Dynamic SHA-2

Zijie Xu
E-mail: xuzijiewz@gmail.com

Abstract. In this paper | describe the construction of Dynamic SHA-2 family of
cryptographic hash functions. They are built with design components from the SHA-2
family, but | use the bits in message as parameters of function G, R and ROTR
operation in the new hash function. It enabled us to achieve a novel design principle:
When message is changed, the calculation will be different. It makes the system can
resistant against all extant attacks.

Key words: Cryptographic hash function, SHA, Dynamic SHA-2

1 Introduction

The SHA-2 family of hash functions was designed by NSA and adopted by NIST in
2000 as a standard that is intended to replace SHA-1 in 2010 [6]. Since MD5, SHA-0
and SHA-1 was brought out, people have not stopped attacking them, and they
succeed. Such as: den Boer and Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in
1995, Dobbertin [5] in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and
Chen [1] in 2004, and Wang et al. [9-12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and SHA-1, have
succumbed to those attacks.

Since the developments in the field of cryptographic hash functions, NIST decided
to run a 4 year hash competition for selection of a new cryptographic hash standard
[7]. And the new cryptographic hash standard will provide message digests of 224,
256, 384 and 512-bits.

In those attacks, we can find that when different message inputted, the operation
in the hash function is no change. If message space is divided many parts, in different
part, the calculation is different, the attacker will not know the relationship between
message and hash value. The hash function will be secure. To achieve the purpose,
Dynamic SHA-2 use bits in message as parameter of function G, R and ROTR
operation to realize the principle.

My Work: By introducing a novel design principle in the design of hash functions, and
by using components from the SHA-2 family, | describe the design of a new family of
cryptographic hash functions called Dynamic SHA-2. The principle is:

When message is changed, the calculation will be different.

The principle combined with the already robust design principles present in SHA-2
enabled us to build a compression function of Dynamic SHA-2 that has the following
properties:

1. There is not message expansion part.

2. The iterative part includes three parts.

3. The first part includes one round. Mix message words 1 times.
4. The second part includes 9 rounds. Mix no message word.

5. The third part includes 7 rounds. Mix message words 7 times.

2 Preliminaries and notation
In this paper | will use the same notation as that of NIST: FIPS 180-2 description of
SHA-2 [6].

The following operations are applied to 32-bit or 64-bit words in Dynamic SHA-2:

1. Bitwise logical word operations:‘/\’—AND ,V'—=OR,"®’-XOR and ‘—’-Negation.
2. Addition ‘+" modulo 2% or modulo 2% .

3. The shift right operation, SHR" (x), where x is a 32-bit or 64-bit word and n is an
integer with 0=n<32 (resp. 0sn<64).

4.The shift left operation, SHL"(X), where x is a 32-bit or 64-bit word and n is an
integer with 0=n<32 (resp. 0sn<64).

5. The rotate right (circular right shift) operation, ROTR"(X), where x is a 32-bit or
64-bit word and n is an integer with 0 < n < 32 (resp. 0 < n < 64).

6. The rotate left (circular left shift) operation, ROTL"(x), where x is a 32-bit or 64-bit
word and n is an integer with 0 = n < 32 (resp. 0 < n < 64).

Depending on the context | will sometimes refer to the hash function as Dynamic
SHA-2, and sometimes as Dynamic SHA-224/256 or Dynamic SHA-384/512.

2.1 Functions
Dynamic SHA-2 includes three functions. The functions are used in compression
function.

2.1.1 Function G(x1, x2, x3, t)
Function G operates on three words x1, x2, x3 and an integer t, produces a word y as

output. And function G as follow:

X1®Xx2®x3 t=0
(XAAX2) D x3 t=1
(=(xAv x3)) v (XA (x2Dx3)) t=2
(—0Av (x2@x3))) v (xIAn—x3) t =3

Y =G,04,x2,x3) =

Table 1.1. function G for Dynamic SHA-2

x1 x2 x3 f1 f2 f3 f4
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 0 0 0

Table 1.2 Truth table for logical functions

2.1.2 Function R(x1,x2,x3,x4,x5,x6,X7,x8,t)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an integer t.
produces one word y as output. Function R as follow:

y = ROTR'((((((x1® x2) + x3) @ x4) + X5) @ X6) + X7) ® x8

2.1.3 Function COMP(hv1,hv2, ...,hv8,w(1),w(2),...,w(8),t)
Function ME1 operates on sixteen words hv1,hv2, ...,hv8,w(1),w(2),...,w(8) and an
integer t. Function COMP is defined as table 2.

2.2 Dynamic SHA-2 Constants
Dynamic SHA-2 does not use any constants.

T =R(hv1,hv2,hv3,hv4,hv5,hv6,hv7,hv8, w(t) A 31)
hv8 =hv7
hv7 = ROTREHR W03 1y 6)
hv6 =hv5+w((t+3)A7)
hv5 = ROTREHR 1311y 4)
hv4 = G(hv1,hv2,hv3, SHR® (w(t)))+ w((t+2) A 7)
hv3 =hv2
hv2 =hv1
Dynamic hvl=T+w((t+1)A7)
SHA-224/256 | T =R(hv1,hv2,hv3,hv4,hv5,hv6,hv7,hv8, (SHR' (w(t))) A 31)
hv8 =hv7 +w((t+7)A7)

hv7 = ROTRSHRZ W03 (hy6)
hv6 = hv5 + w((t +8) A7)

hv5 = ROTRSHRZ WO (hy4)

hv4 = G(hv1,hv2,hv3,t A3)+ W((t+5)A7)
hv3 =hv2 + w(t)

hv2 = hv1

hvl=T+w((t+4)A7)

T =R(hv1,hv2,hv3,hv4,hv5,hv6,hv7,hv8, w(t) A 63)
hv8 =hv7

hv7 = ROTR SHR°O)~63 ()

hvé = ROTRSHR™ W08 (hy5) 4 w((t+3) A7)

hv5 = ROTR SR W63 ()

hv4 = G(hv1,hv2,hv3, SHR® (w(t)))+ w((t+2) A7)

hv3 = ROTR SR (00163 () 2y

hv2 =hv1

SHA-384/512 | T =R(hv1,hv2,hv3,hv4,hv5 hv6,hv7,hv8,(SHR® (w(t))) A 63)
hv8 =hv7 +w((t+7)A7)

hv7 = ROTRSHR® 00163 (1y5)

hv6 = ROTR MR MO8 (hy5) + w((t+B) A7)

hv5 = ROTR SHR* 00163 ()

hv4 = G(hv1,hv2,hv3, (SHR® (w(t))) A 3) + w((t +5) A 7)
hv3 =hv2 + w(t)

hv2 = ROTRSHR™ D163 ()

hvli=T+w((t+4)A7)

Table 2 function COMP for Dynamic SHA-2

2.3 Preprocessing

Preprocessing in Dynamic SHA-2 is exactly the same as that of SHA-2. That means
that these three steps: padding the message M, parsing the padded message into
message blocks, and setting the initial hash value, H° are the same as in SHA-2.
Thus in the parsing step the message is parsed into N blocks of 512 bits (resp. 1024

bits), and the i-th block of 512 bits (resp 1024 bits) is a concatenation of sixteen
32-bit (resp. 64-bit) words denoted as M{”, M. MY

Dynamic SHA-2 may be used to hash a message, M, having a length of | bits,
where 0<| <264,

2.3.1 Padding

Suppose that the length of the message M is L bits. Append the bit “1” to the end of
the message, followed by k zero bits, where k is the smallest, non-negative solution to
the equation L+1+k = 448 mod 512 (resp. L+1+k = 960 mod 1024). Then append the
64-bit block that is equal to the number L expressed using a binary representation.

2.4 Initial Hash Value H°
The initial hash value, H® for Dynamic SHA is the same as that of SHA-2 (given in
Table 3.1).

Dynamic
SHA-224

Dynamic
SHA-256

Dynamic SHA-384

Dynamic SHA-512

H{®) = c1059ds8,

H{% =367¢cd507,
H{%) =3070dd17,
H{% = f70e5939,

H{%) = ffco0b31,
H{%) = 68581511,

H{®) =64 f98fa7,

H{® = 6a09e667,
H,® = bb67ae85,
H{® = 3c6ef372,
H{? = a54ff53a,
H{® =510e527f,
H{® = 9b05688c,
H{® = 1f83d9ab,

H{® = cbbb9d5dc1059ed8,
H,% = 629a292a367cd507,
H{? =9159015a3070dd17,

H{? =152fecdsf70e5939,
H{® = 67332667ffc00b31,

H{® =8eb44a8768581511,

H{® = db0c2e0d64f98fa7,

H{? = 6a09e6673bcc908,
H,® = bb67ae8584caa73b,
H{? = 3c6ef372fe94fs2b,
H{® = a54ff53a5f1d36f1,
H{” =510e527fade682d1f,
H{® = 9b05688c2b3e6elf,
H % = 1f83d9abfb41bdeéb,

H{®) —befadfad, | H{® =5be0cd19, | H? = 47b5481dbefasfad, | H? =5be0cd19137e2179,

Table 3.1 The initial hash value, H® for Dynamic SHA

2.5 Dynamic SHA-2 Hash Computation

The Dynamic SHA-2 hash computation uses functions and initial values defined in
preV|ous subsectlons So, after the preprocessmg is completed each message block,
MO M® MM™ s processed in order, using the steps described
algorlthmlcally in Table 3.2.

The algorithm uses 1) a message schedule of forty-eight 32-bit (resp. 64-bit)
words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash value of
eight 32-bit (resp. 64-bit) words. The final result of Dynamic SHA-256 is a 256-bit
message digest and of Dynamic SHA-512 is a 512-bit message digest. The final
result of Dynamic SHA-224 and Dynamic SHA-384 are also 256 and 512 bits, but the
output is then truncated as in SHA-2 to 224 (resp. 384 bits). The words of the
message schedule are labeledW,,W,,...,W,, . The eight working variables are labeled
a,b,c,d,e,f,g and h and sometimes the¥ are called “state register”. The words of
the hash value are labeled H", H",..,H{", which will hold the initial hash value,
H©, replaced by each successive intermediate hash value (after each message
block is processed), H ", and ending with the final hash value, H™ .

Dynamic SHA-2 also uses one temporary words T.

3 Security of Dynamic SHA-2

In this section | will make an initial analysis of how strongly collision resistant,
preimage resistant and second preimage resistant Dynamic SHA-2 is. | will start by
describing our design rationale, then | will analyze the properties of the message

expansion part and finally | will discuss the strength of the function against known
attacks for finding different types of collisions.

Fori=1to N:

1.Initialize eight working variables a, b, c, d, e, f, g and h with the (i—1)th hash
value: _ _ _ _

a=H{™ b=HIY c=H{P d=H{D

e= Hz(ll_l) ’ f = H5(|—1) ’ g=H él—l)’ h= H7(|—l)

2. lterative part
2.1 The first iterative part

COMP(a,b,c,d,e, f,g,h,wy, W, w,, W,, w,, W, Wy, W,,t)
COMP(a,b,c,d,e, f,g,h,wg, Wy, W,o, Wy, Wy, Wig, W, , Wig, 1)

2.2 The second iterative part

Fort=0to 8
{ T — ROTR(((((a+b)@c)+d)®e)+f)@g (h)
h=g
g="f
f=e
e=d
d=c
c=b
b=a
a=T
}
2.3 The third iterative part
Fort=1to 7
{

COMP(a,b,c,d,e, f,g,h,wy, W, w,, W,, w,, W, Wg, W,,t)
COMP(a,b,c,d,e, f,g,h,wg, Wy, W,o, Wy, Wy, Wig, W, , Wig, 1)

}

3.Compute the i intermediate hash value H® : _ _
HY =a+H{™, HO =b+HID, HO =c+HD, HO =d+HID,
H? ze+HID, HO =41, HO=g+RH{P, HO =h+HID

Table 3.2 Algorithmic description of Dynamic SHA-2 hash function.

3.2 Properties of iterative part
The iterative part includes three parts.

3.2.1 Properties of iterative part one

In iterative part one, all message bits have been mixed. And function COMP is called
twice. All bits in message words W,,W, have been used as parameters of function G,
R and ROTR operation.

3.2.2 Properties of iterative part two
It is relatively easy to prove the following Theorem:

Theorem 1: The iterative part two of Dynamic SHA-2 is a bijection
E{0%" —»{03*". working variables are w-bit words.

Proof. Let hv(1)=(a(1), b(1), c(1), d(1),e(1), f(1), g(1), h(1)). where a(1), b(1), c(1),
d(1),e(1), f(1), g(1), h(1) are working variables before iterative part two. And hv(1a)=
(a(1a), b(1a), c(1a), d(1a),e(1a), f(1a), g(1a), h(1a)) are working variables before
iterative part two.

The working variables are b-bit words. Then we have the function F(hv(1))=hv(1a)
and F: {0 >{01"".

It is enough to known that, to a given hv(1), there is a hv(1a) make
F(hv(1))=hv(1a).

To a given hv(1a), it is easy to backward the iterative part two and compute the
unique value for hv(1). So to a given hv(1a)’, there is a hv(1) make F(hv(1))=hv(1a)’.

So Dynamic SHA-2 is a bijection &:{0,3*" —{0.3°" O

After iterative Part one, all bits in message have been mixed. And there is
T = ROTR((@0)®e)+)®e)+1)®0 (h) in jterative part two. It is enough to known that all
bits in working variables a,b,c,d,e,f,g will affect all bits in temporary words T. After call
T = ROTRU@EDE0D)%e)+ 1186 (1) "9 times all bits in hv(1) will affect all bits in hv(1a). If
there is iterative part two, some bits in message will not affect all bits in last hash
value.

3.2.3 Properties of iterative part three

In iterative part three, all message bits have been mixed seven times. And function
COMP is called fourteen times. All bits in message words W,,\W, W, W, ,W,,W;,W,,
Wy, W, W, \ W, W,;,W,,,W,. have been used as parameters of function G, R and
ROTR operation.

In iterative part one and three, all bits in message have been used as parameters of
function G, R and ROTR operation. This will divide message space into 2°**(resp.
2'%%) parts.

3.3 Design rationale

The reasons for principle: When message is changed, the calculation will be
different.

From the definition of function G, R and ROTR operations, it is easy to know all
bits in message have been used as parameters of function G, R and ROTR operation.
One bit different in message, different logical function or different ROTR operation will
be done, and it will make the calculation different. Different message will lead to
different calculation, these different calculations divide message space into 2°** (resp.
2'%%) parts. In a part there is 2°7°? =1 (resp. 2'%*'* =1) message value.

Why Dynamic SHA-2 does not have constants?
The reasons why | decided not to use any constants is that Dynamic SHA-2 is secure
enough.

Controlling the differentials is hard in Dynamic SHA-2:

In Dynamic SHA-2, it is known that when message is changed, the calculation will
be different. To analyze Dynamic SHA-2, it need the unchangeable formulas that
represent function describe function G, R and data-depend ROTR operation. There
are three ways to analyze Dynamic SHA-2:

1. Guess the parameters of function G, R and ROTR operation. The Earameters of
function G, R and ROTR operation divide message space into 2°' (resp. 2'%*)
parts. This way is select a part in the message value space. And there is only
one message value in a part. It can not find collisions in the same part.

2. Someone can use Algebraic Normal Form (ANF) to represent Dynamic SHA-2,
but the ANFs that represent function R has up to 22! (resp. 2°®) monomials.

3. Someone can constitute Arithmetic functions to represent Dynamic SHA-2 as in
Appendix 2. But the Arithmetic function that represents function R and G is
complex exponential function with round-off instruction. After iterative parts, the
Arithmetic function that represents function R and G will be very huge.

3.4 Finding Preimages of Dynamic SHA-2
To a hash function f(-), it need satisfy:
Given hash value H=f(M), it is hard to find message M that meet H=f(M).

There are two ways to find preimages of a hash function:

1,From the definition of Dynamic SHA-2 (similarly as with SHA-2) it follows that
from a given hash digest it is possible to perform backward iterative steps by
guessing values that represent some relations between working variables of the
extension part.

To do this, it needs the parameter of the ROTR operation and function G, R in
Dynamic SHA-2. But in Dynamic SHA-2, when message changed, the parameter of
the ROTR operation and function G, R will change. So attacker had to guess the
parameter that will be used in Dynamic SHA-2. From the definition of Dynamic SHA-2,
it is know that all bits in message are used as the parameter of the ROTR operation
and function G, R. When attacker completes guessing parameters, he has guessed
all bits in message.

2, The probability of random guess of finding preimages is 272%* (resp. 272%,
2—384’ 2—512)

3.5Finding Second Preimages of Dynamic SHA-2
To a hash function f(-), it need satisfy:
Given M, it is hard to find M’ s.t. f(M) = f(M’).

There are four ways to find second preimages of a hash function:

1, Get hash value H of message M, and find different message M’ that has hash
value H. then the problem become find Preimages of the hash function.

2, Given M, and find out the relationship between the difference AM=(M1-M) and
the difference AH=f(M1)-f(M). And find out AM#0 that make AH=0. To do this,
someone will set up some system of equations obtained from the definition of
the hash function, then trace forward and backward some initial bit differences
that will result in fine tuning and annulling of those differences and finally obtain
second preimages. It need know the unchangeable formulas that represent
hash function f. In Dynamic SHA-2, when message is changed, the calculation
is different. To get unchangeable formulas that represent hash function f, it need
get ANFs for Dynamic SHA-2. And the ANFs that represent function R has up
to 2°°* (resp. 2°'*) monomials. Or it can constitute Arithmetic functions to
represent Dynamic SHA-2. And the Arithmetic functions that represent function
R and G are complex exponential function with round-off instruction like
equation (1.1) and (1.2). There exists no mathematical theory that analyzes
exponential function like equation (1.1) and (1.2).

3. Guess the parameters of function G, R and ROTR operation. This way is select
a part in the message value space. And there is only one message value in a
part. It can not find second preimages in the same part.

4. The probability of random guess of finding second preimages is 2-%%*(resp.
2—256 , 2—384 , 2—512)

3.6 Finding Collisions in Dynamic SHA-2
To a hash function f(-), it need satisfy:
It is hard to find different M and M’ s.t. f(M) =f (M’).

There are four ways to find collisions of a hash function:
1, Fix message M, and find different message M’ that has hash value H=f(M). then
the problem become find Second Preimages of the hash function.
2. Find out the relationship between the (M, M’) and the difference AH=f(M)-f(M’).
And find out (M,M’) that make AH=0. To do this, someone will set up some
system of equations obtained from the definition of the hash function, then trace

forward and backward some initial bit differences that will result in fine tuning
and annulling of those differences and finally obtain collisions. It need know the
unchangeable formulas that represent hash function f. In Dynamic SHA-2, when
message is changed, the calculation is different. To get unchangeable formulas
that represent hash function f, it need get ANFs for De/namic SHA-2. And the
ANFs that represent function R has up to 2%*' (resp. 2°'®) monomials. Or it can
constitute Arithmetic functions to represent Dynamic SHA-2. And the Arithmetic
functions that represent function R and G are complex exponential function with
round-off instruction like equation (1.1) and (1.2). There exists no mathematical
theory that analyzes exponential function like equation (1.1) and (1.2).

3. Guess the parameters of function G, R and ROTR operation. This way is select
a part in the message value space. And there is only one message value in a
part. It can not find collisions in the same part.

4. The attack base on the birthday paradox. the workload for birthday attack is of
O(21?) (resp. O(2'%*) O(2'?) O(2%%)).

3.7 Finding collisions in the reduced compression function of Dynamic SHA-2

If the message bits are mixed less two times. The system will be weak, someone can
backward Dynamic SHA-2 as table 6 show.

If the message bits are mixed at least twice, and attacker backward Dynamic SHA-2,
he will have a system of more than 32 equation with 16 unknown variables, The
probability of there is solution for the system is less than 27°%* (resp. 271%*). And the
message space is divided into more that 2'*® (resp.2°*°) parts. In a part, the average
number of message values is less than 2% (resp.2’®). The average number of
collisions is less than 2'% (resp.2'®, 2%* 2%°).If an algorithm is developed to find
%olllzigi(on for2a12galzcgéﬁatignzgﬁthen the probability of find the collision is less than
T (resp. 277,277,277,

4 Improvements
There are some improvements for Dynamic SHA-2:

1. There is no any constant in Dynamic SHA-2. Use constants will increase system
security.

2. In HMAQC, the initial hash value is random variable to attacker. If Dynamic SHA-2 is
usgg in HMA()zéeby Stgr;eors?pw 3, it is easy know that the probability of hash value is
277" (resp. 2777 277 277,

There are some ways that we can adopt to get random initial hash value, for
example: 1V, =1V, +c, IV, is i-th initial hash value, c is constant and c is odd
number. To do this, it need design new communication protocol.

3. If some algorithms that based on Arithmetic functions and differential analysis are
developed. The message expansions that composed with data depend function will
increase the degree Arithmetic function that represent Dynamic SHA-2. It will
increase the ability that resists differential analysis.

The message expansion maybe makes some hash values have more probability
than other hash value. With improvement 2, all hash value will have same probability.

5 Conclusions

In the paper [1-5] and [8-12]. People has successfully attack SHA-2 family, in these
attacks, people had use the fact that they can analyze what will happen at some bits
in hash value when some bits in message changed.

William Stallings[14] has mentioned that data-depend function will make cipher
system has good nonlinear, and composite function of Boolean functions and

Arithmetic functions also make cipher system has good nonlinear. Dynamic SHA-2
carry out the two suggestions. It make Dynamic SHA-2 is more nonlinear than SHA-2.

Function G, R and ROTR operations divided the message space into many parts,
in different part, the calculation is different. At the same time, the ANFs for function R
have huge number monomials. and the Arithmetic functions represent function R, G is
complex exponential function with round-off instruction. So there are three ways to
analyses:

1. Constitute Boolean functions to represent Dynamic SHA-2. It needs deal with
a big formula. The ANFs that represent function R has up to 2 (resp. 2°%°)
monomials. ’

2. Constitute Arithmetic functions to represent Dynamic SHA-2. It needs deal with
complex exponential function. There exists no mathematical theory that analyzes
exponential function like equation (1.1) and (1.2).

3. Guess the parameters of function G, R and ROTR operations. It needs deal
with divided message space. The message space is divided into 2°* (resp. 2'%**)
parts. In a part, there is one message value. It can not find the collision in one part..

And based on components from the family SHA-2. | have introduced the principle
in the design of Dynamic SHA-2: When message is changed, the calculation will be
different. And | bring in data depend function G, R, and use bits in message as
parameters of function G, R and ROTR operations. These steps realize the principle.
The principle enabled us to build a compression function of Dynamic SHA-2 that has
not new variable, the iterative part include three iterative parts, it is more robust and
resistant against generic multi-block collision attacks, and it is resistant against
generic length extension attacks.

References

1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint Archive,
Report 2004/146, 2004. http://eprint.iacr.org/2004/146

2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of MD4”,
CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.

3. B. den Boer, and A. Bosselaers: “Collisions for the compression function of MD5”,
EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.

4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances in Cryptology,
Crypto98, LNCS, vol.1462, pp.56-71, 1998.

5. H. Dobbertin: “Cryptanalysis of MD4", J. Cryptology 11, pp. 253-271, 1998.

6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2), United States of
American, Federal Information Processing Standard (FIPS) 180-2, 2002 August 1.

7. NIST Tentative Timeline for the Development of New Hash Functions,
http://csrc.nist.gov/groups/ST/hash/timeline.html

8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of MD4 and
SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp. 286-297, 1995.

9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the Hash Functions
MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494, pp. 1-18, 2005.

10. X. Wang and H. Yu , “How to Break MD5 and Other Hash Functions”,
EUROCRYPT 2005, LNCS 3494, pp. 19-35, 2005.

11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on SHA-0", CRYPTO
2005, LNCS 3621, pp. 1-16, 2005.

12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1", CRYPTO 2005,
LNCS 3621, pp. 17-36, 2005.

13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic Normal Form
of a Boolean Function” http://citeseer.ist.psu.edu/574240.htm|

14. William Stallings “Cryptography and Network Security Principles and Practices,
Third Edition”, ISBN 7-5053-9395-2

Appendix 1: Constitute Boolean functions to represent function.

We can use Algebraic Normal Form (ANF) to represent function. Gupta and Sarkar[13]
have studied it.

Let n2r21 be integers and let F :{0,1}" —{0,1}' be a vector valued Boolean function.
The vector valued function F can be represented as an r-tuple of Boolean functions
F=(F®F?. .. ,F"), where F® :{03" >{03(s=12,...,r), and the value of
F(s)(xl,xz,...,xn) equals the value of the s-th component of F(x,X,,...,X,). The
Boolean functions F(S)(Xl,) S Xn) can be expressed in the Algebraic Normal Form
(ANF) as polynomials with n variables X1y X ey X, of kind
3, Pax @..0aXx, @aiv?xix2 ®..®a,, X X D..0a, X, %, .X where a, €{0,1}.
Each ANF has up to 2" monomials, depending of the values of the coefficientsa, .

Function R
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer t and
produces a word y as output, where 0<t<w. So we have R:{0}*“"% —{01}",
It is easy to know that one-bit different in words x1,x2,x3,x4,x5,x6,x7,x8. Because
the parameter of the rotate right operation is depend on message, with different
message different rotate right operation will be done. So the bit in output maybe
changed.

So the ANFs to represent function R have up to 2% xw monomials, where w
is bit length of the word.

Function G

Function G operates on six words x1,x2,x3 and an integer t and produces a word y

as output, where 0<t<4. So we have R:{0}*"* —>{01}", It is easy to know

that one-bit different in integer t, different logical will be called, every bit in output

maybe change. One-bit different in words x1,x2,x3, a bit in output maybe change.
So the ANFs to represent function R have up to 2*? =2° monomials.

Appendix 2: Constitute Arithmetic functions to represent function.
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form (ANF) to
represent function. In this way, all function will be represented as polynomials.

1. Constitute Arithmetic functions to represent Boolean function:
Let abs(x) is absolute value of Xx. |X| is round-off instruction on x. In Boolean
function, 1 is True, O is False.

1. To one bit word. The Boolean function can represented with arithmetic functions as
follow:

operand function arithmetic function
X,y I=X®Yy Z=X+Yy—2xXxY
X,Y Z=XAY Z=XxY

X,y Z=XVY Z=X+Y—XXY

X Z=-X z=1-x

Tables 4.1 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation base on table 4.1.

2. To n-bit word.

If there are three n-bit words x, y, z. if there exist z= f(x,y) where f is Boolean
function that in table 4.1.

X, Y, Z are n-bit words. Let

X= Zin:_olxi x2'
Y=, ¥x2

z= ZSZI x2'
where X,Y,,z; is i-th bit of word x, y, z. There exists z, = f(X,Yy;), where
0<i<n-1.
To Boolean polynomial, it can replace every calculation base on table 4.1 for every bit
in variables of polynomial.

3. If function F includes a series functions f,,..., f,; as follow:
fo(x,y) k=0
zZ(x,y,k)=+...
f(xy) k=t-1
Then it can represent as follow:

- abs(i0) 2abs(k—i)
z(x,y,k)=>. (2 -

x2)x(f;(x,¥))

Base on above-mentioned three ways, it can represent Boolean function with
arithmetic functions.

2. Constitute Arithmetic functions to represent SHR operation:
The shift right operation SHRk(X) can be represented as follow:

y =SHR*(x) = (1.0)

X
2¢

3. Constitute Arithmetic functions to represent data-depend function R:
There are two ways to constitute Arithmetic functions to represent data-depend
function R:

1. Constitute ANFs that represent function R. And replace the Boolean function base
on table 4.1. In this way, it will constltute huge and complex Arithmetic function. The
ANFs represents function has up to 2> xw monomials.

2. At first, there exist rotate right (circular right shift) operatlon ROTR*(x), where x is
n-bit word, and 0<k <n. It can represent y=ROTR*(x) as follow:

y = ROTR* (x)
X

Zk +(x—

A x 2)x 2"

=2+ xx 2k €.2)

If function y =ROTR"(X) is not data-depend function, the k in equation (1.1) is
constant, and equation (1.1) is linear equation. The derivative function of linear
equation is constant. This means the difference of function value depend the
difference of input, and the difference of function value dose not depend the input. In
SHA-2, the ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

If function y=ROTR*(x) is data-depend function, the k in equation (1.1) is
variable, and equation (1.1) is exponential function. And equation (1.1) will be
exponential function with round-off instruction. It is hard to represent exponential
function with linear equation. The derivative function of exponential function is
exponential function. This means the difference of function value depend the
difference of input and input. When the input changes, the different of function value
maybe change. In Dynamic SHA-2, function R is data-depend function. And if use
equation (1.1) represents function R, the equation (1.1) will be complex exponential
function. After several rounds, equation (1.1) will be iteration function with equation
(1.1), it will be very huge and complex, and there exists no mathematical theory that
reduces the size of equation (1.1). It is hard to analyses Dynamic SHA-2 that includes
function R.

4. Constitute Arithmetic functions to represent data-depend function G:
There are two ways to constitute Arithmetic functions to represent data-depend
function G:

1. Constitute ANFs that represent function G. And replace the Boolean function base
on table 4.1.

2. The function G can be represented as follow:

2abs(t i)

Yy x2,x3,t) = > (2207 1T 1% 2) x (G, (x1, x2,X3)) (1.2)

If function G is not data-depend function, the t in equation (1.2) is constant, and it
can replace every calculation in function G, base on table 4.1 for every bit. The
equation (1.2) is equation of higher degree. The Arlthmetlc funczztlons3 F (X, X,, X3,t)
will be polynomial that includes monomials like axXx," ' x X, XX; , where a is
coefficient, n1, n2, n3 are degree of X;,X,,X;. The derivative function of equation of
higher degree will be lower degree equation. There is a high order derivative function
of equation of higher degree will be constant. It is easy to analyze equation (1.2) with
differential analysis.

If function G is data-depend function, the t in equation (1.2) is variable, and
equation (1.2) will include exponential function monomial. And equation (1.2) will be

exponential function with round-off instruction. The derivative function of exponential
function is exponential function. There is not any high order derivative function of
exponential function will be constant. It is hard to analyze equation (1.2) with
differential analysis.

In Dynamic SHA-2, function G is data-depend function. And if use equation (1.2)
represents function G, the equation (1.2) will be complex exponential function. After
several rounds, equation (1.2) will be iteration function with equation (1.2), it will be
very huge and complex, and there exists no mathematical theory that reduces the
size of equation (1.2). It is hard to analyses Dynamic SHA-2 that includes function G.

Compare the Arithmetic function that represent SHA-2, The Arithmetic function that
represent Dynamic SHA-2 include exponential function. This make it is harder to
analyses Dynamic SHA-2.

Appendix 3: Function G and Function R
Let p(x) is probability of X.

1, Function G:

Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an integer t, 0<t<3.
Function G use the integer t select a logical function from f, f, f, T;. Andy, x1,
x2, x3 are w-bit word. So the bit-length of (x1,x2,x3,t) is 3xW+2, the bit-length of y is
W.

To a given value y'=G(x1,x2,x3,t), there is 2°"** 4-tuple (y',x1,x2,t). To a given
4-tuple (y’',x1°,x2’, t'). There is the relation:

xXI'ex2'ey' t=0
(xI'Ax2) @y t=1
T (v YY) v (A2 YY) t=2
(=(xI'v(x2'®y")) v (XI'A—y") t=3

To given 4-tuple (y’,x1’,x2’,t"), it can compute the value for x3’. So there are 2¥w2
4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, x3, t are random and uncorrelated
variable, there is:

p(x1) = p(x2) = p(x3)=2™" and p(t)=2"

p(y) le OZIZ OZ|3 OZM 0 p(y | (Xlll’ X2|2’ X3|3’t|4))>< p(Xlll)X p(X2|2)>< p(X3|3)>< p(t|4)

p(y) = |0(><1.1)X P(X2,,) % P(X3) X P(t)x oD s o 2 S p(y] (X, X215, X35, ti,)
P(Y)=2""x2"x2™"x27?x 27" =27V

If x1, x2, x3, t are random and uncorrelated, function G will produce random word and

p(y)=2"

2, Function R:
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words x1,x2,x3,x4,x5,x6,
x7, x8 and an integer t. To a given value y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there is
27XW><W O-tuple (y’,x1’,x2’,x3’,x4’,x5",x6’,x7",t'). To a given 9-tuple (y’,x1’,x2’,x3’,x4’,
x5, x6', X7',t'). There is the relation:

x8=ROTR ((((((I'Dx2') +x3) Dx4')+X5) B X6)+ X7) @Y

To given 9- tuple (y’,x1’',x2’,x3’,x4’,x5’,x6’,x7’,t’), it can compute the value for x8, So
there are 2™"'xw 9-tuple (y',x1’,x2'x3’ x4 x5 x6',x7’.t) have the same value y'.
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is:

P(x1) = p(x2) = p(x3) = p(x4) = p(x5) = p(x6) = p(x7) = p(x8) =27"
pt)=w"

P(Y) =Y S S IS (Y | (K X210 X85 tg)) X
x P(x1) x p(x2) x p(x3) x p(x4)x p(x5)x p(x6)x p(x7)x p(x8)x p(t)
P(y)=2"x2"x2"x2"x2"x2"x27"x 27" x Wix2™Wxw=2""

If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R will produce
random word and p(y)=2"

Appendix 4: Some thing about Dynamic SHA-2

1. Function G and function R
As mentioned at appendix 2, if the variables are random word, function G and R
will produced random word.

Function G operates on three words and an integer t, produces a word as output.
What function G does is produce confusion word.

Function R operates on eight words and an integer t, produces a word as output.
What function R do is confuse the place of bits.

2. Why Dynamic SHA-2 use function G and function R
As mentioned in Appendix 2, when the variable is random word, function G and
function R will produce random word.

Function R is data-depend function, the ANFs that describe function R has up to
25V+1%% monomials.

Function R include ((((((x1® x2) + x3) @ x4) + x5) @ x6) + X7) ® x8, it include
logical operations © and arithmetic operations +, this make it hard to describe
function R with simple logical operations and arithmetic operations.

3. It is hard analysis Dynamic SHA-2 with linear function and differential
analysis

To analyze the relationship between message and hash value, it need the
unchangeable formulas that represent hash function. And when message is changed,
the calculation will be different. .

The ANFs that describe function R has up to 2892 monomials, and it is hard
to describe function R with simple logical operations and arithmetic operations. So it
is hard analysis Dynamic SHA-2 with linear function and differential analysis.

4. There is 8 rounds in Dynamic SHA-2

From the definition of Dynamic SHA-2, it is easy to know that after 8 rounds, all
bits in message had been used as parameter of function G, R and ROTR operations.
And the message value space had been divided into 2°* (resp.2'%**) parts, in a part,
there is only one message value.

From the definition of function COMP, it is easy to backward function COMP. If
the message is mixed only one time, the system will be weak. In 8 rounds, the
message bits are mixed 8 times, if attacker backward Dynamic SHA-2 as table 6 show,
he will have a system of 128 equations with 16 unknown variables. The probability of
there exist solution for the system is 277°% (resp. 277). Or attacker can use
random guessing. The probability of random guess of finding preimages is 2-2%* (resp.

2—256 , 2—384 , 2—512)

5. Avalanche of Dynamic SHA-2.

Atfter the first iterative part, all bits in message have been mixed. The second iterative
partincludes T = ROTR{@D)®e)+d)®e)+H®G (h) |t js easy to know that one bit different
in working variables a, b, c, d, e, f, g will lead to different ROTR operation been done.
And after the second iterative part, every bit in working variables that before the
second iterative part will affect all bits in working variables that after the second
iterative part.

6. It is hard to describe Dynamic SHA-2 with linear function

It is hard to describe data depend functionz = ROTR*y with linear function. The
ANF is a way, but the ANFs for function R has up to 28H% monomials. The ANFs
that describe data depend function has more monomials than the ANFs that describe
other functions. It will be harder to analyze data depend function with linear function.

Appendix 5: Spreading of Dynamic SHA
To simplification, Let:
1.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.
2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), (i), h(i)). where a(i), b(i), c(i), d(i),e(i), (i), g(i),
h(i) are working variables at i-th function COMP called.
3. H,(hv(-1), MW1,MW2) =hv(i) 1<i<15
4. Message word and working variables are b-bit words.
From the definition of Dynamic SHA-2, it is easy know that function COMP had been
called sixteen times, when function COMP is called, MW1 or MW2 will be mixed. So it
can describe Dynamic SHA-2 as follow:

hv(-1 hv(0 hv(1
iterative part

The second — V)|
iterative part

The third

MW2
iterative part e MW2 s

MW1

Table 5 data processing of Dynamic SHA-2
At first there are two theorems:

Theorem 2:

To function COMP(a,b,c,d,e, f,g,h, w0, wl, w2, w3, w4, w5, w6, w7,t), there is:
1.MW=(WO0,W1,W2,W3,W4 W5 W6,W7), where WO,...,W7 are words that mixed.

2. hva=(a0, b0, Oc, dO0, €0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, hO are working
variables that before call function COMP.

3. hvb=(al, b1, c1, d1, e1l, f1, g1, hl). Where al, bl, c1, d1,el, f1, g1, hl are working
variables that after call function COMP.

working variables are b-bit word. hva, MW are random and uncorrelated.

Then there exist:
(1),p(hvb)=2""
(2),p(hvb|MW)=2"8®
(3),p(hvbjhva)= 27"

Proof.

The integer t in function COMP is decided by which round function COMP be. So
the integer t can be look as constant. And we can use function hvb=F(hva MW)
describe function COMP. And we have F :{0,1}'* — {0,3*®". hva, MW are random
and uncorrelated. So there is p(hva)=2"%" and p(MW)=2"%"

There are 2 MW. To a given MW’, there exist:
To a given hva’, from the definition of F, there is only a hvb that make
hvb = F(hva', MW").
And to a given hvb’, it can backward function F, and there is only a hva that
make hvb'=F(hva, MW") . So there exist:

p(vo) = 32552 L o (b | (hva (i1), MW (i2)) x p(hva (i) x p(MW (i2)
p(tvb) = p(hva)x p(MW)x 32 52 L p(twb | (hva (i1), MW (i2))
p(th) — 2—8><b « 2—8><b . 28><b — 2—8><b

p(hvb | MW) = Zizl:)lp((hvb [MW) | hva (i1)) x p(hva (i1))

p(hvb | MW) = p(hva) x Ziz;lp((hvb | MW) | hva (i1))
p(hvb |[MW) =275

w0 =cl-a0
wb =d1-G(bl,a0,b0,t A 3)

W6=f1— ROTR327(SHR10WO)/\31(d 0)
W7 = h1— ROTR32 (SHRWO131 (£)
W3 = ROTRSZ—(SHRZOWO)ASl(gl) _e0
Dynamic | w2=ROTR®Z (HR™WOA3L(e1y G (a0, b0, c0, SHR®wO)
SHA-224/256 | 1= h1-R(a0,b0,c0,d0,e0, f0, g0, h0, w0 A 31)
d'= ROTRSZ—(SHR25W0)/\31(e1)
e'= f1-wé
f'=e0+w3
g'= ROTRSZ—((SHRSWO)ABD)
w4 = al-R(bl,a0,b0,d",e', f',g', g0, (SHR™ (W0)) A 31)

w0 =cl-a0

a'= ROTR 64—((SHR**W0) A 63) bl

c'= ROTR 64—((SHR24W0)/\63)b0
ws=d1-G(a',a0,c',t A3)

W6 = fl— ROTRlZB—((SHR42W0)/\63)—((SHR18W0)/\63) (d0)
W7 = h1— ROTR84-(SHR™W0)A63 £ g

Dynamic W3 = ROTRlZB—((SHR36W0)/\63)—((SHR12W0)A63) (g1) -0
SHA-384/512 | w2 = ROTR™ (HR™0n31 (1) _ G (a0, b0, c0, SHR*2w0)

wl = ROTR®-(SHR™WO3L 151y _ R(a0,b0,¢0,d0, €0, f0,g0,h0, wO A 63)
d'= ROTR 64—(SHR*w0)A63 (e1)

e'= ROTR 64—(SHR*®w0)A63 (d0)

f'— ROTR 64—(SHR3GWO)/\63(gl)

g'= ROTR64—((SHR6WO)A6S) (f0)

w4 =al-R(a',a0,c',d",e', f',g', g0, (SHR™ (w0)) A 31)

Table 6. Relationship of hva, hvb
(3)
To given hva’, there exist:
To a given hvb’, there is the relationship as table 6, It is easy to compute the
value for MW that make hvb'=F(hva',MW) . So there exist:

p(hvb| hva) = Z:)l p((vb| hva) | MW(i))x p(MW(i)) =22 =27 o

By theorem 1, to function COMP, it is easy to know that:
To a given hva’, mix different message words MW, the hvb will be different.
Mix given message words MW’ if the hva is different, the hvb will be different.

Theorem 3. In Dynamlc SHA-2, there exist:
(@) phv()=2"°
(2),p(hv(j)|MW1)= 2_ §

(3) p(hv(J)E|5MW2) 28
J =

Proof.

hv(-1), MW1 and MW2 are random and uncorrelated, so there exist:
p(hv(-1) =2 **
p(MW1) = 2—be
p(MW2) =275

To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2.

To a given hv(i) i=1...15, there are 2'®®* 2-tuple(MW1,MW2).

To a given 2-tuple(hv(iy,MW1’), there are 2®*® MW2. To a given 2-tuple
(hv(iy,MW?2), there are 25° MW1.

To a given 3-tuple(hv(i),MW1’ ,MW2’), It is easy to backward iterative steps, and it
is easy to compute the value for hv(-1), and the hv(-1) make H;(hv(-1),MW1,MW2')
=hv(i)".

So there exist:

p(hv(i) =Y 2 15 ?Zb*;p(hv(m(hv(—l)io,Mw1u,szi2>)xp(hv(—l)io,Mw1u,Mw2iz>

(V) = P(V(-D), MWL MW2)x 32 152152 L) | (v MW, MW2,,))

(hV(l)) — 2—8><b x 2—8><b « 2—8><b 28><b 28><b — 2—8><b
p(hv(i) MWD = 32152 o vy | Mw M- M) OV M)

p(hv(i) | MWD) = p(hv(-1), MW2)x ZO 02l 0IO((hV(I)I|\/|W1)|(hV(Dig, MW2;))
p(hV(l) | MW].) — 2—8><b 2—8><b 28><b — 2—8><b

p(hv(i) | MW2) = p((hV(I)I MWZ)I(hV(Dio, MWL;y))x p(hv(-1);o, MWLy)

i0=0
p(v() [MW2) = p(v(=D), MWD x 35 25 p(((i) | MW2) (hv(-D)0, MWA,,))

p(hV(l) | MW2) — 2—8><b % 2—8><b % 28><b — 2—8><b

Theorem 4. In Dynamic SHA-2, to a given hv(-1), there exist:
p(hv(2)] (hv(-1),MW1))= 2

Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2.
Let F1(hv(1))=hv(1a).
To a given 3-tuple (hv(2)’,hv(-1),MW1’). By theorem 2, there exist a 2--tuple
(hv(0),hv(1a)) that make F(hv(-1),MW1")=hv(0) and F(hv(1a),MW1’)=hv(2)’.

To a given hv(1a)’, by theorem 1, there exist a hv(1) that make F1(hv(1))=hv(1a).

To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 2, there exist a MW2 that make
F(hv(0),MW2)=hv(1)'.

So there exist:

p(hv(2)[(hv(-1), MW1)) = Zzol p((hv@) [(hv(=1), MW D)) [MW 2;) x p(MW 2;)

p(hv(2) | (hv(=1), MW1)) = p(MW 2)x 3°° ¥ p((hv(D) | (hv(~1), MW D) | MW 2,)
p(hv(2) | (hv(=1), MW 1)) = 2%® x1= 278

By theorem 3 and 4, it is to know that:
1. When hv(-1) is random variable, the probability of hash value is 275,
2. To a given hv(-1), the probability of different hash value maybe different.

After first round, the bits in message have been mixed, the mixed bits and working
variables value are not uncorrelated, it is hard to analyze the probability of hash value.
To get better property of spreading, Dynamic SHA-2 adopt ways as follow:
1. When the variable of function COMP is random value. Function COMP will
produce random value.
2. To reduce the times that message bits mixed, there is no message expansion
part in Dynamic SHA-2.

