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Abstract. White-box security techniques are employed to protect programs so that they can be ex-
ecuted securely in untrusted environments, e.g. for copyright protection. We present the first robust
combiner for white-box primitive, specifically for White-Box Remote Program Execution (WBRPE)
schemes. The WBRPE combiner takes two input candidate WBRPE schemes, W ′ and W ′′, and out-
puts a third candidate W = W ′ ◦W ′′. The combiner is (1, 2)-robust, namely, W is secure as long as
eitherW ′ orW ′′ is secure. The security of the combined scheme is established by presenting a reduction
to the security of the white-box candidates.
The WBRPE combiner is interesting since it presents new techniques of code manipulation, and in
addition it provides both properties of confidentiality and authentication, even though it is a (1, 2)-
robust combiner.
Robust combiners are particularly important for white-box security, since no secure candidates are
known to exist. Furthermore, robust combiners for white-box primitives, are interesting since they in-
troduce new techniques of reductions.
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1 Introduction

White-box security, flourished during the last two decades, due to the abundance of online software
distribution, mobile agents technology, licensed software distribution and more. In white-box secu-
rity, the software is executed in remote, possibly hostile environments, such that once the software
leaves the site of the owner, it is at full mercy of the user controlling the execution environment, and
the owner has no control over it. In white-box security the program along with the data is located
on the remote machine exposed to curious or malicious users. More specifically, in white-box, the
attacker can observe the internals of the executing program, i.e. the program’s code and data. This
is in contrast to black-box security, which assumes a trusted platform, i.e. a black-box, on which
the secret data can be stored and computations involving it performed.

Therefore measures should be taken to harden the software so that it can withstand attacks in
the white-box security model, i.e. to prevent undetected tampering or exposure of secret informa-
tion, by providing integrity and confidentiality of the execution and the computations performed.

Enabling secure remote execution of programs in hostile environment is required for many
applications, e.g. Digital Rights Management (DRM) Liu and Safavi-naini [28], market place Karnik
and Tripathi [25], public online databases Verykios et al. [37], Agrawal and Srikant [2], Gertner et al.
[16], Private Information Retrieval in Chor et al. [8]. Different practical and theoretical techniques
to harden software were developed, in order to produce solutions to address the security issues of
the applications in white-box security. Theoretical solutions include the Mobile Code Cryptography
techniques, for details see Related Works in Section 8.However, so far provably secure solutions that
achieve white-box security are either inefficient, or restricted to a limited set of functions, and hence
are not suitable for practical applications. Furthermore, the existing practical techniques, such as
obfuscation, are either proprietary, or lack a clearly stated conjecture of the security properties



of the cryptographic constructions, let alone a rigorous definition of security. Not surprisingly,
these (mostly proprietary) solutions are not believed to be secure by the experts, e.g. Collberg
and Thomborson [13], Collberg et al. [12]. Since the security of the existing white-box primitives
is hard to assess, and in particular none is proven secure (based on hardness assumptions), it is
particularly important to construct robust combiners for white-box security primitives. This will
ensure that the scheme is at least as secure as the stronger candidate.

We therefore focus on white-box security and in particular we are interested in investigating
fortification of software tools, that are employed to harden programs for secure execution in un-
trusted environments. More specifically, we investigate robust combiners for white-box primitives.
In particular for WBRPE which was, recently, presented by Herzberg et al. [23].

1.1 White Box Remote Program Execution (WBRPE)

In Herzberg et al. [23], introduced a new white-box security building block, the White Box Remote
Program Execution (WBRPE). WBRPE can be employed to facilitate a variety of applications, e.g.
grid computing, public online databases, Digital Rights Management (DRM) applications.

In Remote Program Execution, programs are sent by a local host (a.k.a. the originator) for
execution on a remote host, and possibly use some data available to the remote host; see Figure 1.
The local and the remote hosts may not trust each other, and since the local host loses all control
over the program it should be protected, and the related security issues need to be dealt with. In
particular these include confidentiality and integrity of input programs supplied by the local host
and confidentiality of inputs provided by the remote host.

TheWBRPE satisfies these requirements, employing software only techniques without assuming
secure hardware, i.e. trusted third party or smartcards. The WBRPE scheme is composed of three
efficient procedures, generation, hardening and unhardening, see Figure 1:

– The generation procedure produces two keys, (hardening and verification key) and a program,
which we call the obfuscated virtual machine OVM.

– The hardening key is used by the hardening procedure to harden, e.g. encrypt and/ or authen-
ticate, the input programs.

– The obfuscated virtual machine receives the hardened input program along with input from the
remote host. It decodes the hardened program, e.g. decrypts and/ or validates it, and returns
the result of the program applied to the input. The result is encoded, e.g. encrypted and/or
authenticated (within the OVM).

– The unhardening procedure unhardens, e.g. decrypts and validates the result received from the
remote host.

1.2 Robust Combiners for White-Box Primitives

In cryptography, the security of constructions often depends on the underlying building blocks,
e.g. unproven hardness assumptions, or primitives that withstood cryptanalysis attacks, and the
security of the basic primitives is not known. A common approach employed to enhance security
is to construct robust combiners, by combining two or more cryptographic primitives into one, s.t.
the resulting construction is secure even when only some of the candidates are secure.

Robust combiners are a valuable tool in cryptography, and can be applied to enhance an overall
security of cryptographic constructions, i.e. prevent erroneous implementations or design bugs.
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Furthermore, combiners are of particular importance when the security of cryptographic primitives
is not clear, i.e. especially in the context of white-box security, where no secure candidates are known
to exist, i.e. no schemes are provably secure, and no building blocks were standardised. Hence, the
safest choice is to enhance white-box security constructions, by combining several candidates into
one. As a result, even if vulnerabilities in one of the candidates were discovered due to design or
implementation bugs, the overall construction will remain secure as long as one of the candidates is
secure. However, it should be noted w.r.t. the stated above, that robust combiners do not provide
a guarantee of security, but they ensure that the security of the combined system is at least as that
of the strongest primitive.

Robust combiners received considerable attention from the research community, however all in
the context of black-box primitives, e.g. block-ciphers Bellare and Rogaway [5], encryption schemes,
hash functions, Message Authentication Code (MAC) and signature schemes Herzberg [22], Obliv-
ious Transfer Harnik et al. [21], Meier et al. [30]. In Herzberg [22] present several types of robust
combiners for various cryptographic primitives, e.g. encryption, signature and commitment schemes,
with focus on efficiency. In this work we investigate combiners for white-box primitives. In partic-
ular, for WBRPE Herzberg et al. [23].

In this work we present the first robust combiner for white-box primitive, specifically for White-
Box Remote Program Execution (WBRPE), as defined in Herzberg et al. [23]. We focus on combiners
that receive two candidates, also called (1,2)-robust combiners, and produce a third candidate that
is secure if one of the underlying candidates is secure.

Our main contribution: Robust Combiners for WBRPE In this work we present the fol-
lowing (1,2)-robust combiners for WBRPE: By cascading two WBRPE schemes, in Figure 3, such
that at least one provides indistinguishability, (resp. unforgeability) we obtain a WBRPE scheme
that provides indistinguishability (unforgeability). The combiner will remain secure even if one of
the candidate schemes is insecure. In the cascade construction, we assume that the given candidates
satisfy the correctness property. Namely, that the unhardening procedure returns the result of the
computation of OVM on the hardened input program, the remote input, and the auxiliary t and
l parameters used to prevent side channel attacks.

We then present a combined construction of the WBRPEwV scheme, in Figure 3.3, i.e. a
WBRPE scheme that provides remote inputs privacy by employing input programs validation,
and prove that this extended construction also ensures indistinguishability (res. unforgeability) if
at least one of the candidates provides indistinguishability (unforgeability). Also in this case even
if one implementation is insecure, e.g. the external OVM exposes the remote input, the combined
scheme will still be secure.

In the (1,2)-robust WBRPE cascade construction that we present, we achieve both security
specifications, i.e. confidentiality and authentication. This is in contrast to most existing combiners,
which preserve a single property only, e.g. confidentiality or authentication, collision resistance or
pseudorandomness, binding or hiding property for commitment schemes, e.g. [22]. In order to
ensure all the properties, a (1,3)-robust combiners were constructed. Another recent result for
multi-property preserving combiners for hash functions was presented in [15].

On the flip side, the combiner that we present has a substantial overhead, since the resulting
complexity is exponential in the number of the of the underlying primitives. Although it seems
that this is an optimal combiner for WBRPE, we leave it as an open question, to investigate more
efficient constructions.
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Furthermore, to provide unforgeability specification, (1,2)-robust copy combiner suffices. Copy
combiner is much more efficient than the cascade and is more simple, hence the unforgeability
property seems much easier to attain. Although it should be noted that its output length is dou-
bled. It is also interesting to construct a cascade combiner employing the candidate, that results
from the copy combiner and a candidate WBRPE scheme that provides indistinguishability. The
resulting scheme should provide both the indistinguishability and the unforgeability property, i.e.
by combining these two, we obtain a construction that robust for WBRPE.

1.3 Organisation

In Section 2 we present the definition of WBRPE and of the security specifications. In Section
3 we present the construction of the combiner for WBRPE and in Sections 1, 7.2 we prove that
the combiner is robust for the security specifications of WBRPE presented in Section 2. We then
present a construction of the WBRPEwV combiner that provides privacy of the input programs,
and analyse its security in Section, 7.4. In Section 8 we presented the existing works in white-box
security and robust combiners, and we conclude with open questions in Section 9.
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2 White-Box RPE Definitions

A WBRPE scheme W , in Figure 1, is comprised of three efficient algorithms, (G,H,U) for genera-
tion, hardening and unhardening, respectively. The generation procedure G generates the obfuscated
virtual machine OVM, the hardening key hk and the public verification key vk. The hardening pro-
cedure applied on some input program, hardens the program, e.g. encrypts and/ or authenticates
the original program, and produces two outputs, the hardened program and a one time unhardening
key. The remote host passes the hardened program, along with the remote input a to the OVM for
execution. The OVM has the required keys, and can therefore extract and evaluate the program.
Next, the OVM computes the result of P on a, and returns the (hardened) output. The local host,
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upon receipt the hardened output, applies the unhardening procedure with the unhardening key,
that it received from the hardening procedure, to obtain the final result of the computation.

Given a turing machine P ∈ TM, let P (a) denote a value of the computation of P on a. In
order to prevent side channel attacks bound the computation time of P on a to t steps and restrict
the output length to l bits. Let Pt,l(a) = Pt(a)[1...l] denote an l bit value of the t step computation
of P on input a. The definition follows.

Definition 1 (WBRPE). A White Box RPE (WBRPE) scheme W for programs family {Pk}k∈N
consists of a tuple W = 〈G,H,U〉 of PPT algorithms satisfying the following conditions:

For all (hk, vk,OVM) R← G(1k), a ∈ {0, 1}∗, P ∈ TM, t, l ∈ N and (c, uk)← Hhk(P ), holds:
– OVM ∈ PPT
– Pt,l(a) = Uuk,vk(OVM(c, a, t, l))

In various scenarios, e.g. when the remote input is a database, e.g. that contains private medical
or personal information, it is necessary to limit the information about the remote input that the
local host may obtain. To address this, we allow the owner of the remote input to specify the set
of valid queries on the database during the generation phase of the scheme, thus the obfuscated
virtual machine is confined to executing valid programs only. Defining the valid queries set, also
prevents manipulation of the database by the adversary, i.e. deleting or modifying entries.

To restrict the execution to valid programs, we introduce the following supplementary parame-
ters to the definition of WBRPE scheme, in Definition 1: the validation program V ∈ TM and the
number of steps tV to execute V , which are given to the trusted party that performs the generation
phase. On input a program P ∈ TM and a validation parameter σ ∈ {0, 1}∗, VtV ,1(P, σ) ∈ {0, 1}
returns 1 if the program is valid and 0 otherwise. The OVM will only execute valid programs. In
addition, the signature of the hardening procedure H is modified and along with the input program
P , it will also receive the validation parameter σ. The definition of the WBRPEwV, in Figure 2,
presented below:

Definition 2 (WBRPE with Validation (WBRPEwV)). A White Box RPE with Validation
(WBRPEwV) scheme WV , consists of a tuple 〈G,H,U〉 of PPT algorithms satisfying the following
conditions:

For all 〈hk, vk,OVM〉 ← G(1k, V, tV ), s.t. V ∈ TM, tV ∈ N, a ∈ {0, 1}∗, P ∈ TM, σ ∈ {0, 1}∗, t, l ∈
N, and (c, uk)← Hhk(P, σ), holds:
– OVM ∈ PPT
– if (VtV ,1(P, σ) = 1) then Pt,l(a) = Uuk,vk(OVM(c, a, t, l))
– else ⊥ = Uuk,vk(OVM(c, a, t, l))

In the subsequent subsections we present only a high level description of the security specifications
of WBRPE, and rigorous game based definitions are in Herzberg et al. [23].

2.1 Indistinguishability of the Local Inputs Specification

The goal is to hide the contents of the input programs from the remote host. To ensure local inputs
privacy a variation of the indistinguishability experiment for encryption schemes Goldreich [17] is
employed.
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As its first step the experiment generates the keys and the obfuscated virtual machine. Next it
invokes the adversarial algorithm and provides it with an oracle access to the hardening function-
ality for its hardening queries, passes it the obfuscated virtual machine and the public verification
key. Each application of the hardening procedure generates a hardened program and a one time un-
hardening key, which is used to recover the result. Eventually the adversary outputs two programs
of equal size. The experiment tosses a bit b and the appropriate program is subsequently hardened.
During the second phase the adversary keeps an oracle access to HO, obtains the hardened chal-
lenge program and has to distinguish. If the adversary guesses correctly, the experiment returns 1,
i.e. the adversary won, and otherwise returns 0, the adversary lost.

The hardening key can be either public or private; a flag ϕ is used to differentiate between
public and private key schemes, s.t. when ϕ equals PK, the adversary receives a public hardening
key, whereas when ϕ equals SK the adversary only receives an access to a hardening oracle.

2.2 Unforgeability Specification

In typical scenarios, e.g. shopping mobile agent, the adversary may try to change the programs
sent by the originator to programs of his choice, such that instead of looking for the best offer the
agent purchases the most expensive item. Further, the adversary may try to change the result of
the computation to some other result. Our goal is to circumvent adversarial attempts to forge the
result output by the scheme, and this is achieved by the unforgeability specification.

In [23], they extend the definition of WBRPE scheme, such that the unhardening procedure U
can obtain additional optional parameters in an input, when validation of the inputs is required.
More specifically, the local host can validate the result, i.e. the result of the computation is indeed of
the input program P that it supplied for the specified number of steps t. To perform validation, the
unhardening procedure U will use the public verification key vk. The implication is that everyone
can validate the result, but only the possessor of the secret unhardening key uk can obtain the
final result. The validation of the result is optional and can only be performed when P and t are
supplied in addition to ω, i.e. the output of OVM.

To verify the integrity of the result the recipient can apply the unhardening procedure, on ω,
an input program P , and the t that was used for programs execution. The unhardening procedure
uses the public verification key vk, and the secret unhardening key uk.
We consider two types of forgery of WBRPE scheme W : in particular, in [23], they introduce the
notion of output forgery, i.e. the result of the computation is an incorrect output and could not
have been generated by the input program on any remote input, and of program forgery. Below,
we give an intuitive description of the unforgeability experiment, followed by the presentation of
both types of forgery.

The experiment applies the generation procedure and obtains hardening key, verification key
and OVM. It then invokes the adversary with an oracle access to hardening functionality, the OVM
and the verification key in an input. Eventually the adversary outputs the hardened result of the
computation ω, an input program P , the number of steps t and the unhardening key uk. The
experiment applies the unhardening procedure U on ω, P and t, and obtains the result of the
computation y. If y is valid the experiment checks if it is a forgery and if yes, returns 1, i.e. the
adversary successfully generated a forgery, otherwise returns 0, the adversary failed.

6



Output Forgery Consider a public online database, where a user queries the database with some
query, and the adversary changes the result of the computation to some other value of his choice.
We prevent this using the “correct output” specification.

This type of forgery means that the output is not a result of the computation of the input
program on any remote input. Specifically, the adversary successfully generated an output tuple
(ω, P, t, uk), s.t. the result y ← Uuk,vk(ω) could not have been generated by the hardened program
P , i.e. ∀a y 6= Pt,|y|(a).

Program Forgery The forgery of the program is only relevant for the symmetricWBRPE scheme,
therefore the adversary obtains an oracle access to the hardening functionality and does not obtain
the hardening key in an input. In this type of forgery, the legitimate party never queried the
hardening oracle with a program for which the result was generated. Instead, the adversary replaces
the authentic hardened program with some other program (replay or a forgery). We consider two
variants:

– The adversary successfully generated a new unhardening key uk, which was not output by the
hardening oracle. Namely, it generated a tuple (ω, P, t, uk), s.t. y ← Uuk,vk(ω) and y = Pt,|y|(a)
for some a, t, l.

– The adversary successfully generated an output (ω, P, t, uk) s.t. y ← Uuk,vk(ω), and y = Pt,|y|(a),
where the unhardening key uk was generated for a different program P ′. In both cases, the
adversary did not perform a hardening oracle query on P .

2.3 Privacy of Remote Inputs Specification

In the definition of the privacy specification below we require that the adversary gains no additional
information about the remote input than what is already a-priori known to it, given the result of
the computation and access to the scheme. We formalize this using the simulation paradigm: the
WBRPE schemeW is semantically secure w.r.t. privacy of remote inputs, if everything an adversary
can learn about the remote input given an access to the scheme for the computation of the result,
the simulator could learn without any access to the scheme, by resorting to the help of a trusted
third party to execute and validate programs on its behalf.
In the definition below the function f is the information about the remote input that the adversary
attempts to learn and the function h represents the adversary’s a-priori knowledge regarding the
remote input. We denote by {REMk}k∈N the probability ensemble representing the distribution of
the remote inputs and there exists a single polynomial p(·) such that for all sufficiently large k’s,
|REMk| ≤ p(k), which essentially implies that there exists a polynomial bound on the length of the
strings in this distribution. The adversary’s inability to learn information about the remote input
should hold for any distribution of remote inputs.

In the definition of privacy of remote inputs we present two environments, the white box en-
vironment which emulates the the real execution, and the black box environment that emulates
the ideal execution, such that the black box environment provides no access to the scheme but
simulates a trusted third third party which carries out the computations and the validations of
the input programs on behalf of the local host, whereas the white box environment simulates an
adversary which exploits the scheme to gain some additional information about the remote input.
The advantage that the adversary gains in the white box, i.e. real, environment should be almost
the same, as the advantage that the simulator gains in the black box, i.e. ideal, environment.
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The adversary may have, a possibly limited, control over the remote input, e.g. consider a
scenario where the remote input supplied by the executing remote host is a database. Clearly, the
adversary may insert or update entries in the database. We model this by introducing the aADV
parameter, which is the part of the remote input that is under the control of the adversary.
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3 Cascade Combiner for WBRPE Schemes

In this section we present the cascade combiner for WBRPE scheme, in Figure 3, and investigate its
tolerance for security specifications defined for WBRPE. Given two candidate WBRPE implemen-
tations, we combine them into one scheme, that is secure w.r.t. security specifications of WBRPE,
provided at least one of the two candidates is secure. More specifically, we encode the OVM of
one of the candidate WBRPE schemes as the program to be computed by the other one. We first
present a high level presentation of the cascade combiner for WBRPE and then proceed to intuitive
analysis of its security. The detailed construction is presented in the subsections 3.1, 3.2, 3.3 in the
sequel.
On a high level a WBRPE combiner operates as follows:
Upon input a program P the local host hardens the program using an internal hardening procedure
H′, obtains c′ and the unhardening key uk′. Then, generates a program P ′, defined in Figure 2,
which is essentially an OVM′ instantiated with a hard-coded hardened program c′. The P ′ program
returns the result of the execution of OVM′ on a hardened program P and a remote input a. Then
the program P ′ is hardened using the external hardening procedure H′′, resulting in a pair c and
uk′′, such that c is sent to the remote host for execution.

On the remote host there is the OVM, presented in Figure 2. The OVM is created during the
generation phase, it has a hard-coded encoding of the OVM′′, supplied byW ′′ and some additional
processing, which we will extend on later. The OVM upon input a hardened program and a
remote input passes them to OVM′′ for execution. Intuitively, the OVM′′ recovers, i.e. decodes
and validates, the program P ′, and then executes it on the remote input a. The program P ′, as
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presented above, is simply an OVM′ with an instantiated parameter c′. The OVM′ recovers, i.e.
validates and decrypts, the hardened program P and runs it on the remote input a. Finally the
OVM′ returns the result y of the computation, and hardens it, i.e. encodes and authenticates, to
obtain ω′. The OVM′′ hardens, i.e. encodes and authenticates, ω′ and returns ω. The ω is then
sent back to the local host. The local host recovers the result y of the computation of P on a, by
applying U ′′ and U ′ on ω.

Intuitively, the resultant scheme preserves indistinguishability, if one of the input candidates
preserve indistinguishability. This holds since the inner OVM′ is hidden by an outer OVM′′.
Therefore, even if the outer OVM′′ is not secure, i.e. does not "hide" the programs that it executes,
an overall scheme is secure, since the attacker cannot inspect the original input. Alternately, if the
inner OVM′ is not secure, the outer OVM′′ protects the computations. Identically, the combined
scheme preserves unforgeability of program/ output if one of the candidates ensures unforgeability
of program/ output.

However, the presented above scenario is exposed to side channel attacks. In particular, the
attacker can distinguish programs by their length or by their running time. We therefore introduce
the t and l parameters to prevent the ability of the adversary to distinguish the input programs by
their running times or output length, for detailed construction refer to Figure 3.3. More specifically,
the remote host will specify the running time and the output length for each input program P . In
particular, the OVM upon input t and l will calculate the respective running time t′ and output
length l as a function of t and l and will supply them to OVM′′. These will specify the length of
ω′ returned by and the running time of the OVM′.

Definition 3 (Cascade of WBRPE schemes). Given two candidate WBRPE schemes W ′ and
W ′′, where W ′′ = (G′′,H′′,U ′′) and W ′ = (G′,H′,U ′). A cascade WBRPE is defined by a tuple of
PPT algorithms (G,H,U), presented in Sections 3.1,3.2 and 3.3 respectively. We denote the cascade
combiner by the binary operator ◦, i.e. (G′′,H′′,U ′′) ◦ (G′,H′,U ′).

3.1 Generation Procedure

Let T (·) and L(·) be two polynomials bounding the running time and the output length of the
OVM′′. The generation procedure G, in Algorithm 1, applies the generation procedures G′ and G′′
of both candidates and returns the hardening key, the verification key and the obfuscated virtual
machine, i.e. the tuple (hk, vk,OVM).

– The public verification key vk is comprised of vk′ and vk′′.
– The hardening key hk consists of the concatenation of the hardening keys generated by both

candidates and of the encoding of the OVM′ generated by G′. The the hardened input program
P is hard-coded into the OVM′ on the local host, subsequently hardened, and transformed to
the remote host for execution. The OVM′′ is one of the elements generated by G′′, and both
OVM′ and OVM′′, have the corresponding secret keys for hk′,vk′ and hk′′,vk′′ respectively,
and can therefore recover the programs, e.g. decrypt and validate, and consequently harden,
e.g. encrypt and authenticate, the result.

– Then the OVM string is generated using the createOVM macro, in Algorithm 2, and it con-
stitutes an external envelope for OVM′′. More specifically, the OVM is installed on the remote
host, and on each execution, it obtains the input parameters (c, a, t, l), computes the corre-
sponding parameters t′ = T (t), l′ = L(l) and a′ = (a, t, l) for OVM′′, and invokes OVM′′ with
(c, a′, t′, l′).
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For the graphical representation of the operations performed during the execution on the remote
host refer to Figure 3.3.

Algorithm 1 The cascade WBRPE combiner (G,H,U).
G(1k)
〈hk′, vk′,OVM′ 〉 R← G′(1k)
〈hk′′, vk′′,OVM′′ 〉 R← G′′(1k)
hk = 〈hk′, hk′′,OVM′〉
vk = 〈vk′, vk′′〉
OVM← createOVM{OVM′′}

return 〈hk, vk,OVM〉

Algorithm 2 External OVM with hard-coded OVM′′, external Program P ′, supplied as input to H′′.
createOVM{OVM′′}

read c, a, t, l
t′ = T (t)
l′ = L(l)
a′ = (a, t, l)

createP ′{c′}
return read a′

(a, t, l)← a′

return OVM′($1, a, t, l);

3.2 Hardening Procedure

The hardening procedure H, in Algorithm 3, upon input a program P and a hardening key hk =
〈hk′, hk′′,OVM′〉, performs the following steps:

1. The hardening procedure H applies H′hk′ on the input program P and obtains (c′, uk′).
2. H then generates the program P ′ using createP ′ macro, in Algorithm 2, with input c′. The
P ′ is essentially an OVM′ with a hard-coded hardened input program, i.e. c′. The program P ′

reads and parses the input a′, and obtains the (a, t, l) parameters. It returns the result of the
execution of OVM′ applied on the hardened input c′ and (a, t, l).

3. Next it applies H′′hk′′ on P ′, to obtain the hardening c and the unhardening key uk′′.
4. The output is 〈c, uk〉, where uk is comprised of the unhardening keys (uk′, uk′′), the random

string r, which is later used by the unhardening procedure U , in Algorithm 3, to reconstruct
the program P ′ for validation performed by U ′′.

3.3 Unhardening Procedure

The unhardening procedure U , in Algorithm 3, receives the ephemeral unhardening and public
verification keys, i.e. uk = 〈uk′, uk′′, r〉 and vk = 〈vk′, vk′′〉, along with the hardened program P . It
applies both unhardening procedures U ′ and U ′′, of the given candidates, along with uk′, uk′′ and
vk′, vk′′ to recover the result of the computation. Specifically, the unhardening keys uk′′, uk′ are
used to unharden the respective outputs, ω′ and y, of OVM′′ and OVM′, and vk′′, vk′ are used to
validate ω′ and ω, i.e. that ω′ is a result of the computation of P after t steps, and ω is a result

10



Algorithm 3 The cascade WBRPE combiner (G,H,U).

H〈hk′,hk′′,OVM′〉(P )
(c′, uk′)← H′hk′(P ; r)
P ′ ← createP ′(c′)
(c, uk′′)← H′′hk′′(P ′)
uk = 〈uk′, uk′′, r〉

return 〈c, uk〉

U(uk=〈uk′,uk′′,r〉,vk=〈vk′,vk′′〉)(ω, P, t)
if ((P, t) 6= NULL) then

(c̃′, ũk)← H′hk′(P ; r)
P ′ ← createP ′(c̃′)
t′ = t+ 3
ω′ ← U ′′uk′′,vk′′(ω, P ′, t′)
y ← U ′uk′,vk′(ω′, P, t)

else
y ← U ′〈uk′,vk′〉(U ′′〈uk′′,vk′′〉(ω))

return y

of the t′ steps computation of the input program P ′. The program P ′ is reconstructed using the
createP ′ macro, in Algorithm 2, using the random string r, which it received as part of the uk key,
and the number of steps t′ is computed using t. This validation is performed only if P and t were
supplied. If P and t were not supplied it does not perform the validation but only unhardens the
output ω of OVM, and obtains y.

OVM(c,a,t,l)
t'=T'(t);    L'=L'(L);         
a'=(a,t,L);
run OVM''

OVM''(c,a',t',l')
unharden c and obtain P'
run P't',l'(a')P'(a'')

Parse a' and obtain (a,t,l)
return OVM'(c',a,t,l)

OVM'(c',a,t,l)
unharden c' and obtain P

harden w' and obtain w
return wreturn w'

c= H''hk''(P').c

return w

run VM(P,a,t,l), obtain y

Harden y and obtain w'

Fig. 5. OVM on the remote host.

4 Cascade Combiner is Robust for WBRPE

The combinedWBRPE is robust for the security specifications ofWBRPE scheme. More specifically
if one of the candidates satisfies the security specifications of WBRPE, then the cascade satisfies
the security specifications of WBRPE, i.e. the indistinguishability and the unforgeability of the
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input programs and of the result of the computations. We prove this in Theorems 1, 2, 5, in Section
4.

We follow the attack definitions which were presented in Section 2, We use ϕ = PK to indicate
public key scheme, i.e. the adversary receives the public hardening key hk, and ϕ = SK to define
private key scheme, i.e. the adversary obtains oracle access to the hardening functionality.
The proofs of the theorems 1, 2, 5, in Sections 7.1, 7.2, 7.3 respectively.

Theorem 1 (Cascade is Robust for Indistinguishability). For ϕ ∈ {PK,SK}, a cascade
WBRPE scheme W = W ′′ ◦W ′, is WB − IND − CPA− ϕ secure if at least one of W ′ or W ′′ is
WB − IND − CPA− ϕ.

Theorem 2 (Cascade is Robust for Output Forgery). For ϕ ∈ {PK,SK}, a cascade WBRPE
scheme W = W ′′ ◦W ′, is UNF −OUT −ϕ secure if at least one of W ′ or W ′′ is UNF −OUT −ϕ
secure.

Theorem 3 (Cascade is Robust for Program Forgery). For ϕ ∈ {PK,SK}, a cascade
WBRPE scheme W = W ′′◦W ′, is UNF −PRG secure if at least one of W ′ or W ′′ is UNF −PRG
secure.

5 Cascade Combiner for WBRPE with Validity (WBRPEwV) Schemes

Cascade combiner for WBRPEwV is similar in nature to the cascade combiner of WBRPE, in
Section 3. It is constructed using two candidate WBRPEwV with validation, and in addition to
the indistinguishability and the unforgeability specifications of WBRPE, it also provides privacy
of remote inputs, that are supplied by the remote host. More specifically, provided one of the
candidate WBRPEwV schemes provides privacy of remote inputs, the cascade provides privacy of
remote inputs.

In the construction of the cascade WBRPEwV scheme we assume correctness, i.e. that both
candidate schemes are correct. This assumption is critical, since the algorithms H and U may
behave arbitrarily, and in particular, may expose the input program P , or the remote input a,
contradicting the security specifications.

We now present a high level overview of the WBRPEwV scheme. The input to the hardening
procedure H, presented in Algorithm 6, is a pair P, σ, where σ is a validation parameter of P . The
hardening procedure H selects a secret encryption key K and generates a program PK with P and
K. The program PK , defined in 6, decrypts the remote input and then runs the VM on (P, a, t, l).
The encryption of the remote input is performed by the OVM using the secret encryption key K.
The remote input is encrypted in order to prevent its exposure by one of the OVM′′ or OVM′,
e.g. by concatenating the remote input to the result of the computation. The program PK is the
hardened along with the new σK , which includes σ and the input program P , resulting in a pair
(c′, uk′). Then a program P ′ is generated, which is an OVM′ with an embedded input c′, and an
appropriate validation parameter σ′ for P ′ is generated. The validation parameter σ′ is to be used
by the validation procedure V ′′ in OVM′′ to verify that the program P ′ is indeed of the required
format, and not some other program, e.g. a program that does not perform the invocation of OVM′
with hardening c′, but for instance computes an identity function, i.e. given a returns a. Then P ′
is hardened along with σ′ and is sent to the remote host for execution. The key uk = uk′, uk′′ is
used to unharden the result of the computation, returned by the remote host.

12



On the remote host, the OVM upon input a remote input a, encrypts a, computes the new
running time t′ and output length l′, and invokes the OVM′′ on the encrypted a, the hardened pair
(P ′, σ′), and t′, l′. Intuitively, the OVM′′ unhardens the input to recover the program P ′ and the
validation parameter σ′. Since we assume correctness, the OVM′′ will run the validation program
V ′′ on P ′ and σ′. If the validation program returns 1, the OVM′ will execute P ′ on a′, for t′ steps
and will truncate pad the result to l′ bits. When executed, the program P ′ is simply an OVM′
with hard-coded c′ inside. P ′ first parses the a′, to obtain ca, t, l and will invoke an OVM′ with
(c′, ca, t, l). The OVM′ recovers PK and σK and validates them with V ′. If validation passes, it
runs PK , on ca for t+ 3 steps, then hardens and returns the result of the computation. The OVM′′
subsequently hardens and returns the output returned from OVM′.

The local host, upon input ω, unhardens it using the unhardening procedure U , which is pre-
sented and defined in Section 3.3, in Algorithm 3.

Definition 4 (Cascade of WBRPEwV schemes). Given two candidate WBRPEwV schemes
WV ′ and WV ′′, where WV ′′ = 〈G′′,H′′,U ′′〉 and WV ′ = 〈G′,H′,U ′〉. A cascade WBRPEwV is
defined by a tuple of PPT algorithms 〈G,H,U〉, presented in Sections 5.1, 5.2, 3.3 respectively. We
denote the cascade combiner by the binary operator ◦, i.e. 〈G′′,H′′,U ′′〉 ◦ 〈G′,H′,U ′〉.

5.1 Generation Procedure

The generation procedure G, in Figure 4, upon input a validation program V , the number of steps
tV to run V , and the security parameters, generates the validation programs V ′ and V ′′, for OVM′
and OVM′′ respectively. Applies G′ and G′′ to generate the parameters of the scheme, and outputs
〈hk, vk,OVM′′〉. More specifically, G operates as follows:

1. Applies the function createV ′′, in Figure 5, on V, tV and generates V ′′, i.e. the validation function
that is to be embedded in OVM′′, and computes the new number of steps tV ′′ to run V ′′.

2. Applies G′′ and generates the tuple 〈hk′′, vk′′,OVM′′〉. The reason that first G′′ is applied and
then G′, is because the validation function V ′ obtains OVM′′ in an input.

3. Then the createV ′ function, in Figure 5, is invoked with V, tV and OVM′′ to generate V ′, and
the appropriate number of steps tV ′ is computed.

4. Applies G′ and generates the tuple 〈hk′, vk′,OVM′〉.
5. A key tuple (e, d) is generated, and d is embedded in the external OVM, that is created using

the createOVM function, in Algorithm 4. The secret key d will be used by the OVM to decrypt
the shared key K, supplied by the input program PK . The OVM will encrypt the remote input
a with K before transferring it to OVM′′. This is required to prevent possible exposure of the
remote input by a malicious OVM′′.

6. Then G returns the tuple 〈hk, vk,OVM〉, such that the hardening key is comprised of 〈hk′, hk′′, e,OVM′〉,
where e is the corresponding public encryption key, for the secret key d. The public verification
key vk = 〈vk′, vk′′〉, and the OVM is the external obfuscated virtual machine.

5.2 Hardening Procedure

The hardening procedure H receives the input program P along with the validation parameter σ,
and the hardening key hk which is comprised of 〈hk′, hk′′, e,OVM′〉. The H operates as follows:
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Algorithm 4 The generator of the cascade WBRPEwV scheme (G,H,U).
G(1k)

V ′′ ← createV ′′(V, tV )
tV ′ = tV + 7
〈hk′′, vk′′,OVM′′〉 R← G′′(1k, V ′′, tV ′′)
V ′ ← createV ′(V, tV ,OVM′′)
tV ′ = tV + 5
〈hk′, vk′,OVM′ 〉 R← G′(1k, V ′, tV ′)
(e, d)← GE(1k)
OVM← createOVM(OVM′′, d)
hk = 〈hk′, hk′′, e,OVM′〉
vk = 〈vk′, vk′′〉

return 〈hk, vk,OVM〉

createOVM{OVM′′}
return “read c, a, t, l

(c′′, cK)← c
K ← Dd(cK)
ca ← E ′K(a)
t′′ = T (t); l′′ = L(l)
t′ = t+ 3; l′ = l
a′ = (ca, t, l)
a′′ = (a′, t′, l′)
return OVM′′(c′′, a′′, t′′, l′′)”

Algorithm 5 Validation of the input programs P to W ′.
createV ′(V, tV ,OVM′′)
return “read (PK , σ̃)

(P, σ)← σ̃
if ((PK = decryptionPrg(P )) ∧ (VtV ,1(P, σ) =

TRUE))
return 1

return 0”

createV ′′(V, tV )
return “read (P ′, σ′)

(P̃ ′)← σ′

if (P̃ ′ = P ′)
return 1

return 0”

1. Generates the PK program by applying decryptionPrg macro on input program P , in Algorithm
6.
– The PK parses the input and obtains (P, ca, t, l), decrypts the remote input ca using K, runs
the virtual machine VM with (P, a, t, l) and outputs y, i.e. the result of the computation.

2. The PK program is hardened along with the validation parameter σK , using H′.
3. A new program P ′ is created using the createP ′ macro, in Algorithm 2, which is essentially an
OVM′ with the hard-coded input c′, along with the appropriate validation parameter σ′.

4. Both P ′ and σ′ are hardened using H′′.
5. The H returns the pair (c, uk), such that, c is comprised of the encrypted secret key cK is

concatenated to the hardened program P ′, and uk is comprised of the unhardening keys uk′, uk′′,
the verification key v and the hardened program P to be used by U .

Algorithm 6 H〈hk′,hk′′,e,OVM′〉(P, σ)
H〈hk′,hk′′,OVM′〉(P, σ)

K ∈R {0, 1}k
PK ← decryptionPrg{P,K}
cK ← Ee(K)
σ̃ ← (σ, P )
(c′, uk′)← H′hk′(PK , σ̃; r)
P ′ ← createP ′(c′)
σ′ ← (P ′)
(c′′, uk′′)← H′′hk′′(P ′, σ′)
c← (c′′, cK)
uk = 〈uk′, uk′′, r〉

return (c, uk)

decryptionPrg′{P,K}
return read a′

(ca, t, l)← a′

a← D$1(ca)
y← VM($2, a, t, l)
return y;
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6 Cascade Combiner is Robust for WBRPEwV

The combinedWBRPE is robust for the security specifications ofWBRPE scheme. More specifically
the cascade satisfies the privacy of remote input a, in addition to the indistinguishability and the
unforgeability of the input programs and of the result of the computation. We present a proof
that the cascade satisfies privacy of the remote inputs in Appendix, Section 7.4, and we present
an intuition, showing that the WBRPEwV satisfies the indistinguishability and the unforgeability
specifications, identically to 1, 2, 5, in Appendix, Section 4.
The proof of the theorem 7.4, in Appendix, Section 7.4.

Theorem 4 (Cascade is Robust for Privacy). A combined WBRPEwV scheme WV , s.t.
WV = WV ′ ◦ WV ′′ is PRV − V LD secure if at least one of WV ′ or WV ′′ is PRV-VLD se-
cure.

7 Security Analysis of the WBRPE Combiner

Below we present an analysis of the security specifications of the WBRPE combiner. More specifi-
cally, we show that even if one candidate is insecure, i.e. does not satisfy the security specifications
of WBRPE, the overall construction is secure. We provide separate treatment for each security
property of WBRPE in Sections 7.1, 7.2, 7.3.

7.1 Cascade is Robust for WBRPE w.r.t. Indistinguishability Specification

We specify the indistinguishability definition w.r.t. a PPT adversary A = (A1, A2), denoting by
HO the oracle which the adversary A obtains access to, during the experiment.
Proof of Theorem 1 For ϕ ∈ {SK,PK}, let W = (G,H,U), s.t. W = W ′ ◦W ′′. Given A =
(A1, A2) againstW we construct A′ = (A′1, A′2) and A′′ = (A′′1, A′′2) againstW ′ andW ′′ respectively,
s.t.

AdvWB−IND−CPA−ϕW ′,A′ (k) = AdvWB−IND−CPA−ϕW,A (k) (1)

AdvWB−IND−CPA−ϕW ′′,A′′ (k) = AdvWB−IND−CPA−ϕW,A (k) (2)

We prove equations (1), (2) in lemmas 1, 2 respectively. The theorem 1 follows. ut

Lemma 1. Given a PPT adversary A = (A1, A2), there exists a PPT algorithm A′ = (A′1, A′2),
s.t. for infinitely many k’s equation 1 holds for ϕ ∈ {PK,SK}.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE scheme W , we con-
struct a PPT algorithm A′ = (A′1, A′2), in 7, against a candidate WBRPE scheme W ′, that uses A
and W ′ as black boxes. A′ simulates the indistinguishability experiment, in Section 2.1, of the com-
bined WBRPE scheme for A, by generating the corresponding parameters, and supplying responses
to its hardening oracle queries. Eventually A′ returns A’s answer.

In Figure 8, we present the implementation of the hardening procedure HP accessed by A. For
ϕ = PK holds HPhk′′(P ) = (HO′hk′(P ), hk′′,OVM′) = (hk′, hk′′,OVM′).

Clearly, if A is efficient, i.e. a PPT algorithm, then A′ is also efficient, since in addition to
invoking A, it applies G′′, H′′ that are efficient, and performs constant operations on strings.
We next show that if A′ simulates the execution environment for A according to the steps specified
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Algorithm 7 Algorithm A′ = (A′1, A′2), that reduces WB − IND − CPA− ϕ of W = W ′ ◦W ′′ to that of W ′.

A′1
HO′hk′ (·,ϕ;rH′1

)
(1k,OVM′, vk′; rA′1 )〈

rG′′ , rH′′1 , rA1

〉
← rA′1

〈hk′′, vk′′,OVM′′〉 ← G′′(1k; rG′′)
OVM← createOVM{OVM′′}
vk = 〈vk′, vk′′〉
(r(1)
H′′1
, ..., r

(p(k))
H′′1

)← rH′′1

〈P0, P1, s〉 ← A
HPhk′′ (·,OVM

′,ϕ;r(i)
H′′1

)

1 (1k,OVM, vk; rA1 )

s′ ← 〈hk′′, vk,OVM′,OVM〉
return (P0, P1, 〈s′, s〉)

A′2
HO′hk′ (·,ϕ;rH′2

)
(c′b, 〈s′, s〉 ; rA′2 )〈

rH′′
b
, rH′′2 , rA2

〉
← rA′2

〈hk′′, vk,OVM′,OVM〉 ← s′

P ′b ← createP ′(c′b)
(cb, uk′′b )← H′′hk′′(P ′b; rH′′

b
)

(r(1)
H′′2
, ..., r

(p(k))
H′′2

)← rH′′1

b′ ← A
HPhk′′ (·,OVM

′,ϕ;rH′′2
)

2 (cb, s; rA2 )
return b′

Algorithm 8 HPhk′′ and HPhk′ given as oracle to A = (A1, A2) by A′ and by A′′ respectively.

HP
HO′hk′ (·,ϕ;r(i)

H′
)

hk′′ (P,OVM′, ϕ; r(i)
H′′)

if (ϕ = PK) then
return (HO′hk′(P,ϕ; r(i)

H′), hk
′′,OVM′)

else
(c′, uk′)← HO′hk′(P,ϕ; r(i)

H′)
P ′ ← createP ′(c′)
(c, uk′′)← H′′hk′′(P ′; r(i)

H′′)
uk =

〈
uk′, uk′′; r(i)

H′ , r
(i)
H′′

〉
return (c, uk)

HP
HO′′hk′′ (·,ϕ;r(i)

H′
)

hk′ (P,OVM′, ϕ; r(i)
H′′)

if (ϕ = PK) then
return (hk′,HO′′hk′′(P,ϕ; r(i)

H′),OVM
′)

else
(c′, uk′)← H′hk′(P ; r(i)

H′)
P ′ ← createP ′(c′)
(c, uk′′)← HO′′hk′′(P ′, ϕ; r(i)

H′′)
uk =

〈
uk′, uk′′; r(i)

H′ ; r
(i)
H′′

〉
return (c, uk)

in the indistinguishability experiment 2.1, and implements the hardening procedure, in Algorithm
8, for A identically to the construction 3, then for any random string r, it holds that

ExpWB−IND−CPA−ϕW ′,A′ (k; r’) = ExpWB−IND−CPA−ϕW,A (k; r)

Where r = (rG′ , rG′′ , rH′1 , rH′′1 , rA1 , rb, rH′b , rH
′′
b
, rH′2 , rH′′2 , rA2) and r′ is constructed as follows: r′ =

(rG′ , rH′1 , rA′1 =
〈
rG′′ , rH′′1 , rA1

〉
, rb, rH′

b
, rH′2 , rA′2 =

〈
rH′′
b
, rH′′2 , rA2

〉
) To simplify matters, we show

how both experiments, i.e. the indistinguishability experiment of the candidate WBRPE schemeW ′
against A′, and the indistinguishability experiment of the combined WBRPE scheme W against
A, use the random string r, making it clear that if r′ is constructed as above, the view of the
algorithm A when invoked by A′, in the experiment against WBRPE scheme W ′, in Algorithm
10, is distributed identically to its view in the indistinguishability experiment against the WBRPE
scheme W , in Algorithm 9.

Therefore A’s advantage in the simulation run by A′ during the ExpWB−IND−CPA−ϕW ′,A′ (k; r’) is
equal to its advantage in the ExpWB−IND−CPA−ϕW,A (k; r) experiment. Hence we obtain, that for any
r, equation 1 holds. ut

Lemma 2. Given a PPT adversary A = (A1, A2), there exists a PPT algorithm A′′ = (A′′1, A′′2),
s.t. for infinitely many k’s equation 2 holds for ϕ ∈ {PK,SK}.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE schemeW , we present
a construction of a PPT algorithm A′′ = (A′′1, A′′2) against the candidate WBRPE scheme W ′′, in

16



Algorithm 9 ExpWB−IND−CPA−ϕW,A (k; r).
(rG′ , rG′′ , rH′1 , rH′′1 , rA1 , rb, rH′

b
, rH′′

b
, rH′2 , rH

′′
2
, rA2 ) ← r

(hk, vk,OVM)← G(1k; rG′ , rG′′)
(r(1)
H′1
, ..., r

(p(k))
H′1

)← rH′1

(r(1)
H′′1
, ..., r

(p(k))
H′′1

)← rH′′1

〈P0, P1, s〉 ← A
HO〈hk′,hk′′,OVM′〉(·,ϕ;r(i)

H′1
,r

(i)
H′′1

)

1 (1k,OVM, vk; rA1 )

b← rb
(c, uk)← Hhk(Pb; rH′

b
, rH′′

b
)

(r(1)
H′2
, ..., r

(p(k))
H′2

)← rH′2

(r(1)
H′′2
, ..., r

(p(k))
H′′2

)← rH′′2

b′ ← A
HO〈hk′,hk′′,OVM′〉(·,ϕ;r(i)

H′2
,r

(i)
H′′2

)

2 (c, s; rA2 )
return b′

Algorithm 10 ExpWB−IND−CPA−ϕW ′,A′ (k; r’).
(rG′ , rH′1 , rA′1 , rb, rH′b , rH′2 , rA′2 )← r

rA′1 =
〈
rG′′ , rH′′1 , rA1

〉
rA′2 =

〈
rH′′
b
, rH′′2 , rA2

〉
(hk, vk,OVM)← G′(1k; rG′)
(r(1)
H′1
, ..., r

(p(k))
H′1

)← rH′1

〈P0, P1, s〉 ← A′
HO′〈hk′,hk′′,OVM′〉(·,ϕ;r(i)

H′1
)

1 (1k,OVM, vk; rA′1 )

b← rb
(c, uk)← H′hk′(Pb; rH′

b
)

(r(1)
H′2
, ..., r

(p(k))
H′2

)← rH′2

b′ ← A′
HO′〈hk′,hk′′,OVM′〉(·,ϕ;r(i)

H′2
)

2 (c, s; rA′2 )
return b′

Figure 11, against W ′′, that uses A and W ′′ as black boxes. Specifically A′′ simulates the indistin-
guishability experiment, in Section 2.1, of the combined WBRPE scheme W for A, by generating
the corresponding parameters, and supplying responses to its hardening oracle queries. Eventually
A′′ returns A’s answer.

In Figure 8, we present the implementation of the hardening procedure HP accessed by A using
the oracleHO′′ that is available toA′ during the indistinguishability experiment ExpWB−IND−CPA−ϕW ′′,A′′ (k).
For ϕ = PK holds HPHO′′hk′′ (·,ϕ)(P ) = (hk′,HO′′hk′′(P,ϕ),OVM′) = (hk′, hk′′,OVM′).
If A is efficient, i.e. a PPT algorithm, then A′′ is also efficient. If A′′ simulates the execution envi-
ronment for A according to the steps specified in the indistinguishabbility experiment, in Section
2.1, and implements the hardening procedure 8, for A identically to the construction 3, then for
any random string r, it holds that

ExpWB−IND−CPA−ϕW ′′,A′′ (k; r”) = ExpWB−IND−CPA−ϕW,A (k; r)
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Algorithm 11 Algorithm A′′ = (A′′1 , A′′2 ) that reduces WB − IND − CPA− ϕ of W = W ′ ◦W ′′ to that of W .

A′′1
HO′′hk′′ (·,ϕ;rH′′1

)
(1k,OVM′′, vk′′; rA′′1 )

(rG′ , rH′1 , rH′b , rA1 )← rA′′1
〈hk′, vk′,OVM′〉 ← G′(1k; rG′)
OVM← createOVM{OVM′′}
vk = 〈vk′, vk′′〉

〈P0, P1, s〉 ← A
HPhk′ (·,OVM

′,ϕ;rH′1
)

1 (1k,OVM′′, vk; rA1 )

(c′0, uk′0)← H′hk′(P0; rH′
b
)

(c′1, uk′1)← H′hk′(P1; rH′
b
)

P ′0 ← createP ′(c′0)
P ′1 ← createP ′(c′1)
s′ ← 〈hk′,OVM′〉

return (P ′0, P ′1, 〈s′, s〉)

A′′2
HO′′hk′′ (·,ϕ)(cb, 〈s′, s〉 ; rA′′2 )

(rA2 )← rA′′2
〈hk′,OVM′〉 ← s′

return A
HPhk′ (·,OVM

′,ϕ)
2 (cb, s; rA2 )

Where r = (rG′ , rG′′ , rH′1 , rH′′1 , rA1 , rb, rH′b , rH
′′
b
, rH′2 , rH′′2 , rA2) and r′′ is constructed as follows: r′′ =

(rG′′ , rH′′1 , rA′′1 =
〈
rG′ , rH′1 , rA1

〉
, rb, rH′′

b
, rH′′2 , rA′′2 =

〈
rH′
b
, rH′2 , rA2

〉
) If r′′ is constructed as above,

the view of the algorithm A when invoked by A′′, in the experiment against WBRPE scheme W ′′
is distributed identically to its view in the indistinguishability experiment against the WBRPE
scheme W , in Algorithm 9.

ut

7.2 Cascade is Robust for WBRPE w.r.t. Output Unforgeability Specification

Proof of Theorem 2 For ϕ ∈ {SK,PK}, let W = (G,H,U), s.t. W = W ′ ◦W ′′. Given A =
(A1, A2) againstW we construct A′ = (A′1, A′2) and A′′ = (A′′1, A′′2) againstW ′ andW ′′ respectively,
s.t.

AdvUNF−OUT−ϕW ′,A′ (k) = AdvUNF−OUT−ϕW,A (k) (3)

AdvUNF−OUT−ϕW ′′,A′′ (k) = AdvUNF−OUT−ϕW,A (k) (4)

We prove equations (3), (4) in lemmas 3, 4 respectively. The theorem 5 follows. ut

Lemma 3. Given a PPT algorithm A against a combined WBRPE scheme W , there exists a PPT
algorithm A′ = (A′1, A′2) against the candidate WBRPE scheme W ′ s.t. for infinitely many k’s,
equation 3 holds for ϕ ∈ {SK,PK}.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE scheme W , we con-
struct a PPT algorithm A′ = (A′1, A′2), in Algorithm 12, against W ′ that uses A and W ′ as black
boxes. A′ simulates the output unforgeability experiment, of the combined WBRPE scheme W for
A, by generating the corresponding parameters, and supplying responses to its hardening queries.
Eventually A returns a forgery tuple (ω, P, t, uk). Next A′ constructs a forgery for the experiment
against W ′. Namely, it has to return a tuple (ω′, P, t, uk′), where y ← U ′uk′,vk′(ω′, P, t) and y could
not have been a result of P for any remote input a. A′ parses the unhardening key uk, extracts the
uk′′ key, and applies the unhardening procedure U ′′ with the keys uk′′ and vk′′, on ω and obtains
an ω′. Specifically, A′ operates as defined in Algorithm 12
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Algorithm 12 Algorithms A′ = (A′1, A′2) and A′′ = (A′′1 , A′′2 ), that reduceWB−UNF−OUT−ϕ ofW = W ′◦W ′′
to that of W ′ and W ′′.

A′
HO′hk′ (·,ϕ)(1k,OVM’, vk′)
〈hk′′, vk′′,OVM”〉 ← G′′(1k)
OVM← createOVM{OVM′′}
vk = 〈vk′, vk′′〉
(ω, P, t, uk)← AHPhk′′ (·,ϕ)(1k,OVM′′, vk)
〈uk′, uk′′, r〉 ← uk
ω′ ← U ′′uk′′,vk′′(ω)

return (ω′, P, t, uk′)

A′′
HO′′hk′′ (·,ϕ)(1k,OVM”, vk′)
〈hk′, vk′,OVM’〉 ← G′(1k)
OVM← createOVM{OVM′′}
vk = 〈vk′, vk′′〉
(ω, P, t, uk)← AHPhk′ (·,ϕ)(1k,OVM”, vk)
〈uk′, uk′′, r〉 ← uk
(c′, uk′)← H′hk′(P ; r)
P ′ ← createP ′(c′)
t′ = t+ 3

return (ω, P ′, t′, uk′′)

In Algorithm 8 we present the implementation of the hardening procedure HP, identical to the
hardening used in the indistinguishability reduction, accessed by A using the oracle HO′hk′(·). The
hardening oracle HO′ is available to A′ during the unforgeability experiment, ExpUNF−OUT−ϕW ′,A′ (·).
A′ applies G′′ and generates the keys and the OVM. Since G′′ is efficient, this step is polynomial.
Next, A′ invokes A and simulates for it the unforgeability experiment of the combined WBRPE
scheme W , which essentially involves performing hardening computations for A in response to its
queries. Since the HO oracle’s query computation is considered as one step, and H′′ is efficient, so
is the overall computation performed by HP. Therefore if A is efficient, i.e. a PPT algorithm, then
A′ is also efficient.
Intuitively, if the simulation run by A′ is identical to the unforgeability experiment of the com-
bined scheme, and the hardening procedure is constructed according to the combined construction
in Section 3, then A’s advantage in the simulation is equal to its advantage in the experiment.
Furthermore, given an output forgery (ω, P, t, uk) of the combined WBRPE scheme W generated
by A, the tuple (ω′, P, t, uk′) output by A′ constitutes a forgery of the WBRPE scheme W ′, since
A′ applies the unhardening procedure once on the result returned by A and then returns the re-
sulting tuple. In particular, the unforgeability experiment upon input a tuple (ω′, P, t, uk′) from A′,
unhardens the result y ← U ′uk′,vk′(ω′, P, t) and then performs the following test

∀a, y 6= Pt,|y|(a)

This is the same requirement as was defined in the output unforgeability security specification,
therefore the result computed by A′ constitutes a successful forgery according to the definition of
UNF −OUT requirement. ut

Lemma 4. Given a PPT algorithm A = (A1, A2) there exists a PPT algorithm A′′ = (A′′1, A′′2) s.t.
for infinitely many k’s equation 4 holds for any value of ϕ.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE scheme W , we con-
struct a PPT algorithm A′′ = (A′′1, A′′2) againstW ′′ that uses A andW ′′ as black boxes. Specifically,
A′′ operates as defined in Algorithm 12. In Algorithm 8, we present the implementation of the
hardening procedure HP accessed by A using the oracle HO′′(·) that is available to A′′ during the
unforgeability experiment ExpUNF−OUT−ϕW ′′,A′′ (k), Section 2.2.
A′′ obtains from A a tuple (ω, P, t, uk), parses uk to extract uk′′ and a random string r which was
used by the hardening procedure to harden the input program P . Next A′′ hardens P and creates
a program P ′ using the hardened P and the random string r. Computes the new number of steps
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t′ = p(t) and returns a tuple (ω, P ′, t′, uk′′). Given an output forgery (ω, P, t, uk) for the combined
WBRPE scheme W generated by A, the tuple (ω, P ′, t′, uk′′) output by A′′ constitutes a forgery
for the WBRPE schemeW ′′. The unforgeability experiment upon input a tuple (ω, P ′, t′, uk′′) from
A′′, unhardens the result and obtains ω′ ← U ′′uk′′,vk′′(ω, P ′, t′) and then performs the following test

∀a′, ω′ 6= P ′t′,|ω′|(a′)

Since the probability of this event is 1
2ω′ , i.e. negligible, this is the same requirement as was defined in

the unforgeability security specification, therefore the result computed by A′′ constitutes a successful
forgery according to the definition of UNF −OUT requirement.

Consequently, if A succeeds in the ExpWB−UNF−OUT−ϕW,A (·) with non-negligible advantage, it suc-
ceeds in the simulation run by A′′ with non-negligible advantage, and since A′’s success probability
is related to that of A, A′′ gains the same advantage as A in the unforgeability experiment with
W ′′ contradicting the assumption of W ′′ being a WB−UNF −OUT −ϕ secure scheme, therefore
the lemma follows. ut

7.3 Cascade is Robust for WBRPE w.r.t. Programs Unforgeability Specification

Lemma 5. A cascade WBRPE scheme W = W ′ ◦W ′′, is UNF − PRG secure if at least one of
W ′ or W ′′ is UNF − PRG secure.

Proof. Let W = (G,H,U), s.t. W = W ′ ◦ W ′′. Given A = (A1, A2) against W we construct
A′ = (A′1, A′2) and A′′ = (A′′1, A′′2) against W ′ and W ′′ respectively s.t.

AdvUNF−PRGW ′,A′ (k) = AdvUNF−PRGW,A (k) (5)

AdvUNF−PRGW ′′,A′′ (k) = AdvUNF−PRGW,A (k) (6)

We prove equations (5), (6) in lemmas 6, 7 respectively. The theorem 5 follows. ut

Lemma 6. Given a PPT algorithm A = (A1, A2) there exists a PPT algorithm A′ = (A′1, A′2) s.t.
for infinitely many k’s equation 5 holds for any value of ϕ.

Proof sketch: The proof of lemma 6 is identical to proof of lemma 3. We will only give an intuition
as to the fact that given an output forgery (ω, P, t, 〈uk′, uk′′〉) for the combined WBRPE schemeW
generated by A, the tuple (ω′, P, t, uk′) output by A′ constitutes a forgery for the WBRPE scheme
W ′. The unforgeability experiment upon input a tuple (ω′, P, t, uk′) from A′, unhardens the result
y ← U ′uk′,vk′(ω′, P, t) and then performs the following test

(y 6= ⊥) ∧ ((uk′ /∈ UK) ∨ (P /∈ P [uk′]))

Clearly, this is the same requirement as was defined in the unforgeability security specification,
therefore the result computed by A′ constitutes a successful forgery according to the definition of
UNF − PRG requirement, Section 2.2. ut

Lemma 7. Given a PPT algorithm A = (A1, A2) there exists a PPT algorithm A′′ = (A′′1, A′′2) s.t.
for infinitely many k’s equation 5 holds for any value of ϕ.
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Proof sketch: The proof of lemma 7 is identical to proof of lemma ??. Given an output forgery
(ω, P, t, 〈uk′, uk′′〉) for the combined WBRPE scheme W generated by A, the tuple (ω, P ′, t′, uk′′)
output by A′′ constitutes a forgery for theWBRPE schemeW ′′. The unforgeability experiment upon
input a tuple (ω, P ′, t′, uk′′) from A′′, unhardens the result and obtains ω′ ← U ′′uk′′,vk′′(ω, P ′, t′)
and then performs the following test

(ω′ 6= ⊥) ∧ ((uk′′ /∈ UK) ∨ (P ′ /∈ P ′[uk′′]))

This holds since the program P ′ generated by A′′ is based on c′, i.e. the hardening of the program P
returned by A. Since the probability of two different programs resulting in the same c′ is negligible
we conclude that given a forgery forWBRPE schemeW , A′′ successfully generates a tuple which is a
forgery for WBRPE schemeW ′′ according to the definition of UNF−PRG requirement. Therefore,
this is the same requirement as was defined in the unforgeability security specification. ut

7.4 Cascade is Robust for WBRPEwV w.r.t. Privacy Specification

Proof of Theorem 7.4 Let WV = (G,H,U) be a WBRPEwV scheme, s.t. WV = WV ′ ◦WV ′′.
Given A = (A1, A2, A3) against WV we present a construction of A′ = (A′1, A′2, A′3) (respectively
A′′ = (A′′1, A′′2, A′′3)) against WV ′ (respectively WV ′′) s.t. the following holds

AdvPRV−V LDW ′,A′ (k) = AdvPRV−V LDW,A (k) (7)

AdvPRV−V LDW ′′,A′′ (k) = AdvPRV−V LDW,A (k) (8)

We prove equations (7), (8) in lemmas 8, 9 respectively. The theorem 7.4 follows. ut

Lemma 8. Given a PPT algorithm A = (A1, A2, A3), we construct a PPT algorithm A′ = (A′1, A′2, A′3)
s.t. for infinitely many k’s equation 7 holds.

Proof. Let A = (A1, A2, A3) be a PPT algorithm against the combined WBRPEwV scheme WV ,
we construct a PPT algorithm A′ = (A′1, A′2, A′3) in 13, against a candidate WBRPEwV scheme
WV ′, that uses A and WV ′ as black boxes. A′ simulates the privacy experiment defined in Section
2.3, of the combined WBRPEwV scheme WV , by generating the corresponding parameter. Since
A′ returns the response of A it learns the same information about the remote input, and therefore
has the same advantage of success. ut

Lemma 9. Given a PPT algorithm A = (A1, A2) against WV , we construct a PPT algorithm
A′′ = (A′′1, A′′2, A′′3) against WV ′′ s.t.

AdvPRV−V LDWV ′′,A′′ (k) = AdvPRV−V LDWV,A (k)

Proof. Let A = (A1, A2, A3) be PPT algorithm against the combined WBRPEwV scheme WV ′′,
we construct a PPT algorithm A′′ = (A′′1, A′′2, A′′3), in 14, against a candidate WBRPE schemeWV ′′

that uses A and WV ′′ as black boxes. A′′ simulates the privacy experiment, in Section 2.3, of the
combined WBRPEwV scheme WV for A, by generating the corresponding parameters. ut
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Algorithm 13 Algorithm A′ = (A′1, A′2, A′3), that reduces WB − PRV of WV = WV ′ ◦WV ′′ to that of WV ′.

A
′REMk
1 (1k, τ)

(V, tV , s)← A
REMk
1 (1k, τ)

V ′′ ← createV ′′(V, tV )
tV ′′ = tV + 2
〈hk′′, vk′′,OVM′′〉 ← GV ′′(1k, V ′′, tV ′′)
V ′ ← createV ′(V, tV ,OVM′′)
tV ′ = tV + 7
s′ ← (hk′′, vk′′,OVM”, V ′, tV ′ , V ′′, tV ′′ , 1k, τ)

return (V ′, tV ′ , 〈s′, s〉)

A′
REMk
2 (hk′, vk′,OVM′, 〈s′, s〉)

(hk′′, vk′′,OVM′′, V ′, tV ′ , V ′′, tV ′′ , 1k, τ)← s′

hk = 〈hk′, hk′′,OVM′〉
vk = 〈vk′, vk′′〉
(c, aADV , t, l, uk, s)← A

REMk
2 (OVM′′, hk, vk, s)

P̃ ← createP ′(c)
t′ = t+ 3
σ̃ = (〈uk′, uk′′〉 , 〈vk′, vk′′〉 , c, t, l)
(c̃′, ũk′)← H′hk′(P̃ , σ̃)
s′ ← s′ ∪ (hk, vk, uk′, uk′′, ũk′, V ′′, tV ′′ ,OVM′′)

return (c̃′, 〈uk′, uk′′〉 , aADV , t′, l, 〈s′, s〉)
A′
REMk
3 (ω̃, 〈s′, s〉)

(s′, hk, vk, uk′, uk′′, ũk′, V ′′, tV ′′ ,OVM′′)← s′

ω ← U ′ ˜uk′,vk′(ω̃)
return A

REMk
3 (ω, 〈uk′, uk′′〉 , s)

Algorithm 14 Algorithm A′′ = (A′′1 , A′′2 ), that reduces WB − PRV of WV = WV ′ ◦WV ′′ to that of WV ′′.

A′′
REMk
1 (1k, τ)

(V, tV , s)← A1(1k, τ)
V ′′ ← createV ′′(V, tV )
tV ′′ = tV + 2
s′ ← (V, tV , 1k, τ)

return (V ′′, tV ′′ , 〈s′, s〉)

A′′
REMk
2 (hk′′, vk′′,OVM′′, 〈s′, s〉)

(V, tV , 1k, τ)← s′

V ′ ← createV ′(V, tV ,OVM′′)
tV ′ = tV + 7
〈hk′, vk′,OVM′〉 ← GV ′(1k, V ′, tV ′)
hk = 〈hk′, hk′′,OVM′〉
vk = 〈vk′, vk′′〉
(c, aADV , t, l, uk, s)← A

REMk
2 (OVM′′, hk, vk, s)

uk′, uk′′ ← uk
s′ ← s′ ∪ (hk, vk, uk, ũk′, V ′′, tV ′′ ,OVM′′)

return (c, aADV , t, l, uk′′, 〈s′, s〉)
A′′
REMk
3 (ω, uk′′, 〈s′, s〉)

(s′, hk, vk, uk′, uk′′, ũk′, V ′′, tV ′′ ,OVM′′)← s′

return A
REMk
3 (ω, uk = 〈uk′, uk′′〉 , s)
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8 Related Works

In this section we review the existing works in white-box security, particularly focusing on obfus-
cation, white-box encryption and secure functions evaluation. Obfuscation is the main practical
tool employed to harden software for remote execution. White-box encryption constitutes a special
case of obfuscation and is targeted at hiding secret keys in cryptographic implementations. Secure
function evaluation (encrypted computation), presents theoretical constructions, that are not ap-
plicable for practical implementations. We give main results in each of the aforementioned fields,
and discuss suitability of each for practical implementations.

8.1 Obfuscation

Software obfuscation is widely deployed by practitioners when trying to harden software for execu-
tion in remote untrusted environments, and is aimed at protecting the executable program against
reverse engineering, i.e. hides the secrets, e.g. algorithm, data, keys, in software implementations.
For instance, in DRM protected applications, the secret decryption key has to remain hidden from
the user that may attempt to analyse or to reverse engineer the software, e.g. Collberg and Thom-
borson [13]. On a high level, obfuscation uses heuristic techniques to Obfuscation the program,
such that the resulting obfuscated program computes the same function as the original program,
however it is hard to analyse. The problem with this approach is that it is difficult to estimate
the security of the resulting obfuscated program, i.e. how much harder is the resulting obfuscated
program as opposed to the original one. Furthermore, obfuscation techniques do not assume a clear
attack model, and are not based on rigorous cryptographic principles. Obfuscation is a controversial
technique among computer scientists for its lack of ability to provide provable security and the fact
that it currently relies on “fuzzy security” only. In addition, it is not known whether obfuscation
can protect basic modular programs.

It is conjectured that obfuscation alone does not provide a solution to remote program execution
concept. For instance, obfuscation does not hide the output, therefore allowing the host to learn
the result of the computation, which as claimed by Algesheimer et al. [3], and should be used in
tandem with other techniques to obtain provably secure protocols and frameworks for execution
of programs in remote untrusted environments, and in particular it is not a substitution to these
techniques.

Program obfuscation was formally defined by Barak et al. [4] based on black box simulation,
which also proved that obfuscation is theoretically impossible for general purpose functions and
for some specific functions. Following the definition presented by Barak et al., Wee [39], presented
a positive result for point functions obfuscation. The definition presented by Barak et al. [4] was
further extended to include auxiliary inputs by Goldwasser and Kalai [18], which in addition proved
that the construction presented by Wee [39] holds in their model. Furthermore, the prominent
impossibility result of Barak et al. [4] also holds in their weaker model.

In contrast to the impossibility result of Barak et al. [4] and Goldwasser and Kalai [18], there
are other positive solutions, e.g. an NP-hardness result of Wang [38], Ogiso et al. [31], a PSpace
hardness result of Chow et al. [9]. There are also alternative weaker definitions of obfuscation,
e.g. Hohenberger and Rothblum [24], that present a positive obfuscation result for cryptographic
re-encryption functionality, obfuscation for access control Lynn et al. [29], also a weaker definition
of Best Possible Obfuscation in Goldwasser and Rothblum [19], which makes a relaxed requirement
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that the obfuscated program leaks as little information as any other program with the same func-
tionality, present a separation between black box and best possible obfuscation, and show tasks
which can be achieved under this new definition.

8.2 White-Box Encryption

In recent years, a number of cryptographic implementations have appeared for symmetric key
ciphers such as Data Encryption Standard (DES) Standard [36] and Advanced Encryption Standard
(AES) Daemen and Rĳmen [14], that have claimed to be secure in a white-box model. More
specifically, the white box AES Chow et al. [11] and the white-box DES Chow et al. [10]. The
approach is to integrate the key into the encryption algorithm so that the algorithm performs
the encryption properly but the key is never made explicit. For a system that protects keys from
white-box attackers, the secret key is inaccessible.

It is mostly employed in the protection of multimedia players, which mainly employ symmetric
cipher schemes, e.g. AES Daemen and Rĳmen [14], DES Standard [36], and decode the content with
a secret key, that is embedded in the player. In order to use a file protected by such an algorithm,
the attacker must either use the authorized program or reverse engineer the entire algorithm. Since
reverse engineering an entire algorithm is a more involved task than finding a secret key, this makes
circumventing copy protection much more difficult.

However, the white-box cryptography has a limited applicability since it requires a large memory
space, and imposes a heavy performance overhead. In addition, the proposed white box cryptogra-
phy solutions were subsequently broken Billet et al. [6], Goubin et al. [20].

8.3 Mobile Code Cryptography (Encrypted Computation)

Mobile code cryptography, also called the encrypted function computation technique, aims at pro-
viding black box security by employing provably secure cryptographic techniques. This approach
allows the program to be executed securely on a remote untrusted host by transforming the mo-
bile code into an encrypted form, thus obtaining encrypted executable program that consist of
instructions and operate on encrypted inputs, such that the remote host cannot inspect the origi-
nal program. This is an extension of the idea of computing with encrypted data (CED), presented
in Abadi and Feigenbaum [1] and is a basic technique for secure distributed computing, where the
involved parties wish to perform a computation of their private inputs, such the inputs remain
secret and not revealed to other parties participating in the computation.

Sander and Tschudin [34], S and Tschudin [32], initiated mobile code research and were the first
to identify the possibility of securely executing a code on a remote untrusted host, by proposing an
application of encrypted computation techniques to the problem of protecting intellectual property,
secret functions and mobile code from malicious hosts. They pointed out that protocols for secure
multi-party computation could be useful in the design of a software only solution to protect mobile
code against malicious hosts. In particular, they found that polynomial functions can be encrypted
for non-interactive evaluation if an algebraic homomorphic trapdoor one-way functions exist.

More specifically, Sander and Tschudin presented a non-interactive Computing with Encrypted
Functions protocol for computing polynomials and rational functions, using homomorphic encryp-
tion scheme. However their solution is limited to evaluation of polynomials and rational func-
tions and is highly inefficient for practical use. Similar solutions were presented in Lee et al. [27],
Kotzanikolaou et al. [26].

24



This approach can be further employed by function hiding as is extended by Sander and Tschudin
[33], which essentially means that the result of the computation is returned to the remote host upon
receipt of the encrypted result by the originator. A subsequent work by Sander et. al. Sander et al.
[35] presented a non-interactive computing with encrypted data protocol for all NC1 functions.
Based on that, a non-interactive computing with encrypted functions protocol can be implemented
by letting client’s private input be its function f and server’s function be a universal circuit. However
due to the logarithmic limitation on the depth of the circuit being evaluated, its application is
limited.

Although mobile code cryptography provides black box security, full protection is difficult to
obtain, and in particular, existing techniques and schemes exhibit various problems for practical ap-
plications, such as lack of efficiency, limitations to specific functions, and more. When considering
practical applications efficiency considerations are of high importance. However, in homomorphic
encryption scheme for polynomial functions the possible number of terms in a function is exponen-
tial to the number of inputs, therefore the encrypted function to be transfered will be extremely
large. An additional common limitation of both secure distributed computation and encrypted com-
putation schemes is the representation of programs as functions. When a program is represented by
a function the encoding size may be exponential, thus increasing both computation and communi-
cation complexity. There are also technical drawbacks: in encrypted computation, it is hard to find
encryption schemes that can transform arbitrary functions to their encrypted executable version.
More importantly, no one has yet discovered an algebraically homomorphic encryption scheme.
However, additively homomorphic encryption schemes are known to exist, thus making encrypted
computation of polynomials possible.

Other approaches are based on Yao’s secure function evaluation protocol Yao [40], and present
solutions to protect program’s code and data as well as host’s data, and it is more powerful in terms
of the type of functions it can compute. Some works combine secure circuit evaluation in tandem
with oblivious transfer, e.g. Cachin et al. [7], Algesheimer et al. [3], Zhong and Yang [41]. However,
there are inherent disadvantages, e.g. Yao’s Yao [40] non-interactive protocol, in order to reduce
interactiveness, leaks the whole circuit structure. An additional common limitation of both secure
distributed computation and encrypted computation schemes is the representation of programs as
functions. When a program is represented by a function the encoding size may be exponential, thus
increasing both computation and communication complexity.
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9 Conclusions and Open Questions

In this work we investigate combiners for white-box primitives. More specifically, we present a robust
(1,2)-cascade combiner for WBRPE scheme and for WBRPEwV scheme with privacy, and present
constructions, along with reductions to the underlying candidates. We leave the following directions
below for further research in robust combiners for white-box security.

As we discussed in Section 8, the existing techniques in white-box security are insufficient when
it comes to securing practical applications and in particular no provably secure candidates are
known to exist. We therefore employ robust combiners to fortify white-box constructions.

– Our construction is exponential in the number of the candidate primitives, i.e. we generate
a program for each candidate and then the programs are executed inside each other, thus
multiplying the running time complexity, (cf. robust copy combiner for unforgeability property,
which complexity is an additive complexity of the candidates). We believe this to be an optimal
construction of a combiner for white-box primitives. An interesting question to consider is
whether it is possible to achieve a more efficient combiner construction than the one presented
in this paper or to show a lower bound on the complexity time of the combiner. Alternately, an
equivalently important result is to prove that the combiner presented here is optimal.

– Another important aspect is to consider a construction of the robust combiner without assuming
the correctness of the candidate schemes. More specifically, in our constructions we assume that
the underlying candidate schemes are correct. However, not relying on correctness assumption is
critical for many applications, and especially important for combined constructions, where one
of the goals is to prevent erroneous software implementations and design bugs, or intentionally
bogus implementations and trapdoors. Hence, to prove security of a cascade construction given
at least one secure and correct candidate poses an interesting challenge.

– In addition, we assume that the validation requirement holds, i.e. that the OVM, prior to
execution, always runs the validation program, defined during the generation phase, on the
input program. The input program is executed only if validation passes. However, an erroneous
OVM may not run the validation procedure at all. It is a challenge to present a combined
construction without relying on the correctness of OVM and in particular on the validation
property of both candidates.
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