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Abstract

In this note we give a precise formulation of “resistance to arbitrary side information” and show
that several relaxations of differential privacy imply it.The formulation follows the ideas originally
due to Dwork and McSherry, stated implicitly in [4]. This is,to our knowledge, the first place such a
formulation appears explicitly. The proof that relaxed definitions (and hence the schemes of [5, 10, 9])
satisfy the Bayesian formulation is new.

1 Introduction

Privacy is an increasingly important aspect of data publishing. Reasoning about privacy, however, is fraught
with pitfalls. One of the most significant is the auxiliary information (also called external knowledge, back-
ground knowledge, or side information) that an adversary gleans from other channels such as the web, public
records, or domain knowledge. Schemes that retain privacy guarantees in the presence of independent re-
leases are said tocompose securely. The terminology, borrowed from cryptography (which borrowed, in
turn, from software engineering), stems from the fact that schemes which compose securely can be designed
in a stand-alone fashion without explicitly taking other releases into account. Thus, understanding inde-
pendent releases is essential for enabling modular design.In fact, one would like schemes that compose
securely not only with independent instances of themselves, but witharbitrary external knowledge.

Certain randomization-based notions of privacy (such as differential privacy [6]) are believed to com-
pose securely even in the presence of arbitrary side information. In this note we give a precise formulation
of this statement. First, we provide a Bayesian formulationof differential privacy which makes its resistance
to arbitrary side information explicit. Second, we prove that the relaxed definitions of [5, 9] still imply the
Bayesian formulation. The proof is non-trivial, and relieson the “continuity” of Bayes’ rule with respect
to certain distance measures on probability distributions. Our result means that the recent techniques men-
tioned above [5, 2, 10, 9] can be used modularly with the same sort of assurances as in the case of strictly
differentially-private algorithms.

1.1 Differential Privacy

Databases are assumed to be vectors inDn for some domainD. The Hamming distanced(x, y) onDn is
the number of positions in which the vectorsx, y differ. We letPr[·] andE[·] denote probability and expec-
tation, respectively. Given a randomized algorithmA, we letA(x) be the random variable (or, probability
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distribution on outputs) corresponding to inputx. If P andQ are probability measure on a discrete spaceD,
thestatistical difference(a.k.a.total variation distance) betweenP andQ is defined as:

SD (P, Q) = max
S⊂D
| P [S]−Q[S)|.

Definition 1.1 (ǫ-differential privacy [6]). A randomized algorithmA is said to beǫ-differentialy private if
for all databasesx, y ∈ Dn at Hamming distance at most 1, and for all subsetsS of outputs

Pr[A(x) ∈ S] ≤ eǫ Pr[A(y) ∈ S]. (1)

This definition states that changing a single individual’s data in the database leads to a small change in
thedistribution on outputs. Unlike more standard measures of distance such as total variation (also called
statistical difference) or Kullback-Leibler divergence,the metric here is multiplicative and so even very
unlikely events must have approximately the same probability under the distributionsA(x) andA(y). This
condition was relaxed somewhat in other papers [3, 7, 1, 5, 2,10, 9]. The schemes in all those papers,
however, satisfy the following relaxation [5]:

Definition 1.2 ((ǫ, δ)-differential privacy). A randomized algorithmA is (ǫ, δ)-differentially private if for all
databasesx, y ∈ Dn that differ in one entry, and for all subsetsS of outputs,Pr[A(x) ∈ S] ≤ eǫ Pr[A(y) ∈
S] + δ .

The relaxations used in [7, 1, 9] were in fact stronger (i.e.,less relaxed) than Definition 1.1. One
consequence of the results below is that all the definitions are equivalent up to polynomial changes in the
parameters, and so given the space constraints we work only with the simplest notion.1

2 Semantics of Differential Privacy

There is a crisp, semantically-flavored interpretation of differential privacy, due to Dwork and McSherry,
and explained in [4]:Regardless of external knowledge, an adversary with accessto the sanitized database
draws the same conclusions whether or not my data is includedin the original data. (the use of the term
“semantic” for such definitions dates back to semantic security of encryption [8]). In this section, we develop
a formalization of this interpretation and show that the definition of differential privacy used in the line of
work this paper follows ([3, 7, 1, 6]) is essential in order tosatisfy the intuition.

We require a mathematical formulation of “arbitrary external knowledge”, and of “drawing conclu-
sions”. The first is captured via aprior probability distributionb onDn (b is a mnemonic for “beliefs”).
Conclusions are modeled by the corresponding posterior distribution: given a transcriptt, the adversary
updates his belief about the databasex using Bayes’ rule to obtain a posteriorb̄:

b̄[x|t] =
Pr[A(x) = t]b[x]

∑

y Pr[A(y) = t]b[y]
. (2)

Note that in an interactive scheme, the definition ofA depends on the adversary’s choices; for legibility
we omit the dependence on the adversary in the notation. Also, for simplicity, we discuss only discrete
probability distributions. Our results extend directly tothe interactive, continuous case.

1That said, some of the other relaxations, such as probabilistic differential privacy from [9], might lead to better parameters in
Theorem 2.4.
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For a databasex, definex−i to be the same vector where positioni has been replaced by some fixed,
default value inD. Any valid value inD will do for the default value. We can then imaginen + 1 related
games, numbered 0 throughn. In Game 0, the adversary interacts withA(x). This is the interaction that
actually takes place between the adversary and the randomized algorithmA. In Gamei (for 1 ≤ i ≤ n), the
adversary interacts withA(x−i). Gamei describes the hypothetical scenario where personi’s data is not
included.

For a particular belief distributionb and transcriptt, we can then definen + 1 a posterioridistributions
b̄0, . . . , b̄n, where thēb0 is the same as̄b (defined in 2) and, for largeri, thei-th belief distribution is defined
with respect to Gamei:

b̄i[x|t] =
Pr[A(x−i) = t]b[x]

∑

y Pr[A(y−i) = t]b[y]
.

Given a particular transcriptt, the privacy has been breached if the adversary would draw different
conclusions about the world and, in particular, about a person i depending on whether or noti’s data was
used. It turns out that the exact measure of “different” heredoes not matter much. We chose the weakest
notion that applies, namely statistical difference. We saythere is a problem for transcriptt if the distributions
b̄0[·|t] andb̄i[·|t] are far apart in statistical difference. We would like to avoid this happening for any potential
participant. This is captured by the following definition.

Definition 2.1 (ǫ-semantic privacy). A randomized algorithmA is said to beǫ-semantically private if for all
belief distributionsb onDn, for all databasesx ∈ Dn, for all possible transcriptst, and for alli = 1, . . . , n:

SD
(

b̄0[x|t] , b̄i[x|t]
)

≤ ǫ.

Dwork and McSherry proposed the notion of semantic privacy,informally, and observed that it is equiv-
alent to differential privacy. We now formally show that thenotions ofǫ-differential privacy (Definition 1.1)
andǫ-semantic privacy (Definition 2.1) are very closely related.

Theorem 2.2. (Dwork-McSherry)ǫ-differential privacy implies̄ǫ-semantic privacy, wherēǫ = eǫ − 1. ǭ/2-
semantic privacy implies2ǫ-differential privacy.

We extend the previous Bayesian formulation to capture situations where bad events can occur with
some negligible probability (say,δ). We relaxǫ-semantic privacy to(ǫ, δ)-semantic privacy and show that it
is closely related to(ǫ, δ)-differential privacy.

Definition 2.3 ((ǫ, δ)-semantic privacy). A randomized algorithm is(ǫ, δ)-semantically private if for all
belief distributionsb onDn, with probability at least1− δ over pairs(x, t), where the databasex is drawn
according tob, and transcriptt is drawn according toA(x), and for all i = 1, . . . , n:

SD
(

b̄0[x|t] , b̄i[x|t]
)

≤ ǫ.

This definition is only interesting whenǫ > δ; otherwise just use statistical difference2δ and leave
ǫ = 0. Below, we assumeǫ > δ. In fact, in many of the proofs we will be assuming thatδ is a negligible
function (ofO(1/n2)). In Appendix A, we provide another related definition of(ǫ, δ)-semantic privacy.

Theorem 2.4(Main Theorem). (ǫ, δ)-differential privacy implies(ǫ′, δ′)-semantic privacy for arbitrary (not
necessarily informed) beliefs withǫ′ = e3ǫ− 1+ 2

√
δ andδ′ = O(n

√
δ). (ǭ/2, δ)-semantic privacy implies

(2ǫ, 2δ)-differential privacy with̄ǫ = eǫ − 1.
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3 Some Properties of(ǫ, δ)-Differential Privacy

We now describe some properties of(ǫ, δ)-differential privacy that would be useful later on. This section
could be of independent interest. Instead of restricting ourselves to outputs of randomized algorithms, we
consider a more general definition of(ǫ, δ)-differential privacy.

Definition 3.1 ((ǫ, δ)-indistinguishability). Two random variablesX,Y taking values in a setD are (ǫ, δ)-
indistinguishable if for all setsS ⊆ D,

Pr[X ∈ S] ≤ eǫ Pr[Y ∈ S] + δ and Pr[Y ∈ S] ≤ eǫ Pr[X ∈ S] + δ.

We will also be using a simpler variant of(ǫ, δ)-indistinguishability, which we callpoint-wise(ǫ, δ)-
indistinguishability. Claim 3.3 (Parts 1 and 2) shows that(ǫ, δ)-indistinguishability and point-wise(ǫ, δ)-
indistinguishability are almost equivalent.

Definition 3.2 (Point-wise(ǫ, δ)-indistinguishability). Two random variablesX andY are point-wise(ǫ, δ)-
indistinguishable if with probability at least1− δ overa drawn from eitherX or Y , we have:

e−ǫ Pr[Y = a] ≤ Pr[X = a] ≤ eǫ Pr[Y = a].

Claim 3.3. The following are useful facts about indistinguishability.2

1. If X,Y are point-wise(ǫ, δ)-indistinguishable then they are(ǫ, δ)-indistinguishable.

2. If X,Y are (ǫ, δ)-indistinguishable then they are point-wise(2ǫ, 2δ
eǫǫ)-indistinguishable.

3. Let X be a random variable onD. Suppose that for everya ∈ D, A(a) andA′(a) are (ǫ, δ)-
indistinguishable (for some randomized algorithmsA and A′). Then the pairs(X,A(X)) and
(X,A′(X)) are (ǫ, δ)-indistinguishable.

4. LetX be a random variable. Suppose with probability at least1− δ overa← X (a drawn fromX),
A(a) andA′(a) are (ǫ, δ)-indistinguishable (for some randomized algorithmsA andA′). Then the
pairs (X, A(X)) and(X, A′(X)) are (ǫ, 2δ)-indistinguishable.

5. If X,Y are (ǫ, δ)-indistinguishable andG is some randomized algorithm, thenG(X) andG(Y ) are
(ǫ, δ)-indistinguishable.

6. If X,Y are (ǫ, δ)-indistinguishable, thenSD (X,Y ) ≤ ǭ + δ, whereǭ = eǫ − 1.

Proof of Part 1.Let Bad be the set ofbadvalues ofa, that is

Bad = {a : Pr[X = a] < e−ǫ Pr[Y = a] or Pr[X = a] > eǫ Pr[Y = a]}.

By definition,Pr[X ∈ Bad] ≤ δ. Now consider any setS of outcomes.

Pr[X ∈ S] ≤ Pr[X ∈ S \Bad] + Pr[X ∈ Bad].

The first term is at mosteǫ Pr[Y ∈ S \ Bad] ≤ eǫ Pr[Y ∈ S]. Hence,Pr[X ∈ S] ≤ eǫ Pr[Y ∈ S] + δ, as
required. The case ofPr[Y ∈ S] is symmetric. Therefore,X andY are(ǫ, δ)-indistinguishable.

2A few similar properties relating to statistical difference were shown in [11]. Note that(ǫ, δ)-indistinguishability is not a
metric, unlike statistical difference. But it does inheritsome nice metric like properties.

4



Proof of Part 2.Let S = {a : Pr[X = a] > e2ǫ Pr[Y = a]}. Then,

Pr[X ∈ S] > e2ǫ Pr[Y ∈ S] > eǫ(1 + ǫ) Pr[Y ∈ S]⇒ Pr[X ∈ S]− eǫ Pr[Y ∈ S] > ǫeǫ Pr[Y ∈ S].

Since,Pr[X ∈ S] − eǫ Pr[Y ∈ S] ≤ δ, we mush haveǫeǫ Pr[Y ∈ S] < δ. A similar argument when
considering the setS′ = {a : Pr[X = a] < e−2ǫ Pr[Y = a]} shows thatǫeǫ Pr[Y ∈ S′] < δ. Putting both
arguments together,Pr[Y ∈ S ∪ S′] ≤ 2δ/(ǫeǫ). Therefore, with probability at least1− 2δ/(eǫǫ) for anya
drawn from eitherX or Y we have:e−2ǫ Pr[Y = a] ≤ Pr[X = a] ≤ e2ǫ Pr[Y = a].

Proof of Part 3. Let (X,A(X)) and (X,A′(X)) be random variables onD × E. Let S be an arbitrary
subset ofD × E and, for everya ∈ D, defineSa = {b ∈ E : (a, b) ∈ S}.

Pr[(X,A(X)) ∈ S] ≤
∑

a∈D

Pr[A(X) ∈ Sa : X = a] Pr[X = a]

<
∑

a∈D

(eǫ Pr[A′(X) ∈ Sa : X = a] + δ) Pr[X = a]

< δ + eǫ Pr[(X,A′(X)) ∈ S].

By symmetry, we also havePr[(X,A′(X)) ∈ S] < δ + Pr[(X,A(X)) ∈ S]. SinceS was arbitrary,
(X,A(X)) and(X,A′(X)) are(ǫ, δ)-indistinguishable.

Proof of Part 4.Let (X,A(X)) and(X,A′(X)) be random variables onD × E. Let T ⊂ D be the set of
a’s for whichA(a) ≤ eǫA′(a). Now, letS be an arbitrary subset ofD × E and, for everya ∈ D, define
Sa = {b ∈ E : (a, b) ∈ S}.

Pr[(X,A(X)) ∈ S] ≤ Pr[X /∈ T ] +
∑

a∈T

Pr[A(X) ∈ Sa : X = a] Pr[X = a]

< δ +
∑

a∈T

(eǫ Pr[A′(X) ∈ Sa : X = a] + δ) Pr[X = a]

< 2δ + eǫ Pr[(X,A′(X)) ∈ S].

By symmetry, we also havePr[(X,A′(X)) ∈ S] < 2δ + Pr[(X,A(X)) ∈ S]. SinceS was arbitrary,
(X,A(X)) and(X,A′(X)) are(ǫ, 2δ)-indistinguishable.

Proof of Part 5. Let D be some domain. A randomized procedureG is a pairG = (g,R), whereR is a
random variable on some setE andg is a function fromD × E to any setF . If X is a random variable on
D, thenG(X) denotes the random variable onF obtained by samplingX ⊗R and applyingg to the result,
where the symbol⊗ denotes the tensor product. Now for any setS ⊂ F ,

Pr[G(X) ∈ S]− eǫ Pr[G(Y ) ∈ S]

= Pr[g(X ⊗R) ∈ S]− eǫ Pr[g(Y ⊗R) ∈ S]

= Pr[X ⊗R ∈ g−1(S)]− eǫ Pr[Y ⊗R ∈ g−1(S)]

≤
∑

r∈E

Pr[X ∈ Sr : R = r] Pr[R = r]− eǫ
∑

r∈E

Pr[Y ∈ Sr : R = r] Pr[R = r]

=
∑

r∈E

(Pr[X ∈ Sr : R = r]− eǫ Pr[Y ∈ Sr : R = r]) Pr[R = r]

≤
∑

r∈E

δ Pr[R = r] = δ.
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By symmetry, we also havePr[G(Y ) ∈ S]− eǫ Pr[G(X) ∈ S] ≤ δ. SinceS was arbitrary,G(X) andG(Y )
are(ǫ, δ)-indistinguishable.

Proof of Part 6.Let X andY be random variables onD. By definitionSD (X,Y ) = maxS⊂D |Pr[X ∈
S]− Pr[Y ∈ S]|. For any setS ⊂ D,

2|Pr[X ∈ S]− Pr[Y ∈ S]|
= |Pr[X ∈ S]− Pr[Y ∈ S]|+ |Pr[X /∈ S]− Pr[Y /∈ S]|

=

∣

∣

∣

∣

∣

∑

c∈S

(Pr[X = c]− Pr[Y = c])

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

c/∈S

(Pr[X = c]− Pr[Y = c])

∣

∣

∣

∣

∣

≤
∑

c∈S

|Pr[X = c]− Pr[Y = c]|+
∑

c/∈S

|Pr[X = c]− Pr[Y = c]|

=
∑

c∈D

|Pr[X = c]− Pr[Y = c]|

≤
∑

c∈D

(eǫ Pr[Y = c] + δ − Pr[Y = c]) +
∑

c∈D

(eǫ Pr[X = c] + δ − Pr[X = c])

= 2δ + (eǫ − 1)
∑

c∈D

Pr[Y = c] + (eǫ − 1)
∑

c∈D

Pr[X = c]

= 2(eǫ − 1) + 2δ = 2ǭ + 2δ.

This implies that|Pr[X ∈ S]− Pr[Y ∈ S]| ≤ ǭ + δ. Since the above inequality holds for everyS ⊂ D, it
immediately follows that the statistical difference betweenX andY is at most̄ǫ + δ.

4 Proofs of Theorems 2.2 and 2.4

This section is devoted to proving Theorems 2.2 and 2.4. For convenience we restate the theorem statements.

Theorem 2.2 (Dwork-McSherry). ǫ-differential privacy implies̄ǫ-semantic privacy, wherēǫ = eǫ − 1.
ǭ/2-semantic privacy implies2ǫ-differential privacy.

Proof. Consider any databasex. Consider belief distributions̄b0[x|t] andb̄i[x|t]. differential privacy implies
that the ratio of̄b0[x|t] and b̄i[x|t] is within e±ǫ on every point, i.e., for everyi and for every possible
transcriptt:

e−ǫb̄i[x|t] ≤ b̄0[x|t] ≤ eǫb̄i[x|t].
In the remainder of the proof we fixi and t. Substitutingδ = 0 in Claim 3.3 (part 6), implies that
SD

(

b̄0[x|t], b̄i[x|t]
)

= ǭ.
To see that̄ǫ-semantic privacy implies2ǫ-differential privacy, consider a belief distributionb which is

uniform over two databasesx, y which are at Hamming distance of one. Leti be the position in whichx
andy differ. The distribution̄bi[·|t] will be uniform overx andy since they induce the same distribution on
transcripts in Gamei. This means that̄b0[·|t] will assign probabilities1/2± ǭ/2 to each of the two databases
(follows from ǫ-semantic privacy definition). Working through Bayes’ ruleshows that

Pr[A(x) = t]

Pr[A(y) = t]
=

Pr[b̄0[x|t] = x]

Pr[b̄0[y|t] = x]
≤

1
2 (1 + ǭ)
1
2 (1− ǭ)

≤ e2ǫ.
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This implies thatA is point-wise2ǫ-differentialy private. Using Claim 3.3 (part 1), implies thatA is 2ǫ-
differentialy private.

We will use the following lemma to establish connections between(ǫ, δ)-differential privacy and(ǫ, δ)-
semantic privacy. LetB|A=a denote the conditional distribution ofB given thatA = a for jointly distributed
random variablesA andB.

Lemma 4.1(Main Lemma). Suppose two pairs of random variables(X,A(X)) and(Y,A′(Y )) are (ǫ, δ)-
differentialy private (for some randomized algorithmsA andA′). Then with probability at least1 − δ′′

over t ← A(X) (equivalentlyt ← A′(Y )), the random variablesX|A(X)=t and Y |A′(Y )=t are (ǫ̂, δ̂)-

differentialy private witĥǫ = 3ǫ, δ̂ = 2
√

δ, andδ′′ =
√

δ + 2δ
ǫeǫ = O(

√
δ).

Proof. Let (X,A(X)) and(Y,A′(Y )) be random variables onD × E. The first observation is thatA(X)
andA(Y ) are(ǫ, δ)-differentialy private. To prove that consider any setP ∈ E,

Pr[A(X) ∈ P ] = Pr[(X,A(X)) ∈ D × P ] ≤ eǫ Pr[(Y,A′(Y )) ∈ D × P ] + δ

= eǫ Pr[A′(Y ) ∈ P ] + δ.

SinceP was arbitrary,A(X) andA′(Y ) are(ǫ, δ)-differentialy private. In the remainder of the proof, we
will use the notationX|t for X|A(X)=t andY |t for Y |A′(Y )=t. Define,

Bad0 = {a : e−2ǫ Pr[A′[Y ] = a] > Pr[A(X) = a] > e2ǫ Pr[A′[Y ] = a]}
Bad1 = {a : ∃S ⊂ D such thatPr[X|a ∈ S] > eǫ̂ Pr[Y |a ∈ S] + δ̂}
Bad2 = {a : ∃S ⊂ D such thatPr[Y |a ∈ S] > eǫ̂ Pr[X|a ∈ S] + δ̂}.

We need an upper bound for the probabilitiesPr[A(X) ∈ Bad1 ∪Bad2] andPr[A′(Y ) ∈ Bad1 ∪ Bad2].
We know from Claim 3.3 (part 2), that

Pr[A(X) ∈ Bad0] ≤
2δ

ǫeǫ
and Pr[A′(Y ) ∈ Bad0] ≤

2δ

ǫeǫ
.

Note that from the initial observationA(X) andA′(Y ) are(ǫ, δ)-differentialy private, therefore the condi-
tion required for applying Claim 3.3 (part 2) holds. Now define,

Bad′1 = Bad1 \Bad0 and Bad′2 = Bad2 \Bad0.

For eacha ∈ Bad′1 andT ⊂ D × E, defineSa = {b ∈ D : (b, a) ∈ T}. DefineT1 = Sa ×
⋃

a∈Bad′
1

{a}.

Pr[(X,A(X)) ∈ T1] =
∑

a∈Bad′
1

Pr[X ∈ Sa : A(X) = a] Pr[A(X) = a]

>
∑

a∈Bad′
1

(eǫ̂ Pr[Y ∈ Sa : A′(Y ) = a] + δ̂) Pr[A(X) = a]

=
∑

a∈Bad′
1

eǫ̂ Pr[Y ∈ Sa : A′(Y ) = a] Pr[A(X) = a] + δ̂
∑

a∈Bad′
1

Pr[A(X) = a]

=
∑

a∈Bad′
1

e3ǫ Pr[Y ∈ Sa : A′(Y ) = a]e−2ǫ Pr[A′(Y ) = a] + δ̂ Pr[A(X) ∈ Bad′1]

= eǫ Pr[(Y,A′(Y )) ∈ T1] + δ̂ Pr[A(X) ∈ Bad′1].
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The inequality follows because of the definition ofBad′1. By (ǫ, δ)-differential privacy,Pr[(X,A(X)) ∈
T1] ≤ eǫ Pr[(Y,A(X)) ∈ T1] + δ. Therefore,

δ̂ Pr[A(X) ∈ Bad′1] ≤ δ ⇒ Pr[A(X) ∈ Bad′1] ≤ δ/δ̂.

Similarly, Pr[A(X) ∈ Bad′2] ≤ δ/δ̂. Finally,

Pr[A(X) ∈ Bad1 ∪Bad2] ≤ Pr[A(X) ∈ Bad0] + Pr[A(X) ∈ Bad′1] + Pr[A(X) ∈ Bad′2]

=
2δ

ǫeǫ
+

δ

δ̂
+

δ

δ̂
=

2δ

ǫeǫ
+
√

δ.

By symmetry, we also havePr[A′(Y ) ∈ Bad1 ∪ Bad2] ≤ 2δ
ǫeǫ +

√
δ. Therefore, with probability at least

1− δ′′, X|t andY |t are(ǫ̂, δ̂)-differentialy private.

The following corollary follows by using the above proposition (with Y = X) in conjunction with
Claim 3.3 (part 6).

Corollary 4.2. Let (X,A(X)) and (X,A′(X)) be (ǫ, δ)-differentialy private. Then, with probability at
least1 − δ′′ over t ← A(X) (equivalentlyt ← A′(X)), the statistical difference betweenX|A(X)=t and

X|A′(X)=t is at mosteǫ̂ − 1 + δ̂ with ǫ̂ = 3ǫ, δ̂ = 2
√

δ, andδ′′ = O(
√

δ).

Theorem 2.4. (ǫ, δ)-differential privacy implies(ǫ′, δ′)-semantic privacy for arbitrary (not necessarily in-
formed) beliefs withǫ′ = e3ǫ − 1 + 2

√
δ and δ′ = O(n

√
δ). (ǭ/2, δ)-semantic privacy implies(2ǫ, 2δ)-

differential privacy with̄ǫ = eǫ − 1.

Proof. Let A be a(ǫ, δ)-differentialy private algorithm. Letb be any belief distribution. From Claim 3.3
(part 3), we know that(b,A(b)) and (b,Ai(b)) are (ǫ, δ)-differentialy private. Letδ′′ = O(

√
δ). From

Corollary 4.2, we get that with probability at least1 − δ′′ overt← A(b), the statistical difference between
b|A(b)=t andb|Ai(b)=t is at mostǫ′. Therefore, for anyx ← b, with probability at least(1 − δ′′) over t ←
A(x), SD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′. Taking union bound over all coordinatesi, implies that for anyx← b
with probability at least1−nδ′′ overt← A(b), for all i = 1, . . . , n, we haveSD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′.
Therefore,A satisfies(ǫ′, δ′)-semantic privacy forb. Sinceb was arbitrary, we get that (ǫ, δ)-differential
privacy implies(ǫ′, δ′)-semantic privacy.

To see that(ǭ/2, δ)-semantic privacy implies(2ǫ, 2δ)-differential privacy, consider a belief distribution
b which is uniform over two databasesx, y which are at Hamming distance of one. The proof idea is same
as in Theorem 2.2. Leti be the position in whichx andy differ.

Let Ā be an algorithm that with probability1/2 draws an output fromA(x) and with probability1/2
draws an output fromA(y). Consider a transcriptt drawn fromĀ. The distribution̄bi[·|t] will be uniform
overx andy since they induce the same distribution on transcripts in Game i. This means that with prob-
ability at least1 − δ over t ← Ā, b̄0[·|t] will assign probabilities1/2 ± ǭ/2 to each of the two databases.
Working through Bayes’ rule as in Theorem 2.2 shows thatĀ is point-wise(2ǫ, δ)-differentialy private (with
probability at least at least1 − 2δ of t ← A(x), e−2ǫ Pr[A(y) = t] ≤ Pr[A(x) = t] ≤ e2ǫ Pr[A(y) = t]).
Therefore, with probability at least1−δ of t← Ā, e−2ǫ Pr[A(y) = t] ≤ Pr[A(x) = t] ≤ e2ǫ Pr[A(y) = t].
Similarly, for t ← A(y). This implies thatA is point-wise(2ǫ, 2δ)-differentialy private. Using Claim 3.3
(part 1), implies thatA is (2ǫ, 2δ)-differentialy private.
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5 Discussion and Consequences

Theorem 2.4 states that the relaxations notions of differential privacy used in some previous work still imply
privacy in the face of arbitrary side information. This isnot the case forall possible relaxations, even
very natural ones. For example, if one replaced the multiplicative notion of distance used in differential
privacy with total variation distance, then the following “sanitizer” would be deemed private: choose an
index i ∈ {1, . . . , n} uniformly at random and publish the entire record of individual i together with his
or her identity (example 2 in [6]). Such a “sanitizer” would not be meaningful at all, regardless of side
information.

Theorems 2.4 and A.3 give some qualitative improvements over existing security statements. Theorem
A.3 implies that the claims of [3, 7, 1] can be strengthened tohold for all predicates of the input simul-
taneously (a switch in the order of quantifiers). The strengthening does come at some loss in parameters
sinceδ is increased. This incurs a factor of 2 inlog

(

1
δ

)

, or a factor of
√

2 in the standard deviation. More
significantly, Theorem 2.4 shows that noise processes with negligible probability of bad events have nice
differential privacy guarantees even for adversaries who are not necessarily informed. There is a hitch how-
ever only adversaries whose beliefs somehow represent reality, i.e. for whom the real database is somehow
“representative” of the adversary’s view can be said to learn nothing.

Finally, the techniques used to prove Theorem 2.4 can also beused to analyze schemes which do not
provide privacy forall pairs of neighboring databasesx andy, but rather only formostsuch pairs (remember
that neighboring databases are the ones that differ in one entry). Specifically, it is sufficient that those
databases where the “differential privacy” condition fails occur only with small probability.

Theorem 5.1. LetA be a randomized algorithm. Let

E = {x : ∀ neighborsy of x,A(x) andA(y) are (ǫ, δ)-differentialy private}.
ThenA satisfies(ǫ′, δ′)-semantic privacy for any belief distributionb such thatb[E ] = Prx←b[x ∈ E ] ≥ 1−δ
with ǫ′ = e3ǫ − 1 + 2

√
δ andδ′ = O(n

√
δ).

Proof. Let b be a belief distribution withb[E ] ≥ 1 − δ. Let δ′′ = O(
√

δ). From Claim 3.3 (part 4),
we know that(b,A(b)) and (b,Ai(b)) are (ǫ, 2δ)-differentialy private. From Corollary 4.2, we get that
with probability at least1 − δ′′ over t ← A(b), the statistical difference betweenb|A(b)=t and b|Ai(b)=t

is at mostǫ′. Therefore, with probability at least(1 − δ′′) over pairs(x, t) where x ← b and t ←
A(x), SD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′. Taking union bound over all coordinatesi, implies that with prob-
ability at least1 − nδ′′ over pairs(x, t) wherex ← b and t ← A(x), for all i = 1, . . . , n, we have
SD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′. Therefore,A satisfies(ǫ′, δ′)-semantic privacy for belief distributionb.

Let LSf (·) denote the local sensitivity of functionf (defined in [10]). LetLap(λ) denote the Laplacian
distribution. This distribution has density functionh(y) ∝ exp(−|y|/λ), mean0, and standard deviationλ.
Using the Laplacian noise addition procedure of [6, 10], along with Theorem 5.1 we get,

Corollary 5.2. LetE = {x : LSf (x) ≤ s}. LetA(x) = f(x)+ Lap
(

s
ǫ

)

. Letb be a belief distribution such
that b[E ] = Prx←b[x ∈ E ] ≥ 1 − δ. ThenA satisfies(ǫ′, δ′)-semantic privacy for the belief distributionb
with ǫ′ = e3ǫ − 1 + 2

√
δ andδ′ = O(n

√
δ).
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Appendix A: Another View of Semantic Privacy

In this section, we discuss another possible definition of(ǫ, δ)-semantic privacy. Even though this definition
seems to be the more desirable one, it also seems hard to achieve.

Definition A.1 (reality-oblivious (ǫ, δ)-semantic privacy). A randomized algorithm is reality-oblivious(ǫ, δ)-
semantically private if for all belief distributionsb onDn, for all databasesx ∈ Dn, with probability at least
1− δ over transcriptst drawn fromA(x), and for all i = 1, . . . , n:

SD
(

b̄0[x|t] , b̄i[x|t]
)

≤ ǫ.

We first prove if the adversary has arbitrary beliefs, then(ǫ, δ)-differential privacy doesn’t provide any
reasonable reality-oblivious(ǫ′, δ′)-semantic privacy guarantee.
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Theorem A.2. 3 (ǫ, δ)-differential privacy does not imply reality-oblivious(ǫ′, δ′)-semantic privacy for any
reasonable values ofǫ′ andδ′.

Proof. This counterexample is due to Dwork and McSherry: suppose that the belief distribution is uniform
over{(0n), (1, 0n−1)}, but that real database is(1n). Let the databasex = (x1, . . . , xn). Say we want to
revealf(x) =

∑

i xi. Adding Gaussian noise with varianceσ2 = log
(

1
δ

)

/ǫ2 satisfies(ǫ, δ)-differential
privacy (refer [6, 10] for details). However, with overwhelming probability the output will be close to
n, and this will in turn induce a very non-uniform distribution over{(0n), (1, 0n−1)} since(1, 0n−1) is
exponentially (inn) more likely to generate a value nearn than(0n). More precisely, due to the Gaussian
noise added,

Pr[A(x) = n | x = (0n)]

Pr[A(x) = n | x = (1, 0n−1)]
=

exp
(

−n2

2σ

)

exp
(

−(n−1)2

2σ

) = exp

(−2n + 1

2σ

)

.

Therefore, given that the output is close ton, the posterior distribution of the adversary would be exponen-
tially more biased toward(1, 0n−1) than(0n). Hence, it is exponentially far away from the prior distribution
which was uniform. On the other hand, if the adversary believes he is seeingA(x−1), then no update
will occur and the posterior distribution will remain uniform. Since the posterior distributions in these
two situations are exponentially far apart (one exponentially far from uniform, other uniform), it shows that
(ǫ, δ)-differential privacy does not imply any reasonable guarantee on reality-oblivious semantic privacy.

However, (ǫ, δ)-differential privacy does provide a strong reality-oblivious (ǫ′, δ′)-semantic privacy
guarantee forinformedbelief distributions. Using terminology from [1, 6], we saythat a belief distribu-
tion b is informed if b is constant onn − 1 coordinates and agrees with the database in those coordinates.
This corresponds to the adversary knowing some set ofn− 1 entries in the database before interacting with
the algorithm, and then trying to learn the remaining one entry from the interaction. LetAi be a randomized
algorithm such that for all databasesx,Ai(x) = A(x−i).

Theorem A.3. (ǫ, δ)-differential privacy implies reality-oblivious(ǫ′, δ′)-semantic privacy for informed be-
liefs withǫ′ = e3ǫ − 1 + 2

√
δ andδ′ = O(n

√
δ).4

Proof. Let A be a(ǫ, δ)-differentialy private algorithm. Letx be any database. Letb be any informed
belief distribution. This means thatb is constant on alln − 1 coordinates, and agrees withx in those
n − 1 coordinates. Leti be the coordinate which is not yet fixed inb. From Claim 3.3 (part 3), we know
that (b,A(b)) and (b,Ai(b)) are (ǫ, δ)-differentialy private. Therefore, we can apply Lemma 4.1.Let
δ′′ = O(

√
δ). From Corollary 4.2, we get that with probability at least1− δ′′ overt← A(b), the statistical

difference betweenb|A(b)=t andb|Ai(b)=t is at mostǫ′. Therefore, forx, with probability at least(1 − δ′′)
overt← A(x), SD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′. Taking union bound over all coordinatesi, implies that with
probability at least1 − nδ′′ over t ← A(x), for all i = 1, . . . , n, we haveSD

(

b|A(x)=t, b|Ai(x)=t

)

≤ ǫ′.
Therefore,A satisfies reality-oblivious(ǫ′, δ′)-semantic privacy forb. Sincex was arbitrary, we get that
(ǫ, δ)-differential privacy implies reality-oblivious(ǫ′, δ′)-semantic privacy for informed beliefs.

3Note that adversaries whose belief distribution is very different from the real database (as in the counterexample of Theorem
A.2 may think they have learned a lot. But does such “learning” represent a breach of privacy? We do not think so, but leave the
final decision to the reader.

4Reality-oblivious(ǭ/2, δ)-semantic privacy implies(2ǫ, 2δ)-differential privacy withǭ = eǫ
− 1. For details see the proof of

Theorem 2.4.
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