
Computational Soundness of Symbolic Zero-Knowledge Proofs
Against Active Attackers

Michael Backes1,2 and Dominique Unruh1
1 Saarland University, Germany

2 MPI-SWS

April 4, 2008

Abstract

The abstraction of cryptographic operations by term al-
gebras, called Dolev-Yao models, is essential in almost all
tool-supported methods for proving security protocols. Re-
cently significant progress was made in proving that Dolev-
Yao models offering the core cryptographic operations such
as encryption and digital signatures can be sound with re-
spect to actual cryptographic realizations and security defi-
nitions. Recent work, however, has started to extend Dolev-
Yao models with more sophisticated operations with unique
security features, out of which zero-knowledge proofs ar-
guably constitute the most amazing such extension.

In this paper, we first identify which properties a cryp-
tographic zero-knowledge proof needs to fulfill beyond
the standard ones in order to serve as a computationally
sound implementation of symbolic (Dolev-Yao style) zero-
knowledge proofs; this leads to the novel definition of
a symbolically-sound zero-knowledge proof system. We
prove that even in the presence of arbitrary active adver-
saries, such proof systems constitute computationally sound
implementations of symbolic zero-knowledge proofs. This
yields the first computational soundness result for symbolic
zero-knowledge proofs and the first such result against fully
active adversaries of Dolev-Yao models that go beyond the
core cryptographic operations.

1 Introduction

Proofs of security protocols are known to be error-prone
and, owing to the distributed-system aspects of multiple
interleaved protocol runs, awkward to make for humans.
In fact, vulnerabilities have accompanied the design of
such protocols ever since early authentication protocols like
Needham-Schroeder [16, 32], over carefully designed de-
facto standards like SSL and PKCS [35, 9], up to current

widely deployed products like Microsoft Passport [19] and
Kerberos [11]. Hence work towards the automation of such
proofs has started soon after the first protocols were devel-
oped. From the start, the actual cryptographic operations in
such proofs were idealized into so-called Dolev-Yao mod-
els, following [17, 18, 30], e.g., see [26, 34, 1, 29, 33, 7].
This idealization simplifies proof construction by freeing
proofs from cryptographic details such as computational re-
strictions, probabilistic behavior, and error probabilities. It
was, however, not at all clear from the outset whether Dolev-
Yao models are a sound abstraction from real cryptography
with its computational security definitions. Recent work has
largely bridged this gap for Dolev-Yao models offering the
core cryptographic operations such as encryption and digi-
tal signatures, e.g., see [2, 27, 5, 4, 28, 31, 14, 12].

While Dolev-Yao models traditionally comprised only
basic cryptographic operations such as encryption and dig-
ital signatures, recent work has started to extend them to
cope with more sophisticated primitives with unique secu-
rity features that go far beyond the traditional understand-
ing of cryptography to solely offer secrecy and authentic-
ity of a communication. Zero-knowledge proofs consti-
tute the most prominent and arguably most amazing such
primitive. A zero-knowledge proof consists of a message
or a sequence of messages that combines two seemingly
contradictory properties: First, it constitutes a proof ofa
statementx (e.g, x = ”the message within this cipher-
text begins with0”) that cannot be forged, i.e., it is im-
possible, or at least computationally infeasible, to produce
a zero-knowledge proof of a wrong statement. Second,
a zero-knowledge proof does not reveal any information
besides the bare fact thatx constitutes a valid statement.
Zero-knowledge proofs were introduced in [24], they were
proven to exist for virtually all statements [23], and they in
particular serve as the central ingredient of modern e-voting
and attestation protocols such as the Direct Anonymous At-
testation (DAA) protocol [10].

A Dolev-Yao style (symbolic) abstraction of zero-

1

knowledge proofs has recently been put forward in [3]. The
proposed abstraction is suitable for mechanized proofs and
was already successfully used to give the first fully mecha-
nized proof of central properties of the DAA protocol. How-
ever, no computational soundness guarantee for this abstrac-
tion has been established yet, i.e., it is not clear if security
guarantees established using the symbolic abstraction of
zero-knowledgewill carry over to protocol implementations
relying on cryptographic zero-knowledge proofs, and which
of the various standard or nonstandard additional properties
of zero-knowledge proofs would be required to achieve this
computational soundness result.

In this paper, we first carefully identify which standard
and which more sophisticated properties a cryptographic
zero-knowledge proof needs to fulfill in order to serve as
a computationally sound implementation of symbolic zero-
knowledge proofs. In the end, this will culminate in the
novel definition of asymbolically-sound zero-knowledge
proof system; we remark that protocols already exist that
satisfy this definition. Our main result will then show that
symbolically-sound zero-knowledge proof systems consti-
tute computationally sound implementations of symbolic
zero-knowledge proofs. This in particular yields the first
computational soundness result against fully active attack-
ers of Dolev-Yao models that go beyond the core crypto-
graphic operations, and it constitutes the first soundness re-
sult for symbolic zero-knowledge proofs. Our soundness re-
sult applies to trace-properties like authentication and weak
secrecy.

Outline of the Paper. In Section 2, we briefly review the
modeling of abstract zero-knowledge proofs, and we iden-
tify the properties a cryptographic zero-knowledge proof
should fulfill to serve as a computationally sound implemen-
tation of the abstraction. Section 3 and 4 contain the ab-
stract and concrete execution model that our result is based
upon, respectively. These two models closely resemble the
execution models of previous soundness results, e.g., the
ones in [13]. Section 5 finally contains our computational
soundness result for symbolic zero-knowledge.

Notation. By [n] we denote{1, . . . , n}. We abbreviate
x1, . . . , xn by x wheren is implicit. We will sometimes
use sets and non-terminals interchangeably. E.g., given a
grammarA = B|(C, A) we might writex ∈ (C, A), or we
might say “x has the form(C, A)”. We might also write “x
has the form(c, A)” for a givenc ∈ C.

2 Zero-Knowledge Proofs

In this section, we first introduce our modeling of ab-
stract (symbolic) zero-knowledge proofs in an intuitive man-
ner to familiarize the reader with our notation and to prepare

the ground for the examples discussed below. A formal
semantics will be given to these expressions in Section 3.
We afterwards review concrete zero-knowledge proofs, i.e.,
zero-knowledge proofs in the cryptographic setting. We
there particularly focus on identifying which standard and
more sophisticated properties such a proof need to fulfill in
order to serve as a cryptographically sound implementation
of abstract zero-knowledge proofs.

2.1 Abstract Zero-Knowledge Proofs

We start with an example that involves a zero-knowledge
proof of medium complexity. Assume that an agentB ex-
pects a messagem and is supposed to answer with an en-

cryption c :=
{

{〈〈m, n〉, m′〉}R1

ek(A)

}R2

ek(S)
for a random

noncen, a valuem′ ∈ {m1, m2, m3} and for some agents
A andS. Hereek(X) denotes the public key ofX , and
R1, R2 denote the abstract randomness used to build the en-
cryptions. The protocol under consideration now aims at
convincing the recipientC of c that c is of the right form,
i.e., the inner plaintext should containm and some value
m′ ∈ {m1, m2, m3}. In addition, the protocol aims at hid-
ing from C the noncen and the precise selection of the
messagem′. Zero-knowledge proofs constitute salient tools
to achieve these seemingly contradictory properties in that
they allowB to prove that it knows some terms that satisfy
the desired properties without revealing those terms.

In the example we consider,B intends to prove that it
knows some abstract randomnessρ1, ρ2 and some values
α1, α2 such that withβ1 := m1, β2 := m2, β3 := m3,
β4 := S, β5 := D, β6 := c, andβ7 := m the following
formulaF evaluates to true:

β6 =
{

{〈〈β7, α1〉, α2〉}
ρ1

ek(β5)

}ρ2

ek(β4)
∧

(α2 = β1 ∨ α2 = β2 ∨ α2 = β3).

Immediately including the values ofβi in the formulaF
would arguably have increased the readability of the for-
mula; our language defined in Section 3, however, will re-
quire a strict separation of the actual formulaF and the
public parameters that are determined at runtime, resulting
in this slightly more complicated notation.

GrantingB the ability to produce such a proof is mod-
eled by introducing an abstract constructorZKR

F (r; a; b),
called azero-knowledge proof. (Recall that we abbreviate
tuplesr1, . . . , rn by r, similarly for a andb). Its arguments
are an abstract randomnessR, a formulaF , as well as val-
uesri, ai, bi that will serve as substitutes for the variables
ρi, αi, βi in F . In our example, the agentB will send the
proof z := ZKR

F (R1, R2; n, m; m1, m2, m3, S, D, c, m).
The semantics of this constructor (formally defined in
Section 3) will guarantee two properties: First, a zero-
knowledge proof can only be constructed by providing suit-

2

able instantiationsr, a, b for ρ, α, β so that the formulaF
yields true. Second, while the formulaF and the values
b can be retrieved from a zero-knowledge proof, the val-
uesa and the randomnessr are kept secret. These prop-
erties imply that the proofz indeed guarantees thatc has
the right form without revealing any additional information
aboutn, m. In an abstract zero-knowledge proof, we call
r; a thewitnessandb thepublic part.

For more elaborate examples on how zero-knowledge
proofs can be used in an abstract setting, comprising a larger
set of base constructors such as blind signatures, we refer
the interested reader to [3].

2.2 Concrete Zero-Knowledge Proofs

We now move to concrete zero-knowledge proofs, i.e.,
zero-knowledge proofs in the cryptographic setting. We
consider it a central contribution of this paper to identify
which standard and more sophisticated additional proper-
ties of zero-knowledge proofs are required to establish the
desired computational soundness result. Hence we now ex-
plain in some detail why each such property is needed. In
the end, this task will culminate in the novel definition of a
symbolically-sound zero-knowledge proof system. We first
state the properties in an informal way and give the exact
definitions in Definition 1.

Completeness, Soundness, and Zero-knowledge.We
start with the basic definition of a non-interactive zero-
knowledge proof. We need to focus on non-interactive
proofs since the abstract model considers a proof as a sin-
gle message that can, e.g., be further encrypted. This would
not be meaningful if the zero-knowledge proof was allowed
to be interactive.

A zero-knowledge proof consists of four algorithms
K, P, V, S, called the CRS-generator, the prover, the ver-
ifier, and the simulator, respectively. The CRS-generator
outputs a random bitstring called thecommon reference
string (CRS) that can be seen as a public key for the en-
cryption scheme (its meaning will become clearer below).
The proverP expects as inputs the CRS, a circuitC, and a
witnessw such thatC(w) = 1 and outputs a corresponding
proof z (intuitively denoting thatC is a satisfiable circuit).
The verifier expects the CRS, a circuitC, and a proofz and
checks whetherz is indeed a proof for the satisfiability of
C. (It is sufficient to consider satisfiability of circuits since
every NP-language can be reduced to this problem.)

Three properties are expected from a zero-knowledge
proof: It should be possible to prove correct statements
(completeness), it should not be possible to prove incorrect
statements (soundness), and the verifier should not learn
anything about the witness, beyond what can be deduced
from the fact thatC is satisfiable (zero-knowledge):

• Completeness:For anyC andw with C(w) = 1, if z
is the proof produced byP , thenV acceptsz.
• Soundness:For anyC andw with C(w) = 0, and for

any polynomial-time adversaryA that outputs a proof
z, the verifier does not acceptz.
• Zero-knowledge:When computing the CRS, the al-

gorithmK additionally outputs asimulation trapdoor
simtd (that can be seen as a secret key for the CRS)
such that the following holds: FixC and w with
C(w) = 1. Let z be the proof produced by prover
P . Let z′ be the proof produced byS on inputsimtd

andC (but notw). Thenz andz′ are computationally
indistinguishable.

In this section, we omit certain details such as the fact that
the conditions are allowed to be broken with negligible prob-
ability. Similarly, we implicitly assume thatP andV use
the circuitC and the witnessw. The final Definition 1 be-
low will of course contain all these details.

A scheme satisfying these three properties is referred to
as a non-interactive zero-knowledge proof system. Readers
that are familiar with interactive zero-knowledge proof may
notice that in the definition of interactive zero-knowledge
proofs, no CRS occurs. In the non-interactive case, however,
it is known that zero-knowledge proofs without a CRS are
impossible unlessNP ⊆ BPP [21, Thm. 4.4.12].

Extractability. While the three properties of complete-
ness, soundness, and zero-knowledge are sufficient for
many applications, they do not suffice to offer a cryp-
tographically sound implementation of abstract zero-
knowledge proofs. This can be seen by inspecting the
following example: Assume that we are using an encryp-
tion scheme that allows to efficiently check that a given
ciphertextc constitutes a valid encryption of some mes-
sage (without having to know this message or the secret
key). Then letc := {m}R

ek(a) and consider the proof

z := ZKR′

F (R; m; c, a) with F := (β1 = {α1}
ρ1

ek(β2)
),

i.e., a proof that one knows the message and the random-
ness contained inc. In the cryptographic setting, this proof
would be performed by first constructing a circuitC such
that C(R, m) = 1 iff m is encrypted with randomnessR
and the public key ofa yields the ciphertextc. Since one
can efficiently check ifc is the encryption of some message,
one can hence efficiently check as well ifC has a satisfy-
ing input. Thus, one can prove the satisfiability ofC with-
out having to useR, m. Such a proof trivially enjoys the
zero-knowledge property, since the proof does not exploit
the witness, and it enjoys soundness since it only proves
valid statements (ifC was not satisfiable, the proof would
not succeed). In the abstract model, however, it is obvi-
ous that one needs to knowm in order to producez. What
went wrong? The soundness condition only guarantees the
existence of a witness, but it does not require the prover

3

to actually know this witness. We introduce an additional
algorithmE (besidesK, P, V, S, called the extraction algo-
rithm) to capture this requirement and define the stronger
condition of extractability. A proof system with extractabil-
ity is called aproof of knowledge.
• Extractability: When computing the CRS, the algo-

rithm K additionally outputs anextraction trapdoor
extd such that: FixC (where C may or may not
be satisfiable). For a polynomial-time adversaryA
that outputs a proofproof , we have that ifV accepts
proof , then E(C, proof , extd) outputs a witnessw
with C(w) = 1.

With this definition, our above example does not cause any
problems anymore: An extractable proof system that allows
to prove the satisfiability ofC without usingw would lead
to a contradiction since the machinesA and E together
could then computew. (Technically, this is only a contradic-
tion if w is not easy to compute fromC in the first place.)
We stress that extractability already implies soundness: If
C is not satisfiable, thenE(C, proof , extd) cannot output a
witnessw with C(w) = 1, thus by contraposition we have
thatV does not acceptproof .

Extraction zero-knowledge. It turns out that even com-
plementing the properties completeness, soundness, and
zero-knowledge with the extractability property is still not
sufficient for the desired computational soundness result.
Consider a proof system with the following property: If
proof 1 constitutes a proof for the circuitC1 and proof 2

constitutes a proof for the circuitC2, then(proof 1, proof 2)
constitutes a proof for the circuitC1 ∧ C2 (with (C1 ∧
C2)(w1, w2) := C1(w1) ∧ C2(w2)). This property is not
unrealistic, and for circuits that are of this conjunctive form,
concatenating proofs for the individual circuits indeed of-
ten constitutes the most efficient way to produce a proof
for the combined circuit. Furthermore, allowing to prove
these sub-circuit individually does not contradict the prop-
erties we have discussed so far. In the abstract model, how-
ever, givenZKR

F (r; a; b) andZKR′

F ′(r′; a′; b′), it is not pos-
sible to construct a proofZK_

F∧F ′(_; _; b, b′) without know-
ing r, r′, a, a′ (where _ matches everything, and where in
the formulaF ′ the ρ1, α1, β1 are renamed toρ2, α2, β2).
We hence have to exclude the possibility of concatenat-
ing proofs to generate new proofs. More precisely, we
have to ensure that given a proof for some statementx1,
it is not possible to construct a proof for another statement
x2, even if x2 is logically related tox1. This property is
callednon-malleabilityand closely resembles the notion of
non-malleability of encryption schemes. In the context of
zero-knowledge, several properties are known to imply non-
malleability. We will exploit theextraction zero-knowledge
property from [25]. Although this is a rather strong prop-
erty and weaker definitions of non-malleability exist, our

proof relies on this particular property; we leave it as an
open problem if our computational soundness result can be
proven using a weaker formalization of non-malleability.
• Extraction zero-knowledge:Let simtd , extd be the

simulation and the extraction trapdoor as output byK,
respectively. Consider a polynomial-time adversaryA
that has access to the simulation trapdoorsimtd and
to an extraction oracleE(C, ·, extd), i.e., when invok-
ing the oracleE(C, ·, extd) with inputproof , it returns
E(C, proof , extd) whereE is the extraction algorithm.
The adversary may outputC, w with C(w) = 1. Then
the adversary gets either (a) a real proofproof pro-
duced byP , or (b) a simulated proofproof produced
by the simulatorS (which has no access tow). We then
require thatA cannot distinguish the cases (a) and (b)
as long as it does not queryproof from the extraction
oracle.

We stress that extraction zero-knowledge implies the zero-
knowledge property since it implies that for anyC, w with
C(w) = 1 the proofs produced by the prover and the simu-
lator are indistinguishable.

Why does extraction zero-knowledge indeed imply non-
malleability? Assume that from a proofproof 1 for the sat-
isfiability of C1, some algorithmM can produce a proof
proof 2 for the satisfiability ofC2 where the satisfiability of
C2 follows from that ofC1 (in the sense that a witnessw1

for C1 can be converted into a witnessw2 for C2). Then
an adversaryA could break the extraction zero-knowledge
property roughly as follows: First, it outputsC1, w1 and
gets a proofproof 1 (this might be a fake proof). It ap-
plies M to proof 1 and gets a proofproof 2 for C2. Since
proof 2 6= proof 1, the adversary may giveproof 2 to the ex-
traction oracle. In case (a), the extraction oracle will output
a witnessw2. In case (b), however, the proofproof 1 has
been produced without exploiting the witnessw1, and so
hasproof 2. Since the extraction oracle cannot produce a
witness, it will fail to produce a witness forproof 2 in case
(b). Thus the adversary can distinguish the two cases, con-
tradicting the extraction zero-knowledge property.

Unpredictability. We are lacking one last property for
soundly implementing abstract zero-knowledge proofs. If a
proof using the same witness and the same public part is pro-
duced by two different agents in the abstract model, it will
always lead to two different terms because the two terms
will have different randomness. A proof system with the
properties described in this section, however, does not nec-
essarily ensure that two proofs produced with the same wit-
ness and circuit will always be different (with overwhelm-
ing probability). Indeed, it is possible to construct proofs
that are deterministic for at least some inputs. We hence
additionally require that any two independently produced
proofs are different, or equivalently:

4

• Unpredictability. Let a polynomial-time adversaryA
outputC, w, proof ′ with C(w) = 1. Let proof be
produced byP . Then with overwhelming probability,
proof 6= proof ′.

Unpredictability is an easily achievable property, e.g., by
letting the prover include some randomness in the proof.

Symbolically-sound zero-knowledge. Finally, we fur-
ther require that the verifierV and the extraction algorithm
E are deterministic. This is not strictly necessary but it
will simplify the proof of soundness, and we are not aware
of a non-interactive zero-knowledge proof system where
this condition is not fulfilled. The full name of a zero-
knowledge scheme satisfying all the above properties would
beunpredictable non-interactive multi-theorem adaptive ex-
traction zero-knowledge argument of knowledge with de-
terministic verification and extraction. Since this is some-
what unwieldy, we coin the termsymbolically-sound zero-
knowledge proof system. The following definition formally
defined the properties we informally discussed above.

Definition 1 (Symbolically-sound zero-knowledge proof
system). A symbolically-sound zero-knowledge proof sys-
temis a tuple of polynomial-time algorithms(K, P, V, S, E)
with the following properties:
• Completeness:Let a nonuniform polynomial-time ad-

versaryA be given. Let(crs , simtd , extd) ← K(1η).
Let (C, w) ← A(1η, crs). Letproof ← P (C, w, crs).
Then with overwhelming probability inη, C(w) = 0
or V (C, proof , crs) = 1.
• Extractability: Let a nonuniform polynomial-time ad-

versary A be given. Let(crs , simtd , extd) ←
K(1η). Let (C, proof) ← A(1η, crs). Let w ←
E(proof , extd). Then with overwhelming probability,
if V (C, proof , crs) = 1 thenC(w) = 1.
• Unpredictability: Let a nonuniform

polynomial-time adversaryA be given. Let
(crs , simtd , extd) ← K(1η). Let (C, w, proof ′) ←
A(1η, crs , simtd , extd). Then with overwhelming
probability, we haveproof ′ 6= P (C, w, crs).
• Extraction Zero-Knowledge: Let a nonuniform

polynomial-time adversaryA be given. Con-
sider the following experiment parametrized by a
bit b: Let (crs , simtd , extd) ← K(1η). Let
(C, w, state) ← AE(·,extd)(1η, crs , simtd). Then
let proof ← P (C, w, crs) if b = 0 and proof ←
S(C, crs , simtd) if b = 1. Let guess =
AE(·,extd)(1η, crs , simtd , state, proof). LetPb(η) de-
note the following probability:

Pb(η) := Pr
[

guess = 1 andC(w) = 1 and

proof has not been queried fromE(·, extd)
]

.

Then|P0(η) − P1(η)| is negligible.

• Deterministic verification and extraction.The algo-
rithmsV andE are deterministic.

We stress that protocols already exist that satisfy this
notion, e.g., the one proposed in [25, Sect. 3] under
the assumption that enhanced trapdoor permutations [22,
Def. C.1.1] exist. The latter exist, e.g., under the assump-
tion that factoring is hard.

We have formulated symbolically-sound zero-
knowledge proof systems against nonuniform adversaries.
However, we believe that our results easily carry over to
the uniform case.

3 The Abstract Model

In the following we define the abstract model in which
the execution of a symbolic protocol involving zero-
knowledge proofs takes place. The basic ideas follow the
framework presented in [13]. However, to incorporate zero-
knowledge proofs, we have to make various nontrivial mod-
ifications to the abstract model. In the following sections,
we try to highlight and explain the design choices made in
our modeling.

ZK-proofs and messages. First, we fix several count-
ably infinite sets. ByA we denote the set of agent iden-
tifiers, byNonce the set of nonces. We use elements from
Garbage to represent ill-formed messages (corresponding to
unparseable bitstrings in the concrete model). Finally, ele-
ments ofRand denote abstract randomness used in the con-
struction of ciphertexts and zero-knowledge proofs. We as-
sume thatNonce is partitioned intoNonceag andNonceadv ,
representing the nonces of honest agents and the nonces of
the adversary. Similarly,Rand is partitioned intoRandag

andRandadv .
We proceed by defining the syntax of messages that can

be sent in a protocol execution. Since such messages can
contain zero-knowledge proofs, and these are parametrized
over a statement that is to be proven, we first have to define
the syntax of these formulas. Let

ZKTerm = ek(βi) | αi | βi |

〈ZKTerm, ZKTerm〉 | {ZKTerm}ρi

ek(βj)

wherei = 1, 2, We call terms produced by this gram-
mar ZK-terms. On the intuitive level,ek(a) denotes a public
encryption key of agenta, 〈·, ·〉 a pair, and{t}Rek(a) an en-
cryption oft with the public key ofa using randomnessR.

Then a ZK-FormulaF is a Boolean formula over terms
of the formZKTerm = ZKTerm satisfying the following
conditions: Ifαi occurs inF , thenα1, . . . , αi occur all in
F . An analogous condition holds forρi andβi.1 We denote

1We actually use this condition in the proof only for theρ. However,
we included the condition also forα andβ for symmetry.

5

the set of ZK-Formulas withFormula. Theα-arity of a ZK-
FormulaF is the largest index of anαi occurring inF . The
ρ-arity and theβ-arity are defined analogously.

The intuitive interpretation of a ZK-formula is that it is
a term with free variablesρ, α, andβ. Theρ are supposed
to be substituted with randomness, theα andβ with mes-

sages. A zero-knowledge proofZKR
F (r; a; b) then repre-

sents a proof that when substitutingr, a, b for ρ, α, β, the

resulting expressionF
{

r,a,b

ρ,α,β

}

is a true statement. The ran-

domnessr and the messagesa will be considered secret,
while the messagesb will be contained in the proof in clear
(one can think of the formula as being parametrized in the
valuesb).

Note the following interesting asymmetry: We allow
ek(βi) to appear in a formula, but notek(αi). This is due
to the fact that a proof with a formula containingek(αi)
would not be easily realizable computationally: In order to
perform the zero-knowledge proof, we need to build a cir-
cuit accepting only satisfying valuesa for theα. To build
such a circuit for a formula withek(αi), one would have to
encode a list ofall public keys in this circuit. On the other
hand, in the case ofek(βi), the valuebi substituted forβi is
known while constructing the circuit, thus we can directly
hard-codeek(bi) into the circuit.

Given the syntax for ZK-formulas, we can define the set
M of messages as

M = A | Nonce | ek(A) | ek(Garbage) | dk(A) | 〈M, M〉

| {M}Rand
ek(A) | {Garbage}Rand

ek(Garbage) | Garbage

| ZKRand
Formula(Rand∗; M∗; M∗).

with the following additional condition: For each subterm
ZKRand

F (r; a; b), we have that|r|, |a|, |b| are theρ-arity, α-
arity, andβ-arity of F , respectively. Hereek(a) anddk(a)
represent encryption and decryption keys for the agenta,
〈·, ·〉 means pairing,{t}R

ek(a) is the encryption of messaget

under the keyek(a) with randomnessR, andZKR
F (r; a; b)

denotes a zero-knowledge proof for the formulaF produced
using the randomnessR where the (secret) witness consists
of the randomnessr and the messagesa, and the public part
consists of the messagesb.

Since both honest agents and the adversary should only
send ZK-proofs that actually correspond to true statements,
we will need the following definition that characterizes the
messages that do not contain wrong proofs.

Definition 2 (True ZK-Proofs). Let a message of the form
Z := ZKR

F (r; a; b) be given.
Let Z1 := F

{

r,a,b

ρ,α,β

}

. Replace all subterms ofZ1 that

are of the formt = t by True and all subterms ofZ1 that
are of the formt = u with t 6= u (where 6= is meant as

being syntactically different as terms, no equational theory
is involved) byFalse. Call the resultZ2. Note thatZ2 is a
Boolean formula without variables.

We say thatZ is a true proof, if all subterms ofZ1 are
messages2 andZ2 evaluates toTrue.

We say a messageM contains true proofsif every sub-
term ofM of the formZKRand

Formula(. . .) is a true proof.

Deduction rules. In order to restrict the actions the ad-
versary may perform during a protocol execution, we have
to introduce a deduction relatioǹ which is given by the
rules in Figure 1. The rules for the deduction are stan-
dard, only the rules concerning zero-knowledge proofs
merit additional comment. The ruleϕ ` ZKr

F (r; a; b) =⇒
ϕ ` b represents the zero-knowledge property; from a zero-
knowledge proofZKr

F (r; a; b), all that can be extracted is
the public partb, but not the witnessr, a.

More interesting and involved is the last rule in Figure 1.
This rule states under which conditions the adversary may
construct a zero-knowledge proofZKr

F (r; a; b). First, of
course, the resulting proof must be a proof of a true state-
ment. This is represented by the condition thatF

{

r,a,b

ρ,α,β

}

is a true proof (as in Definition 2). Furthermore, we have to
require that the adversary actually knows the witnessr, a
and the public partb, corresponding to the fact that we
model proofs ofknowledge. For a andb this condition is
modeled by requiringϕ ` a andϕ ` b. For the random-
nessr, however, the condition is more involved. The ad-
versary may know some randomnessri in two cases. First,
if it is its own randomnessri ∈ Randadv . Second, it may
be able to extract that randomness from an encryption pro-
duced by some honest party. Namely, the condition that a
cryptosystem isIND-CCA secure does not imply that one can-
not retrieve the randomness used in an encryptionprovided
one can decrypt that message.For example, in the popular
RSA-OAEP cryptosystem [8, 20], the randomness used for
encrypting a message is actually computed during an hon-
est decryption. Thus we have to allow the adversary to use
randomnessri from messages it was able to decrypt. As
an example why this condition is actually needed for com-
putational soundness, consider the following simple proto-
col. Agenta sendsc := {m}R

ek(b) and if it receives a proof
matchingZK_

F (_; ; b, m, c) with F := (β3 = {β2}
ρ1

ek(β1)
),

the protocol fails (here the symbol _ matches everything).
If we would only allow the adversary to useri ∈ Randadv

in the witness, the protocol would be secure abstractly, even
if the adversary knows the secret keysk(b). Yet a con-
crete adversary could possibly (depending on the encryption
scheme) extract the randomness fromc and produce such a
proof.3

2This would be violated, e.g., byZKR
F (R′; ; c,m, n) with F :=

(β1 = {β2}
ρ1

ek(β3)
) wheren is a nonce.

3After these explanations, the reader might wonder why similar ad-

6

m ∈ ϕ

ϕ ` m

g, g′ ∈ Garbage r ∈ Randadv

ϕ ` g ϕ ` ek(g) ϕ ` {g′}rek(g)

b ∈ A

ϕ ` ek(b) ϕ ` b

ϕ ` m1 ϕ ` m2

ϕ ` 〈m1, m2〉

ϕ ` 〈m1, m2〉

ϕ ` m1 ϕ ` m2

ϕ ` ek(b) ϕ ` m r ∈ Randadv

ϕ ` {m}rek(b)

ϕ ` {m}rek(b) ϕ ` dk(b)

ϕ ` m

ϕ ` ZKr
F (r; a; b)

ϕ ` b

ϕ ` a ϕ ` b F ∈ Formula F
{

r,a,b

ρ,α,β

}

is a true proof

r ∈ Randadv ∀i : ri ∈ Randadv ∨ (∃t, a : ϕ ` {t}ri

ek(a) ∧ ϕ ` dk(a))

ϕ ` ZKr
F (r; a; b)

Figure 1. Deduction rules for the adversary.

Patterns. In order to conveniently define the notion of a
protocol, we need a way to succinctly describe how mes-
sages are parsed and constructed by honest agents. To this
aim, we define the concept of a pattern.4

Let X.a, X.n, X.p, X.c, X.z be countably infinite sets
(variables of sort agent, nonce, pair, ciphertext, ZK-proof,
respectively). LetX := X.a|X.n|X.e|X.p|X.c|X.z. In the
following, when considering mappings from variablesX

to messagesM, we will always assume that a variable is
mapped to a message of corresponding type. We then de-
fine the setPat of patterns as

Pat = X | ek(X.a) | 〈Pat, Pat〉 | {Pat}Rand
ek(X.a) | {Pat}_

ek(X.a) |

ZKRand
Formula(Rand∗; Pat∗; Pat∗) | ZK_

Formula(_
∗; _∗; Pat∗)

with the following additional conditions: For each subterm
ZKRand

F (r; a; b), we have that|r|, |a|, |b| are theρ-arity, α-
arity, andβ-arity of F , respectively, and ifek(βi) occurs
in F , thenbi has the formek(A) or ek(X.a). These condi-
tions are needed to ensure that a pattern (containing no _)
becomes a valid message when the variables are instanti-
ated.

The symbol _ is supposed to match anything. More ex-
actly, we say a messagem ∈ M matches a patternp ∈ Pat

if there is a substitutionθ : X → M such thatpθ equalsm
up to occurrences of _ inpθ (where distinct occurrences of
_ may correspond to different subterms inm). We callθ the

justments are not necessary for, e.g., the rule for deducingciphertexts
{m}r

ek(b)
since a concrete adversary could use extracted randomness also

in this case. The rough reason why this is not necessary is that if the con-
crete randomnessr is used to encrypt another message or under another
key, we can consider it to be another abstract randomness. Only if the
samem is encrypted under thesameek(b), we will have to consider the
concrete randomness to be the same. However, in this case theresulting
ciphertext will be also be the same, thus the adversary has just produced a
message it already knew.

4Note that one could be tempted to define a pattern just as a message
with variables in it. However, this definition would leave several points
open, e.g., variables of what type might occur in which position, etc. Thus
we give an explicit grammar and use this opportunity to reduce the set
of patterns to such that make sense in protocols (e.g., a protocol may not
explicitly sendGarbage.

matcher ofm andp. Thus intuitively _ in a pattern corre-
sponds to a value we do not care about and that we do not
intend to (and cannot) extract, e.g., the randomness used in
a ciphertext5 or the witness of a zero-knowledge proof.

Note that patterns do not contain explicit nonces, agent
identifiers, or garbage. The omission of garbage is due to
the fact that we do not want protocol to explicitly construct
ill-formed messages. Nonces and agents are not needed
since below the protocol execution (see below) will provide
pre-initialized variables for the nonces used by an agent and
for the ids of the communication partners in a given proto-
col session. We disallow patterns of the formdk(a) since
we do not allow protocols to explicitly use their private keys
(except for decrypting). This is to ensure that no key cycles
occur; it is known that theIND-CCA property does not guar-
antee security in the presence of key cycles.

Roles and protocols. We are now ready to define what a
protocol is. For space reasons, we only give an informal
description and postpone exact definitions to Appendix A
for definitions.X [TODO] A k-party protocolΠ is a mapping
that assigns eachi ∈ [k] a roleΠ(i). In our setting, arole is
modeled as an ordered edge-labeled finite tree. The nodes
of the role tree correspond to states of an agent executing
that role, and the edges correspond to transitions caused by
incoming messages. We assume only insecure channels be-
tween agents, therefore all messages are sent to the adver-
sary and received from the adversary. What messages a
role sends, and upon what messages the role enters what
state is specified by the labels on the edges of the role tree.
More concretely, an edge is labeled with a pair(l, r) of pat-
terns. Herel represents the pattern for matching incoming
messages, andr the pattern for constructing the answers to

5On the preceding page we said that it is possible to extract random-
ness from ciphertexts. However, at that point we were talking about the
adversary and had to assume the worst case. When defining protocols, we
may only include capabilities that may be implemented with any encryp-
tion scheme. E.g., in the Cramer-Shoup cryptosystem [15], extracting the
randomness implies breaking the discrete logarithm problem, even when
given the private key.

7

these messages. More exactly, the state of a role consists
of a node in its tree, and a partial mappingσ : X → M

representing (fragments of) messages parsed so far. Given
an incoming messagem, a stateσ, and an edge(l, r), the
following steps take place:6

• First, in the patternl, the variables that have already
been assigned are instantiated. Formally, the pattern
lσ is computed.
• Thenm is matched againstlσ. If this succeeds, letθ be

the matcher. Otherwise, the transition corresponding
to the edge(l, r) will not be taken.
• Now all variables in the outgoing patternr are instanti-

ated, either with variables assigned previously inσ, or
in the previous step (θ). More formally, the message
m′ := rσθ is computed. Ifm′ does not contain true
proofs (Definition 2), the transition will not be taken.
Otherwise follow the edge, send messagem′ and let
the new state beσ ∪ θ.

A node may have several outgoing (ordered) edges, in this
case the first one will be chosen that matches and results
in a messagem′ containing true proofs. If no such edge
is found, the role will ignore the messagem (i.e., the state
is unmodified). A role may access the agent id of thei-th
communication partners in its session via the pre-initialized
variableAi ∈ X.a, and accesses its own nonces via the
pre-initialized variablesXj

Ai
∈ X.n (accessing the nonces

via variables allows to model that each session has different
nonces).

This model of a role is very similar to that presented in
[13] with the exception of the additional check whether the
outgoing messagem′ contains true proofs. This check is
necessary, since we have no syntactic condition that guaran-
tees that a role can only generate true proofs. In particular,
if a role produces proofs that depend on incoming messages,
and if these messages happen to be modified by the adver-
sary, it may happen that the proofs are instantiated with the
wrong values. Thus we have to make a design choice. We
can restrict the patterns such that no matter how the vari-
ables are instantiated, no incorrect proofs can be produced.
We can impose a static condition on the roles that guaran-
tees that for no sequence of incoming messages, an incor-
rect proof can be produced. Or we can perform a runtime
check to avoid incorrect proofs. The first method seems
very restrictive, the second might make the definition of a
role unnecessarily complicated, thus we have opted for the
third variant. Note that current tools for protocol verifica-
tion might not be able to handle such runtime checks and
need to be extended.

Of course, not all trees with edges labeled by patterns
represent valid protocol roles. Instead, we have to impose a

6Actually, this is not part of the definition of a role, but of the protocol
execution. However, we describe it here so that the intendedbehavior of a
role becomes clear.

variety of sanity conditions, e.g., we have to require that the
patternr (for constructing messages) does not contain free
variables, or that the pattern matching an incoming message
does not imply decrypting with someone else’s secret key.
Most conditions are of this kind and just guarantee that the
abstract protocol can indeed be implemented as a concrete
protocol. Complete details are given in Definition 5 in Ap-
pendix A. At this point, we only mention two conditions
that are of particular importance.

First, as already discussed on the previous page, a pattern
cannot explicitly contain secret keys. Thus a role cannot
sent these keys over the network. (Note that the adversary
can however get access to secret keys by corrupting parties
and can then send them.) This condition is not related to
the introduction of zero-knowledge proofs; it is also present,
e.g., in [13].

Since both encryption and zero-knowledge proofs are
probabilistic, we have to ensure that each randomness is
used only once. In a model without zero-knowledge proofs
(as, e.g., [13]) this can be done by requiring that for any
randomnessR, there is at most one subterm containingR
(but the same subterm may occur several times to allow for
sending several copies of a single ciphertext). In the pres-
ence of zero-knowledge proofs, however, such a rule would
be too restrictive. For example, an agent might want to
send a ciphertextc := {t}R

ek(a) and then prove thatt satis-

fies some propertyP (t), i.e., it sendsz := ZKR′

F (R; t; c, a)
with F := (β1 = {α1}

ρ1

ek(β2)
∧ P (α1)). Since bothc and

z containR, such an agent would be disallowed. To relax
this restriction, we have to allow to use a given randomness
R also in the (ρ-part of the) witness of a zero-knowledge
proof. However, allowing completely unrestricted use of
R in the witness would lead to problems, too. For exam-
ple, consider an agent creating and sending a ciphertextc
using a given randomnessR, and then trying to produce a
zero-knowledge proofz proving a statement aboutanother
ciphertextc′ using thesamerandomnessR. In this case,
the adversary learns the ciphertextc and whether the proof
z is true (since the further actions of the agent depends on
whether it succeeded in constructing the proof or not). It
is not clear that the information whether the proofz is true
might not already leak up to one bit of information about
c. We therefore have to ensure that a given randomnessR
occurs only in a single subtermt plus additionally in the
witness of zero-knowledge proofsas long as it is used in
the formula to produce the same termt. To capture this
more formally, we introduce the notion of an effectiveR-
subpattern. Roughly, an effectiveR-subpattern of a pattern
P is either a subterm ofP , or a subterm that results from
substituting the arguments of a zero-knowledge proof inP
into its formula. Formally, we get the following definition:

Definition 3 (Effective subpatterns). LetP be a pattern. We

8

say that a patternS is aneffective subpatternof P if
• S is a subterm ofP , or
• there is a subtermZKR

F (r; a; b), and a ZK-Termz
in the ZK-formulaF , such thatS is a subpattern of
z
{

r,a,b

ρ,α,β

}

.

We call S an effective R-subpatternif it is of the form
{Pat}RPat or ZKR

Formula(Rand∗; Pat∗; Pat∗).

We can now formulate the condition that randomness
may not be reused: For any randomnessR, there is at most
one effectiveR-subpattern in the role treeΠ(k) (but that
subpattern may occur in several places).

Protocol execution. The definition of the execution of an
abstract protocolΠ closely resembles the one in [13], so we
only quickly mention the main points. A detailed definition
is postponed to Appendix A. An abstract trace for ak-party
protocolΠ is a sequence of global states with some restric-
tions on the possible transitions (detailed below). Aglobal
stateis a triple(Sid, f, ϕ) whereϕ is the set of messages
the adversary learned so far (theadversary knowledge, ini-
tially set toNonceadv), the setSid contains the ids of all
sessions currently running, and the functionf maps every
session idsid in Sid to the local state of that session. A ses-
sion contains exactly one agenta executing one role. How-
ever, since the intended protocol execution always involves
k parties, a session additionally specifies what other agents
the agenta is (supposedly) communicating with. Thelo-
cal stateof a given session is a tuple(i, σ, p, (a1, . . . , ak)).
Herei is the number of the role the agenta executes in this
session. The tuple(a1, . . . , ak) specifies the indented com-
munication partners for that session, in particular,a = ai

is the agent executing this session. The state of the agenta
is given by the current nodep of the role treeΠ(i) and the
mappingσ that maps variables to (fragments of) messages
received by the agenta in that session. See the discussion
of the role tree on page 7.

We allow three kinds of transitions between global
states, namelycorrupt(a1, . . . , al), new(i, a1, . . . , ak),
and send(sid , m). In a corrupt(a1, . . . , al) transition,
the adversary specifies an list of agentsa1, . . . , al whom
it wants to corrupt. In consequence, the adversary’s
knowledgeϕ in the next global state will be extended by
{dk(a1), . . . , dk(al)}, i.e., the adversary learns all secrets
of the corrupted parties. Only the first transition is allowed
to be of this type, i.e., we consider static corruptions. In a
new(i, a1, . . . , ak) transition, a new session idsid is allo-
cated and added toSid. The local state ofsid is initialized as
(i, σ, ε, (a1, . . . , ak)) whereε is the root of the role treeΠ(i)
andσ maps the variablesAj to aj and the variablesXj

Ai
to

fresh nonces. In other words, a new session is initialized
in which agentai runs roleΠ(i) together with(a1, . . . , ak).
The most important transition issend(sid , m). Here, the

agenta executingsid is given the messagem and its an-
swerm′ is added to the adversaries knowledgeϕ. Assume
that agenta has the local state(i, σ, p, (a1, . . . , ak)). Then
to compute the answerm′, the first outgoing edge fromp is
searched such that its label(l, r) matchesm and produces
an answerm′ that contains true proofs. Details on how this
is done have already been given in the discussion of roles
on page 7. If no such edge is found, both the local state
as well as the knowledge of the adversary are unmodified.
Note that the only change with respect to the modeling in
[13] is that we have introduced the additional condition for
taking an edge that the answer should contain true proofs.

We call sequences of global states satisfying these rules
symbolic execution tracesor Dolev-Yao traces. The set of
Dolev-Yao traces forΠ is denotedExecs(Π).

4 The Concrete Model

We now proceed to define the concrete execution of a
protocolΠ. We use the same protocolsΠ as in the abstract
model in the preceding section, but the messages exchanged
over the network now are bitstrings, and the patterns(l, r)
on the edges of the role tree specify how to parse or con-
struct these bitstrings, respectively.

Since the concrete execution model is quite straightfor-
ward and furthermore very similar to the model from [13],
we only sketch it here and concentrate on the design issues
particular to the inclusion of zero-knowledge proofs. The
details are postponed to Appendix B.

Fix a security parameterη ∈ N. A concrete trace is a
sequence ofconcrete global statesof the form(Sid, g, C)
whereSid is the set of session ids,g maps sessions ids to
concrete local states andC is the list of corrupted agents.
A concrete local stateis of the form(i, τ, p, (a1, . . . , ak)).
As for the abstract state,i is the role executed byai, the
nodep indicates which point of the role tree the agentai

has reached so far, and(a1, . . . , ak) list the communica-
tion partners. The mappingτ maps variables to bitstrings
(instead of terms) that result from parsing incoming mes-
sages. The transitions between the global states are invoked
by a probabilistic polynomial-time adversaryA. The ad-
versary may invoke acorrupt(a1, . . . , al) transition (only
in the first step) and will then learn the secret keys of the
agentsa1, . . . , al. Further the idsa1, . . . , al are stored in
the setC in the global state. The adversary may invoke a
new(i, a1, . . . , ak) transition. In this case a new session
id sid with concrete local state(i, τ, p, (a1, . . . , ak)) is al-
located where in the mappingτ the variablesAj andXj

Xi

are preinitialized toaj and fresh nonces, respectively. Fi-
nally, the adversary may invoke asend(sid , m) transition
wherem is a bitstring. In this case, for each edge leaving
the current nodep, the following is tried: Let(l, r) be the
label of that edge. Then the bitstringm is parsed according

9

to the patternl using the variable substitutionτ (see below).
This results in a new substitutionτ ′ where the variables that
where free inl are now assigned bitstrings. Then the pat-
ternr is used with the variable assignmentsτ ′ to construct
a new bitstringm′ (see below). If both parsing and con-
structing succeed, this edge is taken,τ ′ becomes part of the
new local state of the sessionsid , and the adversary getsm
as input. If no edge matches, no action is taken.

It is left to explain how a pattern is used to parse or
construct a bitstring. Forconstructingbitstrings, we first
randomly choose a family of random valuestapea,sid :
Randag → {0, 1}η parametrized over the agenta, the ses-
sionsid .7 Then we define a functionconstruct(r, τ) taking
a patternr and a partial mappingτ : X→ {0, 1}∗. If, e.g.,r
is an encryptionr = {r′}R

ek(a), the functionconstruct(r, τ)

recursively invokesm′ := construct(r′, τ) and then en-
cryptsm′ using the public key of agenta and using random-
nesstapea,sid (R) for the encryption algorithm. Similarly,
pairs and zero-knowledge proofs are handled. Ifr = X,
thenconstruct(r, τ) just returns the stored valueτ(r). We
give the details ofconstruct in Definition 8 in Appendix B.

X [TODO] At this point, we would only like to comment on
the operation ofconstruct(ZKR

F (r; a; b), τ), i.e., on the con-
struction of zero-knowledge proofs, since it contains several
relevant points.

To produce a zero-knowledge proof for witness
r1, . . . , rs; a1, . . . , an and public partb1, . . . , bm (where we
assume thatr, a, b have already been assigned bitstrings
using recursive calls toconstruct), we first have to con-
struct a circuitC whose satisfiability we will prove in zero-
knowledge. For this, letli := |ai|. Then byC := C

s,n,l
F,b

we denote the circuit that expects argumentsa′
1, . . . , a

′
n of

lengthsl1, . . . , ln and argumentsr′1, . . . , r
′
n all of length

η, and then performs the operations described by the ZK-
formula F whereρi is instantiated with the inputr′i, αi

with input a′
i, and occurrences ofβi are replaced with

the hardcodedvalue bi. Details are given in Definition 7
in Appendix A.X [TODO] Then the prover of the zero-
knowledge scheme is invoked for the circuitC and for
witnessr, a (as bitstrings) using randomnesstapea,sid (R).
Call the resulting proofz. Then the bitstring returned
by construct(ZKR

F (r; a; b), τ) is the tuple(z, F, s, n, l, b)
together with appropriate tagging to mark it as a zero-
knowledge proof. Note that this construction does not com-
pletely hide all information on the witness since it leaks the
length of the individual components. This is comparable
to the situation with encryption schemes which also cannot
completely hide the length of the plaintext.8 If the zero-

7For notational simplicity, we assume that any operation, beit encrypt-
ing or performing zero-knowledge proofs, needs at mostη bits. This can be
easily achieved by using a pseudorandom generator if the operation needs
more randomness.

8Note however that in the case of zero-knowledge proofs, thisis not a

knowledge proof fails (becauser; a is not a witness forC)
the functionconstruct aborts (and the next edge in the role
tree is tried). Note that the circuitC = C

s,n,l

F,b can be con-
structed given onlyF, s, n, l, b; this is important since for
verifying a proof, we need to constructC first.

For parsing bitstrings, we define a function
parse(m, l, τ) taking a bitstringm, a patternl, and a
partial mappingτ : X → {0, 1}∗. Then if, e.g.,l is an
encryption pattern of the form{l′}_

ek(Ai)
wherei is the role

executed by agenta in the current session, the bitstring
m is decrypted with the secret key of agenta resulting
in the plaintextm′, and then functionparse(m′, l′, τ) is
invoked. Pairs and zero-knowledge proofs are handled
analogously. Whenl is a free variable (i.e., unassigned
in τ), it is checked whetherm is of the right type and then
assigned toτ(l) (resulting in an extended mappingτ). If l
is a bound variable (assigned inτ), it is checked whether
m = τ(l). If l is of the form{·}R· or ZKR

· (. . .) (i.e.,
contains explicit randomness), the messagem is not parsed
further but compared toconstruct(l, τ) (this allows to
match against encryptions or ciphertexts an agent produced
itself). Finally, if all checks succeeded, the (now possibly
extended) mappingτ is returned. Details are postponed to
Definition 9 in Appendix B.X [TODO]

We assume explicit type information on each bitstring.
We achieve this by requiring that every bitstring carries a
type tag distinguishing between agents, nonces, pairs, ci-
phertexts and zero-knowledge proofs. Furthermore, we re-
quire that a bitstring tagged as a zero-knowledge proof is
only considered to be of type zero-knowledge proof if it ad-
ditionally passes the verification. This is necessary since
otherwise a bitstring could be assigned to a variableX.z
that later will not pass verification, in contrast to the abstract
case where only true proofs can be assigned toX.z.

Thus for any adversaryA and any security parameterη,
we get a distribution on computational traces which we de-
note byExecc

Π,A(η). A detailed description of the concrete
execution is given in Definition 10 in Appendix B.X [TODO]

5 Computational Soundness

In the preceding two sections, we have described the
abstract and the concrete execution model involving zero-
knowledge proofs and encryptions. To be able to state our
main computational soundness result, we have to formalize
what it means that a given concrete tracetc corresponds to
a given abstract tracets. Here we follow [14, 31, 13] and
require that there exists a mappingc that maps every mes-
sage fromts to a bitstring oftc in a consistent fashion. The

principal impossibility. For example, [6] present so-called universal argu-
ments that can be transformed into length-hiding zero-knowledge proofs.
These schemes however are very complex and far from being practically
usable.

10

exact definition is almost identical to the one of [13], except
that we add the requirement that the adversary corrupts the
same agents in the abstract and the concrete trace.

Definition 4 (Concrete instantiations). Let ts =
(Sids

1, f1, ϕ1), . . . , (Sids
m, fm, ϕm) be a symbolic exe-

cution trace andtc = (Sidc
1, g1, C1), . . . , (Sidc

n, gn, Cn) a
concrete execution trace.

We say that the tracetc is a concrete instantiationof ts

with partial mappingc : M → {0, 1}∗ (written ts �c tc)
if m = n and for everỳ ∈ [n] it holds thatSids

` = Sidc
`,

andC` = {a : dk(a) ∈ ϕ`}, and for everysid ∈ Sids
` the

following holds:
For (σ, i, p, (a1, . . . , ak)) := f`(sid) and

(τ, j, q, (b1, . . . , bn)) := g`(sid) we have thatτ = c ◦ σ,
andi = j, andp = q, and(a1, . . . , an) = (b1, . . . , bn).

We say thattc is a concrete instantiationof ts (written
ts � tc) if there exists a partial injective functionc : M →
{0, 1}∗ such thatts �c tc.

Equipped with this definition, we can formulate our
soundness result. Namely, with overwhelming probability,
a concrete trace is a concrete instantiation of some abstract
Dolev-Yao trace.

Theorem 1 (Computational soundness of zero-knowledge
proofs). Let Π be a k-party protocol. Assume thatAE
is an IND-CCA secure encryption scheme and thatZK is a
symbolically-sound zero-knowledge proof system. LetA be
a nonuniform polynomial-time adversary. Then the follow-
ing probability is overwhelming inη:

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π) such thatts� tc}

]

.

Proof sketch.(The full proof is postponed to Appendix C.)
To establish the theorem, it is sufficient to find an injective
mappinḡc that maps bitstrings to terms such that a concrete
tracetc (chosen according toExecc

Π,A(η)) will be mapped
to a Dolev-Yao tracēc(tc). Then the inversēc−1 satisfies
c̄(tc) �c̄−1

tc, which proves the theorem. The mappingc̄
is defined in the canonical way, namely by parsing every
bitstringm to a term. To this aim, we use the decryption
keys to parse encryptions, and the extraction trapdoorE of
ZK to recover the witnesses of zero-knowledge proofs. Un-
parseable bitstrings are mapped to distinct terms inGarbage.
A small difficulty occurs when trying to extract the random-
ness used for encryptions or zero-knowledge proofs. In gen-
eral, an encryption scheme may not allow to extract the ran-
domness used when decrypting, even given knowledge of
the secret key.9 Moreover, some of the randomness might
even be information-theoretically lost, so it is impossible
to recover the randomness that is actually used. Thus for
adversary-generated bitstringsm, we do not aim to extract

9E.g., the Cramer-Shoup cryptosystem, cf. footnote 5.

the randomness but instead consider the full bitstring as its
own randomness.

We have to show that̄c(tc) constitutes a Dolev-Yao trace
with overwhelming probability. Assume thatc̄(tc) is not a
Dolev-Yao trace. This can be becausec̄(tc) does not ful-
fill the syntactic conditions of a trace (e.g., the knowledge
of the adversary changes in an unexpected way, or the lo-
cal state of some machine does not correspond to the mes-
sages received), or the adversary might send a message that
cannot be deduced from the messages that were output by
the honest agents. In this proof sketch, we will only con-
sider the latter case. We will therefore assume that with
non-negligible probability, in step̀, a messagem is sent
such that

Nonceadv ∪ {dk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ S`} 0 c̄(m)
(1)

holds, whereC denotes the set of corrupted agents. From
this we will derive a contradiction to the cryptographic as-
sumptions used in the theorem by transforming the concrete
execution in several steps into an adversary against theIND-

CCA assumption.

Simulating the zero-knowledge proofs.As a first step to-
wards a contradiction, we will replace all zero-knowledge
proofs by fake proofs produced by the simulator. For this,
we first introduce two oracles into our execution: A proof
oracleProof and an extraction oracleExtract . Whenever
an honest agent wants to produce a zero-knowledge proof of
some statementx with witnessw, it invokesProof (x, w);
when the implementation of̄c extracts the witness of some
zero-knowledge proofz, it invokesExtract(z). Note that
for this, it must be guaranteed that each zero-knowledge
proof produced by honest agents uses a different random-
nessR,10 and that this randomness is only used for the zero-
knowledge proof. By the definition of valid roles, we have
that for any randomnessR, there is at most one effectiveR-
subpattern in any path of the role tree of any agent. If this
effectiveR-subpattern is a term of the formZKR

F (. . .), then
R does not appear in the witness of any zero-knowledge
proof since terms of the formZKR

F (. . .) may not appear
in ZK-formulas. Thus any randomnessR that is used for
some ZK-proof is used only for that proof (if the proof is
performed several times with the same witness, statement
and randomness, theProof oracle will not be invoked again
but the old result will be reused). Note the following facts:
• The oracleExtract is never invoked with a proofz that

has previously been output byProof . This holds since
c̄ by definition only extracts proofs that have not been
generated by an honest agent, and only honest agents
useProof .

10Here and in the following, when we reason about a randomness
R ∈ Randag in the concrete model, we mean the symbolic valueR that is
used to select the corresponding bitstring from the random tape using the
function tape .

11

• The oracleProof is never invoked with(x, w) such
thatw is not a witness ofx. This holds since honest
agents check whetherw is a witness before construct-
ing a proof.

Hence, since both the execution of the concrete trace, as
well as the application of the mappingc̄ run in polynomial-
time, we can exploit thatZK has the extraction zero-
knowledge property, and hence replace theProof oracle by
a simulation oracleSimulate using the simulation trapdoor
of the CRS such that̄c(tc) (which is the output of anef-
ficient function c̄) is computationally indistinguishable in
both cases.11 It can easily be seen that it can be checked in
polynomial-time whether a given abstract trace is a Dolev-
Yao trace. Thus from the computational indistinguisha-
bility of the abstract traces in both cases, it follows that
the probability that the abstract trace is a Dolev-Yao trace
changes only by a negligible amount when replacingProof

by Simulate. Thus (1) still holds with non-negligible prob-
ability. Moreover, in contrast toProof , the oracleSimulate

only expects the statementx as input, but no witness.

Using fake encryptions.The next step towards deriving a
contradiction is to replace the encryptions created by hon-
est agents by fake encryptions. Since this step is very simi-
lar to the introduction of the oraclesSimulate andExtract ,
we only give a rough idea. All encryptions and decryptions
performed by honest agents (with respect to public keys of
uncorrupted agents) are replaced by calls to an encryption
or decryption oracle. By performing a lookup in the list of
all encryptions produced so far, we can ensure that the de-
cryption oracle is only invoked for ciphertexts not produced
by the encryption oracle. Then theIND-CCA property guar-
antees that we can replace the encryption oracle by an or-
acleFakeEncrypt that encryptions random messages (and
thus is independent of its input). Some care has to be taken
concerning the randomness: We do not guarantee that the
randomness used by the encryption oracle is used exactly
once, but instead may also use it in the witnesses of zero-
knowledge proofs. However, exploiting thatSimulate does
not need a witness, one can show that the replacement of
the encryption byFakeEncrypt leads to an indistinguish-
able trace. We refer to the full proof for details.

Identifying the underivable subterm. In order to derive a
contradiction from (1), we have to identify the subterm of
c̄(m) whose “fault” it is thatc̄(m) cannot be derived. We
will then use this term to construct an attack against theIND-

CCA. For this, we need the following characterization of un-
derivable messages:

Lemma 1. Let C be the set of corrupted agents, letM :=
c̄(m), let S be the set of messages output by honest agents

11Here we really need extraction zero-knowledge and not only the ex-
traction oracleExtract is used.

up to step̀ , and letS′ := S ∪{dk(a) : a ∈ C}∪Nonceadv
(the knowledge of the adversary after that step).

Then there exists a termT ∈ M and a contextD such
thatM = D[T] and all terms on the path fromM = D[T]
to T (not includingT) are of the form

〈·, ·〉 or {·}Randadv

ek(·) or ZKRandadv

Formula (. . .)

Furthermore, we have thatS′
0 T and thatT satisfies

one of the following conditions: (a)T ∈ Nonceag , or

(b) T = {·}
Randag

ek(a) , or (c) T = ZK
Randag

Formula(. . .), or (d) T =

ZKRandadv

Formula (r; a; b) and for somei, ri is not known.

Thus by (1) such a subtermT of M = c̄(m) exists. We have
to show that each of the four cases leads to a contradiction.

TTT is a nonce. In case (a) we haveT ∈ Nonceag . Since
S′

0 T , for any messagem sent to the adversary, the
nonceT occurs inc̄(m) only inside an encryption (with a
public key ek(a) with a /∈ C) or inside the witness of a
zero-knowledge proof. Since honest agents construct such
encryptions and zero-knowledge proofs using the oracles
Simulate andFakeEncrypt , the messagem is computed
without using the bitstring corresponding toT ; thus it is
not possible to extract that bitstring fromm. On the other
hand, from the messagem sent by the adversary, we can
retrieve the nonce as follows. InM = c̄(m), the nonce
T is protected only by terms of the form〈·, ·〉, {·}Randadv

ek(·)

or ZKRandadv

Formula (. . .). The pair can directly be parsed, in the
case of{·}Randadv

ek(·) or ZKRandadv

Formula (. . .), we can call the oracles
Decrypt andExtract , respectively. Since these oracles are
also used by the function̄c (at least for terms wherēc as-
signs randomnessRandadv and notRandag), these oracles
will answer consistently with the parsingM = c̄(m) of m.
Thus we can guess the nonceT , leading to a contradiction.
Cases (b) and (c) of Lemma 1 are taken care of similarly.

TTT is an adversary-generated zero-knowledge proof.In
case (d), we have thatT = ZKRandadv

Formula (r; a; b) and thatri

is not known (in the sense of Lemma 1). In this case the
argumentation used for case (a) cannot be used becauseT
does not correspond to a bitstring generated by an honest
agent. However, as in the preceding paragraphs, the adver-
sary can extract the bitstring corresponding toT , and using
the oracleExtract it can extract the concrete randomness
corresponding tori. By definition of the function̄c, this
randomness will be the randomness used in an encryption
with respect to someek(a) performed by an honest agent
(otherwise the function̄c would have assigned a random-
nessri ∈ Randadv). We distinguish two cases:a /∈ C and
a ∈ C. If a /∈ C, then the encryption has been generated
using the encryption oracleEncrypt . Being able to retrieve
the randomness used in that encryption contradicts theIND-

CCA property ofAE . If a ∈ C, then the randomness has

12

been used to generate the bitstring corresponding to a term
c = {t}

Randag
ri with a ∈ C. Sinceri is not known, we have

thatS′
0 c. With an analogous argument as above, we can

see that all bitstrings sent by honest agents can be computed
without actually computing the bitstring corresponding toc.
But in this case, that fact that the adversary is able to guess
the randomness used to producec is a contradiction.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. InProc. 4th ACM Conference
on Computer and Communications Security, pages 36–47,
1997.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography: The computational soundness of formal encryp-
tion. In Proc. 1st IFIP International Conference on Theo-
retical Computer Science, volume 1872 ofLecture Notes in
Computer Science, pages 3–22. Springer, 2000.

[3] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct
anonymous attestation protocol. IEEE Symposium on Secu-
rity and Privacy 2008, May 2008. To appear. Full version
available athttp://eprint.iacr.org/2007/289.

[4] M. Backes and B. Pfitzmann. Symmetric encryption in
a simulatable Dolev-Yao style cryptographic library. In
Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 204–218, 2004.

[5] M. Backes, B. Pfitzmann, and M. Waidner. A compos-
able cryptographic library with nested operations (extended
abstract). InProc. 10th ACM Conference on Computer
and Communications Security, pages 220–230, 2003. Full
version in IACR Cryptology ePrint Archive 2003/015, Jan.
2003,http://eprint.iacr.org/.

[6] B. Barak and O. Goldreich. Universal arguments and
their applications. In17th Annual IEEE Conference on
Computational Complexity, Proceedings of CCC’02, pages
194–203. IEEE Computer Society, 2002. Online avail-
able at http://www.cs.princeton.edu/~boaz/
Papers/uargs.ps.

[7] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A sym-
bolic model checker for security protocols.International
Journal of Information Security, 2004.

[8] M. Bellare and P. Rogaway. Optimal asymmetric
encryption—how to encrypt with RSA. In A. de Santis, ed-
itor, Advances in Cryptology, Proceedings of EUROCRYPT
’94, volume 950 ofLecture Notes in Computer Science,
pages 92–111. Springer-Verlag, 1995. Extended version on-
line available athttp://www.cs.ucsd.edu/users/
mihir/papers/oae.ps.

[9] D. Bleichenbacher. Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS. In
Advances in Cryptology: CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 1–12. Springer-
Verlag, 1998.

[10] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous
attestation. InProc. 11th ACM Conference on Computer

and Communications Security, pages 132–145. ACM Press,
2004.

[11] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and
C. Walstad. Formal analysis of kerberos 5.Theoretical Com-
puter Science, 367(1):57–87, 2006.

[12] R. Canetti and J. Herzog. Universally composable sym-
bolic analysis of mutual authentication and key exchange
protocols. InProc. 3rd Theory of Cryptography Conference
(TCC), volume 3876 ofLecture Notes in Computer Science,
pages 380–403. Springer, 2006.

[13] V. Cortier, S. Kremer, R. Küsters, and B. Warinschi. Compu-
tationally Sound Symbolic Secrecy in the Presence of Hash
Functions. InProceedings of the 26th Conference on Foun-
dations of Software Technology and Theoretical Computer
Science (FSTTCS 2006), volume 4337 ofLecture Notes in
Computer Science, pages 176–187. Springer, 2006.

[14] V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. InProc. 14th European
Symposium on Programming (ESOP), pages 157–171, 2005.

[15] R. Cramer and V. Shoup. A practical public key cryp-
tosystem provably secure against adaptive chosen cipher-
text attack. In H. Krawczyk, editor,Advances in Cryptol-
ogy, Proceedings of CRYPTO ’98, volume 1462 ofLecture
Notes in Computer Science, pages 13–25. Springer-Verlag,
1998. Online available athttp://eprint.iacr.org/
1998/006.

[16] D. E. Denning and G. M. Sacco. Timestamps in key distribu-
tion protocols.Communications of the ACM, 24(8):533–536,
1981.

[17] D. Dolev and A. C. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2):198–
208, 1983.

[18] S. Even and O. Goldreich. On the security of multi-party
ping-pong protocols. InProc. 24th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 34–39,
1983.

[19] D. Fisher. Millions of .Net Passport accounts put at risk.
eWeek, May 2003. (Flaw detected by Muhammad Faisal
Rauf Danka).

[20] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern.
RSA-OAEP is secure under the RSA assumption.Journal
of Cryptology, 17(2):81–104, 2004. Online avail-
able at http://www.di.ens.fr/~pointche/
Documents/Papers/2004_joc.pdf.

[21] O. Goldreich.Foundations of Cryptography – Volume 1 (Ba-
sic Tools). Cambridge University Press, Aug. 2001. Pre-
vious version online available athttp://www.wisdom.
weizmann.ac.il/~oded/frag.html.

[22] O. Goldreich. Foundations of Cryptography – Volume 2
(Basic Applications). Cambridge University Press, May
2004. Previous version online available athttp://www.
wisdom.weizmann.ac.il/~oded/frag.html.

[23] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems.Journal of the ACM, 38(3):690–
728, 1991. Online available athttp://www.wisdom.
weizmann.ac.il/~oded/X/gmw1j.pdf.

[24] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems.SIAM Journal on
Computing, 18(1):186–207, 1989.

13

http://eprint.iacr.org/2007/289
http://eprint.iacr.org/
http://www.cs.princeton.edu/~boaz/Papers/uargs.ps
http://www.cs.ucsd.edu/users/mihir/papers/oae.ps
http://eprint.iacr.org/1998/006
http://www.di.ens.fr/~pointche/Documents/Papers/2004_joc.pdf
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

[25] J. Groth and R. Ostrovsky. Cryptography in the multi-string
model. In A. Menezes, editor,CRYPTO, volume 4622
of Lecture Notes in Computer Science, pages 323–341.
Springer, 2007. Full version available athttp://www.
brics.dk/~jg/MultiStringModelFull.pdf.
The definition of extraction zero-knowledge is only
contained in the full version.

[26] R. Kemmerer, C. Meadows, and J. Millen. Three systems
for cryptographic protocol analysis.Journal of Cryptology,
7(2):79–130, 1994.

[27] P. Laud. Semantics and program analysis of computationally
secure information flow. InProc. 10th European Symposium
on Programming (ESOP), pages 77–91, 2001.

[28] P. Laud. Symmetric encryption in automatic analyses for
confidentiality against active adversaries. InProc. 25th
IEEE Symposium on Security & Privacy, pages 71–85, 2004.

[29] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. InProc. 2nd International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1055 ofLecture
Notes in Computer Science, pages 147–166. Springer, 1996.

[30] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia
Institute of Technology, 1983.

[31] D. Micciancio and B. Warinschi. Soundness of formal en-
cryption in the presence of active adversaries. InProc. 1st
Theory of Cryptography Conference (TCC), volume 2951
of Lecture Notes in Computer Science, pages 133–151.
Springer, 2004.

[32] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers.Communications of
the ACM, 12(21):993–999, 1978.

[33] L. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Cryptology, 6(1):85–128,
1998.

[34] S. Schneider. Security properties and CSP. InProc. 17th
IEEE Symposium on Security & Privacy, pages 174–187,
1996.

[35] D. Wagner and B. Schneier. Analysis of the SSL 3.0 pro-
tocol. In Proc. 2nd USENIX Workshop on Electronic Com-
merce, pages 29–40, 1996.

A The Abstract Model – Postponed Defini-
tions

In the following, let Ai ∈ X.a be pairwise distinct
agent variables (fori ∈ N), and letXj

Ai
∈ X.n be pair-

wise distinct nonce variables (fori, j ∈ N). Assume that
X.a \ {Ai : i ∈ N} andX.n \ {Xj

Ai
} are infinite.

By na,j,s ∈ Nonceag with a ∈ A andj, s ∈ N we de-
note distinct nonces. Byra,j,s ∈ Randag with a ∈ A, j ∈
Randag , s ∈ N we denote distinct symbolic randomnesses.
By γa,s we denote a mapping that maps everyr ∈ Randag

to ra,r,s.
For the following definition, we use the following nota-

tion: For an edgep
l,r
−→ q in a labeled tree, the free variables

of (l, r) are the variables that occur inl or r but are not in

the label of any edge on the path from the root top nor are
in {Aj : j ∈ [k]} ∪ {Xj

Ai
: j ∈ N} (where the numberk

of parties and the role-indexi will be clear from the context
below).

Definition 5 (Role). A role treeR is an ordered edge-
labeled finite tree where each edge is labeled by an agent
rule (l, r) wherel, r ∈ Pat.

A role for agenti in a k-party protocolis a role treeR
satisfying the following conditions for each nodep of R:

1. For everyr ∈ Randag , there is at most one effective
r-subpattern in the labels of the path top (but that ef-
fectiver-subpattern may occur several times).

2. For any subterm ofl of the form{t}_
t′ it holds that

t′ = ek(Ai).
3. For any subterm ofl of the form{t}Rand

t′ it holds thatt
andt′ do not contain free variables.

4. For any subterm ofl of the formZKRand
Formula(Rand∗; a; b)

it holds thata andb do not contain free variables.
5. r does not contain _ nor free variables that are not free

in l.
6. l and r do not contain subterms that are inRand \

Randag .

Definition 6 (Formal execution). Letk-party protocolΠ be
given.

A global stateis a triple (Sid, f, ϕ) whereϕ is a set of
messages (theadversary knowledge), Sid is a finite set of
session ids, and the functionf maps every session idsid
in Sid to the current state of the sessionsid . This state is
called thelocal stateand is of the form(i, σ, p, (a1, . . . , ak))
wherei ∈ [k] is the index of the role executed in this session,
the partial functionσ : X → M is a substitution mapping
variables of the agent to messages,p is a node in the role
tree Π(i), and aj ∈ A is the agent identifier assigned to
role j in this session (thusai is the agent carrying out this
session).

The initial state isqI = (∅, ∅, Nonceadv).
We allow three kinds of transitions between global states.
• Corruption.The adversary corrupts a subset of the par-

ties involved in the protocol and learns their private
keys. This transition can only be applied in the begin-
ning.

qI
corrupt(a1,...,al)
−−−−−−−−−−−→

(∅, ∅, Nonceadv ∪ {dk(aj) : j ∈ [l]}).

• Session initialization.The adversary can initialize new
sessions.

(Sid, f, ϕ)
new(i,a1,...,ak)
−−−−−−−−−−→ (Sid′, f ′, ϕ).

Heresid := |Sid|+1 is the identifier of the new session
and Sid′ := Sid ∪ {sid}. The functionf ′ is defined

14

http://www.brics.dk/~jg/MultiStringModelFull.pdf

as f ′(sid ′) = f(sid ′) for sid ′ ∈ Sid and f ′(sid) =
(i, σ, ε, (a1, . . . , ak)). Hereε is the root of the role tree
Π(i) and the substitutionσ is defined byσ(Aj) := aj

for all j ∈ [k] andσ(Xj
Ai

) := nai,j,s for everyXj
Ai

occurring inΠ(i).
• Sending of messages.The adversary can send mes-

sages to agents.

(Sid, f, ϕ)
send(sid ,m)
−−−−−−−−→ (Sid, f ′, ϕ′).

Here we requiresid ∈ Sid, m ∈ M, ϕ ` m, andϕ′ and
f ′ are defined as follows. We definef ′(sid ′) = f(sid ′)
for everysid ′ 6= sid . Let (i, σ, p, (a1, . . . , ak)) :=
f(sid). Then let(l, r) be the label of the first outgoing
edge fromp such that the following holds:

– The messagem matches the patternlγai,sidσ.
Letθ denote the matcher.

– Let m̃ := rγai,sidσθ. Then m̃ contains true
proofs.

If no such edge exists, letf ′(sid) = f(sid) andϕ′ =
ϕ. Otherwise, letf ′(sid) = (i, σ ∪ θ, p′, (a1, . . . , ak))
wherep′ is the successor ofp along that edge, and let
ϕ′ := ϕ ∪ {m̃}.

A finite sequence of global states starting withqI with
the above transitions is called asymbolic execution trace
or Dolev-Yao tracefor Π. The set of Dolev-Yao traces for
Π is denotedExecs(Π).

B The Concrete Model – Postponed Defini-
tions

For the following definitions, we assume that
tapea,sid (R) ∈ {0, 1}η are uniformly and indepen-
dently chosen for eacha ∈ A, sid ∈ N, andR ∈ Randag .
In an implementation, these values would, of course, be
sampled upon first use. Similarly, we assume thatcrs is
chosen according to the CRS-generation algorithmK of
ZK.

For convenience, we will identify elements ofA with the
bitstrings encoding them.

Definition 7 (Circuits for ZK-formulas). Fix a security pa-
rameterη. Let a ZK-formulaF ofρ-arity s, α-arity n andβ-
arity m be given, as well as bitstringsb1, . . . , bm ∈ {0, 1}∗.
Let l1, . . . , ln ∈ N.

For a ZK-termT , the circuitC = C
s,n,l

T,b is recursively
defined as follows:
• It expects inputsr1, . . . , rs of length η, and inputs

a1, . . . , an of lengthsl1, . . . , ln, respectively.
• If s is not theρ-arity of T , or n is not theα-arity of

T , or |l| 6= n, or |b| is not theβ-arity of T , thenC is
undefined.
• If T = ek(βi) or T = {·}·

ek(βi)
with bi /∈ A, thenC is

undefined.

• If T = αi, thenC computesai (i.e.,C is a projection).
• If T = βi, thenC returnsbi (i.e., C computes a con-

stant function).
• If T = ek(βi) and bi ∈ A, thenC returns the public

key of agentbi (i.e.,C computes a constant function).
• If T = 〈T1, T2〉, thenC computesm1 := C

s,n,l

T1,b and

m2 := C
s,n,l
T2,b , and then returns the bitstring〈m1, m2〉.

• If T = {T ′}ρi

ek(βj)
andbi ∈ A, thenC computesm′ :=

C
s,n,l

T ′,b and then returns the encryption ofm′ under the
public key ofbi using randomnessri.

The circuitCs,n,l
T1=T2,b expects inputsr1, . . . , rs of length

η, and inputsa1, . . . , an of lengthsl1, . . . , ln, respectively.
It computesmi := C

s,n,l
Ti,b

for i = 1, 2 and returns1 if m1 =
m2 and0 otherwise.

For a ZK-formula F = B(T1, . . . , Tq) where B is
a Boolean predicate andT are of the formZKTerm =

ZKTerm, the circuit C
s,n,l

F,b expects inputsr1, . . . , rs of
lengthη, and inputsa1, . . . , an of lengthsl1, . . . , ln, respec-
tively. It computesti := C

s,n,l

Ti,b
for i ∈ [q] and returnsB(t).

Types of bitstrings We assume that pairs, agent ids, ci-
phertexts, zero-knowledge proofs, and nonces in the con-
crete model all come for different efficiently recognizable
sets, so that it is meaningful to speak about bitstrings of type
pair, agent id, ciphertext, zero-knowledge proof, or nonce.
One possibility to achieve this is to add type tags to the bit-
strings. We assume that encryptions are additionally tagged
with their public key. In the case of the type zero-knowledge
proofs, we impose an additional condition. A bitstring of
type zero-knowledge proof is a tuple(z, F, s, n, l, b) satis-
fying that circuitC := C

s,n,l

F,b is defined and the verification
algorithm ofZK accepts the proofz for the circuitC. This
restriction on the type zero-knowledge proof has the effect
that only valid proofs can be assigned to variablesX.z.

Definition 8 (Constructing bitstrings). Let a session idsid ,
an agenta ∈ A, a patternr, and a mappingτ from vari-
ables to bitstrings be given. We defineconstructa,sid (r, τ)
recursively as follows:

Caser = x ∈ X: If τ(x) is defined, returnτ(x). Other-
wise, abort.

Caser = ek(x): If a := τ(x) is not defined, abort. Oth-
erwise, retrieve the public keypk belonging to agent ida. If
no such public key exists, abort. otherwise returnpk .

Caser = 〈r1, r2〉: Setmi := constructa,sid (ri, τ) for
i = 1, 2. If one of the invocations aborts, abort. Otherwise
return the pair〈m1, m2〉.

Case r = {r′}R
ek(x): Let R̃ := tapea,sid (R), let

a := τ(x), and let pk be the public key of agenta. If
a or pk is undefined, abort. Otherwise invokem′ :=
constructa,sid (r′, τ). If it aborts, abort. Otherwise com-

15

pute the encryptionm of m′ under public keypk using ran-
domness̃R. Returnm.

Caser = ZKR
F (R1, . . . , Rl; a1, . . . , an; b1, . . . , bs): Let

R̃ := tapea,sid (R) and R̃i := tapea,sid (Ri) for i = [l].
If one of these is undefined, abort. For alli ∈ [n], com-
puteãi := constructa,sid (ai, τ), and for all i ∈ [s], com-
puteb̃i := constructa,sid (bi, τ). If one of these invocations
aborts, abort. Otherwise setli := |ãi| and letC := C

s,n,l

F,b̃
.

Setw := (R̃, ã). Use the proverP of ZK to produce a
proof z for circuit C and witnessw where the prover uses
randomness̃R. If this fails (e.g., because the witness does
not fulfill the statement), abort. Otherwise returnz.

In any other case, abort.

Definition 9 (Parsing bitstrings). Let a bitstringm, a pat-
ternl, and a mappingτ from variables to bitstrings be given.
We defineparsea,sid (m, l, τ) recursively as follows:

Casel = x ∈ X : If the type ofm does not match the
type ofx,12 abort. If τ(x) = m, then returnτ . If τ(x) is
defined, butτ(x) 6= m, abort. Otherwise returnτ [x := m].

Casel = ek(x) ∈ ek(X.a): If m is not of type ciphertext,
abort. Otherwise, if there is an agent ida such thatm is the
public key ofa andτ(x) is not defined or equalsa, return
τ(x)[x := a]. Otherwise abort.

Casel = 〈l1, l2〉: If m is not a pair, abort. Otherwise
parsem as 〈m1, m2〉 and let τ ′ := parsea,sid (m1, l1, τ)
and τ ′′ := (m2, l2, τ

′). If one of the invocations aborts,
abort. Otherwise returnτ ′′.

Casel ∈ {Pat}Rand
ek(X.a) or l ∈ ZKRand

Formula(Rand∗; Pat∗;

Pat∗): Invoke m′ := constructa,sid (l, τ). If m 6= m′,
abort. Otherwise, returnτ .

Casel = {l′}_
ek(Aj)

with j ∈ [k]: If m is not an encryp-
tion, abort. Otherwise, extract the public keypk from m.
If pk is not the public key belonging to the agent idτ(Aj),
abort. Otherwise decryptm with the secret key belonging
to a := τ(Aj) and letm′ be the corresponding ciphertext.13

If this fails, abort. Otherwise letτ ′ := parsea,sid (m′, l′, τ)
and returnτ ′ (or abort if the invocation aborts).

Case l ∈ ZK_
F (_∗; _∗; m1, . . . , mn): If m is not of

type zero-knowledge proof, abort.14 Otherwise, m =:
(z, F ′, s, n, l, b). If F 6= F ′, abort. Otherwise fori =
1, . . . , n run the following: τi := parsea,sid (bi, li, τi−1)
with τ0 := τ . If one of the invocations aborts, abort. Other-
wise returnτn.

In any other case, abort.

Definition 10 (Concrete execution model). A concrete
global stateis a triple (Sid, g, C) whereSid is a finite set
of session-ids, andg is a function mapping everysid ∈ Sid

12If X.z this implies invoking the verification algorithm ofZK onm.
13Note that due to the definition of roles, this will only need tobe done

by agenta itself.
14By our definition of the type zero-knowledge proof, this implies invok-

ing the verification algorithm ofZK.

to a concrete local state, andC is the set of corrupted par-
ties.

A concrete local stateis of the form(i, τ, p, (a1, . . . , ak))
wherei ∈ [k] is the index of the role executed in this session,
the partial functionσ : X → {0, 1}∗ is a substitution map-
ping variables to bitstrings,p is a node inΠ(i), andaj ∈ A

is the agent identifier assigned to rolej in this session.

Let a probabilistic interactive Turing machineA be
given. Theconcrete traceExecc

Π,A(η) for security parame-
terη is a (distribution over) sequences of global states given
by the following algorithm.

• Whenever a public or secret key of some agenta ∈ A

is used for the first time, the key pair is generated using
the key generation algorithm ofAE . We further giveA
access to the public keys of all agents.
• The initial global state is(∅, ∅, ∅). In the first step,
A is invoked with input1η.
• When A outputs corrupt(a1, . . . , al) with

a1, . . . , an ∈ A in its first activation, the adver-
sary is given the secrets keys ofa1, . . . , an as input.
The next global state is(∅, ∅, {a1, . . . , al}).
• WhenA outputsnew(i, a1, . . . , ak) in global state

(Sid, g, C) wherei ∈ [k] and a1, . . . , ak ∈ A , the
next global state is(Sid′, g′, C).
Here sid := |Sid| + 1 is the identifier of the new
session andSid′ := Sid ∪ {sid}. The functiong′

is defined asg′(sid ′) = g(sid ′) for sid
′ ∈ Sid and

g′(sid) = (i, τ, ε, (a1, . . . , ak)). Hereε is the root of
the role treeΠ(i) and the substitutionτ is defined by
σ(Aj) := aj for all j ∈ [k] andσ(Xj

Ai
) is initialized

with a randomη-bit nonce for everyXj
Ai

occurring in
Π(i). The adversary is given empty input.
• When A outputs send(sid , m) in global state

(Sid, g, C) wheresid ∈ Sid, the next global state is
(Sid, g′, C).
Here g′(sid ′) := g(sid ′) for all sid 6= sid ′,
g′(sid) := (τ ′, i, p′, (a1, . . . , ak)) is computed from
(τ, i, p, (a1, . . . , ak)) := g(sid) as follows:

For each edgep
l,r
−→ p′′ starting inp (in their natural

order, remember that the role treeΠ(i) has ordered
edges), first invokeτ ′′ := parseai,sid (m, l, τ). If this
fails, continue with the next edge. Then invokem′ :=
constructai,sid (r, τ ′′). If this fails, continue with the
next edge. Otherwise setτ ′ := τ ′′ andp′ := p′′, let
the next input ofA bem′, and do not proceed with the
next edges.
If no edge lead to a definition ofτ ′, p′ and an output
for A, setτ ′ := τ andp′ := p and let the next input of
A be the empty string.
• When the adversary outputs anything else, the exe-

cution terminates and the concrete trace ends at this
point.

16

C Proof of Theorem 1

Proof. In the following, let ak-party protocolΠ and a
polynomial-time adversaryA be fixed. We have to show
that

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π) such thatts� tc}

]

.

is overwhelming inη.
For this, we will give a construction of an injective

mapping c̄ : {0, 1}∗ → M that may depend onη as
well as of some of the values occurring inExecc

Π,A(η)
such as the CRS, its extraction trapdoor, or the pri-
vate keys of the parties. We extend this mapping to
concrete traces as follows: A concrete execution trace
tc = (Sid1, g1), . . . , (Sidn, gn) is mapped to an abstract
trace c̄(tc) := (Sid1, f1, ϕ1), . . . , (Sidn, fn, ϕn) as fol-
lows. We letf`(sid) = (c ◦ τ, i, p, (a1, . . . , ak)) where
(τ, i, p, (a1, . . . , ak)) := g`(sid), and we define the adver-
sary’s knowledgeϕ` as follows: We setϕ1 := Nonceadv .
For ϕ`+1 we distinguish three cases. If thè-th transi-
tion was anew-transition, we setϕ`+1 := ϕ`. If the `-
th transition was acorrupt(a1, . . . , al)-transition, we set
ϕ`+1 := ϕ` ∪ {dk(aj) : j ∈ [l]}. If the `-th transition was
a send(sid , m)-transition, letm̃ be defined as in the corre-
sponding part of Definition 6 and setϕ`+1 := ϕ` ∪ {m̃} if
m̃ is defined andϕ`+1 := ϕ` otherwise.

We will then show that iftc is chosen according to the
distribution Execc

Π,A(η), with some overwhelming proba-
bility 1− µ(η) we have that̄c(ts) is a Dolev-Yao trace.

Since c̄ is injective, we have that̄c−1 is an injective
partial function, and by construction ofc̄(tc) we have that
c̄(tc) �c̄−1

tc. Thus, assuming that̄c(ts) is a Dolev-Yao
trace with probability1− µ, we have

Pr
[

Execc
Π,A(η) ∈ {tc : ∃ts∈Execs(Π)

such thatts� tc}
]

≥ 1− µ(η).

Thus in the remainder of this proof, lettc be distributed
according toExecc

Π,A(η). We will construct̄c and show that
c̄(tc) is a Dolev-Yao trace with overwhelming probability
which then establishes the theorem.

The mapping c̄̄c̄c. The mappinḡc works by parsing any
messagem ∈ {0, 1}∗ in a manner similar to theparse func-
tion from Definition 9. However, in contrast toparse, the
mappingc̄ has to parse any bitstring and not only terms
matching some pattern. In particular,c̄ has to extract the
witnesses of the zero-knowledge proofs and decrypt all ci-
phertexts. Moreover,̄c will have to assign symbolic random-
ness fromRand to any ciphertext or zero-knowledge proof.

Decrypting the ciphertexts is easy, since we allowc̄ to
access the secret keys of all agents. This allows to decrypt

all ciphertexts that use a public key corresponding to an ex-
istent agent. All other ciphertexts may be safely considered
as invalid, since no honest party will ever be able to decrypt
them.

To extract the witnesses from the zero-knowledge proofs,
we use the extractability property ofZK. Using the extrac-
tion trapdoor for the CRS,̄c can recover the witness for the
proof and use it for further parsing.

However, extracting the randomness is non-trivial. In
general, an encryption scheme may not allow to extract
the randomness used when decrypting, even given knowl-
edge of the secret key.15 Moreover, some of the random-
ness might even be information-theoretically lost, so even
an inefficient mapping would not be able to recover that ran-
domness. Similar reasoning applies for the zero-knowledge
proofs. Fortunately, it turns out not to be necessary thatc̄
identifies the actual randomness, but only some value such
that different encryptions or proofs of the data will resultin
different terms. Thus, instead of trying to extract the ran-
domness from a messagem generated by the adversary, we
interpret the whole messagem as its randomness and map
m to a symbolic randomnessRm

adv (depending on whether
m was generated by an honest party or the adversary).

Furthermore, we will definēc in a way so that it can be
efficiently evaluated without decrypting the ciphertexts gen-
erated by honest agents or extracting from zero-knowledge
proofs generated by honest agents. This can be done be-
cause if an honest agent explicitly computed the bitstring,
we simply store the inputs of that operation.

For the actual definition of̄c, we fix arbitrary (but ef-
ficient) injective mappings,Radv : {0, 1}∗ → Randadv ,
Badv : {0, 1}∗ → Nonceadv , andG : {0, 1}∗ → Garbage

and write their arguments as superscripts. HereRm
adv de-

notes the randomness used by the adversary to construct the
messagem. Similarly,Bm

adv denotes the noncem whenm
is generated by the adversary. And finally,Gm will be used
to abstractly represent unparsable bitstrings.

The termc̄(m) ∈ M is then recursively defined as follows:

Case“ m ∈ A” . Returnm.

Case“ m is of type public key”. Finda ∈ A such that
m is the public key fora. If no sucha exists, returnek(Gm).
Otherwise returnek(a).

Case“ m is of type pair”. Parsem as〈m1, m2〉 and
return〈c̄(m1), c̄(m2)〉.

Case“ m is of type nonce”. First check whetherm
was generated as the value of some variableXj

Ai
by some

honest agenta in some sessionsid . More exactly, check
whether a global state(Sid, f, ϕ) occurs in the trace where
f(sid) = (i, σ, . . . , . . .) for somei andσ, andσ(Xj

Ai
) =

15E.g., the Cramer-Shoup cryptosystem, cf. footnote 5.

17

m for somej. If so, returnna,j,sid . (Remember thatna,j,sid

is the nonce that is assigned in the abstract model to the
nonce variableXj

Ai
in sessionsid run by agenta.) Other-

wise, returnBm
adv .

Case“ m is of type ciphertext andm has not been gener-
ated by an honest agent”. Extract the public keypk
contained inm. Let ek(a) := c̄(pk). If a ∈ Garbage, return

{Gm}
Rm

adv

ek(a). Otherwise, letsk be the secret key of agenta

and decryptm usingsk and call the resultm′. If this fails,
return{Gm}

Rm
adv

ek(a). Otherwise, return{m′}
Rm

adv

ek(a).

Case“ m is of type ciphertext andm has been generated
by an honest agent”. I.e., m was the result of a call
constructa,sid ({t}R

ek(x), τ) by agenta in sessionsid for
someR ∈ Randag , x ∈ X.a, and some mappingτ from
variables to bitstrings. Lett′ be the bitstring that was com-
puted byconstructa,sid (t, τ). Let thent′′ := c̄(t′) (this
gives the same result as applyingc̄ to all variables inτ and
then computingt′′ := tτ ′ whereτ ′ is the mapping resulting
from that substitution). Then return{t′′}r

a,R,sid

ek(τ(x)). (Remem-

ber thatra,R,sid is the randomness that is actually used in
the abstract model when agenta instantiates a pattern with
randomnessR in sessionsid .)

Case “ m is of type zero-knowledge proof andm has
not been generated by an honest agent”. Extract
the formulaF and the statementx from m. Use the
ZK extraction algorithm and the extraction trapdoor of
ZK (cf. Definition 1) to extract the witnessw of z.
Parsex as a tuple(b1, . . . , bs), and parsew as a tuple
(r1, . . . , rl; a1, . . . , an). Let b′i := c̄(bi) anda′

i := c̄(ai)
for all i. To compute the abstract randomnessr′i for somei,
proceed as follows: Lete be an arbitrary subterm ofF of
the forme = {t′}ri

t . Construct the bitstringe′ correspond-
ing to e. Thene′ will be a bitstring of type ciphertext. Let
e′′ := c̄(e′). Then e′′ will have the form{. . . }r

′

.... Set
r′i := r′. If any of these operations fails (which can only
happen if the ZK extraction algorithm fails orw is not a wit-
ness ofx under the circuitCF), we returnG0 and say that a
ZK-break occurred (the valueG0 is arbitrary, we will later
see that ZK-breaks occur only with negligible probability
anyway). Otherwise, returnZK

Rm
adv

F (r′, a′, b′).

Case “ m is of type zero-knowledge proof
and m has been generated by an honest
agent”. I.e., m was the result of a call
constructa,sid (ZKR

F (r1, . . . , rl; a1, . . . , an; b1, . . . , bs), τ)
by agenta in sessionsid for some R, ri ∈ Randag ,
ai, bi ∈ M, and some mappingτ from variables
to bitstrings. Let a′

i be the bitstring that was com-
puted by constructa,sid (ai, τ) and bi analogous. Let
then a′′

i := c̄(a′
i) (this gives the same result as ap-

plying c̄ to all variables in τ and then computing
a′′

i := aiτ
′ where τ ′ is the mapping resulting from

that substitution). Defineb′′i analogously. Then return

ZKra,R,sid

F (ra,r1,sid , . . . , ra,rl,sid ; a′′; b′′). (Remember that
ra,R,sid is the randomness that is actually used in the
abstract model when agenta instantiates a pattern with
randomnessR in sessionsid .)

Case“ m does not match any of the above cases”. Re-
turnGm.

Note thatc̄ is injective unless a ZK-break occurs: For
pairs and agent ids this is obvious. In the case of nonces,
garbage, encryptions and zero-knowledge proofsm gener-
ated by the adversary, this follows since we include the mes-
sagem explicitly in the superscript ofBm

adv , Gm, andRm
adv ,

respectively. For nonces, encryptions and zero-knowledge
proofs m generated by honest parties, this also follows,
since we assignm the abstract messaget whose evaluation
resulted inm, and since repeated evaluation oft does not
yield different values in a concrete execution (the random-
ness to be used is explicitly referenced int), each termt can
only be assigned to a single valuem.

Finally, we see that ZK-breaks occur only with negligi-
ble probability: A ZK-break implies that a witnessw is ex-
tracted from a zero-knowledge proof that is not a witness
for the statement of that proof, although the proof has been
successfully verified. This is a contradiction to the proof of
knowledge property ofZK.

The trace c̄(tc)c̄(tc)c̄(tc) is a pre-DY trace. In the following, by
a pre-DY tracewe denote an abstract trace that satisfies
Definition 6 with the (possible) exception of the condition
that in the transition

(Sid, f, ϕ)
send(sid ,m)
−−−−−−−−→ (Sid, f ′, ϕ′),

we haveϕ ` m. That is, in a pre-DY trace we allow the
adversary to send messages it cannot derive.

To see that̄c(tc) is a pre-DY trace with overwhelming
probability, we have to check that for any`, the`-th transi-
tion in c̄(tc) is a valid transition. In the case ofcorrupt

andnew transitions, this follows directly from the defini-
tion of the corresponding transitions in the concrete execu-
tion and from the construction of̄c(tc) (and in particular of
the knowledgeϕ`+1 in that trace). We therefore consider
the case that thè-th transition is a transition of the form

(Sid, f, ϕ)
send(sid ,c̄(m))
−−−−−−−−−−→ (Sid, f ′, ϕ′).

First note that all (honestly generated) nonces and all ran-
domnesses of honest agents intc are assigned different val-
ues with overwhelming probability. Similarly, any two zero-
knowledge proofs or encryptions (unless generated with the

18

same randomness) produced by honest agents are different
because of the unpredictability property.16

Thus, assume that all nonces, randomnesses, encryp-
tions, and zero-knowledge proofs of honest agents intc are
assigned different values.

Then a detailed case analysis over the construction
of parse and the definition of thesend transition in
the concrete model shows that for a concrete transition
send(sid , m) with local state(i, τ, p, (a1, . . . , ak)), we
have that the invocationτ ′′ := parseai,sid (m, l, τ) suc-
ceeds if and only if̄c(m) matcheslγai,sidσ whereσ := c̄◦τ .
Furthermore, if it matches with matcherθ, we have that
σ ∪ θ = c̄ ◦ τ ′′.

Similarly, a detailed case analysis over the construc-
tion of construct and the definition of thesend transi-
tion in the concrete model shows that for a concrete tran-
sition send(sid , m) with local state(i, τ, p, (a1, . . . , ak)),
we have that the invocationm′ := constructai,sid (r, τ ′′)
succeeds if and only ifrγai,sid (c̄ ◦ τ ′′) contains true proofs.
(Note that the condition of having true proofs corresponds
to the fact that the construction of a zero-knowledge proof
in construct will fail if the witness constructed is not ac-
tually a witness.) And in this case, we havec̄(m′) =
rγai,sid (c̄ ◦ τ ′′) = rγai,sidσθ.

Thus the first edge satisfying the conditions in the defini-
tion of thesend transition in the abstract model is the same
as the first edge satisfying the corresponding conditions in
the concrete model. From this we can conclude that

(Sid, f, ϕ)
send(sid ,c̄(m))
−−−−−−−−−−→ (Sid, f ′, ϕ′).

is a valid transition. Note that the factc̄(m′) = rγai,sidσθ
also implies thatϕ′ = ϕ∪{c̄(m′)} wherem′ is the message
passed to the adversary in the concrete executiontc (if such
a message was given to the adversary).

Thus we have shown that with overwhelming probabil-
ity, c̄(tc) is a pre-DY trace. Furthermore, from the analysis
of the send transition we know thatϕ` = {dk(a) : a ∈
C} ∪ {c̄(m) : m ∈ S`} whereC denotes the corrupted
agents andS` the messages given to the adversary in the
send transitions in the concrete model up to the transition
leading toϕ`.

The trace c̄(tc)c̄(tc)c̄(tc) is a Dolev-Yao trace. We will now pro-
ceed to show that̄c(tc) is a Dolev-Yao trace with over-
whelming probability. Since we already know thatc̄(tc) is
a pre-DY trace, and that the adversary’s knowledgeϕ` in
the `-th step ofc̄(tc) is ϕ` = Nonceadv ∪ {dk(a) : a ∈
C} ∪ {c̄(m̃) : m̃ ∈ S`} (whereC denotes the corrupted
agents andS` the messages given to the adversary), it will

16Which holds forZK by assumption and which can be easily seen to
also hold for anyIND-CCA secure encryption scheme.

be enough to show that in everysend(sid , m) transition in
the concrete model, we have that

Nonceadv ∪ {dk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ S`} ` c̄(m)

(with overwhelming probability).
In order to prove this, we will assume that this is not the

case, i.e., that with non-negligible probability, in step`, a
messagem is sent such that

Nonceadv ∪ {dk(a) : a ∈ C} ∪ {c̄(m̃) : m̃ ∈ S`} 0 c̄(m)
(2)

From this we will derive a contradiction to the crypto-
graphic assumptions used in the theorem by transforming
the concrete execution in several steps into an adversary
against theIND-CCA assumption.

Simulating the zero-knowledge proofs. As a first step
towards a contradiction, we will replace all zero-knowledge
proofs by fake proofs produced by the simulator. For this,
we first introduce two oracles into our execution: A proof or-
acleProof and an extraction oracleExtract . Whenever an
honest agent wants to produce a zero-knowledge proofs of
some statementx with witnessw, it invokesProof (x, w),
and when the implementation of̄c extract the witness of
some zero-knowledge proofz, it invokesExtract(z). Note
that for this, it must be guaranteed that each zero-knowledge
proof produced by honest agents uses a different random-
nessR,17 and that this randomness is only used for the zero-
knowledge proof. By Definition 5, we know that for any
randomnessR, there is at most one effectiveR-subpattern
in any path of the role tree of any agent. If this effec-
tive R-subpattern is a term of the formZKR

F (. . .), thenR
does not appear in the witness of any zero-knowledge proof
since terms of the formZKR

F (. . .) may not appear in ZK-
formulas. Thus any randomnessR that is used for some
ZK-proof is used only for that proof (the proof may be per-
formed several times with the same witness, statement and
randomness, but in this case theProof oracle will not be
invoked again but the old result will be reused).

Note the following facts:
• The oracleExtract is never invoked with a proofz that

has previously been output byProof . This holds since
c̄ by definition only extracts proofs that have not been
generated by an honest agent, and only honest agents
useProof .
• The oracleProof is never invoked with(x, w) such

that w is not a witness ofx. This holds since by
Definition 8 honest agents check whetherw is a wit-
ness before constructing a proof.

17Here and in the following, when we reason about a randomness
R ∈ Randag in the concrete model, we mean the symbolic valueR that is
used to select the corresponding bitstring from the random tape using the
function tape .

19

Hence, since both the execution of the concrete trace, as
well as the application of the mappingc̄ run in polynomial-
time, we can use the fact thatZK has the extraction zero-
knowledge property and replace theProof oracle by a simu-
lation oracleSimulate using the simulation trapdoor of the
CRS such that̄c(tc) (which is the output of anefficientfunc-
tion c̄) is computationally indistinguishable in both cases.18

It can easily be seen that it can be checked in polynomial-
time whether a given abstract trace is a Dolev-Yao trace.
Thus from the computational indistinguishability of the ab-
stract traces in both cases, it follows that the probability
that the abstract trace is a Dolev-Yao trace changes only
by a negligible amount when replacingProof by Simulate.
Thus (2) still holds with non-negligible probability. Note
further that in contrast toProof , the oracleSimulate only
expects the statementx as input, but no witness.

Using fake encryptions. The next step towards deriving
a contradiction is to replace the encryptions created by hon-
est agents by fake encryptions. LetC denote the set of cor-
rupted agents. Since thecorrupt transition must be the
first transition,C is known whenever an encryption has to
be produced. We can now introduce an encryption oracle
Encrypt and a decryption oracleDecrypt that handle en-
cryptions and decryptions performed by honest agents with
respect to any keyek(a) or dk(a) with a ∈ A \ C.

Again, we have to verify that the randomness used for
an encryption is never reused. Fix a randomnessR that is
used in some encryptionc := {t}Rek(a). Again, we exploit
that for any randomnessR, there is at most one effectiveR-
subpattern in any path of the role tree of any agent. In this
case, it will bec. Thenc may occur directly as a subterm of
the message to be sent, or it may result from substituting the
ρ, α, β in a ZK-formulaF with some other terms. Thus the
randomnessR may be used in three places: In the compu-
tation of the bitstring corresponding toc, in the verification
whether the witnessw used for some ZK-proof with some
formulaF is valid, and as part of the witnessw. The first
case is a normal encryption and thus can be replaced by an
invocation ofEncrypt . The third case is captured by the
fact that we do not need to construct the witnessw since the
oracleSimulate introduced above does not need a witness.
It remains to see that we can check whether the witnessw
is valid without explicitly constructing it or accessing the
randomnessR. However, any ZK-term contained in the
ZK-formula F will, after substituting the witness, contain
R only in subterms that are equal toc (otherwisec there
would be more than one effectiveR-subterm). For these
subterms, we reuse the result of the invocation ofEncrypt

(or, if c has not been evaluated yet, invokeEncrypt now
and reuse the result later when it is needed for constructing

18Here we really need extraction zero-knowledge and not only the ex-
traction oracleExtract is used.

a bitstring). Thus we do not need to access the randomness
R used by the encryption oracleEncrypt directly.

We can further change the invocations of the decryption
oracle as follows. If a ciphertextc is to be decrypted with
respect todk(a) that was previously returned by the oracle
Encrypt for some plaintextm with respect toek(a), then do
not callDecrypt but use the plaintextm directly. We end
up being in a situation whereDecrypt is only invoked for
encryptions that have not been returned byEncrypt . Hence,
becauseAE is IND-CCA secure, we can replaceEncrypt by
an oracleFakeEncrypt that instead of a plaintextm expects
only its lengthl, and that returns the encryption of a ran-
dom string of lengthl. This will lead to a computationally
indistinguishable tracēc(tc), and thus (2) still holds with
non-negligible probability.

Identifying the underivable subterm. In order to derive
a contradiction from (2), we have to identify the subterm of
c̄(m) whose “fault” it is thatc̄(m) cannot be derived. We
will then use this term to construct an attack against theIND-

CCA. For this, we need the following characterization of un-
derivable messages:

Lemma 2. Fix C ⊆ A, S ⊆ M andM ∈ M and setS′ :=
S∪{dk(a) : a ∈ C}∪Nonceadv . AssumeS′

0 M and that
M, S do not contain a subterm of the formdk(A). Assume
further thatM contains true proofs. We sayr ∈ Rand is
known if r ∈ Randadv or there area ∈ C andt ∈ M such
thatS′ ` {t}r

ek(a).
Then there exists a termT ∈ M and a contextD such

thatM = D[T] and all terms on the path fromM = D[T]
to T (not includingT) are of the form

〈·, ·〉 or {·}Randadv

ek(·) or ZKRandadv

Formula (. . .)

Furthermore, we have thatS′
0 T and thatT satisfies one

of the following conditions:
(a) T ∈ Nonceag , or

(b) T = {·}
Randag

ek(a) , or

(c) T = ZK
Randag

Formula(. . .), or
(d) T = ZKRandadv

Formula (r; a; b) and for somei, ri is not known.

Proof. We prove the lemma by structural induction onM .
In the base case,M is a nonce, an agent identifier, a public
key, or garbage. In the last three cases, we haveS′ `M , so
the lemma is not applicable. IfM is a nonce, we distinguish
M ∈ Nonceadv andM ∈ Nonceag . In the first case,S′ `
M holds, thusM is not applicable. In the second case, the
conclusion of the lemma is fulfilled withT := M .

In the induction step we distinguish the following cases:

Case“ M = 〈M1, M2〉” . SinceS′
0 M , we have

S′
0 Mi for somei ∈ {1, 2}. Hence there exists a sub-

termT of Mi satisfying the conclusion of the lemma forMi,

20

and thisT is also a subterm ofM satisfying the conclusion
for M .

Case“ M = {M ′}
Randag

ek(a) or M = ZK
Randag

Formula(. . .)” . In
these casesT := M fulfills the conclusion of the lemma.

Case“ M = {M ′}Randadv

ek(a) ” . In this case, sinceS 0 M

andS ` ek(a), we have thatS 0 M ′. Hence there exists
a subtermT of M ′ satisfying the conclusion of the lemma
for M ′, and thisT is also a subterm ofM satisfying the
conclusion forM .

Case “ M = ZKRandadv

Formula(r; a; b) and all r are known”.
Sincer are known, if we hadS′ ` a, b we would also have
S′ ` M . Thus for someM ′ ∈ {a, b} we haveS′

0 M ′.
Hence there exists a subtermT of M ′ satisfying the conclu-
sion of the lemma forM ′, and thisT is also a subterm of
M satisfying the conclusion forM .

Case“ M = ZKRandadv

Formula (r; a; b) and one of ther is not
known”. ThenT := M fulfills the conclusion of the
lemma.

In a trace satisfying (2), we can apply this lemma with
C being the corrupted agents andS := {c̄(m̃) : m̃ ∈ S`}
being the messages up to the`-th step, andM := c̄(m) be-
ing the message in thè-th step. The condition thatS, M do
not contain subterms of the formdk(A) is fulfilled since the
functionc̄ by definition never outputs such terms. Similarly,
c̄ will not output anM that does not contain true proofs
sincec̄ checks the witnesses it extracts. Since (2) holds with
non-negligible probability, we have that with non-negligible
probability, a subtermT of M as in Lemma 2 exists.

The termT satisfies one of the four properties (a–d). In
the following, we will examine each of these conditions sep-
arately and in each case derive a contradiction.

TTT is a nonce. In case (a) we haveT ∈ Nonceag . Since
S′

0 T , for any messagem sent to the adversary, the
nonceT occurs inc̄(m) only inside an encryption (with a
public key ek(a) with a /∈ C) or inside the witness of a
zero-knowledge proof. Since honest agents construct such
encryptions and zero-knowledge proofs using the oracles
Simulate andFakeEncrypt , the messagem can be com-
puted without knowing the bitstring corresponding toT .19

Then the value ofT is only used in comparisons, namely
when checking whether a given witness(r; a) is valid or to
perform pattern matching. Thus it might be that these com-
parisons leak information about the nonceT (up to one bit
per comparison). However, it is easy to see that only by
comparing (polynomially many) values toT , it is not possi-
ble to guessT with more than negligible probability. On the

19These oracles expect only thelength of the witness or plaintext, re-
spectively. This length can be computed since the length of the nonce is
fixed and thus known.

other hand, from the messagem sent by the adversary, we
can retrieve the nonce as follows. InM = c̄(m), the nonce
T is protected only by terms of the form〈·, ·〉, {·}Randadv

ek(·)

or ZKRandadv

Formula (. . .). The pair can directly be parsed, in the
case of{·}Randadv

ek(·) or ZKRandadv

Formula (. . .), we can call the oracles
Decrypt andExtract , respectively. Since these oracles are
also used by the function̄c (at least for terms wherēc as-
signs randomnessRandadv and notRandag), these oracles
will give answers consistent with the parsingM = c̄(m) of
m. Thus we can guess the nonceT which leads to a contra-
diction.

TTT is an honestly-generated encryption or zero-
knowledge proof. In the cases (b) and (c) of Lemma 2,
completely analogous reasoning to case (a) applies. In
these cases, the termT will correspond to an encryption
or zero-knowledge proof that was generated by honest
agents. Since zero-knowledge proofs and encryptions have
the unpredictability property, we get a contradiction by
showing that the adversary can guessT without T being
used.

TTT is an adversary-generated zero-knowledge proof. In
case (d), we have thatT = ZKRandadv

Formula (r; a; b) and thatri is
not known (in the sense of Lemma 2). In this case the argu-
mentation used for the cases (a–c) cannot be used because
T does not correspond to a bitstring generated by an honest
agent. However, as in the preceding paragraphs, the adver-
sary can extract the bitstring corresponding toT , and using
the oracleExtract it can extract the concrete randomness
corresponding tori. By definition of the function̄c, this
randomness will be the randomness used in an encryption
with respect to someek(a) performed by an honest agent
(otherwise the function̄c would have assigned a random-
nessri ∈ Randadv). We distinguish two cases:a /∈ C and
a ∈ C. If a /∈ C, then the encryption has been generated
using the encryption oracleEncrypt . Being able to retrieve
the randomness used in that encryption contradicts theIND-

CCA property ofAE . If a ∈ C, then the randomness has
been used to generate the bitstring corresponding to a term
c = {t}

Randag

ri with a ∈ C. Sinceri is not known, we have
thatS′

0 c. With an analogous argument as above, we can
see that all bitstrings sent by honest agents can be computed
without actually computing the bitstring corresponding toc.
But in this case, that fact that the adversary is able to guess
the randomness used to producec is a contradiction.

21

	1 Introduction
	2 Zero-Knowledge Proofs
	2.1 Abstract Zero-Knowledge Proofs
	2.2 Concrete Zero-Knowledge Proofs

	3 The Abstract Model
	4 The Concrete Model
	5 Computational Soundness
	Appendix
	A The Abstract Model -- Postponed Definitions
	B The Concrete Model -- Postponed Definitions
	C Proof of Theorem 1

