi+9 = ∆Wi+10 = . . . = ∆W15 = 0, we get a differential path for
16-step collision for SHA-256.

The issue of message expansion is not considered in obtaining the 16 step colliding differential path described
above. Next we tackle two steps of the message expansion.

Message expansion rule for W16 and W17 are given by :

W16 = σ1(W14) + W9 + σ0(W1) + W0 (3)

W17 = σ1(W15) + W10 + σ0(W2) + W1 (4)

Let a local collision L start at Step 3 and hence end at Step 11. This local collision defines the 9 word differences
∆W3,∆W4, . . . ∆W11. The first step of the local collision corresponds to ∆W3 and the 9th step corresponds to
∆W11. Taking the differentials of all the message words outside the span of the local collision to be zero, the
differential path for L will have ∆W0 = ∆W1 = ∆W2 = ∆W12 = ∆W13 = ∆W14 = ∆W15 = 0.

Note that ∆Wi = 0 means that Wi = W ′

i . Since ∆W0 = ∆W1 = ∆W14 = 0 for L, from Equation 3, W16 and
W ′

16 may be different only due to the differences in W9 and W ′

9.

∆W9 corresponds to the 7th step word difference for L. If L is chosen such that it’s 7th step word difference is
zero, then W9 = W ′

9. Therefore even after the message expansion recursion is used, we will have W16 = W ′

16. This
results in a 17-step differential path for SHA-256.

Similarly, if the 8th message word difference for L is zero, then by Equation 4, W17 = W ′

17. This results in a
18-step differential path for SHA-256.

Both the 17 and the 18 Step paths discussed above use just one local collision. To increase the probability of
this differential path for the case of real SHA-256, we can take starting messages differing in only 1 bit.

All the local collisions listed in the previous section have the 7th and the 8th message word differences zero.
Therefore any one of them can be used to obtain the 18 step colliding differential path for SHA-256. We list one
of these differential paths in Table 1. This 18-step colliding path is also a 17-step colliding path for SHA-256.

Further, it can be seen that it is not possible to obtain a differential path for 19 or more steps with a single
local collision where the weight of the perturbation in first word is just 1-bit. This impossibility arises due to the
message expansion of SHA-256, and because there are no local collisions in which 3 consecutive word differences
are zero. We discuss the case of more than 18 steps in later sections.



Table 1. 18 step linear characteristic for SHA-256. Only 1 SS5 local collision is used to build this path.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0-2 0 0 0 0 0 0 0 0 0

3 0x80000000 0x80000000 0 0 0 0x80000000 0 0 0

4 0x22140240 0 0x80000000 0 0 0x20040200 0x80000000 0 0

5 0x42851098 0 0 0x80000000 0 0x80000000 0x20040200 0x80000000 0

6 0x22140240 0 0 0 0x80000000 0 0x80000000 0x20040200 0x80000000

7 0 0 0 0 0 0x80000000 0 0x80000000 0x20040200

8 0x22140240 0 0 0 0 0 0x80000000 0 0x80000000

9 0 0 0 0 0 0 0 0x80000000 0

10 0 0 0 0 0 0 0 0 0x80000000

11 0x80000000 0 0 0 0 0 0 0 0

12-17 0 0 0 0 0 0 0 0 0

6 Message Modification Techniques for SHA-256

We have used XOR differences for registers and message words in the differential path for reduced round SHA-256.
The differential path in Table 1 is obtained by using linearized SHA-256. However our aim is to obtain a pair
of messages which follows this differential path for real SHA-256. The probability for this to happen for random
messages is 2−49 for 18-step SHA-256. If the message-pair satisfies certain conditions then the probability of the
differential path can be increased significantly. We list conditions on the registers and the message words which
help in finding messages following the 18 step differential path shown in Table 1 when actual SHA-256 is used.
These conditions try to ensure that the functions fIF and fMAJ both behave like their middle arguments, and
that + behaves like ⊕. These conditions are shown in Table 2. Sufficient conditions for 9 step SHA-256 collision
have also been given in [9], Table 3. We next highlight the advantages of our conditions with those in [9].

1. The conditions in [9] are for only 9-step collision in SHA-256. Our conditions are for 18-step collision in
SHA-256.

2. The GH local collision is used in [9] whereas we use SS5 local collision. Further, no explanation is provided
in [9] on how these conditions are derived whereas we provide complete details about our conditions. It is now
possible to use the method described in this work to derive conditions for 18-step SHA-256 collision using any
other local collision.

3. In [9] the conditions are claimed to be “sufficient” but it is not clear if satisfying them will immediately lead
to a collision. The conditions that we identify are not claimed to be sufficient. We only note that satisfying
them will increase the probability of finding colliding message pairs.

6.1 Explanation of Conditions in Table 2

∆Wk = 0 for steps k=0, 1 and 2 and hence there are no restrictions due to these steps. In Step 3, although
∆W3 6= 0, the difference is only in the most significant bit. The + and ⊕ behave the same with probability 1 for
a difference in MSB, so even Step 3 does not impose any restrictions. Hence conditions are needed to tackle the
proper differential behavior for the message pair only from Step 4 onwards.

Conditions Due to fMAJ and fIF : In Step 4, fMAJ has inputs a3, b3 and c3 with ∆a3 = 0x80000000. In SS5

local collision fMAJ is approximated by it’s middle argument, which will happen if b31
3 = c31

3 . Similarly the fIF

function having arguments e3, f3 and g3 will behave like it’s middle argument if f31
3 = g31

3 .

Conditions Due to Register a4 : Once the two boolean functions are approximated by their middle arguments,
register a4 is evaluated for both the messages as follows :

a4 = Σ0(a3) + b3 + Σ1(e3) + f3 + h3 + K4 + W4 and

a′4 = Σ0(a
′

3) + b′3 + Σ1(e
′

3) + f ′

3 + h′

3 + K4 + W ′

4



Registers a3 and a′3 (resp. e3 and e′3) differ in their MSB, and the operator Σ0 (resp. Σ1) expands this difference
to 3 bit positions 6, 20 and 25 (resp. 9, 18 and 29). The word difference ∆W4 at this step has been chosen to differ
in these 6 bit positions (namely 6, 20, 25, 9, 18 and 29) with the aim of cancelling these differences.

The cancellation will happen as desired if :

1. The difference of words W4 and W ′

4 is opposite to the difference in words Σ0(a3) and Σ0(a
′

3) on bit positions
9, 18 and 29. For example, if (Σ0(a3))

i = 1 and (Σ0(a
′

3))
i = 0, then we would like (W4)

i = 0 and (W ′

4)
i = 1

so that W4 + Σ0(a3) and W ′

4 + Σ0(a
′

3) are equal at the ith bit position; i = 9, 18 and 29.
2. Similarly, (W4)

i and (W ′

4)
i have difference opposite to the difference in (Σ1(e3))

i and (Σ1(e
′

3))
i at bit positions

i = 6, 20 and 25.

All the 6 bit differences will be cancelled if the conditions shown in Table 2, Step 4, column ak are met. Note
that this is not a necessary way of cancelling the differences, other possibilities exist when the sum of the terms in
a4 and a′4 may behave as desired. In particular, we do not use bit carries in addition modulo 232 to cancel these
type of differences like Wang et. al do for SHA-1 [21]. We use XOR differences only, unlike [21] where modular
differences are used.

Conditions due to register e4 : Having cancelled the 6 bit differences to obtain ∆(a4) = 0, it can be seen
that 3 bits from ∆(W4) will certainly propagate into ∆(e4) because there is no Σ0 term in calculating e4 and e′4.
If the differential path is to be followed, then these 3 differing bits in W4 and W ′

4 should not carry forward to
other positions. Carry propagation to other bits will cause problems in adjusting the register differences in next
steps since any single bit difference in a or e register is expanded into 3 bit differences by the operators Σ0 and
Σ1. We have chosen the word differences in next steps considering these positions by following the linear (XOR)
characteristics. It is possible to allow some bit carries here but it seems that it will only reduce the probability of
the differential path.

To complete the analysis of step 4, we finally look at the difference ∆(e4). The registers e4 and e′4 are computed
as follows:

e4 = d3 + Σ1(e3) + fIF (e3, f3, g3) + h3 + K4 + W4,

and e′4 = d′3 + Σ1(e
′

3) + fIF (e′3, f
′

3, g
′

3) + h′

3 + K4 + W ′

4.

In these two computations, bits 6, 20 and 25 corresponding to Σ1 rotations of the differing bit 31 in e3 have
already been taken care of while considering a4. Bit numbers 9, 18 and 29 are the places where W4 and W ′

4 differ and
these differences are required to be propagated to ∆e4. Since d3 = d′3, h3 = h′

3 and fIF (e3, f3, g3) = fIF (e′3, f
′

3, g
′

3);

if we write rest = Σ1(e3) + fIF (e3, f3, g3) + h4 + K4,

then e4 = rest + W4,

and e′4 = rest + W ′

4.

If the ith bit of rest is 0 and there is no carry into the ith bit while addition with W4 takes place, then the
XOR difference W4 ⊕ W ′

4 will propagate into e4 ⊕ e′4 as desired. Alternately, if the ith bit of rest is 1 and there is
a carry into the ith bit while addition with W4 takes place, then too the XOR difference W4 ⊕ W ′

4 will propagate
into e4 ⊕ e′4.

Thus either we would like no carry propagation in e4 and e′4 at bits 6, 20 and 25 if rest is 0 at these bit
positions or we would like carry propagation in both these registers if rest is 1 at these bits. We do not have a
deterministic way to ensure this since we do not have complete freedom to choose the registers and the message
words as desired at this stage. However, the probability of the carries to happen as desired can be increased if we
we set other free bits of W4 and W ′

4 according to the following conditions :

1. if rest9 is 0 then W 7
4 = W 8

4 = 0.
2. if rest9 is 1 then W 7

4 = W 8
4 = 1.

3. if rest18 is 0 then W 10
4 = W 11

4 = . . . = W 17
4 = 0.

4. if rest18 is 1 then W 10
4 = W 11

4 = . . . = W 17
4 = 1.

5. if rest29 is 0 then W 26
4 = W 27

4 = W 28
4 = 0.

6. if rest29 is 1 then W 26
4 = W 27

4 = W 28
4 = 1.

In setting these conditions, we have used the bits between 6, 9, 20 and 9, 18 and 29 which are not restricted.
Similarly we have set conditions for other steps so that the messages follow the differential path as desired.



6.2 Method to Satisfy Conditions in Table 2

First 4 words in the differential path are free and hence we choose them randomly. Thereafter, many conditions
in Table 2 are easy to fulfill as they depend only on word Wk in step k. Some of the conditions on registers can
be tackled by suitably choosing the word Wk at that step which we can choose as desired. However, there may be
instances when a previously selected message word causes impossible condition at a later step. As an example, we
may not get the bit carry conditions for register e4 as described previously. Also we wish to have e31

6 following a
particular pattern at step 8 whereas this bit has been set at step 6 itself. In such contradicting cases, we choose
another message word randomly at the previous step where the condition was breaking down. Then we apply
message modification techniques from that step onwards and continue the search process for further steps. We
search incrementally proceeding further only when all the conditions at a step are fulfilled and the differential path
is as desired. The differential path in Table 1 holds with probability 2−49, but with the procedure described above,
we are able to get a much higher probability. In fact, Steps 0 to 7 become very easy to fulfill with the message
modification and we are able to satisfy all the conditions till Step 7 in about a minute on an ordinary PC. The only
difficult conditions are those imposed due to a8. We could find a colliding message pair following exact differential
characteristic in time varying from about 40 minutes to a couple of hours on an ordinary PC. Repeatedly running
the program we could generate many such pairs. We show two such colliding pairs of messages.

Table 2. Conditions for the 18 step differential path in Table 1. xi denotes ith bit of a 32 bit quantity x. x denotes
the bitwise negation of x which can be a 32 bit or a 1 bit quantity. Operator + is addition modulo 232 and operator
* is multiplication of 2 single bits. Both these operators are used in steps 6 and 8.

Step Due to Pr. Due to Pr. Due to Pr. Due to Pr. Step
k fMAJ fIF ak ek Pr.

0-3 - - - - - - - - 1

4 b31
3 = c31

3
1

2
f31
3 = g31

3
1

2
W i

4 = (Σ0(a3))
i; i = 9, 18, 29 1

26 bit differences 1

23

1

211

W i
4 = (Σ1(e3))

i; i = 6, 20, 25 ∆W i
4 ; i = 9, 18, 29

propagate into e4

5 a31
4 = c31

4
1
2

e31
4 = 1, 1

24 W i
5 = (Σ1(e4))

i; 1

29 - - 1

214

ei
3 = f i

3; i = 9, 18, 29 i = 3, 4, 7, 12, 16, 18, 23, 25, 30

6 a31
5 = b31

5
1

2
e31
5 = 1; i = 9, 18, 29 1

24 W i
5 = (Σ1(e5) + f5)

i; 1

26 - - 1

211

e31
4 = e31

5 ∗ e31
3 i = 6, 9, 18, 20, 25, 29

7 - - ei
6 = 1; 1

24 - - - - 1

24

i = 9, 18, 29, 31

8 - - e31
6 = e31

7 ∗ e31
5

1

2
W i

8 = (Σ1(e7) + h7)
i; 1

26 - - 1

27

i = 6, 9, 18, 20, 25, 29

9 - - e31
8 = 1 1

2
- - - - 1

2

10 - - e31
9 = 1 1

2
- - - - 1

2

11-17 - - - - - - - - 1

Prob. 1

249

6.3 Colliding Message Pairs for 18-Step SHA-256

Tables 3 and 4 show the message pairs found using the techniques described previously. All 18 words of the
messages are given in the tables. First 16 words can be used to compute the last two words using the message
expansion of SHA-256. Similar method can be used for finding 9-round pseudo collisions for SHA-256 as well. Since
we can already find message pairs colliding for 18-step SHA-256 with the standard IV, the only utility for such
an exercise would be to see how easy it becomes to find these pseudo collisions due to the benefits of relaxing the
IV conditions. However, we found that the time required to find a 9-round pseudo collision is only marginally less
than the time required to find an 18-step collision. We give an example of such a pseudo collision in Section A.

It seems possible to use neutral bits to increase the efficiency of the search for finding message pairs following
the given differential path. We experimented with this idea and found that the gains are not significant. More
details about our experiments with neutral bits are available in Section B.



Table 3. Colliding message pair for 18 step SHA-256 with standard IV. All 18 words of the two messages are
given here. Last 2 words can be obtained by message recursion involving the first 16 words. These two messages
follow the differential path given in Table 1.

M1 0-8 0xccea5c17 0x53ad1a2d 0x141db23c 0xb6acfaa8 0x5ee7fe4d 0x53c5b764 0x2bf20d44 0x87d63bf6 0x63a07869
9-17 0xf305fdea 0x26ee271f 0xb973b91c 0xd0f87828 0xb724a487 0xa295fa2a 0x0a67c97a 0x18c2a801 0xae50a6fd

M2 0-8 0xccea5c17 0x53ad1a2d 0x141db23c 0x36acfaa8 0x7cf3fc0d 0x1140a7fc 0x09e60f04 0x87d63bf6 0x41b47a29
9-17 0xf305fdea 0x26ee271f 0x3973b91c 0xd0f87828 0xb724a487 0xa295fa2a 0x0a67c97a 0x18c2a801 0xae50a6fd

Table 4. Another colliding message pair for 18 step SHA-256 with standard IV. These two messages also follow
the differential path given in Table 1.

M1 0-8 0xed919421 0xaa75e4fe 0x8548d0e0 0x9c1888f7 0x1da3fc3d 0xa11f7a02 0xbb463b64 0xe9b28365 0x323ecf28
9-17 0x8097e497 0x4343b78b 0xdc484e91 0xbf588b4b 0x8401140a 0x42499da1 0xf88a3e2e 0xfcc3918d 0x2c41c953

M2 0-8 0xed919421 0xaa75e4fe 0x8548d0e0 0x1c1888f7 0x3fb7fe7d 0xe39a6a9a 0x99523924 0xe9b28365 0x102acd68
9-17 0x8097e497 0x4343b78b 0x5c484e91 0xbf588b4b 0x8401140a 0x42499da1 0xf88a3e2e 0xfcc3918d 0x2c41c953

7 Using Coding Theoretic Methods to Find Linear Differential Paths for Reduced Round
SHA-256

In [16] and [14] coding theoretic techniques were used to search for differential paths in SHA-1. Extension to
SHA-2 was mentioned in [12]. We describe a new way of forming parity check equations and then find low weight
codewords for the corresponding generator matrix. Each of these codewords can be used to build a differential
characteristic for reduced round SHA-256. This method results in tackling up to 23-step reduced SHA-256.

7.1 A New Way of Constructing Parity Check Equations

Tackling message expansion in SHA-2 can be a problem. A non-zero value of ∆Wi for i ≥ 16 necessitates tackling
the recursion for message expansion. So one way to avoid this is to ensure that ∆Wi = 0 for i ≥ 16. Clearly, this
cannot work for full SHA-2. But, for reduced round versions, one can find differential paths using this approach,
as we describe below.

The technique described below assumes a local collision L. The description is not for any particular local
collision. It holds for any local collision. Obtaining a particular local collision requires certain linear approximations
of the constituents of the SHA-256 round function. This converts the round function into a linear map based on
which we define our linear code. We note that the linear code is not straightforwardly obtained from the linear
map.

A message consists of 16 32-bit words for a total of 512 bits. We use the Chabaud-Joux [4] type disturbance
vector approach. Let DV = {d0, d1, d2, . . . , d255} be a 256-bit disturbance vector. If di = 1 then the two initial

messages differ in their ith bit, and further message bits differ as per the local collision.
We do not consider a 512-bit DV for the following reason. A local collision defines the differences of 9 words

of messages and only the first 16 words of SHA-256 are unrestricted. Thereafter the message words are calculated
using the message expansion recurrence. This implies that a local collision can not be started after first 8 steps
without affecting the message expansion.

Let us now describe the linear code that we require. This is done in two steps. In the first step, we express
∆Wi (i ≥ 16) in terms of d0, . . . , d255. In the second step, we define the parity check equations for the code by
setting ∆Wi = 0 for i ≥ 16. Thus, any DV (d0, . . . , d255) which satisfies these parity check equations is a codeword.
Our task then is to look for a low weight codeword as this gives a differential path with a small number of local
collisions.

It is clear that such codes can be formed as long as there are less than 256 parity check equations. If we
apply this procedure up to N rounds (corresponding to step N − 1), then we will obtain 32(N − 16) parity check
equations. Thus, the maximum N that we can use with this method is N = 23. The minimum value of N is clearly
17. Since we already report 18-round collision, we do not consider N = 17 and 18. Instead we report differential
paths from 19 to 23 rounds.



The first task is to express ∆Wi (i ≥ 16) in terms of d0, . . . , d255. We describe how this is done. For any local
collision L, the first word determines the next eight words. Consider the 32-bit vector (d0, 0, . . . , 0), where d0 is
treated as a (binary) variable. Then L defines the next 8 32-bit words. At this point, the first 9 words have been
defined. The rest 7 are taken to be zero. For i ≥ 16, ∆Wi is now obtained using the message recursion. This
expresses all the ∆Wis (i ≥ 16) as linear function of d0. Next consider the 32-bit vector (0, d1, 0, . . . , 0); use L to
obtain the next eight words and the message expansion recursion to express ∆Wis (i ≥ 16) as linear function of
d1. Now, for the 32-bit vector (d0, d1, 0, . . . , 0), we can express ∆Wis (i ≥ 16) as linear function of d0 and d1 by
XORing the separate linear functions corresponding to d0 and d1. Clearly, the procedure can be extended to the
entire DV (d0, . . . , d255). The exact details are given in Table 5.

Methods presented in [3], [10] and [19] are used to search for low weight codewords from the check-matrices
(and the corresponding generator matrices) obtained using the algorithm in Table 5. Codewords of least weight
found and the linear differential path for that codeword are shown in Section 8.

Table 5. Algorithm for generating parity check equations for linearized N step SHA-256.

external LC(x) : accepts a 32 bit input x and returns 9 words of 32 bits conforming to the local
collision chosen.

Set ∆Wfinal := (U0, U1, . . . UN−1) Ui ∈ {0, 1}32

Set δWcur := (V0, V1, . . . V8) Vi ∈ {0, 1}32

Initialize ∆Wfinal and δWcur to all zeros.

For(i = 0 to 8){
For(j = 0 to 31){

set D := (0, 0, . . . , d32i+j , 0, . . . , 0); /* The jth bit of D is given by d32i+j .
Each dn ∈ {0, 1} is the component of the disturbance vector and D ∈ {0, 1}32 */

set δWcur := LC(D);
For(k = i to i + 8){

∆Wfinal[k] = ∆Wfinal[k] ⊕ δWcur[k − i];
}

}
}
/* At this point the ∆Wfinal list contains Wi ⊕ W ′

i for 0 ≤ i < 16 */

Obtain ∆Wi for 16 ≤ i < N using linearized message expansion of SHA-256.
Equate all 32 bits of ∆Wi for i ≥ 16 to zero to get 32 ∗ (N − 16) parity check equations.

8 Results and Comparison to Previous Work

Low weight disturbance vectors are searched for reduced round SHA-256 by using the probabilistic methods
described in [3], [10] and [19]. The minimum weights of codewords found are listed in Table 6. For 19-step SHA-
256 the weight of the codeword found is 15 for both GH and SS5 local collision. This means that 15 local collisions
are interleaved to obtain the 19-step characteristic. Interestingly, all the 15 local collisions start at the same word
for both GH and SS5. Thus the case of 19-step characteristic can be considered as consisting of a single local
collision starting at Step 3 where the initial message difference is a word with weight 15 bits. There is no colliding
differential path known before this work. The best known 19-step differential path is for a near collision consisting
of 23 GH local collisions [12]. As has already been noted in [12], the GH local collision causes certain impossible
conditions in the search for actual colliding pairs. The use of SS5 local collision ensures that we do not face two
types of impossible conditions.

For 20 to 23 steps, no differential path is known so far. We provide the first differential paths for these cases.
For 23-step SHA-256, the size of the corresponding generator matrix is 32×256, i.e. there are only 32 codewords
of length 256. It is possible to do exhaustive search on this size, hence we did not use the probabilistic methods
for this case. For the 23-step case, the reported codeword weight is actually the best possible. All these differential
paths are reported in Section C.



Table 6. Summary of results. Least weight of the codeword found using different local collisions. For 23 step case,
the codeword weight is obtained by exhaustive search. For all other cases, methods described in [3], [10] and [19]
are used.

Step i Size of Check matrix using GH using SS5

18 - 1 1

19 96×256 15 15

20 128×256 33 31

21 160×256 45 45

22 192×256 59 60

23 224×256 79 75

Acknowledgements

We would like to thank Christian Rechberger for carefully reading an earlier version of this paper and giving
helpful suggestions.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004,

24th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152
of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

2. Gilles Brassard, editor. Advances in Cryptology - CRYPTO 1989, 9th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer, 1990.
3. Anne Canteaut and Florent Chabaud. A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to

McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information Theory, 44(1):367–
378, 1998.

4. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO

1998, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, volume
1462 of Lecture Notes in Computer Science, pages 56–71. Springer, 1998.

5. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in

Computer Science. Springer, 2005.
6. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [2], pages 416–427.
7. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J. Zuccherato,

editors, Selected Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003,

Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193. Springer, 2003.
8. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On Corrective Patterns for the SHA-2 Family. Cryptology eprint Archive,

August 2004. Available at http://eprint.iacr.org/2004/207 .
9. Marko Hölbl, Christian Rechberger, and Tatjana Welzer. Finding Message Pairs Conforming to Simple SHA-256 Characteris-

tics. In Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf, editors, Preliminary Proceeding Records of WEWoRC 2007

- Western European Workshop on Research in Cryptology, July 4-6, 2007, Bochum, Germany, pages 21–25, 2007. Available at
http://www.hgi.rub.de/weworc07/PreliminaryConferenceRecord.pdf .

10. Jeffrey S. Leon. A Probabilistic Algorithm for Computing Minimum Weights of Large Error-Correcting Codes. IEEE Transactions

on Information Theory, 34(5):1354–1359, 1988.
11. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of simplified

variants of SHA-256. In Christopher Wolf, Stefan Lucks, and Po-Wah Yau, editors, WEWoRC 2005 - Western European Workshop

on Research in Cryptology, July 5-7, 2005, Leuven, Belgium, volume 74 of LNI, pages 123–134. GI, 2005.
12. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256. In Matthew

J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006,

Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages 126–143. Springer, 2006.
13. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [2], pages 428–446.
14. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Coding Theory for Collision Attacks on SHA-1. In

Nigel P. Smart, editor, Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, December 19-21, 2005,

Proceedings, volume 3796 of Lecture Notes in Computer Science, pages 78–95. Springer, 2005.
15. Christian Rechberger. Personal Communication, Dated Jan 10, 2007.
16. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume 3376 of
Lecture Notes in Computer Science, pages 58–71. Springer, 2005.

17. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam and Gwangsoo
Rhee, editors, Information Security and Cryptology - ICISC 2007, 10th International Conference, Seoul, Korea, November 29-30,

2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages 193–205. Springer, 2007.

http://eprint.iacr.org/2004/207
http://www.hgi.rub.de/weworc07/PreliminaryConferenceRecord.pdf


18. Secure Hash Standard. Federal Information Processing Standard Publication 180-2. U.S. Department of Commerce, National
Institute of Standards and Technology(NIST), 2002. Available at http://csrc.nist.gov/publications/PubsFIPS.html.

19. Jacques Stern. A Method for Finding Codewords of Small Weight. In Gérard D. Cohen and Jacques Wolfmann, editors, Coding

Theory and Applications, 3rd International Colloquium, Toulon, France, November 2-4, 1988, Proceedings, volume 388 of Lecture

Notes in Computer Science, pages 106–113. Springer, 1988.
20. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD.

In Cramer [5], pages 1–18.
21. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Victor Shoup, editor, Advances in

Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18,

2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005.
22. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer [5], pages 19–35.
23. Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 Variant. In Bart Preneel and Stafford E. Tavares, editors, Selected

Areas in Cryptography, 12th International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected

Papers, volume 3897 of Lecture Notes in Computer Science, pages 245–260. Springer, 2005.

A 9-round Pseudo Collision for SHA-256

This is a 9 round pseudo-collision for SHA-256.

Table 7. IV and the messages for the 9 round pseudo collision. These two messages follow the differential path
given in Table 1 starting from Step 3 till Step 11 (i.e. Step 3 in Table 1 is Step 1 for this message pair).

registers a b c d e f g h

IV 0x1b309331 0x1d07d226 0x190c04e9 0x0b413baf 0x7c11cf34 0x2d035d09 0x76e27935 0x0fb234e2

M1 0-8 0x5ce03f69 0xa36bfc0b 0xf99332c1 0x590db302 0x7c1cd4df 0x163c2f4b 0x2077b003 0x29ab9330 0xefb8306e

M2 0-8 0xdce03f69 0x817ffe4b 0xbb162259 0x7b19b142 0x7c1cd4df 0x34282d0b 0x2077b003 0x29ab9330 0x6fb8306e

B Using Neutral Bits to Search for the Colliding Pairs

Once a linear differential path is obtained, message modification or neutral bit technique are used to find message
pairs following that characteristic. It is suggested in [12] that using neutral bits will bring the probability of finding
the message pairs to close to 1. We have used message modification technique to find the message pairs, since the
number of neutral bits was too low for random messages pairs that were generated during the search for the right
pair. To see the usefulness of neutral bit technique for this 18 step case, we next detail the number of 1-neutral bits
and their distribution in various words of the message pairs for the two colliding message pairs shown in Tables 3
and 4. This distribution is shown in Tables 8 and 9. The entry in the jth column of the ith row in the two tables
denotes the number of 1-neutral bits for the jth message word at step i. The entry ‘-’ means that the particular
message word is not available at that step.

As can be expected, all the bits in the first 4 words in both the tables are 1-neutral. However, as soon as the
fifth word is chosen, the number of 1-neutral bits comes down to about 30 and surprisingly almost all the bits of
first 4 words do not remain 1-neutral anymore. If we assume that :
(1) All the 1-neutral bits are also 2-neutral. And
(2) The set of neutral bits is about 1/8th the size of the set of 2-neutral bits (as in SHA-0),
Then we are likely to get about 10 neutral bits at step 4. The probability of success of this step is 2−11. Similarly
the next two steps are also likely to have about 10 neutral bits whereas the probability of success of these steps
is 2−14 and 2−11 respectively. The number of neutral bits at a step and the order of the probability of that step
is close enough and we may get a message pair which will follow the characteristic. However, note that both the
assumptions about the neutral bits made above are not likely to hold for SHA-256. In particular, the number of
2-neutral bits are going to be much less than the number of 1-neutral bits and the size of the neutral set is likely
to be smaller than that in the case of SHA-0. Further, the set of 1-neutral bits shown are for the messages which
are actually colliding at 18 step. When we started the search from random message pairs, in most of the cases we
could not get even these many 1-neutral bits. This suggests that the application of neutral bits alone in SHA-256

http://csrc.nist.gov/publications/PubsFIPS.html


Table 8. Count of 1-neutral bits and their distribution for the message pair shown in Table 3. Steps 11 to 15 are
not shown here since they do not put any restrictions on the messages and hence have all bits neutral.

Step i 0 1 2 3 4 5 6 7 8 9 10 Total

0 32 - - - - - - - - - - 32

1 32 32 - - - - - - - - - 64

2 32 32 32 - - - - - - - - 96

3 32 32 32 32 - - - - - - - 128

4 0 0 0 5 23 - - - - - - 28

5 0 0 0 0 4 23 - - - - - 27

6 0 0 0 0 0 15 26 - - - - 41

7 0 0 0 0 0 2 23 32 - - - 57

8 0 0 0 0 0 0 3 21 26 - - 50

9 0 0 0 0 0 0 2 12 23 32 - 69

10 0 0 0 0 0 0 1 7 17 30 32 87

may not help us finding colliding message pairs. A combination of message modification and neutral bit technique
may be required to attack longer number of rounds in SHA-2 family.

Table 9. Count of 1-neutral bits and their distribution for the message pair shown in Table 4. Steps 11 to 15 are
not shown here since they do not put any restrictions on the messages and hence have all bits neutral.

Step i 0 1 2 3 4 5 6 7 8 9 10 Total

0 32 - - - - - - - - - - 32

1 32 32 - - - - - - - - - 64

2 32 32 32 - - - - - - - - 96

3 32 32 32 32 - - - - - - - 128

4 0 0 0 5 26 - - - - - - 31

5 0 0 0 0 8 23 - - - - - 31

6 0 0 0 0 0 13 26 - - - - 39

7 0 0 0 0 0 3 22 32 - - - 57

8 0 0 0 0 0 1 6 19 26 - - 52

9 0 0 0 0 0 1 3 15 25 32 - 76

10 0 0 0 0 0 1 1 9 19 31 32 93

C Differential Paths for Reduced Round SHA-256

Differential paths for 19, 20, 21, 22 and 23 step SHA-256 are provided in Table 10 to Table 19. All the differential
paths have been obtained by using two different local collisions, namely the GH and the SS5 local collision.

D Non Valid Message Pairs from [12]

The colliding message pair given in Table 7 in [12] for 18-step SHA-256 gives rise to the differential path given in
Table 20.

For the 22-step pseudo collision, the messages in Table 9 in [12] are claimed to be colliding such that
H(M, IVnew) = H(M∗, IV ∗). The two IV’s have a difference ∆(IV ) = IVnew ⊕ IV ∗. New IV is obtained by
IVnew = IVstandard ⊕ IVCorr. The calculations for new IV are shown in Table 21.

We contacted the authors of [12] regarding the non valid message pairs. Christian Rechberger, in a personal
communication [15], sent a new value for the starting IV for register A as IVnew = 0xb5f4d225. This, as we can
compute, results in the modified correction for register A as IVCorr = 0xdffd3442. With these changes the messages
as reported in [12] do follow the 22-step pseudo collision differential path.

We note that no message pair which collides for the 18-step SHA-256 with the standard IV has been provided.



Table 10. 19 step linear characteristic for SHA-256. There are 15 SS5 local collisions. This characteristic can also
be seen as a single SS5 local collision in which weight of ∆W3 is 15 bits.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0-2 0 0 0 0 0 0 0 0 0

3 0x27f42515 0x27f42515 0 0 0 0x27f42515 0 0 0

4 0xbde9c6f8 0 0x27f42515 0 0 0xb1c0627b 0x27f42515 0 0

5 0x4180045d 0 0 0x27f42515 0 0x27f42515 0xb1c0627b 0x27f42515 0

6 0xbde9c6f8 0 0 0 0x27f42515 0 0x27f42515 0xb1c0627b 0x27f42515

7 0 0 0 0 0 0x27f42515 0 0x27f42515 0xb1c0627b

8 0xbde9c6f8 0 0 0 0 0 0x27f42515 0 0x27f42515

9 0 0 0 0 0 0 0 0x27f42515 0

10 0 0 0 0 0 0 0 0 0x27f42515

11 0x27f42515 0 0 0 0 0 0 0 0

12-18 0 0 0 0 0 0 0 0 0

Table 11. 19 step linear characteristic for SHA-256. There are 15 GH local collisions. This characteristic can also
be seen as a single GH local collision in which weight of ∆W3 is 15 bits. Note that this characteristic differs from
the one in Table 10 at several places. For example in message words and registers at 7th step.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0-2 0 0 0 0 0 0 0 0 0

3 0x27f42515 0x27f42515 0 0 0 0x27f42515 0 0 0

4 0xbde9c6f8 0 0x27f42515 0 0 0xb1c0627b 0x27f42515 0 0

5 0x4180045d 0 0 0x27f42515 0 0 0xb1c0627b 0x27f42515 0

6 0 0 0 0 0x27f42515 0 0 0xb1c0627b 0x27f42515

7 0x27f42515 0 0 0 0 0x27f42515 0 0 0xb1c0627b

8 0xbde9c6f8 0 0 0 0 0 0x27f42515 0 0

9 0 0 0 0 0 0 0 0x27f42515 0

10 0 0 0 0 0 0 0 0 0x27f42515

11 0x27f42515 0 0 0 0 0 0 0 0

12-18 0 0 0 0 0 0 0 0 0

Table 12. 20 step linear characteristic for SHA-256. There are 31 SS5 local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x00210808 0x00210808 0 0 0 0x00210808 0 0 0

1 0xf4ec270b 0x0100c000 0x00210808 0 0 0xc568a30a 0x00210808 0 0

2 0xfd5cb0fc 0x00000204 0x0100c000 0x00210808 0 0x0361320e 0xc568a30a 0x00210808 0

3 0x0f1c9c64 0x12080000 0x00000204 0x0100c000 0x00210808 0x0320d081 0x0361320e 0xc568a30a 0x00210808

4 0xe38e0ddb 0x40080208 0x12080000 0x00000204 0x0100c000 0x64ab980c 0x0320d081 0x0361320e 0xc568a30a

5 0x91de6968 0x00040600 0x40080208 0x12080000 0x00000204 0x3344e7c2 0x64ab980c 0x0320d081 0x0361320e

6 0x552353b0 0x00006000 0x00040600 0x40080208 0x12080000 0x601161ac 0x3344e7c2 0x64ab980c 0x0320d081

7 0x9b7f2ad2 0x26239208 0x00006000 0x00040600 0x40080208 0x35af8c0b 0x601161ac 0x3344e7c2 0x64ab980c

8 0x694d62fd 0 0x26239208 0x00006000 0x00040600 0x5789970e 0x35af8c0b 0x601161ac 0x3344e7c2

9 0x3c97a984 0 0 0x26239208 0x00006000 0x26279408 0x5789970e 0x35af8c0b 0x601161ac

10 0x85cea813 0 0 0 0x26239208 0x00006000 0x26279408 0x5789970e 0x35af8c0b

11 0x13b8198f 0 0 0 0 0x26239208 0x00006000 0x26279408 0x5789970e

12 0x27dcb927 0 0 0 0 0 0x26239208 0x00006000 0x26279408

13 0x00040600 0 0 0 0 0 0 0x26239208 0x00006000

14 0x00006000 0 0 0 0 0 0 0 0x26239208

15 0x26239208 0 0 0 0 0 0 0 0

16-19 0 0 0 0 0 0 0 0 0



Table 13. 20 step linear characteristic for SHA-256. There are 33 GH local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x11000200 0x11000200 0 0 0 0x11000200 0 0 0

1 0x921ea8c4 0x46110000 0x11000200 0 0 0x525988c4 0x11000200 0 0

2 0x71813ea9 0x01000002 0x46110000 0x11000200 0 0x54867192 0x525988c4 0x11000200 0

3 0xd8d10826 0x60a14800 0x01000002 0x46110000 0x11000200 0xe0f14804 0x54867192 0x525988c4 0x11000200

4 0xb9f28f71 0x1e420280 0x60a14800 0x01000002 0x46110000 0xd2495608 0xe0f14804 0x54867192 0x525988c4

5 0x8f9b9016 0x00a00200 0x1e420280 0x60a14800 0x01000002 0x5d2b70c9 0xd2495608 0xe0f14804 0x54867192

6 0x6d415897 0x00004084 0x00a00200 0x1e420280 0x60a14800 0x91204504 0x5d2b70c9 0xd2495608 0xe0f14804

7 0xc7276fd3 0x000000a0 0x00004084 0x00a00200 0x1e420280 0x65834883 0x91204504 0x5d2b70c9 0xd2495608

8 0x0b152ad9 0 0x000000a0 0x00004084 0x00a00200 0x1b4082a8 0x65834883 0x91204504 0x5d2b70c9

9 0x08044ede 0 0 0x000000a0 0x00004084 0x00a00200 0x1b4082a8 0x65834883 0x91204504

10 0x8123d10c 0 0 0 0x000000a0 0x00004084 0x00a00200 0x1b4082a8 0x65834883

11 0x65230b89 0 0 0 0 0x000000a0 0x00004084 0x00a00200 0x1b4082a8

12 0x8f40d2aa 0 0 0 0 0 0x000000a0 0x00004084 0x00a00200

13 0x00a00200 0 0 0 0 0 0 0x000000a0 0x00004084

14 0x00004084 0 0 0 0 0 0 0 0x000000a0

15 0x000000a0 0 0 0 0 0 0 0 0

16-19 0 0 0 0 0 0 0 0 0

Table 14. 21 step linear characteristic for SHA-256. There are 45 SS5 local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x0100000a 0x0100000a 0 0 0 0x0100000a 0 0 0

1 0x23510596 0x0a050090 0x0100000a 0 0 0x8a152096 0x0100000a 0 0

2 0x926e15c7 0xc2041880 0x0a050090 0x0100000a 0 0xd10748ae 0x8a152096 0x0100000a 0

3 0x6b6f5fa5 0x22a00008 0xc2041880 0x0a050090 0x0100000a 0xcc401590 0xd10748ae 0x8a152096 0x0100000a

4 0x4bcb749e 0x00035100 0x22a00008 0xc2041880 0x0a050090 0x4bee7c02 0xcc401590 0xd10748ae 0x8a152096

5 0x1b692042 0x8480040c 0x00035100 0x22a00008 0xc2041880 0x2961d0ce 0x4bee7c02 0xcc401590 0xd10748ae

6 0x2c749ed0 0x26422000 0x8480040c 0x00035100 0x22a00008 0xe5117e91 0x2961d0ce 0x4bee7c02 0xcc401590

7 0x78a6949f 0x05014062 0x26422000 0x8480040c 0x00035100 0xa230feee 0xe5117e91 0x2961d0ce 0x4bee7c02

8 0x70cf2020 0 0x05014062 0x26422000 0x8480040c 0xa1108106 0xa230feee 0xe5117e91 0x2961d0ce

9 0x3c408d06 0 0 0x05014062 0x26422000 0x8181446e 0xa1108106 0xa230feee 0xe5117e91

10 0xb375fdee 0 0 0 0x05014062 0x26422000 0x8181446e 0xa1108106 0xa230feee

11 0x023c7a57 0 0 0 0 0x05014062 0x26422000 0x8181446e 0xa1108106

12 0x83a6352d 0 0 0 0 0 0x05014062 0x26422000 0x8181446e

13 0x8480040c 0 0 0 0 0 0 0x05014062 0x26422000

14 0x26422000 0 0 0 0 0 0 0 0x05014062

15 0x05014062 0 0 0 0 0 0 0 0

16-20 0 0 0 0 0 0 0 0 0



Table 15. 21 step linear characteristic for SHA-256. There are 45 GH local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x0002009c 0x0002009c 0 0 0 0x0002009c 0 0 0

1 0xee6bb675 0x80090000 0x0002009c 0 0 0x8cebf037 0x0002009c 0 0

2 0xa91c7e24 0x00201514 0x80090000 0x0002009c 0 0x0426575c 0x8cebf037 0x0002009c 0

3 0xe2c68750 0x42816080 0x00201514 0x80090000 0x0002009c 0x6a7d34c5 0x0426575c 0x8cebf037 0x0002009c

4 0xecac961f 0x4e100262 0x42816080 0x00201514 0x80090000 0x5f324fdf 0x6a7d34c5 0x0426575c 0x8cebf037

5 0x13c4cbce 0x40000200 0x4e100262 0x42816080 0x00201514 0x0096fb20 0x5f324fdf 0x6a7d34c5 0x0426575c

6 0xc742bbcf 0x6c113420 0x40000200 0x4e100262 0x42816080 0x6c3b20b4 0x0096fb20 0x5f324fdf 0x6a7d34c5

7 0x4a23a824 0x04240100 0x6c113420 0x40000200 0x4e100262 0xb872cdb1 0x6c3b20b4 0x0096fb20 0x5f324fdf

8 0x8f8f731c 0 0x04240100 0x6c113420 0x40000200 0xd71d2312 0xb872cdb1 0x6c3b20b4 0x0096fb20

9 0xa701e563 0 0 0x04240100 0x6c113420 0x40000200 0xd71d2312 0xb872cdb1 0x6c3b20b4

10 0x2d32209c 0 0 0 0x04240100 0x6c113420 0x40000200 0xd71d2312 0xb872cdb1

11 0xb5551b71 0 0 0 0 0x04240100 0x6c113420 0x40000200 0xd71d2312

12 0xe50db794 0 0 0 0 0 0x04240100 0x6c113420 0x40000200

13 0x40000200 0 0 0 0 0 0 0x04240100 0x6c113420

14 0x6c113420 0 0 0 0 0 0 0 0x04240100

15 0x04240100 0 0 0 0 0 0 0 0

16-20 0 0 0 0 0 0 0 0 0

Table 16. 22 step linear characteristic for SHA-256. There are 60 SS5 local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x20088104 0x20088104 0 0 0 0x20088104 0 0 0

1 0x7723d081 0x61404100 0x20088104 0 0 0x43677185 0x20088104 0 0

2 0x974e080e 0x10042040 0x61404100 0x20088104 0 0x215bba83 0x43677185 0x20088104 0

3 0xc03afd79 0x05a14180 0x10042040 0x61404100 0x20088104 0x726188f1 0x215bba83 0x43677185 0x20088104

4 0x301bc5d8 0x420111c8 0x05a14180 0x10042040 0x61404100 0xfa63cdf0 0x726188f1 0x215bba83 0x43677185

5 0xa13271fd 0x43008748 0x420111c8 0x05a14180 0x10042040 0xbd64f2ba 0xfa63cdf0 0x726188f1 0x215bba83

6 0xa3795c7f 0x1d044014 0x43008748 0x420111c8 0x05a14180 0x679e6946 0xbd64f2ba 0xfa63cdf0 0x726188f1

7 0x5d086433 0x398a1838 0x1d044014 0x43008748 0x420111c8 0x69ca76a3 0x679e6946 0xbd64f2ba 0xfa63cdf0

8 0xdbcb0f3a 0 0x398a1838 0x1d044014 0x43008748 0xb8c6fb64 0x69ca76a3 0x679e6946 0xbd64f2ba

9 0x702d2d4f 0 0 0x398a1838 0x1d044014 0x7a8a9f70 0xb8c6fb64 0x69ca76a3 0x679e6946

10 0xb5f25131 0 0 0 0x398a1838 0x1d044014 0x7a8a9f70 0xb8c6fb64 0x69ca76a3

11 0xc3975255 0 0 0 0 0x398a1838 0x1d044014 0x7a8a9f70 0xb8c6fb64

12 0x872fbe4f 0 0 0 0 0 0x398a1838 0x1d044014 0x7a8a9f70

13 0x43008748 0 0 0 0 0 0 0x398a1838 0x1d044014

14 0x1d044014 0 0 0 0 0 0 0 0x398a1838

15 0x398a1838 0 0 0 0 0 0 0 0

16-21 0 0 0 0 0 0 0 0 0



Table 17. 22 step linear characteristic for SHA-256. There are 59 GH local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x40200502 0x40200502 0 0 0 0x40200502 0 0 0

1 0x91474f60 0x10034314 0x40200502 0 0 0x280d4a54 0x40200502 0 0

2 0x01ac1d4e 0x0c800345 0x10034314 0x40200502 0 0x1d2c03da 0x280d4a54 0x40200502 0

3 0xc8319061 0x14021803 0x0c800345 0x10034314 0x40200502 0x4d0768e0 0x1d2c03da 0x280d4a54 0x40200502

4 0x41c0f00e 0x12111224 0x14021803 0x0c800345 0x10034314 0x5f493d66 0x4d0768e0 0x1d2c03da 0x280d4a54

5 0x29db56e8 0x41122608 0x12111224 0x14021803 0x0c800345 0x80fd2155 0x5f493d66 0x4d0768e0 0x1d2c03da

6 0xf592f204 0x82031028 0x41122608 0x12111224 0x14021803 0xe61db37a 0x80fd2155 0x5f493d66 0x4d0768e0

7 0xcaaa1ee6 0xa0340814 0x82031028 0x41122608 0x12111224 0x19b2660d 0xe61db37a 0x80fd2155 0x5f493d66

8 0xcb37951b 0 0xa0340814 0x82031028 0x41122608 0xaa994301 0x19b2660d 0xe61db37a 0x80fd2155

9 0xaac397a4 0 0 0xa0340814 0x82031028 0x41122608 0xaa994301 0x19b2660d 0xe61db37a

10 0x8f02dd86 0 0 0 0xa0340814 0x82031028 0x41122608 0xaa994301 0x19b2660d

11 0xbf223e6e 0 0 0 0 0xa0340814 0x82031028 0x41122608 0xaa994301

12 0xe0899ff0 0 0 0 0 0 0xa0340814 0x82031028 0x41122608

13 0x41122608 0 0 0 0 0 0 0xa0340814 0x82031028

14 0x82031028 0 0 0 0 0 0 0 0xa0340814

15 0xa0340814 0 0 0 0 0 0 0 0

16-21 0 0 0 0 0 0 0 0 0

Table 18. 23 step linear characteristic for SHA-256. There are 75 SS5 local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x80018c11 0x80018c11 0 0 0 0x80018c11 0 0 0

1 0xe08ba9dd 0x22c18214 0x80018c11 0 0 0x247da71c 0x80018c11 0 0

2 0x9acf831a 0x29105222 0x22c18214 0x80018c11 0 0xb708f831 0x247da71c 0x80018c11 0

3 0x99b76e84 0x81804506 0x29105222 0x22c18214 0x80018c11 0xf95c13bc 0xb708f831 0x247da71c 0x80018c11

4 0xef3d10f6 0x5217b401 0x81804506 0x29105222 0x22c18214 0x72466d77 0xf95c13bc 0xb708f831 0x247da71c

5 0xf2ce8282 0x5421e110 0x5217b401 0x81804506 0x29105222 0x5d3f5ef7 0x72466d77 0xf95c13bc 0xb708f831

6 0x15e6cb63 0x84815301 0x5421e110 0x5217b401 0x81804506 0x65882d39 0x5d3f5ef7 0x72466d77 0xf95c13bc

7 0xee97bfc1 0x64196841 0x84815301 0x5421e110 0x5217b401 0x4dd8ba8f 0x65882d39 0x5d3f5ef7 0x72466d77

8 0x6d60f25f 0 0x64196841 0x84815301 0x5421e110 0xa83a984b 0x4dd8ba8f 0x65882d39 0x5d3f5ef7

9 0x4e6744df 0 0 0x64196841 0x84815301 0x30388951 0xa83a984b 0x4dd8ba8f 0x65882d39

10 0xbf10f8de 0 0 0 0x64196841 0x84815301 0x30388951 0xa83a984b 0x4dd8ba8f

11 0x5b6b267a 0 0 0 0 0x64196841 0x84815301 0x30388951 0xa83a984b

12 0x2db30d74 0 0 0 0 0 0x64196841 0x84815301 0x30388951

13 0x5421e110 0 0 0 0 0 0 0x64196841 0x84815301

14 0x84815301 0 0 0 0 0 0 0 0x64196841

15 0x64196841 0 0 0 0 0 0 0 0

16-22 0 0 0 0 0 0 0 0 0



Table 19. 23 step linear characteristic for SHA-256. There are 79 SS5 local collisions.

Step i ∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x06410482 0x06410482 0 0 0 0x06410482 0 0 0

1 0x5a5956e6 0x4310a0e6 0x06410482 0 0 0xe282dbd7 0x06410482 0 0

2 0x936b23d5 0x22053aa0 0x4310a0e6 0x06410482 0 0xf7709310 0xe282dbd7 0x06410482 0

3 0xc4c16eb1 0x9421149d 0x22053aa0 0x4310a0e6 0x06410482 0x5d4bca94 0xf7709310 0xe282dbd7 0x06410482

4 0x50e078c8 0xb50c2248 0x9421149d 0x22053aa0 0x4310a0e6 0xf6fbb4b5 0x5d4bca94 0xf7709310 0xe282dbd7

5 0xd0d250ef 0x01606240 0xb50c2248 0x9421149d 0x22053aa0 0x4dff4081 0xf6fbb4b5 0x5d4bca94 0xf7709310

6 0xce2982f4 0x4036003e 0x01606240 0xb50c2248 0x9421149d 0xf1e22908 0x4dff4081 0xf6fbb4b5 0x5d4bca94

7 0x6cb9d29e 0x8bc0502c 0x4036003e 0x01606240 0xb50c2248 0x561e3c0e 0xf1e22908 0x4dff4081 0xf6fbb4b5

8 0xe3a3f08f 0 0x8bc0502c 0x4036003e 0x01606240 0x17d8da6e 0x561e3c0e 0xf1e22908 0x4dff4081

9 0x540feff8 0 0 0x8bc0502c 0x4036003e 0x01606240 0x17d8da6e 0x561e3c0e 0xf1e22908

10 0x09d6a48d 0 0 0 0x8bc0502c 0x4036003e 0x01606240 0x17d8da6e 0x561e3c0e

11 0xb3d6fdee 0 0 0 0 0x8bc0502c 0x4036003e 0x01606240 0x17d8da6e

12 0x404eb561 0 0 0 0 0 0x8bc0502c 0x4036003e 0x01606240

13 0x01606240 0 0 0 0 0 0 0x8bc0502c 0x4036003e

14 0x4036003e 0 0 0 0 0 0 0 0x8bc0502c

15 0x8bc0502c 0 0 0 0 0 0 0 0

16-22 0 0 0 0 0 0 0 0 0

Table 20. Differential path with the message pair given in [12] for 18-step collision. The expected differentials at
step 4 are ∆a4 = ∆e4 = 0 and the difference of hash value after 18 steps is expected to be zero. The last two
message words for both the messages are computed using the message expansion of SHA-256.

Step i Wi W ′

i
∆Wi ∆ai ∆bi ∆ci ∆di ∆ei ∆fi ∆gi ∆hi

0 0x02679857 0x02679857 0 0 0 0 0 0 0 0 0

1 0x0183b9a1 0x0183b9a1 0 0 0 0 0 0 0 0 0

2 0x005de4f5 0x005de4f5 0 0 0 0 0 0 0 0 0

3 0x0266ee0c 0x8266ee0c 0x80000000 0x80000000 0 0 0 0 0 0 0x8000000

4 0x0d1442f0 0x2f0040b0 0x22140240 0xcc680000 0x80000000 0 0 0x646c0200 0x80000000 0 0

5 0x06373a71 0x44b22ae9 0x42851098 0xe8c39561 0xcc680000 0x80000000 0 0x7b4d1f1e 0x646c0200 0x80000000 0

6 0xc445dec2 0xc445dec2 0 0xcf5bccf4 0xe8c39561 0xcc680000 0x80000000 0x1fb5af8e 0x7b4d1f1e 0x646c0200 0x80000000

7 12542ec1 0x92542ec1 0x80000000 0x9da5a2ec 0xcf5bccf4 0xe8c39561 0xcc680000 0xb44d09aa 0x1fb5af8e 0x7b4d1f1e 0x646c0200

8 0982b61a 0x2b96b45a 0x22140240 0x75cd1d37 0x9da5a2ec 0xcf5bccf4 0xe8c39561 0xde12fed5 0xb44d09aa 0x1fb5af8e 0x7b4d1f1e

9 205a614c 0x205a614c 0 0x3807615e 0x75cd1d37 0x9da5a2ec 0xcf5bccf4 0xebbb4f53 0xde12fed5 0xb44d09aa 0x1fb5af8e

10 2495a094 0x2495a094 0 0x3a261824 0x3807615e 0x75cd1d37 0x9da5a2ec 0x733615ba 0xebbb4f53 0xde12fed5 0xb44d09aa

11 166ae4ac 0x966ae4ac 0x80000000 0x311882ec 0x3a261824 0x3807615e 0x75cd1d37 0x62387a46 0x733615ba 0xebbb4f53 0xde12fed5

12 15917909 0x15917909 0 0x63a304ec 0x311882ec 0x3a261824 0x3807615e 0x060363a0 0x62387a46 0x733615ba 0xebbb4f53

13 1178f05a 0x1178f05a 0 0x99af8895 0x63a304ec 0x311882ec 0x3a261824 0xd49164ce 0x060363a0 0x62387a46 0x733615ba

14 0aae5a46 0x0aae5a46 0 0xe733bc41 0x99af8895 0x63a304ec 0x311882ec 0x655a938b 0xd49164ce 0x060363a0 0x62387a46

15 178058c6 0x178058c6 0 0x2b3945ae 0xe733bc41 0x99af8895 0x63a304ec 0x24ae94fa 0x655a938b 0xd49164ce 0x060363a0

16 0xb586995e 0xb586995e 0 0x1a1d1b84 0x2b3945ae 0xe733bc41 0x99af8895 0x60127122 0x24ae94fa 0x655a938b 0xd49164ce

17 0xe0cdca9b 0xe0cdca9b 0 0xc2101029 0x1a1d1b84 0x2b3945ae 0xe733bc41 0x9ffdfb0a 0x60127122 0x24ae94fa 0x655a938b

Table 21. Modified IV for the 22-step pseudo collision from [12]. IVnew = IVstandard ⊕ IVcorr. The two messages
W1 and W2 use different IV’s. (W1, IVnew) and (W2, IVnew ⊕ ∆(IV )) are expected to collide after 22 steps.

registers a b c d e f g h

IVstandard 0x6a09e667 0xbb67ae85 0x3c6ef372 0xa54ff53a 0x510e527f 0x9b05688c 0x1f83d9ab 0x5be0cd19

IVCorr 0xdcbd1a68 0x0 0x0 0x00000080 0x60810000 0x0 0x0 0x0

IVnew 0xb6b4fc0f 0xbb67ae85 0x3c6ef372 0xa54ff5ba 0x318f527f 0x9b05688c 0x1f83d9ab 0x5be0cd19

∆(IV ) 0x00000200 0x0 0x0 0x50090088 0x0 0x0 0x20880000 0x10080080


	Attacking Reduced Round SHA-256

