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Abstract. In this paper I describe the construction of Dynamic SHA-2 family of 
cryptographic hash functions. They are built with design components from the SHA-2 
family, but I use the bits in message as parameters of function G, R and ROTR 
operation in the new hash functionh. It enabled us to achieve a novel design principle:  
When message is changed, the calculation maybe different. It make the system can 
resistant against all extant attacks. 
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1 Introduction 
The SHA-2 family of hash functions was designed by NSA and adopted by NIST in 
2000 as a standard that is intended to replace SHA-1 in 2010 [6]. Since MD5, SHA-0 
and SHA-1 was broght out, people has not stop attacking them, and they succeed. 
Such as: den Boer and Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, 
Dobbertin [5] in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in 
2004, and Wang et al. [9–12] in 2005. Most well known cryptographic hash functions 
such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and SHA-1, have succumbed to those 
attacks. 

Since the developments in the field of cryptographic hash functions, NIST decided 
to run a 4 year hash competition for selection of a new cryptographic hash standard 
[7]. And the new cryptographic hash standard will provide message digests of 224, 
256, 384 and 512-bits. 

In those attack, we can find that when different message inputed, the operation in 
the hash function is no change. If message space is divide many parts, in different 
part, the calculation is different, the attacker will not know the relationship between 
message and hash value. The hash function will be secure. To achieve the purpose, I 
bring in data depend function R to realize the principle. 

 
My Work: By introducing a novel design principle in the design of hash functions, and 
by using components from the SHA-2 family, I describe the design of a new family of 
cryptographic hash functions called Dynamic SHA-2. The principles is: 

When message is changed, the calculation maybe different. 
 
The principle combined with the already robust design principles present in SHA-2 
enabled us to build a compression function of Dynamic SHA-2 that has the following 
properties: 
 
1. The message expansion part has 16 new variables. 
2. The iterative part has just 16(resp.27) rounds. 
3. The iterative part has three different functions G , R , MRN. 
4. The iterative part has five ROTR operations. 
 
 
2 Preliminaries and notation 
In this paper I will use the same notation as that of NIST: FIPS 180-2 description of 
SHA-2 [6]. 

The following operations are applied to 32-bit or 64-bit words in Dynamic SHA-2: 
 
1. Bitwise logical word operations:‘ ’∧ –AND ,‘ ’∨ –OR,‘ ’⊕ –XOR and ‘ ’–Negation. ¬
2. Addition ‘+’ modulo or modulo . 322 642
3. The shift right operation, , where x is a 32-bit or 64-bit word and n is an 
integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHRn



4.The shift left operation, , where x is a 32-bit or 64-bit word and n is an 
integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a 32-bit or 
64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64). 

)(xROTRn

6. The rotate left (circular left shift) operation, , where x is a 32-bit or 64-bit 
word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64). 

)(xROTLn

 
Depending on the context I will sometimes refer to the hash function as Dynamic 
SHA-2, and sometimes as Dynamic SHA-224/256 or Dynamic SHA-384/512. 
 
2.1 Fuctions 
Dynamic SHA-2 include six functions. Five functions are used in compression 
function, one functions is used in message expansion part. 
 
2.1.1 Function MRN(x1,……,x17) 
Function MRN operates on seventeen words x1,…, x17, produces a word y as output. 
And funcion MRN as table 1: 
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Table 1. functions MRN for Dynamic SHA-2 
 
2.1.2 Function GRT(x(1),……, x(16),t1) 
Function GRT operates on sixteen w-bit words x1,…, x16 and an integer t1, produces 
an integer t2 as output. And funcion GRT as table 2: 
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Table 2. functions GRT for Dynamic SHA-2 
 
2.1.3 Function GGT(x1,t1) 
Function GGT operates on one word x1 and an integer t1, produces an integer t2 as 



output. And funcion GGT as follow: 
3)1(2 1 ∧= xSHRt t  

 
2.1.4 Function G(x1,x2, x3,t) 
Function G operates on three words x1,x2, x3 and an integer t, produces a word y as 
output. And funcion G as follow: 
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Table 3.1. functions GL for Dynamic SHA-2 
 

x1 x2 x3 f1 f2 f3 f4 
0 0 0 0 0 1 1 
0 0 1 1 1 0 0 
0 1 0 1 0 1 0 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 0 1 0 1 1 0 
1 1 0 0 1 1 1 
1 1 1 1 0 0 0 

Table 3.2. truth table for logical functions 
 
2.1.5 Function R(x1,x2,x3,x4,x5,x6,x7,x8,t)  
Function ME1 operates on eight words x1,x2, x3,x4, x5,x6, x7,x8 and an integer t. 
Produces one word y as output. Function R as follow:  

8)7)6)5)4)3)21(((((( xxxxxxxxROTRy t ⊕+⊕+⊕+⊕=  
 
2.1.6 Function ME1(x1,x2, x3,x4)  
Function ME1 operates on four words x1,x2, x3,x4. Produces one word as output. 
Function ME1 is same as SHA-2. 

)4321()4,3,2,1(1 1 xxxxROTRxxxxME ⊕⊕⊕=  
 
2.2 Dynamic SHA-2 Constants 
Dynamic SHA-2 does not use any constants. 
 
2.3 Preprocessing 
Preprocessing in Dynamic SHA-2 is exactly the same as that of SHA-2. That means 
that these three steps: padding the message M, parsing the padded message 
intomessage blocks, and setting the initial hash value, 0H  are the same as in 
SHA-2. Thus in the parsing step the message is parsed into N blocks of 512 bits (resp. 
1024 bits), and the i-th block of 512 bits (resp. 1024 bits) is a concatenation of sixteen 
32-bit (resp. 64-bit) words denoted as )( . 15
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Dynamic SHA-2 may be used to hash a message, M, having a length of l  bits, 
where  0≤ l < . 642
 
2.3.1 padding 
Suppose that the length of the message, M, is L bits.  Append the bit “1” to the end of 
themessage, followed by k zero bits, where k is the smallest, non-negative solution to 



the equation L+1+k ≡ 448 mod 512. Then append the 64-bit block that is equal to the 
number L expressed using a binary representation.  
 
2.4 Initial Hash Value 0H  
The initial hash value, 0H  for Dynamic SHA-2 is the same as that of SHA-2 (given in 
Table 4). 
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Table 4. The initial hash value, 0H  for Dynamic SHA-2 

 
For i = 1 to N: 
{ 
1.Message expansion part for obtaining additional thirty two 32-bit(resp.64-bit) 
words: 
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2.Initialize eight working variables a, b, c, d, e, f, g and h with the  hash 
value: 
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4.Compute the  intermediate hash value thi )(iH  : 
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Table 5. Algorithmic description of Dynamic SHA-2 hash function. 
 



2.6 Dynamic SHA-2 Hash Computation 
The Dynamic SHA-2 hash computation uses functions and initial values defined in 

previous subsections. So, after the preprocessing is completed, each message block, 
)()  , is processed in order, using the steps described 

algorithmically in Table 5. The algorithm uses 1) a message schedule of forty-eight 
32-bit (resp. 64-bit) words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) 
a hash value of eight 32-bit (resp. 64-bit) words. The final result of Dynamic SHA-256 
is a 256-bit message digest and of Dynamic SHA-512 is a 512-bit message digest. 
The final result of Dynamic SHA-224 and Dynamic SHA-384 are also 256 and 512 
bits, but the output is then truncated as in SHA-2 to 224 (resp. 384 bits). The words of 
the message schedule are labeled 4710 . The eight working variables are 
labeled  and  and sometimes they are called “state register”. The 
words of the hash value are labeled 7

)(
1

(
0 , which will hold the initial hash 

value, 

1()0( ,.....,, NMMM

,...,, WWW
gfedcba ,,,,,, h

)() ,...,, iii HHH
)0(H , replaced by each successive intermediate hash value (after each 

message block is processed), )(iH , and ending with the final hash value, )(NH . 
Dynamic SHA-2 also uses one temporary words T. 

 
3 Security of Dynamic SHA-2 
 
In this section I will make an initial analysis of how strongly collision resistant, 
preimage resistant and second preimage resistant Dynamic SHA-2 is. I will start by 
describing our design rationale, then I will analyze the properties of the message 
expansion part and finally I will discuss the strength of the function against known 
attacks for finding different types of collisions. 
 
3.1 Properties of message expansion part 
In message expansion part  are produced by function ME1, It is easy to 
prove the following Theorem: 

3116 ,...,WW

Theorem 1. The message expansion of Dynamic SHA-224/256 is a bijectionξ: 
 and of Dynamic SHA-384/512 is a bijection ξ :{ } { }512512 1,01,0 → { } { }10241024 1,01,0 →  

Proof. It is enough to show that the message expansion part one is surjection, i.e. for 
every 16-tuple 311716W  there exist a 16-tuple preimage 

, such that ξ(M) = W. 
),...,,( WWW=

WWWW

),...,,( 1510 MMMM =
By rearranging the recurrent equation that describes the message expansion part 

one for a given 4-tuple 31282317W ),,,(=  we have the relation: 
1517232831 . From there it is straightforward to compute the 

unique value for 15 . Now, having the new 4-tuple 30272216

)(1 WWWWROTRW ⊕⊕⊕=
WWWWWW ),,,(= , we can 

proceed further to compute the unique value for 14 , and so on until we compute 
the unique value for .                                    □ 

W
0W

 
3.2 Properties of iterative part 
In the iterative part, there are functions G, MRN, R and five ROTR operations, in one 
round, four message words will be mixed. 
 
3.3 Design rationale 

The reasons for principle: When message is changed, the calculation maybe 
different. 

From the definition of function G, R and five ROTR operations, it is easy to know 
when the variable is different, the parameter of function G, R and five ROTR 
operations is different. So message value space is divided into  
(resp. ) parts. In different part the calculation is different. 

512166 2)324( =×
10242

When one bit different in message, the message will be in different part, the 
calculation will be different. 
 
Why Dynamic SHA-2 does not have constants?  
The reasons why I decided not to use any constants is that Dynamic SHA-2 is secure 
enough. 
 



Controlling the differentials is hard in Dynamic SHA-2: 
In Dynamic SHA-2, the message space is divided into (resp. ) parts. In 

different part, the calculation is different. In a part, there is only one message value. It 
can not find collisions in the same part. 

5122 10242

Dynamic SHA-2 is even function, it means the number of collisions of every hash 
value is same. The workload for birthday attack is of O( ) (resp. O( ) O( ) 
O( )). 

1122 1282 1922
2562
To analyse the relation between message value and hash value, it need know the 

unchangeable formulas that represent Dynamic SHA-2. Someone can use Algebraic 
Normal Form (ANF) to represent Dynamic SHA-2, but the ANFs that represent 
function R, MRN has up to ,  (resp. , ) monomials. 2562 5122 5122 10242
 
3.4Finding Preimages of Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

Given hash value H=f(M), it is hard to find message M that meet H=f(M). 
 
There are two ways to find preimages of a hash function: 

1,From the definition of Dynamic SHA-2 (similarly as with SHA-2) it follows that 
from a given hash digest it is possible to perform backward iterative steps by 
guessing values that represent some relations between working variables of the 
extension part.  

To do this, it need the parameter of the ROTR operation and function G, R in 
Dynamic SHA-2. But in Dynamic SHA-2, when message changed, the parameter of 
the ROTR operation and function G, R will changed. in Dynamic SHA-2. So attacker 
had to gusee the parameter that will be used in Dynamic SHA-2. All the bits in 
message are used as the parameter of the ROTR operation and function G, R. When 
attacker complete guessing parameters, he has guessed all bits in message. 

 
2, The probability of random guess of finding preimages is (resp. , 
, ). 

2242− 2562−
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3.5Finding Second Preimages of Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

Given M, it is hard to find M’  s.t. f(M) = f(M’). 
 

There are three ways to find Second Preimages of a hash function: 
1, Get hash value H of message M, and find different message M’ that has hash 

value H. then the problem become find Preimages of the hash function. 
2, Given M, and find out the relationship between the difference M=(M1△ -M) and 

the difference H=f(M1)△ -f(M). And find out M≠0 that make H=0. To do this, △ △
someone will set up some system of equations obtained from the definition of 
the hash function, then trace forward and backward some initial bit differences 
that will result in fine tuning and annulling of those differences and finally obtain 
Second Preimages. It need know the unchangeable formulas that represent 
hash function f. In Dynamic SHA-2, In Dynamic SHA-2, when message is 
changed, the calculation is different. To get unchangeable formulas that 
represent hash function f, it need get ANFs for Dynamic SHA-2. And the ANFs 
that represent function R, MRN has up to ,  (resp. , ) 
monomials 

2562 5122 5122 10242

3. The probability of random guess of finding preimages is (resp. , 
, ). 

2242− 2562−

3842− 5122−

 
3.6 Finding Collisions in Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

It is hard to find different M and M’  s.t. f(M) = f (M’). 
 
There are three ways to find collisions of a hash function: 

1, Fix message M, and find different message M’ that has hash value H=f(M). then 



the problem become find Second Preimages of the hash function. 
2. Find out the relationship between the (M, M’) and the difference H=f(M)△ -f(M’). 

And find out (M,M’) that make H=0. To do this, someone will set up some △
system of equations obtained from the definition of the hash function, then trace 
forward and backward some initial bit differences that will result in fine tuning 
and annulling of those differences and finally obtain collisions. It need know the 
unchangeable formulas that represent hash function f. In Dynamic SHA-2, when 
message is changed, the calculation is different. To get unchangeable formulas 
that represent hash function f, it need get ANFs for Dynamic SHA-2. And the 
ANFs that represent function R, MRN has up to ,  (resp. , ) 
monomials 

2562 5122 5122 10242

3. The attack base on the birthday paradox. the workload for birthday attack is of 
O( ) (resp. O( ) O( ) O( )). 1122 1282 1922 2562

 
4 Improvement 
Although the ANFs for function MRN has up to  (resp. ) monomials, attacker 
can use a series functions to replace it. for example  

. If use 15 tt +  replace 15b

5122 10242
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in table 5, attacker had to gusee 16(resp.27) times, there are (resp. 
) combinations. And this will increase system calculation. 

8016 232 =
16227 264 =

 
5 Conclusion 
In the paper[1-5] and [8-12]. People has successfully attack SHA-2 family, in these 
attacks, people had use the fact that they can analyse what will happen at some bits 
in hash value when some bits in message changed. 
 

If we can design a hash algorithm that when message change, bits in message 
will affect different bits in hash value, the system will be secure.  
 

And based on components from the family SHA-2. I have introduced the principle 
in the design of Dynamic SHA-2: When message is changed, the calculation maybe 
different. And I bring in data depend function R to realize the principle. And function R 
make attacker do not know what will happen, when message changed. 
 

Function R divided the message space into manys parts, in different part, the 
calculation is different. At the same time, the ANFs for function R have huge number 
monomials. So attacker has two choices: deal with a big formula or deal with divided 
message space. If attacker select big formula, he had to deal with formulaS that ANFs 
has up to ,  (resp. , ) monomials. If attacker select divided message 
space, the message space is divided into  (resp. ) parts, in a part, there is 
only one message value. 

2562 5122 5122 10242
5122 10242

 
The principle enabled us to build a compression function of Dynamic SHA-2 that 

has 16 new variables, the iterative part has 16(resp 47) rounds, it is more robust and 
resistant against generic multi-block collision attacks, it is resistant against generic 
length extension attacks. 
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Appendix 1: Constitute Boolean functions to represent function. 
We can use Algebraic Normal Form (ANF) to represent function. Gupta and Sarkar[13] 
have studied it. 
Let n≥r≥1 be integers and let  be a vector valued Boolean function. 
The vector valued function  can be represented as an r-tuple of Boolean functions 

, where , and the value of 
21 n  equals the value of the s-th component of 21 n . The 

Boolean functions 21
)(

n  can be expressed in the Algebraic Normal Form 
(ANF) as polynomials with n variables n  of kind 
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Each ANF have up to  monomials, depending of the values of the coefficients .  
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Function R 
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer t and 
produces a word y as output, where wt <≤0 . The integer t is constant.So we 
have , It is easy to know that one-bit different in words 
x1,x2,x3,x4,x5,x6,x7,x8. Because the parameter of the rotate right operation is 
depend on message, with differen message different rotate right operation will be 
done. So the bit in output maybe changed.  

wwR }1,0{}1,0{: 8 →×

So the ANFs to represent function R have up to  monomials, where  is 
bit length of the word. 

w×82 w

 
Function MRN 
Function MRN operates on seventeen words , produces a word as 
output. In Dynamic SHA-2 , the word x17 is produced with words . So 
we have , when one-bit different in . different rotate 
right operation will be done on word x17, the bit in output maybe changed. 

17,...,1 xx
16,...,1 xx

wwR }1,0{}1,0{: 16 →× 16,...,1 xx

So the ANFs to represent function MRN has up  monomials, where 
 is bit length of the word. 

w×162
w
 
 



Appendix 2: distribution of function. 
 
Definition 1:  In function , to a value f, the number of variable value that 
has the output value f is s(F,f). 

)(xFf =

 
 
Definition 2:  To a function , where n1, n2 is integer and 
n1,n2>0. f(i) is the i-th output value, where . 

21 }1,0{}1,0{: nnF →
120 2 −≤≤ ni

If n1≥n2, s(F,f(i))=  , where . 212 nn − 120 2 −≤≤ ni
If n1<n2,  , where . }1,0{))(,( ∈ifFs 120 2 −≤≤ ni
We call the function F is even function. 

 
 
Theorem 2, To a function ,  there is   

21 }1,0{}1,0{: nnF → 112

0
2))(,(

2
n

i

n

ifFs =∑ −

=
Proof:  

To a given variable value x(j), where . there is a only output 
f(i)=F(x(j)). Where . So we have  

120 1 −≤≤ nj
120 2 −≤≤ ni 112

0
2))(,(

2
n

i

n

ifFs ≥∑ −

=

To two different value f1, f2, there is not a variable value that has value f1, f2 at 
the same time. So we have  112

0
2))(,(

2
n

i

n

ifFs ≤∑ −

=

So there is  .                            □ 112

0
2))(,(

2
n

i

n

ifFs =∑ −

=
 
 
Theorem 3, function  and 21 xxy += 21 xxy ⊕=  is even function. x1,x2 is w-bit 
word. 
Proof. To function , we have  21 xxy += wwY }1,0{}1,0{: 2 →×

There is the relation . To a given y’, there are  2-tuple (y’,x1). To a 
given 2-tuple (y’,x1’), it can compute the value for x2. So to the given y’, there are  
2-tuple (x1,x2) have the same value y’. So s(Y,y’) =

yxx += 12 w2
w2

www −×= 222 .  
To every input value y, there is s(Y,y)= www −×= 222 . So the function 21 xxy +=  is even 
function. 
Function  is similarly.                                        □  21 xxy ⊕=
 
 
Theorem 4, function ,  is even function. n is 
constant, x is nx-bit word, y1 is n-bit word, y2 is nx-bit word. 

)12(1 −∧= nxy )(2 xROTRy n=

 
Proof. To function , there is . )12(1 −∧= nxy nnxY }1,0{}1,0{:1 → )2,1( xxx = , and x1 
is the first nx-n bit of word x, x2 is the last n bit of word x. 
 
To a given value y1, there are  2-tuple (x1,y1), there is the relation: x2=y1. it 
can compute the value x2. so to a given y1’, there is  2- tuple (x1,x2) have the 
value y1’, So s(Y1,y1’)= .  

nnx−2
nnx−2

nnx−2
To every input value y, there is s(Y1,y)= .So  is even function. nnx−2 )12(1 −∧= nxy
 
To function , there is the relation: . To given y’, it can 
compute the value x’. so s(ROTR,y)=1= .  is even function.   □ 

)(xROTRy n= )(yROTLx n=
nxnx−2 )(xROTRy n=

 
 
Theorem 5, we can not know function 1)2,1(1)2,1( xxxFxxFf +==  is even 
function or not,  is even function. )2,1(11 xxFf = )2,1(11 xxFf = , x1, f is n1-bit word, 
x2 is n2-bit word. 
 
Proof. To convenience, let . 22 xf =
Function z=x+y is even function, so to a given f’, there is  2- tuple (f1,x1) that 
make f=f+x1. To given f1’, there are  2- tuple (x1,x2) that make f1’=F1(x1,x2). 

12n

22n



So to a given f’, there are: 

    ∑ −

=
+===

12

0

1

))11'|)2,1(11(|)2(2,2()',(
n

i iijiij xffxxFfxFFsfFs

 
If to every f’, there is  

212

0i=
Function F is even function. 

2))11'|)2,1(11(|)2(2,2()',(
1

n
iijiij

n

xffxxFfxFFsfFs =+===∑ −

2))11'|)2,1(11(|)2(2,2()',(
1

n
ii

n

xffxxFfxFFsfFs ≠+===∑ −

 

 
If there are some value f’ make 

212
 

0i jiij=
Function F is not even function. Theorem 9 is example. 
 
So we can not know function 1)2,1(1)2,1( xxxFxxFf +==  is even function or not. □ 
 
By theorem 5, it is know that when function F is constituted with some even functions, 
if there are relevant variables in these functions, function F maybe not even function.  
So mixing messages word many times maybe make the collisions of some hash 
values more than other hash values. 
 
 
Theorem 6, If function f=F(x1), g=G(x3,x2) are even function, x1 is n1-bit word , x2 is 
n2-bit word, x3 is n-bit word, f is n-bit word, g is ng-bit word. n1≥n and n+n2≥ng. 
Then funfction h=H(x1,x2)=G(F(x1),x2) is even function, h is ng-bit word . 
 
Proof:  

We have . function F is even function, to a given value 
f’=F(x1), there is . 

nnF }1,0{}1,0{: 1 →
nnfFs −= 12)',(

We have . function G is even function, to a given value 
g’=G(x3,x2), there is . 

ngnnG }1,0{}1,0{: 2 →+

ngnngGs −+= 22)',(
To a given 2-tuple (x3’,x2’), there is g’=G(x3’,x2’), and there is   

different x1 that has the value x3’=F(x1), so there is  different 2-tuple 
(x1,x2’) that mak g’ =G(x3’,x2’)= G(F(x1),x2’)=H(x1,x2’). 

)'3,( xFs
)'3,( xFs

There are  different 2-tuple (x3,x2) has the same value g’. So there are 
differen 

)',( gGs
)',()'3,( gGsxFs ×  2-tuple (x1,x2) has the given value g’=G(x3’,x2’)= 

G(F(x1),x2’)= H(x1,x2). 
So to every value g=G(f(x1),x2)=H(x1,x2), there are =× )',()'3,( gGsxFs  

2-tuple (x1,x2) that has the value g.  ngnnngnnnn −+−+− =× 2121 222
Function H has two input x1 and x2, so the bit-length of (x1,x2) is n1+n2. 

Because to every value g=G(f(x1),x2)=h=H(x1,x2), there are  2-tuple (x1,x2) 
that has the value h. So , So funfction H(x1,x2)=G(F(x1),x2) is even 
function.                                                              □ 

ngnn −+ 212
ngnnhHs −+= 212),(

 
 

Theorem 7, If function g=G(x3,x2) is even function, f=F(x1) is not even function, x1 is 
n1-bit word , x2 is n2-bit word, x3 is n-bit word, f is n-bit word, g is ng-bit word. n1≥n 
and n+n2≥ng. 
Then we can not know funfction H(x1,x2)=G(f(x1),x2) is even function or not. 
 
Proof:  

We have . function F is not even function. nnF }1,0{}1,0{: 1 →
We have . function G is even function, to a given value 

g’=G(x3,x2), there is . 
ngnnG }1,0{}1,0{: 2 →+

ngnngGs −+= 22)',(
There are  different 2-tuple (x3,x2) has the make g’=G(x3,x2). )',( gGs
To a given 2-tuple (x3’,x2’), there is  x1 that make F(x1)=x3’, so there 

are 
=

)

0i
  2- tuple (x1,x2) that make g’ =G(x3’,x2’)= 

H(x1,x2’). 

)'3,( xFs
∑ =

',( )')2,'(|',(gGs
iii gxfGfFs



If to every value h, there is ngnnhGs

i iii hxfGfFs −+
=

==∑ 21),(

0
2))2,(|,( , then 

function F is even function. 
If there is a value h’ that make 

i iii=
ngnnhGs∑ hxfGfFs −+≠= 21),( 2)')2,(|,(

0
, then 

function F is not even function.                                        □ 
 

Theorem 8, If function f=F(x1), g=G(x2) is even function, x1 is n1-bit word , x2 is 
n2-bit word, f is nf-bit word, g is ng-bit word. n1≥nf and n2≥ng. 
Then funfction H(x1,x2)=(F(x1),G(x2)) is even function, and =))2,1(,( xxHHs  

. ))2(,())1(,( xGGsxFFs ×
 
Proof. To given f’,there are s(F,f’) x1 that make f’=F(x1). To a given g’,there are s(G,g’) 
X2 that make g’=G(x2), So to given (f’,g’) there are  

 2-tuple (x1,x2) that make H(x1,x2)=(F(x1),G(x2)). So 
. 

ngnnfngGsfFs −− ×=× 21 22)',()',(
ngnfnn −−+ 212

ngnfnnxxHHs −−+= 212))2,1(,(
The bitlength of  (x1,x2) is (n1+n2), the bitlength of (f(x1),g(x2)) is (nf+ng). And 

. So function H(x1,x2)=(F(x1),G(x2)) is even function. 
And 

ngnfnnxxHHs −−+= 212))2,1(,(
))2(,())1(,())2,1(,( xGGsxFFsxxHHs ×=                  □ 

 
 
1, Function G: 
Function y=G(x1,x2,x3,t) operates on tree words x1,x2,x3 and an integer t, . 
Function G use the integer t select a logical funcion from 1 , 2 , 3 . And y, x1, 
x2, x3 are w-bit word. So the bit-length of (x1,x2,x3,t) is 

30 ≤≤t
0f , f f f

23 +×w , the bit-length of y is 
w. 
 
To a given value y’=G(x1,x2,x3,t), there is  4-tuple (y’,x1,x2,t). To a given 
4-tuple (y’,x1’,x2’, t’). there is the relation: 
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To given 4-tuple (y’,x1’,x2’,t’), it can compute the value for x3’, So there are  
4-tuple (x1,x2,x3,t) have the same value y’. So s(G,y’) =

222 +×w

www −+×+× = 2322 22 . So funfction 
G(x1,x2,x3, t) is even function. 
 
 
2, Function R: 
Function y=R(x1,x2,x3,x4,x5) operates on five words x1,x2,x3,x4 and x5. 
To a given value y’=R(x1,x2,x3,x4,x5), there is  4-tuple (y’,x1’,x2’, x3’,x4’). To a 
given 4-tuple (y’,x1’,x2’,x3’,x4’). there is the relation:  

w×42
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SHA-224/256 
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yROTRx
SHR
SHR
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xxx
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Dynamic 
SHA-384/512 
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Table 8. functions R1 for Dynamic SHA-2 
 
To given 5-tuple (y’,x1’,x2’,x3’,x4’), it can compute the value for x5, So there are  
5-tuple (y’,x1’,x2’,x3’,x4’) have the same value y’. So s(R,y’) = . So 
funfction y=R(x1,x2,x3,x4,x5) is even function. 

w×42
www −×× = 54 22

 
 
3, There is only one message in a divided message value space part: 
From the definition of function GGT, GRT and iterative part, It is easy to know that the 
bits in message are used as parameter of function G, R and ROTR operation once. By 
theorem 8, it is easy know that function GGT, GRT divide the message space to  
part, and in a part there is only one message value. 
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