Computational Soundness of Symbolic Zero-Knowledge Prosf
Against Active Attackers

Michael Backes? and Dominique Unruh
! Saarland University, Germany
2 MPI-SWS

April 4, 2008

Abstract widely deployed products like Microsoft Passpért|[19] and
Kerberos[[1]. Hence work towards the automation of such
The abstraction of cryptographic operations by term al- proofs has started soon after the first protocols were devel-
gebras, called Dolev-Yao models, is essential in almost all oped. From the start, the actual cryptographic operations i
tool-supported methods for proving security protocols: Re such proofs were idealized into so-called Dolev-Yao mod-
cently significant progress was made in proving that Dolev- els, following [17,18[30], e.g., sek [26.134,[1] 33, 7].
Yao models offering the core cryptographic operations such This idealization simplifies proof construction by freeing
as encryption and digital signatures can be sound with re- proofs from cryptographic details such as computational re
spect to actual cryptographic realizations and securitfi-de strictions, probabilistic behavior, and error probatast It
nitions. Recent work, however, has started to extend Dolevwas, however, not at all clear from the outset whether Dolev-
Yao models with more sophisticated operations with uniqgueYao models are a sound abstraction from real cryptography
security features, out of which zero-knowledge proofs ar-with its computational security definitions. Recent work ha
guably constitute the most amazing such extension. largely bridged this gap for Dolev-Yao models offering the
In this paper, we first identify which properties a cryp- core cryptographic operations such as encryption and digi-
tographic zero-knowledge proof needs to fulfill beyond tal signatures, e.g., se€ [2.] 271 5, 4,[28 [31[14, 12].
the standard ones in order to serve as a computationally ~While Dolev-Yao models traditionally comprised only
sound implementation of symbolic (Dolev-Yao style) zero-basic cryptographic operations such as encryption and dig-
knowledge proofs; this leads to the novel definition of ital signatures, recent work has started to extend them to
a symbolically-sound zero-knowledge proof systerive cope with more sophisticated primitives with unique secu-
prove that even in the presence of arbitrary active adver-rity features that go far beyond the traditional understand
saries, such proof systems constitute computationallggou ing of cryptography to solely offer secrecy and authentic-
implementations of symbolic zero-knowledge proofs. Thisity of a communication. Zero-knowledge proofs consti-
yields the first computational soundness result for syraboli tute the most prominent and arguably most amazing such
zero-knowledge proofs and the first such result against full primitive. A zero-knowledge proof consists of a message
active adversaries of Dolev-Yao models that go beyond theor a sequence of messages that combines two seemingly
core cryptographic operations. contradictory properties: First, it constitutes a proofaof
statementr (e.g, z = "the message within this cipher-
text begins with0”) that cannot be forged, i.e., it is im-
possible, or at least computationally infeasible, to paedu
a zero-knowledge proof of a wrong statement. Second,
a zero-knowledge proof does not reveal any information
Proofs of security protocols are known to be error-prone besides the bare fact that constitutes a valid statement.
and, owing to the distributed-system aspects of multiple Zero-knowledge proofs were introduced[in][24], they were
interleaved protocol runs, awkward to make for humans.proven to exist for virtually all statemenfs 23], and thay i
In fact, vulnerabilities have accompanied the design of particular serve as the central ingredient of modern eagoti
such protocols ever since early authentication protodas| and attestation protocols such as the Direct Anonymous At-
Needham-Schroed€r [16,132], over carefully designed de+testation (DAA) protocol[10].
facto standards like SSL and PKAS][35, 9], up to current A Dolev-Yao style (symbolic) abstraction of zero-

1 Introduction

knowledge proofs has recently been put forwardn [3]. The the ground for the examples discussed below. A formal
proposed abstraction is suitable for mechanized proofs andsemantics will be given to these expressionk_in_Seciion 3.
was already successfully used to give the first fully mecha-We afterwards review concrete zero-knowledge proofs, i.e.
nized proof of central properties of the DAA protocol. How- zero-knowledge proofs in the cryptographic setting. We
ever, no computational soundness guarantee for this abstrathere particularly focus on identifying which standard and
tion has been established yet, i.e., it is not clear if séguri more sophisticated properties such a proof need to fulfill in
guarantees established using the symbolic abstraction obrder to serve as a cryptographically sound implementation
zero-knowledge will carry over to protocol implementaton of abstract zero-knowledge proofs.
relying on cryptographic zero-knowledge proofs, and which
of the various standard or nonstandard additional praggerti 2.1 Abstract Zero-Knowledge Proofs
of zero-knowledge proofs would be required to achieve this
computational soundness result. We start with an example that involves a zero-knowledge

In this paper, we first carefully identify which standard proof of medium complexity. Assume that an agéhex-
and which more sophisticated properties a cryptographicpects a message and is supposed to answer with an en-
zero-knowledge proof needs to fulfill in order to serve as cryption ¢ := {{<<m’n>’m/>}R1 }R2 for a random
a computationally sound implementation of symbolic zero- ; ek(4) Jek(S)

- : . noncen, a valuem’ € {mi, ms, ms} and for some agents

knowledge proofs. In the end, this will culminate in the

| definit ¢ bolicall q knowled A andS. Hereek(X) denotes the public key ok, and
novetl definition of asymbolically-sound zero-knowledge R1, R> denote the abstract randomness used to build the en-
proof systemwe remark that protocols already exist that

. . - ' : cryptions. The protocol under consideration now aims at
satisfy this definition. Our main result will then show that yb P

bolicall d K led f svst " convincing the recipien€' of ¢ thatc is of the right form,
fytm olica 3{-stpun I Zero- goyvel g€ prtO(; SyS efms anls. "i.e., the inner plaintext should contain and some value
ute computationally sound impiementations ot Symoolic ., - {m1, m2, ms}. In addition, the protocol aims at hid-
zero-knowledge proofs. This in particular yields the first

tational q it st full five et ing from C' the noncen and the precise selection of the
computational soundness resuit against fully active eitac messager’. Zero-knowledge proofs constitute salient tools
ers of Dolev-Yao models that go beyond the core crypto-

. . .) . to achieve these seemingly contradictory properties ih tha
graphic operations, and it constitutes the first soundresss gy Y prop

r ! .
. they allow B to prove that it knows some terms that satis
sult for symbolic zero-knowledge proofs. Our soundness re- y b fy

It lies to t ties lik thenticati dlov the desired properties without revealing those terms.
zgcrzgs s o trace-properties fike authentication ag In the example we consideR intends to prove that it

knows some abstract randomnessps and some values
a1, as such that withgy := my, B2 := mo, B3 := ms,
Outline of the Paper. In[Section 2, we briefly reviewthe g, .— g 5. .— D, g5 := ¢, andB; := m the following
modeling of abstract zero-knowledge proofs, and we iden-formulaF evaluates to true:

tify the properties a cryptographic zero-knowledge proof

should fulfill to serve as a computationally sound implemen- — 1 P2

tation of the abstractionlzf)mh 3 dﬂg4 containpthe ab- s {{<<57’a1>’a2>}ek(55> ek(6a)

stract and concrete execution model that our result is based (a2 =01V =0y Vaz=[)
upon, respectively. These two models closely resemble theI
execution models of previous soundness results, e.g., th
ones in [138].[Section]5 finally contains our computational
soundness result for symbolic zero-knowledge.

mmediately including the values ¢f; in the formulaF’
ould arguably have increased the readability of the for-
mula; our language defined in_Secfidn 3, however, will re-
quire a strict separation of the actual formulaand the

)) public parameters that are determined at runtime, regultin
Notation. By [n] we denote{1,...,n}. We abbreviate jp this slightly more complicated notation.

Z1,...,%, by wheren_ is |rr_1pI|C|t. We will sometimes Granting B the ability to produce such a proof is mod-
use sets and non-termlnals_mterchangeably. E.g., given geqg by introducing an abstract construcBZ (r; a; b),
grammarA = B[(C,A) we might writez € (C,A), orwe cgjied azero-knowledge proof(Recall that we abbreviate

might say “z has the form(C, A)". We might also write % tuplesry, ..., r, by r, similarly for o andb). Its arguments

has the form(c, A)" for a givenc € C. are an abstract randomneBsa formulaF, as well as val-
uesr;, a;, b; that will serve as substitutes for the variables

2 Zero-Knowledge Proofs pi, i, B in F. In our example, the age® will send the
proof z = ZK?(Rl,RQ;n,m;ml,mg,mg, S,D,c,m).

In this section, we first introduce our modeling of ab- The semantics of this constructor (formally defined in
stract (symbolic) zero-knowledge proofsin an intuitivea [Secfion 8) will guarantee two properties: First, a zero-
ner to familiarize the reader with our notation and to prepar knowledge proof can only be constructed by providing suit-

able instantiations, a, b for p, o, 8 so that the formuld” e Completenessor anyC' andw with C(w) = 1, if z

yields true. Second, while the formufa and the values is the proof produced by, thenV accepts:.

b can be retrieved from a zero-knowledge proof, the val- e SoundnessFor anyC' andw with C(w) = 0, and for
uesa and the randomnegsare kept secret. These prop- any polynomial-time adversaty that outputs a proof
erties imply that the proof indeed guarantees thathas z, the verifier does not accept

the right form without revealing any additional informatio e Zero-knowledge:When computing the CRS, the al-
aboutn, m. In an abstract zero-knowledge proof, we call gorithm K additionally outputs aimulation trapdoor

r; a thewitnessandb the public part simtd (that can be seen as a secret key for the CRS)

For more elaborate examples on how zero-knowledge such that the following holds: FiC and w with
proofs can be used in an abstract setting, comprising arlarge C(w) = 1. Let z be the proof produced by prover
set of base constructors such as blind signatures, we refer ~ P. Letz’ be the proof produced h§ on inputsimtd

the interested reader ta [3]. andC' (but notw). Thenz andz" are computationally
indistinguishable.
2.2 Concrete Zero-Knowledge Proofs In this section, we omit certain details such as the fact that

the conditions are allowed to be broken with negligible prob

We now move to concrete zero-knowledge proofs, i.e., aPility. Similarly, we implicitly assume thaP andV" use
zero-knowledge proofs in the cryptographic setting. We the circuitC’ and the witnesso. The finalDefinition 1 be-
consider it a central contribution of this paper to identify oW will of course contain all these details.
which standard and more sophisticated additional proper- A scheme satisfying these three properties is referred to
ties of zero-knowledge proofs are required to establish the@S & non-interactive zero-knowledge proof system. Readers
desired computational soundness result. Hence we now exthat are familiar with interactive zero-knowledge proofyna
plain in some detail why each such property is needed. Inhotice that in the definition of mte_ractlve _zero-knowledge
the end, this task will culminate in the novel definition of a Proofs, no CRS occurs. Inthe non-interactive case, however
symbolically-sound zero-knowledge proof systaie first itis knqwn that zero-knowledge proofs without a CRS are
state the properties in an informal way and give the exactiMpossible unless’P C BPP [21, Thm. 4.4.12].
definitions i Definifion 1.

Extractability. While the three properties of complete-

Completeness, Soundness, and Zero-knowledgeWe ness, soundness, and zero-knowledge are sufficient for
start with the basic definition of a non-interactive zero- Many applications, they do not suffice to offer a cryp-

knowledge proof. We need to focus on non-interactive f09raphically sound implementation of abstract zero-

proofs since the abstract model considers a proof as a sinknowledge proofs. This can be seen by inspecting the

gle message that can, e.g., be further encrypted. This would®!loWing example: Assume that we are using an encryp-

not be meaningful if the zero-knowledge proof was allowed ton scheme that allows to efficiently check that a given
to be interactive. ciphertextc constitutes a valid encryption of some mes-

A zero-knowledge proof consists of four algorithms S29€ (without having to knp?w this message or the secret
K,P,V,S, called the CRS-generator, the prover, the ver- K&Y)- Then letc := {m},, and consider the proof
ifier, and the simulator, respectively. The CRS-generatorz := ZK?(R;m;c, a) with F' := (1 = {al}g’;(ﬁz)),
outputs a random bitstring called tle®mmon reference i.e., a proof that one knows the message and the random-
string (CRS) that can be seen as a public key for the en-ness contained in. In the cryptographic setting, this proof
cryption scheme (its meaning will become clearer below).would be performed by first constructing a circ@itsuch
The proverP expects as inputs the CRS, a ciroliitanda thatC(R, m) = 1 iff m is encrypted with randomneg3
witnessw such thatC(w) = 1 and outputs a corresponding and the public key of: yields the ciphertext. Since one
proof z (intuitively denoting thatC' is a satisfiable circuit). can efficiently check it is the encryption of some message,
The verifier expects the CRS, a circalt and a proot and one can hence efficiently check as wellifhas a satisfy-
checks whethet is indeed a proof for the satisfiability of ing input. Thus, one can prove the satisfiability(ofwith-

C. (Itis sufficient to consider satisfiability of circuits s out having to us&?, m. Such a proof trivially enjoys the
every NP-language can be reduced to this problem.) zero-knowledge property, since the proof does not exploit

Three properties are expected from a zero-knowledgethe witness, and it enjoys soundness since it only proves
proof: It should be possible to prove correct statementsvalid statements (i€ was not satisfiable, the proof would
(completenegsit should not be possible to prove incorrect not succeed). In the abstract model, however, it is obvi-
statementsgoundnegs and the verifier should not learn ous that one needs to know in order to produce. What
anything about the witness, beyond what can be deducedvent wrong? The soundness condition only guarantees the
from the fact thatC is satisfiable Zero-knowledge existence of a witness, but it does not require the prover

to actually know this witness. We introduce an additional proof relies on this particular property; we leave it as an
algorithmE (besidesk, P, V, S, called the extraction algo- open problem if our computational soundness result can be
rithm) to capture this requirement and define the strongerproven using a weaker formalization of non-malleability.

condition of extractability. A proof system with extractiab e Extraction zero-knowledgelet simid, extd be the
ity is called aproof of knowledge simulation and the extraction trapdoor as outpufty
e Extractability: When computing the CRS, the algo- respectively. Consider a polynomial-time adversdry

rithm K additionally outputs arextraction trapdoor that has access to the simulation trapdsiattd and
extd such that: FixC' (where C' may or may not to an extraction oracl&(C, -, extd), i.e., when invok-

be satisfiable). For a polynomial-time adversaty ing the oracleZ(C, -, extd) with input proof , it returns
that outputs a prooproof, we have that ifi” accepts E(C, proof , extd) whereF is the extraction algorithm.

proof, then E(C, proof , extd) outputs a witnessu The adversary may outp@t, w with C(w) = 1. Then

with C'(w) = 1. the adversary gets either (a) a real preebof pro-

With this definition, our above example does not cause any duced byP, or (b) a simulated progfroof produced
problems anymore: An extractable proof system that allows by the simulatoS (which has no access t@). We then

to prove the satisfiability of” without usingw would lead require that4 cannot distinguish the cases (a) and (b)
to a contradiction since the machingsand £ together as long as it does not quepyoof from the extraction
could then compute. (Technically, this is only a contradic- oracle.

tion if w is not easy to compute frod in the first place.) We stress that extraction zero-knowledge implies the zero-
We stress that extractability already implies soundnefss: | knowledge property since it implies that for a@yw with

C'is not satisfiable, theR (C, proof , extd) cannot outputa C(w) = 1 the proofs produced by the prover and the simu-
witnessw with C'(w) = 1, thus by contraposition we have lator are indistinguishable.

thatV does not acceptroof . Why does extraction zero-knowledge indeed imply non-
malleability? Assume that from a progfoof, for the sat-
isfiability of C, some algorithm\/ can produce a proof

Extraction zero-knowledge. It turns out that even com- roof , for the satisfiability ofC, where the satisfiability of

lementing the properties completeness, soundness, an . .
b 9 prop P , follows from that of C'; (in the sense that a withess

zer(_)-!(nowledge with .the extractab|lllty property is stittn for C; can be converted into a witness for Cp). Then
sufficient for the desired computational soundness result.

. .) . an adversaryd could break the extraction zero-knowledge
Consider a proof system with the following property: If roperty rouahlv as follows: First. it outouts and
proof, constitutes a proof for the circu®; and proof, broperty roughly : ’ putsL, i

constitutes a proof for the circuity, then(proof |, proof) gﬁéss j/[%OOfp mfof ;éghlseg'ghtrgsﬁa f?kefolirgOf)-Si:Czp-
constitutes a proof for the circui®; A Cy (with (Cy A P proojy 9 P r00) 2 2

Co)(wy,ws) = Cy(wy) A Ca(ws)). This property is not proof2 # proof |, the adversary may gi}q@"oon to th_e ex-
unrealistic, and for circuits that are of this conjunctigen, traction oracle. In case (a), the extraction oracle wiljit

concatenating proofs for the individual circuits indeed of a witnessws. In case (b), hOV_V‘?"e“ the prop%oofl has
. - been produced without exploiting the witness, and so
ten constitutes the most efficient way to produce a proof s .
. S . hasproof,. Since the extraction oracle cannot produce a
for the combined circuit. Furthermore, allowing to prove

these sub-circuit individually does not contradict thepsro witness, it will fail to produce a witness fqmroof , in case

i . W(b). Thus the adversary can distinguish the two cases, con-
erties we have discussed so far., In the abstract model, ho badicting the extraction zero-knowledae propert
ever, givenZK % (r; a; b) andZK%, (+'; a’; b'), it is not pos- 9 g€ property.

sible to construct a proaKz. , (_; _; b,b") without know-

ing r,7’,a,a’ (where _ matches everything, and where in Unpredictability. We are lacking one last property for
the formulaF”’ the p1, a1, 31 are renamed t@o, as, 32). soundly implementing abstract zero-knowledge proofs. If a
We hence have to exclude the possibility of concatenat-proof using the same witness and the same public partis pro-
ing proofs to generate new proofs. More precisely, we duced by two different agents in the abstract model, it will
have to ensure that given a proof for some statement always lead to two different terms because the two terms
it is not possible to construct a proof for another statementwill have different randomness. A proof system with the
T2, even ifx, is logically related tar;. This property is properties described in this section, however, does nat nec
callednon-malleabilityand closely resembles the notion of essarily ensure that two proofs produced with the same wit-
non-malleability of encryption schemes. In the context of ness and circuit will always be different (with overwhelm-
zero-knowledge, several properties are known to imply non-ing probability). Indeed, it is possible to construct peof
malleability. We will exploit theextraction zero-knowledge that are deterministic for at least some inputs. We hence
property from [25]. Although this is a rather strong prop- additionally require that any two independently produced
erty and weaker definitions of non-malleability exist, our proofs are different, or equivalently:

e Unpredictability. Let a polynomial-time adversagt
output C, w, proof” with C(w) = 1. Let proof be
produced byP. Then with overwhelming probability,
proof # proof’.

Unpredictability is an easily achievable property, e.g., b
letting the prover include some randomness in the proof.

e Deterministic verification and extractionThe algo-
rithmsV and E are deterministic.

We stress that protocols already exist that satisfy this
notion, e.g., the one proposed in_[25, Sect. 3] under
the assumption that enhanced trapdoor permutatiors [22,
Def. C.1.1] exist. The latter exist, e.g., under the assump-
tion that factoring is hard.

Symbolica”y'sound Zero-knoWledge. Fina”y, we fur- We have formulated Symbo”ca"y_sound Zero-
ther require that the verifidr and the extraction algorithm knowledge proof systems against nonuniform adversaries.

£ are deterministic. This is not strictly necessary but it However, we believe that our results easily carry over to
will simplify the proof of soundness, and we are not aware the uniform case.

of a non-interactive zero-knowledge proof system where
this condition is not fulfilled. The full name of a zero-
knowledge scheme satisfying all the above properties would
beunpredictable non-interactive multi-theorem adaptive ex
traction zero-knowledge argument of knowledge with de-
terministic verification and extractionSince this is some-
what unwieldy, we coin the tersymbolically-sound zero-
knowledge proof systenThe following definition formally
defined the properties we informally discussed above.

The Abstract Model

In the following we define the abstract model in which
the execution of a symbolic protocol involving zero-
knowledge proofs takes place. The basic ideas follow the
framework presented ih [13]. However, to incorporate zero-
knowledge proofs, we have to make various nontrivial mod-
ifications to the abstract model. In the following sections,
we try to highlight and explain the design choices made in
our modeling.

Definition 1 (Symbolically-sound zero-knowledge proof
system) A symbolically-sound zero-knowledge proof sys-
temis a tuple of polynomial-time algorithni#(, P, V, S, E)
with the following properties:

e Completenesstet a nonuniform polynomial-time ad-

ZK-proofs and messages. First, we fix several count-
ably infinite sets. ByA we denote the set of agent iden-

versary A be given. Letcrs, simtd, extd) — K(17).
Let (C,w) «— A(1", crs). Letproof «— P(C,w, crs).
Then with overwhelming probability in, C(w) = 0
or V(C, proof , crs) = 1.

Extractability: Let a nonuniform polynomial-time ad-
versary A be given. Let(crs, simtd, extd)
K(1m). Let (C,proof) «— A(17, crs). Letw «
E(proof, extd). Then with overwhelming probability,
if V(C, proof, ers) = 1thenC(w) = 1.
Unpredictability: Let a nonuniform
polynomial-time adversary.4 be given. Let
(crs, simtd, extd) «— K(1"). Let(C,w, proof') «
A(1", crs, simtd, extd). Then with overwhelming
probability, we haverroof’ # P(C,w, crs).

Extraction Zero-Knowledge: Let a nonuniform
polynomial-time adversaryA be given. Con-
sider the following experiment parametrized by a
bit b: Let (crs,simtd, extd) «— K(17). Let
(C,w, state) «— AFPGest) (10 crs simtd). Then
let proof «— P(C,w,crs) if b = 0 and proof «
S(C, crs, simtd) if b = 1. Let guess
APCentd) (1 crs simtd, state, proof). LetPy(n) de-
note the following probability:

«—

Py(n) := Pr[guess = 1 andC(w) = 1 and
proof has not been queried frof(-, e:ptd)].

Then|Py(n) — P1(n)| is negligible.

tifiers, by Nonce the set of nonces. We use elements from
Garbage to representill-formed messages (corresponding to
unparseable bitstrings in the concrete model). Finally el
ments ofRand denote abstract randomness used in the con-
struction of ciphertexts and zero-knowledge proofs. We as-
sume thaiNonce is partitioned intdNonce,, andNonce gy,
representing the nonces of honest agents and the nonces of
the adversary. SimilarlyRand is partitioned intoRand,,
andRand .45 .

We proceed by defining the syntax of messages that can
be sent in a protocol execution. Since such messages can
contain zero-knowledge proofs, and these are parametrized
over a statement that is to be proven, we first have to define
the syntax of these formulas. Let

ZKTerm = ek(5;) | cii | Bi |
(ZKTerm, ZKTerm) | {ZKTerm}Sﬁ(ﬁj)

wherei = 1,2,.... We call terms produced by this gram-
mar ZK-terms. On the intuitive levedk(a) denotes a public
encryption key of agen, (-,-) a pair, and{t}i‘i(a) an en-
cryption oft with the public key ofz using randomness.
Then a ZK-FormulaF' is a Boolean formula over terms
of the formZKTerm = ZKTerm satisfying the following
conditions: Ifa; occurs inF, thenaq, ..., a; occur all in
F. An analogous condition holds fpg andﬁiﬂ We denote

1We actually use this condition in the proof only for the However,
we included the condition also fer and3 for symmetry.

the set of ZK-Formulas witfrormula. Thea-arity of a ZK- being syntactically different as terms, no equational tiyeo

FormulaF is the largest index of an; occurring inF'. The is involved) byFalse. Call the resultZ;. Note thatZ; is a
p-arity and thes-arity are defined analogously. Boolean formula without variables.

The intuitive interpretation of a ZK-formula is that it is We say thatZ is a true proofif all subterms ofZ; are
a term with free variableg, o, and/3. Thep are supposed messagesand Z; evaluates tolrue.
to be substituted with randomness, thend B with mes- We say a messag¥ contains true proofg every sub-

sages. A zero-knowledge pro@K%(r:a;b) then repre- term of M of the formZKg5n, . (...) is a true proof.

sents a proof that when substitutinga, b for p, o, 5, the

resulting expressiof’{ 2421 is a true statement. The ran- Deduction rules. In order to restrict the actions the ad-
22, versary may perform during a protocol execution, we have

to introduce a deduction relatidn which is given by the

domness- and the messageswill be considered secret,
while the messagéswill be contained in the proof in clear))

o P rules in[Figure]l. The rules for the deduction are stan-
dard, only the rules concerning zero-knowledge proofs

(one can think of the formula as being parametrized in the
merit additional comment. The rulet ZK%(r;a;0) =

valuesh).
Note the folloyvmg Interesting asymmetry: We allow ¢ F b represents the zero-knowledge property; from a zero-
ek(;) to appear in a formula, but nek(«;). This is due - .
. s knowledge prooZK7 (r; a; b), all that can be extracted is
to the fact that a proof with a formula containirg(«;) ; .
the public parb, but not the witness, a.
More interesting and involved is the last ruldin Figufe 1.

would not be easily realizable computationally: In order to
perform the zero-knowledge proof, we need to build a cir- This rule states under which conditions the adversary may
construct a zero-knowledge prodKiy (r;a;b). First, of

cuit accepting only satisfying valuesfor the a. To build
such a circuit for a formula witlkk(«;), one would have to .

course, the resulting proof must be a proof of a true state-
r,a,b

encode a list ol public keys in this circuit. On the other g L crab
hand, in the case @k(;3;), the valueb; substituted fop; is ment. This is repr.esented by the condition tm’{tg,g,g
known while constructing the circuit, thus we can directly 1S @ true proof (as in Definitionl 2). Furthermore, we have to

hard-codek(b;) into the circuit. require that the adversary actually knows the witness
and the public parb, corresponding to the fact that we
Given the syntax for ZK-formulas, we can define the set model proofs ofknowledge Fora andb this condition is
M of messages as modeled by requiring - a andy + b. For the random-
nessr, however, the condition is more involved. The ad-

M = A | Nonce | ek(A) | ek(Garbage) | dk(A) | (M, M) versary may know some randomnesén two cases. First,
Rand Rand if it is its own randomness; € Rand,q,. Second, it may

| {M}en) | {Garbage} ei(Garbage) | Garbage be able to extract that randomness from an encryption pro-

| ZKRand | (Rand*; M*; M*). duced by some honest party. Namely, the condition that a

cryptosystem isND-CCA secure does not imply that one can-
with the following additional condition: For each subterm not retrieve the randomness used in an encrygiionided
ZKRe(r: a; b), we have thatr|, |al, |b| are thep-arity, a- one can decrypt that messadeor example, in the popular
arity, andg-arity of F', respectively. Herek(a) anddk(a) RSA-OAEP cryptosystem [8, 20], the randomness used for
represent encryption and decryption keys for the agent encrypting a message is actually computed during an hon-
(-,-) means pairing{t}éﬁ(a) is the encryption of message est decryption. Thus we have to allow the adversary to use

under the keyek(a) with randomnessz, andZK(r: a; b) randomness; from messages it was able to decrypt. As
denotes a zero-knowledge proof for the formélaroduced ~ @n example why this condition is actually needed for com-
using the randomneggwhere the (secret) witness consists Putational soundness, consider the following simple proto
of the randomnessand the messagesand the public part €0l Agenta sendsz := {m} [, and if it receives a proof
consists of the messagks matchingZK.(_;;b,m, ¢) with F' := (85 = {2 Zkl(ﬁl)),
Since both honest agents and the adversary should onlyhe protocol fails (here the symbol _ matches everything).
send ZK-proofs that actually correspond to true statements!f we would only allow the adversary to usg € Rand g,
we will need the following definition that characterizes the in the witness, the protocol would be secure abstractly; eve

messages that do not contain wrong proofs. if the adversary knows the secret key(b). Yet a con-
o crete adversary could possibly (depending on the enchyptio
Definition 2 (True ZK-Proofs) Let a message of the form scheme) extract the randomness freemd produce such a

Z := ZK¥(r; a; b) be given. proofl]
- r,a,b
Let Z, := F{2%%}. Replace all subterms df; that 2This would be violated, e.g., bEKE(R';; c,m,n) with F =

are of the formt = ¢ by True and all subterms of; that (81 = {B2}2} 5,,) wheren is a nonce.
are of the formt = u with ¢t # u (where# is meant as 3After these explanations, the reader might wonder why aimald-

me g g,g' € Garbage € Randug, beA ok m © - ms
pm phg phek(g) oF{d} g phekd) kb p = (m1,ma)
@ = (my,ma) ptek®d) obFm ré€Randagy pH{mlaw »Fdk(b)
wFm © Fmo ¢ F {m}taw phEm
oba oFb F € Formula F{%} is a true proof
o ZKh(r;a;b) r€Randeg, Vi:ri € Randag, V (3ta et {t}5,) A Fdk(a)

b ¢ ZKy(r;a;b)

Figure 1. Deduction rules for the adversary.
Patterns. In order to conveniently define the notion of a matcher ofm andp. Thus intuitively _ in a pattern corre-

protocol, we need a way to succinctly describe how mes-sponds to a value we do not care about and that we do not
sages are parsed and constructed by honest agents. To thistend to (and cannot) extract, e.g., the randomness used in

aim, we define the concept of a pattérn.

Let X.a, X.n, X.p, X.c, X.z be countably infinite sets
(variables of sort agent, nonce, pair, ciphertext, ZK-froo
respectively). LeX := X.a|X.n|X.e|X.p|X.c|X.z. In the
following, when considering mappings from variabl¥s
to messaged, we will always assume that a variable is

a cipherte)ﬁ or the witness of a zero-knowledge proof.

Note that patterns do not contain explicit nonces, agent
identifiers, or garbage. The omission of garbage is due to
the fact that we do not want protocol to explicitly construct
ill-formed messages. Nonces and agents are not needed
since below the protocol execution (see below) will provide

mapped to a message of corresponding type. We then depre-initialized variables for the nonces used by an agesht an

fine the sePat of patterns as

Pat = X | ek(X.a) | (Pat, Pat) | {Pat} 5%, | {Pat}g x) |
ZKFamuta (Rand™; Pat™; Pat®) | ZKy o (U5 5 Pat”)

with the following additional conditions: For each subterm
ZK®ed (1 4: b), we have thatr|, |al, |b| are thep-arity, a-
arity, andg-arity of F', respectively, and itk(/3;) occurs

in F, thend, has the formek(A) or ek(X.a). These condi-
tions are needed to ensure that a pattern (containing no

for the ids of the communication partners in a given proto-
col session. We disallow patterns of the fodi(a) since

we do not allow protocols to explicitly use their private key
(except for decrypting). This is to ensure that no key cycles
occur; it is known that thend-cCcA property does not guar-
antee security in the presence of key cycles.

Roles and protocols. We are now ready to define what a

jrotocol is. For space reasons, we only give an informal

escription and postpone exact definitions to Appefidix A

becomes a valid message when the variables are instanty,, definitions.[TODO] A k-party protocolll is a mapping

ated.

that assigns eache [k] a roleII(7). In our setting, aole is

The symbol _ is supposed to match anything. More ex-modeled as an ordered edge-labeled finite tree. The nodes

actly, we say a message € M matches a patterm € Pat
if there is a substitutiof : X — M such thaipd equalsm
up to occurrences of _ ipd (where distinct occurrences of
__may correspond to different subtermsin. We callf the

justments are not necessary for, e.g., the rule for deducipigertexts
{m}gk(b) since a concrete adversary could use extracted randomisess a

in this case. The rough reason why this is not necessarytis tive con-

crete randomness is used to encrypt another message or under another More concretely

key, we can consider it to be another abstract randomnes$y iCthe
samem is encrypted under theameek(b), we will have to consider the
concrete randomness to be the same. However, in this casesthi¢éing
ciphertext will be also be the same, thus the adversary lsagjoduced a
message it already knew.

4Note that one could be tempted to define a pattern just as aageess
with variables in it. However, this definition would leaveveral points
open, e.g., variables of what type might occur in which pasjtetc. Thus
we give an explicit grammar and use this opportunity to redine set
of patterns to such that make sense in protocols (e.g., aqmiotay not
explicitly sendGarbage.

of the role tree correspond to states of an agent executing
that role, and the edges correspond to transitions caused by
incoming messages. We assume only insecure channels be-
tween agents, therefore all messages are sent to the adver-
sary and received from the adversary. What messages a
role sends, and upon what messages the role enters what
state is specified by the labels on the edges of the role tree.
an edge is labeled with a gair) of pat-
terns. Herd represents the pattern for matching incoming
messages, andthe pattern for constructing the answers to

50n the preceding page we said that it is possible to extractora-
ness from ciphertexts. However, at that point we were tglidhout the
adversary and had to assume the worst case. When definimgaitwe
may only include capabilities that may be implemented witls encryp-
tion scheme. E.g., in the Cramer-Shoup cryptosystern [¥biaeting the
randomness implies breaking the discrete logarithm pmpkven when
given the private key.

these messages. More exactly, the state of a role consistsariety of sanity conditions, e.g., we have to require that t
of a node in its tree, and a partial mapping: X — M patternr (for constructing messages) does not contain free
representing (fragments of) messages parsed so far. Givemariables, or that the pattern matching an incoming message
an incoming message, a states, and an edgél, r), the does not imply decrypting with someone else’s secret key.
following steps take placﬂ: Most conditions are of this kind and just guarantee that the
e First, in the patterri, the variables that have already abstract protocol can indeed be implemented as a concrete
been assigned are instantiated. Formally, the patternprotocol. Complete details are given[in Definitidn 5 in Ap-
lo is computed. pendix[A. At this point, we only mention two conditions
e Thenm is matched againét. If this succeeds, ldtbe that are of particular importance.
the matcher. Otherwise, the transition corresponding First, as already discussed on the previous page, a pattern
to the edgé!, r) will not be taken. cannot explicitly contain secret keys. Thus a role cannot
o Now all variables in the outgoing patterrare instanti- sent these keys over the network. (Note that the adversary
ated, either with variables assigned previously jror can however get access to secret keys by corrupting parties
in the previous stepd]. More formally, the message and can then send them.) This condition is not related to
m’ := rof is computed. Ifm’ does not contain true the introduction of zero-knowledge proofs; it is also prese

proofs [Definition 2), the transition will not be taken. e.g., in [13].

Otherwise follow the edge, send messageand let Since both encryption and zero-knowledge proofs are

the new state be U 6. probabilistic, we have to ensure that each randomness is
A node may have several outgoing (ordered) edges, in thisused only once. In a model without zero-knowledge proofs
case the first one will be chosen that matches and resultgas, e.g.,[[13]) this can be done by requiring that for any
in a messagen’ containing true proofs. If no such edge randomness, there is at most one subterm containiig
is found, the role will ignore the message(i.e., the state (but the same subterm may occur several times to allow for
is unmodified). A role may access the agent id of #il sending several copies of a single ciphertext). In the pres-
communication partners in its session via the pre-inzéadi ence of zero-knowledge proofs, however, such a rule would
variable A; € X.a, and accesses its own nonces via the be too restrictive. For example, an agent might want to
pre-initialized variables\’, € X.n (accessing the nonces send a ciphertext := {t}i(a) and then prove that satis-
via variables allows to model that each session has differen
nonces).

This model of a role is very similar to that presented in

[13] with the exception of the additional check whether the

outgoing me_ssagm’ contains true pTOOfS' '_I’his checkis p aiso in the p-part of the) witness of a zero-knowledge
necessary, since we have no syntactic condition that guararbroof. However, allowing completely unrestricted use of

tees that a role can only generate true P“’Ofs: In partl,cularR in the witness would lead to problems, too. For exam-
ita rqle produces proofs that depend on IncOMINg MESSagesy o - consider an agent creating and sending a ciphertext
and if these messages happen to be modified by the adve ising a given randomnedd and then trying to produce a

sary, it may happen that the proofs are instantiated with thezero-knowledge proof proving a statement aboanother

wrong values. Thus we have to make a design choice. W(.eciphertextc’ using thesamerandomnessk. In this case,

C?)In restrlgt the patt%rns S,UCh that no mfatter hé)w th% Va”(}he adversary learns the ciphertexdnd whether the proof
ables are instantiated, no Iincorrect proofs can be produced, g ¢ (since the further actions of the agent depends on

We can impose a static condl_t|on on the roles that guaranyhether it succeeded in constructing the proof or not). It
tees that for no sequence of incoming messages, an INCO¥S not clear that the information whether the prad$ true
rect proof can b_e produced. Or we can perform a runtlmemight not already leak up to one bit of information about
check to _avp|d Incorrect proo_fs. The first metho@_ SEEMS . We therefore have to ensure that a given randompRess
very restrictive, the second might make the definition of a occurs only in a single subtermplus additionally in the
role unnecessarily complicated, thus we have opted for the & oo o zero-knowledge proofs long as it is used in

t_h|rd V?‘r;]a”‘- l\Lote g;at cuhrrerc;tl tools;or prptocoLveEﬁca dthe formula to produce the same tetm To capture this
tion might not be able to handle such runtime checks and ., formally, we introduce the notion of an effectiie

need to be extended. , subpattern. Roughly, an effectivesubpattern of a pattern
Of course, not all trees with edges labeled by patterns p ig gjther a subterm P, or a subterm that results from

represent valid protocol roles. Instead, we have to impose 3ubstituting the arguments of a zero-knowledge prodfin
into its formula. Formally, we get the following definition:

fies some property(t), i.e., it sends := ZK? (R;t;c,a)

with F := (8, = {O‘I}Zkl(ﬁz) A P(a1)). Since both: and

z contain R, such an agent would be disallowed. To relax
this restriction, we have to allow to use a given randomness

8Actually, this is not part of the definition of a role, but oftprotocol
execution. However, we describe it here so that the intebeéédvior of a o)
role becomes clear. Definition 3 (Effective subpatterns)_et P be a pattern. We

say that a patterrd is aneffective subpatterof P if agenta executingsid is given the messages and its an-

e Sisasubterm of, or swerm’ is added to the adversaries knowledgeAssume
e there is a subterrrZK?(g;g;b), and a ZK-Termz that agent: has the local statg, o, p, (a1, ..., ax)). Then
in the ZK-formulaF, such thatS is a subpattern of ~ to compute the answen’, the first outgoing edge fromis
z{;—ig . searched such that its lab@|) matchesn and produces
We call S an effective R-subpatterrif it is of the form an answern’ that contains true prolofs. Det_ails on how this
{Pat}E, or ZKE . (Rand*;Pat*;Pat). is done have already been given in the discussion of roles

on pagd . If no such edge is found, both the local state
We can now formulate the condition that randomness as well as the knowledge of the adversary are unmodified.
may not be reused: For any randomn&sshere is at most Note that the only change with respect to the modeling in
one effectiveR-subpattern in the role trel(k) (but that [13] is that we have introduced the additional condition for
subpattern may occur in several places). taking an edge that the answer should contain true proofs.
We call sequences of global states satisfying these rules
symbolic execution traces Dolev-Yao traces The set of

Protocol execution. The definition of the execution of an Dolev-Yao traces fofl is denotecExec® (I).

abstract protocdIl closely resembles the one in[13], so we
only quickly mention the main points. A detailed definition
is postponed to AppendiXIA. An abstract trace farparty 4 The Concrete Model
protocolll is a sequence of global states with some restric-

tions on the possible transitions (detailed below)glébal We now proceed to define the concrete execution of a
stateis a triple (Sid, f, ¢) wherey is the set of messages protocolll. We use the same protocdlsas in the abstract
the adversary learned so far (tadversary knowledgeni- model in the preceding section, but the messages exchanged

tially set to Nonce,q4,), the setSid contains the ids of all ~ over the network now are bitstrings, and the pattéins)
sessions currently running, and the functipmaps every on the edges of the role tree specify how to parse or con-
session itkid in Sid to the local state of that session. A ses- struct these bitstrings, respectively.

sion contains exactly one agenexecuting one role. How- Since the concrete execution model is quite straightfor-
ever, since the intended protocol execution always in®lve ward and furthermore very similar to the model frdm][13],

k parties, a session additionally specifies what other agentsve only sketch it here and concentrate on the design issues
the agents is (supposedly) communicating with. The particular to the inclusion of zero-knowledge proofs. The

cal stateof a given session is a tuplé, o, p, (a1, ..., ax)). details are postponed to Appenfik B.

Herei is the number of the role the agenexecutes in this Fix a security parameter € N. A concrete trace is a
session. The tupléu, ..., ax) specifies the indented com- sequence o€oncrete global statesf the form(Sid, g, C)
munication partners for that session, in particulas a; whereSid is the set of session idg, maps sessions ids to
is the agent executing this session. The state of the agent concrete local states and is the list of corrupted agents.
is given by the current nodeof the role tredI(i) and the A concrete local statés of the form(i, 7, p, (a1, ..., ax)).

mappingo that maps variables to (fragments of) messagesAs for the abstract staté,is the role executed by;, the
received by the agent in that session. See the discussion nodep indicates which point of the role tree the agent

of the role tree on pagé 7. has reached so far, ardi,...,ax) list the communica-
We allow three kinds of transitions between global tion partners. The mapping maps variables to bitstrings
states, namelyorrupt(as,...,a;), new(i,aq,...,ax), (instead of terms) that result from parsing incoming mes-
and send(sid, m). In a corrupt(aq,...,q;) transition, sages. The transitions between the global states are idvoke
the adversary specifies an list of ageats. .., a; whom by a probabilistic polynomial-time adversa/. The ad-
it wants to corrupt. In consequence, the adversary’sversary may invoke aorrupt(as,...,a;) transition (only
knowledgey in the next global state will be extended by in the first step) and will then learn the secret keys of the
{dk(a1),...,dk(a;)}, i.e., the adversary learns all secrets agentsas,...,a;. Further the idsiy,...,q; are stored in
of the corrupted parties. Only the first transition is alldwe the setC' in the global state. The adversary may invoke a
to be of this type, i.e., we consider static corruptions. In a new (i, a1, ...,a,) transition. In this case a new session
new(i,a1,...,ay) transition, a new session idd is allo- id sid with concrete local staté, 7, p, (a1, ...,ax)) is al-
cated and added fiid. The local state ofid is initialized as located where in the mappingthe varlables4 andX7
(i,0,¢, (a1, ..,ar)) wheree is the root of the role treH(7) are preinitialized taz; and fresh nonces, respectlvely Fi-
ando maps the vanabIeA to a; and the variablex”, to nally, the adversary may invokesend(sid, m) transition
fresh nonces. In other WOI’dS a new session is |n|t|aI|zedwherem is a bitstring. In this case, for each edge leaving
in which agent; runs rolell(z) together with(ay, . . ., ay). the current node, the following is tried: Let(l,r) be the

The most important transition isend(sid, m). Here, the label of that edge. Then the bitstring is parsed according

X X

to the patterrd using the variable substitutian(see below). knowledge proof fails (becaugea is not a witness for’')
This results in a new substitutioth where the variables that the functionconstruct aborts (and the next edge in the role
where free in are now assigned bitstrings. Then the pat- tree is tried). Note that the circuit = C’;”Z’L can be con-
ternr is used with the variable assignmentsto construct structed given onlyF, s, n, 1, b; this is important since for

a new bitstringm’ (see below). If both parsing and con- verifying a proof, we need to constructfirst.

structing succeed, this edge is takehbecomes part of the For parsing bitstrings, we define a function
new local state of the sessiefi, and the adversary gets parse(m, [, 7) taking a bitstringm, a pattern/, and a
as input. If no edge matches, no action is taken. partial mappingr : X — {0,1}*. Then if, e.g.,l is an

It is left to explain how a pattern is used to parse or encryption pattern of the forr{i’}gk(Ai) wherei is the role
construct a bitstring. Foconstructingbitstrings, we first executed by agent in the current session, the bitstring

randomly choose a family of random valuégpe® ¢ : m is decrypted with the secret key of agentresulting
Rand,, — {0,1}" parametrized over the agemtthe ses- in the plaintextm’, and then functiorparse(m’,l’, 7) is
sionsid [1 Then we define a functiotonstruct(r, 7) taking invoked. Pairs and zero-knowledge proofs are handled
a pattern- and a partial mapping : X — {0,1}*. If, e.g.,r analogously. Wheri is a free variable (i.e., unassigned
is an encryption = {r’ i(a), the functionconstruct(r,) in 7), it is checked whethem is of the right type and then
recursively invokesn’ := construct(r’,7) and then en- assigned ta-(I) (resulting in an extended mapping,. If /

cryptsm’ using the public key of agentand using random- is @ bound variable (assigned i), it is checked whether
nesstape®*i¢(R) for the encryption algorithm. Similarly, m = 7(1). If I is of the form{-}% or ZK"(...) (i.e.,
pairs and zero-knowledge proofs are handledr K= X, contains explicit randomness), the message not parsed
thenconstruct(r, 7) just returns the stored valugr). We further but compared t@onstruct(l,7) (this allows to
give the details ofonstruct in[Definifion 8 in AppendiX . match against encryptions or ciphertexts an agent produced
[TODO] At this point, we would only like to comment on itself). Finally, if all checks succeeded, the (now possibl
the operation OéOnStruCt(ZKg(f; a;b),7),i.e.,onthecon- extended) mapping is returned. Details are postponed to
struction of zero-knowledge proofs, since it contains sgve [Definifion 9 in AppendiXB[TODO]

relevant points. We assume explicit type information on each bitstring.
To produce a zero-knowledge proof for witness We achieve this by requiring that every bitstring carries a
1,...,Tsa1,...,a, and public parby, . .., b, (Where we type tag distinguishing between agents, nonces, pairs, ci-

assume that, a,b have already been assigned bitstrings Phertexts and zero-knowledge proofs. Furthermore, we re-
using recursive calls toonstruct), we first have to con- quire that a bitstring tagged as a zero-knowledge proof is

struct a circuitC’ whose satisfiability we will prove in zero- 0nly considered to be of type zero-knowledge proof if it ad-
knowledge. For this, let; := |a;|. Then byC' := C;,Z,L ditionally passes the verification. This is necessary since

otherwise a bitstring could be assigned to a variahle
that later will not pass verification, in contrast to the adbst
g case where only true proofs can be assignexX to

we denote the circuit that expects argumerits . ., a/, of
lengthsliy, ..., 1, and arguments,...,r/, all of length

7, and then performs the operations described by the Z :
formula F' where p; is instantiated with the input;, o, Thus for any adversand and any security parametgy

with input o/, and occurrences of; are replaced with we get a disjribution on computatior!alltraces which we de-
the hardcodedvalue b;. Details are given if Definion 7 note b){EX?Cn,_A(n)_- A detailed de§0r|pt|on of the concrete
in Appendix[A. [TODO]Then the prover of the zero- execution is given i Definition 10 in Appendix BroDO]
knowledge scheme is invoked for the circdit and for

witnessr, a (as bitstrings) using randomnegge®**(R). 5 Computational Soundness

Call the resulting proofz. Then the bitstring returned

by construct(ZKz(r; a; b),7) is the tuple(z, F, s,n,1,b) In the preceding two sections, we have described the
together with appropriate tagging to mark it as a zero- gpstract and the concrete execution model involving zero-
knowledge proof. Note that this construction does not com-knowledge proofs and encryptions. To be able to state our
pletely hide all information on the witness since it leaks th - main computational soundness result, we have to formalize
length of the individual components. This is comparable what it means that a given concrete traéeorresponds to

to the situation with encryption schemes which also cannota given abstract trace. Here we follow [12[311, 13] and
completely hide the length of the plaintéktif the zero- require that there exists a mappinghat maps every mes-
sage from:® to a bitstring oft© in a consistent fashion. The

“For notational simplicity, we assume that any operatiorit bacrypt-
ing or performing zero-knowledge proofs, needs at mdsts. This can be principal impossibility. For example][6] present so-edlluniversal argu-

easily achieved by using a pseudorandom generator if theitipe needs ments that can be transformed into length-hiding zero-kedge proofs.
more randomness. These schemes however are very complex and far from beirgiqaidy
8Note however that in the case of zero-knowledge proofs,ishiet a usable.

10

exact definition is almost identical to the onelofl[13], excep the randomness but instead consider the full bitstringsas it
that we add the requirement that the adversary corrupts theown randomness.

same agents in the abstract and the concrete trace. We have to show that(¢¢) constitutes a Dolev-Yao trace
o) o with overwhelming probability. Assume thatt©) is not a

Definition 4 (Concrete instantiations) Let ¢* = Dolev-Yao trace. This can be becauge¢’) does not ful-
(Sidi, f1,¢1), -+, (Sidp,, fm, om) be a symbolic exe- | the syntactic conditions of a trace (e.g., the knowledge
cution trace and“ = (Sidy, g1, C1), - .-, (Sidy,, gn, Cn) @ of the adversary changes in an unexpected way, or the lo-
concrete execution trace.. _ o cal state of some machine does not correspond to the mes-

~We say that the trac& is a concrete instantiatioof ¢* sages received), or the adversary might send a message that
with partial mappinge : M — {0,1}" (written ¢* <° ¢) cannot be deduced from the messages that were output by
if m = n and for everyl € [n] it holds thatSid; = Sid;, the honest agents. In this proof sketch, we will only con-

and(Jg = {a : dk(a) € ¢/}, and for everysid € Sid; the sider the latter case. We will therefore assume that with
following holds: non-negligible probability, in step, a messagen is sent

For (U, 1, P, (al, S ,ak)) = fg(sid) and such that
(1,4,q,(b1,...,b,)) = ge(sid) we have that = c o o,
andi = j, andp = ¢, and (a1, ..., an) = (b1,...,bn). Noncegan U {dk(a) : a € C}U{c(m) : m € Se} ¥ ¢(m)
We say that® is a concrete instantiationf ¢* (written 1)
#5 < °) if there exists a partial injective function: M — holds, whereC denotes the set of corrupted agents. From
{0,1}* such that® <c ¢°. this we will derive a contradiction to the cryptographic as-

sumptions used in the theorem by transforming the concrete
Equipped with this definition, we can formulate our execution in several steps into an adversary againskthe
soundness result. Namely, with overwhelming probability, cca assumption.
a concrete trace is a concrete instantiation of some alt)stracS

imulating the zero-knowledge proofs.As a first step to-
Dolev-Yao trace. 9 gep p

wards a contradiction, we will replace all zero-knowledge

Theorem 1 (Computational soundness of zero-knowledge proofs by fake proofs produced by the simulator. For this,

proofs) Let II be a k-party protocol. Assume thatl€ we first introduce two oracles into our execution: A proof
is an IND-CCA secure encryption scheme and tH&X is a oracle Proof and an extraction oracl€ztract. Whenever

symbolically-sound zero-knowledge proof system.A be an honestagent wants to producg a zero-knowledge proof of
a nonuniform polynomial-time adversary. Then the follow- SOMe statement with witnessuw, it invokes Proof (x, w);

ing probability is overwhelming in: when the implementation afextracts the witness of some
zero-knowledge proof, it invokes Extract(z). Note that
Pr[Execf; 4(n) € {t°: 3t° € Exec®(II) such that® < ¢°}]. for this, it must be guaranteed that each zero-knowledge

proof produced by honest agents uses a different random-
Proof sketch.(The full proof is postponed C.) nessk[H and that this randomness is only used for the zero-
To establish the theorem, it is sufficient to find an injective knowledge proof. By the definition of valid roles, we have
mappinge that maps bitstrings to terms such that a concrete that for any randomneds, there is at most one effective-
tracet® (chosen according tBxecf; 4(n)) will be mapped subpattern in any path of the role tree of any agent. If this
to a Dolev-Yao trace(t?). Then the inverse! satisfies effectiveR-subpattern is a term of the forfK (. . .), then
&(t°) <e7" te, which proves the theorem. The mapping R does not appear in the witness of any zero-knowledge
is defined in the canonical way, namely by parsing every Proof since terms of the forr@K(...) may not appear
bitstringm to a term. To this aim, we use the decryption in ZK-formulas. Thus any randomnessthat is used for
keys to parse encryptions, and the extraction trapdbof ~ some ZK-proof is used only for that proof (if the proof is
ZK to recover the witnesses of zero-knowledge proofs. Un-performed several times with the same witness, statement
parseable bitstrings are mapped to distinct tern@Gitbage. ~ and randomness, théroof oracle will not be invoked again
A small difficulty occurs when trying to extract the random- but the old result will be reused). Note the following facts:
ness used for encryptions or zero-knowledge proofs. In gen- ¢ The oracleEztract is never invoked with a proofthat

eral, an encryption scheme may not allow to extract the ran- has previously been output Broof . This holds since
domness used when decrypting, even given knowledge of ¢ by definition only extracts proofs that have not been
the secret kelf. Moreover, some of the randomness might generated by an honest agent, and only honest agents
even be information-theoretically lost, so it is impossibl useProof .

to recover the randomness that is actually used. Thus for 10yere and in the following, when we reason about a randomness

adversary-generated bitstrings we do not aim to extract R € Rand,, in the concrete model, we mean the symbolic vaithat is
used to select the corresponding bitstring from the randipe tising the
9E.g., the Cramer-Shoup cryptosystem[cf. footndte 5. function tape.

11

e The oracleProof is never invoked with(z, w) such up to step?, and letS” := SU{dk(a) : a« € C'} UNonceyay

thatw is not a witness ofc. This holds since honest (the knowledge of the adversary after that step).

agents check whether is a witness before construct- Then there exists a terfil € M and a contextD such

ing a proof. that M = D[T] and all terms on the path frof/ = D[T]
Hence, since both the execution of the concrete trace, aso 7" (not including?’) are of the form
well as the application of the mappiagun in polynomial-
time, we can exploit thaZX has the extraction zero- () or LGS or ZKEE()
knowledge property, and hence replace kheof oracle by
a simulation oraclgimulate using the simulation trapdoor ~ Furthermore, we have tha$’ » 7' and thatT satisfies
of the CRS such that(t¢) (which is the output of aref- ~ one of the following conditions: (aJ' € Nonce,,, or
ficient function ¢) is co_mputationally iqdistinguishable in_ (b)T = {~}§;(';d)“”, or(c)T = ZK,Ffjr"nfjfa(. L),or(d)T =
both cang _It can easily be seen that it can be (?hecked in Eandaiiu (r: a; b) and for som, r; is not known.
polynomial-time whether a given abstract trace is a Dolev- "°™“*
Yao trace. Thus from the computational indistinguisha- Thus by[(1) such a subterimof M = ¢(m) exists. We have
bility of the abstract traces in both cases, it follows that to show that each of the four cases leads to a contradiction.
the probability that the abstract trace is a Dolev-Yao trace
changes only by a negligible amount when repladirgof
by Simulate. Thus [1) still holds with non-negligible prob-
ability. Moreover, in contrast té’roof , the oracleSimulate
only expects the statemenfas input, but no witness.

T is a nonce. In case(r) we hav& € Nonce,,. Since

S" ¥ T, for any messagen sent to the adversary, the
nonceT occurs iné(m) only inside an encryption (with a
public keyek(a) with a ¢ C) or inside the witness of a
zero-knowledge proof. Since honest agents construct such
Using fake encryptions. The next step towards deriving a encryptions and zero-knowledge proofs using the oracles
contradiction is to replace the encryptions created by hon-Simulate and FakeEncrypt, the messagen is computed

est agents by fake encryptions. Since this step is very simiwithout using the bitstring corresponding g thus it is

lar to the introduction of the oraclégmulate and Extract, not possible to extract that bitstring from. On the other

we only give a rough idea. All encryptions and decryptions hand, from the message sent by the adversary, we can
performed by honest agents (with respect to public keys ofrretrieve the nonce as follows. I = ¢(m), the nonce

Rand 4,

uncorrupted agents) are replaced by calls to an encryptioril’ is protected only by terms of the fori, -), {-}ek(,)

or decryption oracle. By performing a lookup in the list of , ZKRande () The pair can directly be parsed, in the
all encryptions produced so far, we can ensure that the de-Case Of{.}R;ndm OrZKEandaiiu(. ..}, we can call the oracles
cryption oracle. is only invoked for ciphertexts not proddice Decrypt an Extract, reoénp;ue?:tively. Since these oracles are
by the encryption oracle. Then tm@'CCA, property guar- 554 ysed by the function (at least for terms where as-
antees that we can replace the encryption oracle by an o

| h i d dréigns randomnes®and,q, and notRand,,), these oracles
acle FakeEncrypt that encryptions random messages (and il answer consistently with the parsing —) ot

thus is independent of its input). Some care has to be takenl’hus we can guess the noriEeleading to a contradiction.

concerning the randomness: We do not guarantee that th?:asesllb) andic) 1 are taken care of similarly.
randomness used by the encryption oracle is used exactly

once, but instead may also use it in the witnesses of zerod is an adversary-generated zero-knowledge proofin

knowledge proofs. However, exploiting théitnulate does case [[Hl), we have th&t = ZK{"d (1 4; b) and thatr;

not need a witness, one can show that the replacement ofs not known (in the sense 1). In this case the

the encryption byFakeEncrypt leads to an indistinguish- —argumentation used for cage (a) cannot be used be@ause

able trace. We refer to the full proof for detalils. does not correspond to a bitstring generated by an honest
agent. However, as in the preceding paragraphs, the adver-

Identifyi_ng_ the underivable subterm_. In qrder to derive a sary can extract the bitstring correspondingteand using
(Eontradlcnon“fromﬁlz.ll)_, we have to identify the subterm of he oracleEztract it can extract the concrete randomness
¢(m) whose *fault” it is thatc(m) cannot be derived. We ¢4rresponding to;. By definition of the functiors, this
will then use this term to construct an attack againstibe anqomness will be the randomness used in an encryption
CCA. For this, we negd the following characterization of un- \,:ih respect to somek(a) performed by an honest agent
derivable messages: (otherwise the functior would have assigned a random-
Lemma 1. LetC be the set of corrupted agents, lef := nessr; € Randag,). We dlstlngwsh_two cases: ¢ C and
_ a € C. If a ¢ C, then the encryption has been generated
¢(m), let S be the set of messages output by honest agents . . : .
using the encryption oraclBncrypt. Being able to retrieve
11Here we really need extraction zero-knowledge and not drdyeix- the randomness used in that encryption contradictsuthe
traction oracleEztract is used. cca property of AE. If a € C, then the randomness has

12

been used to generate the bitstring corresponding to a term

¢ = {t}r2" with a € C. Sincer; is not known, we have

thatS’ ¥ ¢. With an analogous argument as above, we can [11]
see that all bitstrings sent by honest agents can be computed
without actually computing the bitstring corresponding.to [12]
But in this case, that fact that the adversary is able to guess
the randomness used to produds a contradiction. [

and Communications Securityages 132—-145. ACM Press,
2004.

F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and
C. Walstad. Formal analysis of kerberosieoretical Com-
puter Science367(1):57-87, 2006.

R. Canetti and J. Herzog. Universally composable sym-
bolic analysis of mutual authentication and key exchange
protocols. InProc. 3rd Theory of Cryptography Conference
(TCC), volume 3876 oL ecture Notes in Computer Science
pages 380—403. Springer, 2006.

V. Cortier, S. Kremer, R. Kiisters, and B. Warinschi. Gam
tationally Sound Symbolic Secrecy in the Presence of Hash
Functions. InProceedings of the 26th Conference on Foun-
dations of Software Technology and Theoretical Computer
Science (FSTTCS 20Q6)olume 4337 ofLecture Notes in

Computer Sciencgages 176—187. Springer, 2006.
V. Cortier and B. Warinschi. Computationally soundiau

mated proofs for security protocols. Rroc. 14th European

Symposium on Programming (ESOPages 157-171, 2005.
R. Cramer and V. Shoup. A practical public key cryp-

tosystem provably secure against adaptive chosen cipher-
text attack. In H. Krawczyk, editoAdvances in Cryptol-

References [13]

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. IRroc. 4th ACM Conference
on Computer and Communications Secyriptages 36—47,
1997.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography: The computational soundness of formal encryp-
tion. In Proc. 1st IFIP International Conference on Theo-
retical Computer Scieng&olume 1872 of_ecture Notes in
Computer Sciencgages 3-22. Springer, 2000.

[3] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the

[14]

[15]

[4] M. Backes and B. Pfitzmann.

[5] M. Backes, B. Pfitzmann, and M. Waidner.

[6] B. Barak and O. Goldreich.

[8] M. Bellare and P. Rogaway.

applied pi-calculus and automated verification of the direc
anonymous attestation protocol. IEEE Symposium on Secu-
rity and Privacy 2008, May 2008. To appear. Full version
available ahtt p: // epri ht.iacr.org/ 2007/ 289.
Symmetric encryption in
a simulatable Dolev-Yao style cryptographic library. In

Proc. 17th IEEE Computer Security Foundations Workshop i

(CSFW) pages 204-218, 2004.

A compos-
able cryptographic library with nested operations (exéehd
abstract). InProc. 10th ACM Conference on Computer
and Communications Securjtgages 220-230, 2003. Full
version in IACR Cryptology ePrint Archive 2003/015, Jan.
2003)http://epriht.iacr.org/.

Universal arguments and
their applications. Inl7th Annual IEEE Conference on
Computational Complexity, Proceedings of CCG'pages
194-203. IEEE Computer Society, 2002. Online avail-
able athttp://ww. cs. princeton. edu/ ~boaz/
Paper s/ uar gs. ps.

[7] D. Basin, S. Médersheim, and L. Vigano. OFMC: A sym-

bolic model checker for security protocoldnternational
Journal of Information Security2004.

Optimal asymmetric
encryption—how to encrypt with RSA. In A. de Santis, ed-
itor, Advances in Cryptology, Proceedings of EUROCRYPT
'94, volume 950 ofLecture Notes in Computer Science
pages 92-111. Springer-Verlag, 1995. Extended version on-
line available abt t p: / / www. ¢s. ucsd. edu/ user s/

m hi r/ paper s/ oae. ps.

[9] D. Bleichenbacher. Chosen ciphertext attacks agairest p

[16]

(18]

[19]

[20]

[21]

[22]

(23]

ogy, Proceedings of CRYPTO '9%lume 1462 ofl_ecture
Notes in Computer Sciencpages 13—-25. Springer-Verlag,
1998. Online available &ttt p: // epriht.iacr.org/
1998/ 006.

D. E. Denning and G. M. Sacco. Timestamps in key distribu
tion protocols Communications of the ACN4(8):533-536,
1981.

D. Dolev and A. C. Yao. On the security of public key proto
cols. IEEE Transactions on Information Theoi39(2):198—

208, 1983.

S. Even and O. Goldreich. On the security of multi-party
ping-pong protocols. IProc. 24th IEEE Symposium on
Foundations of Computer Science (FOCBages 34-39,
1983.

D. Fisher. Millions of .Net Passport accounts put ak.ris
eWeek May 2003. (Flaw detected by Muhammad Faisal

Rauf Danka).
E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern.

RSA-OAEP is secure under the RSA assumptidaurnal
of Cryptology 17(2):81-104, 2004. Online avail-
able at http://ww.di.ens.fr/~pointche/

Docunent s/ Paper s/ 2004_j oc. pdf .

O. Goldreich.Foundations of Cryptography — Volume 1 (Ba-
sic Tools) Cambridge University Press, Aug. 2001. Pre-
vious version online available &t t p: / / www. Wi sdom
wei zmann. ac. i |/ ~oded/ frag. ht i .

O. Goldreich. Foundations of Cryptography — Volume 2
(Basic Applications) Cambridge University Press, May
2004. Previous version online availablerdtt p: / / waw.

wi sdom wei zmann. ac. il /~oded/frag. htm .
O. Goldreich, S. Micali, and A. Wigderson. Proofs thetig

nothing but their validity or all languages in NP have zero-

tocols based on the RSA encryption standard PKCS. In knowledge proof systemslournal of the ACM38(3):690—
Advances in Cryptology: CRYPTO '98olume 1462 of 728, 1991. Online available it t p: // www. Wi sdom
Lecture Notes in Computer Sciengages 1-12. Springer- wei zmann. ac. i | / ~oded/ X/ gmmj . pdf.

Verlag, 1998. [24] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge

[10] E. Brickell, J. Camenisch, and L. Chen. Direct anonysou

attestation. InProc. 11th ACM Conference on Computer

13

complexity of interactive proof system$&SIAM Journal on
Computing 18(1):186—207, 1989.

http://eprint.iacr.org/2007/289
http://eprint.iacr.org/
http://www.cs.princeton.edu/~boaz/Papers/uargs.ps
http://www.cs.ucsd.edu/users/mihir/papers/oae.ps
http://eprint.iacr.org/1998/006
http://www.di.ens.fr/~pointche/Documents/Papers/2004_joc.pdf
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

[25] J. Groth and R. Ostrovsky. Cryptography in the multiref
model. In A. Menezes, editoilCRYPTQ volume 4622
of Lecture Notes in Computer Sciencpages 323-341.
Springer, 2007. Full version available lat t p: / / ww.
brics.dk/~jg/ Ml tiStringhdel Ful | . pdf.

The definition of extraction zero-knowledge is only
contained in the full version.

[26] R. Kemmerer, C. Meadows, and J. Millen. Three systems
for cryptographic protocol analysidournal of Cryptology
7(2):79-130, 1994.

[27] P.Laud. Semantics and program analysis of computalipn
secure information flow. IRroc. 10th European Symposium
on Programming (ESOPRpages 77-91, 2001.

[28] P. Laud. Symmetric encryption in automatic analyses fo
confidentiality against active adversaries. Rmoc. 25th
IEEE Symposium on Security & Priva@ages 71-85, 2004.

[29] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. IRroc. 2nd International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACA®)lume 1055 of_ecture
Notes in Computer Scienggages 147-166. Springer, 1996.

[30] M. Merritt. Cryptographic Protocols PhD thesis, Georgia
Institute of Technology, 1983.

[31] D. Micciancio and B. Warinschi. Soundness of formal en-
cryption in the presence of active adversariesPtac. 1st
Theory of Cryptography Conference (TCG@plume 2951
of Lecture Notes in Computer Sciencpages 133-151.
Springer, 2004.

[32] R. Needham and M. Schroeder. Using encryption for authe
tication in large networks of computer€ommunications of
the ACM 12(21):993-999, 1978.

[33] L. Paulson. The inductive approach to verifying crypto
graphic protocols. Journal of Cryptology 6(1):85-128,
1998.

[34] S. Schneider. Security properties and CSP Pitac. 17th
IEEE Symposium on Security & Privacgages 174-187,
1996.

[35] D. Wagner and B. Schneier. Analysis of the SSL 3.0 pro-
tocol. InProc. 2nd USENIX Workshop on Electronic Com-
merce pages 29-40, 1996.

A The Abstract Model — Postponed Defini-
tions

In the following, let A; € X.a be pairwise distinct
agent variables (fof € N), and IetXf% € X.n be pair-
wise distinct nonce variables (forj € N). Assume that
X.a\{A; i€ N}andX.n\ {X7 } areinfinite.

By n®7* € Nonce,, with a € A andj, s € N we de-
note distinct nonces. By*7:* € Rand,, Witha € A,j €

Rand,,, s € N we denote distinct symbolic randomnesses.

BY 7.,s we denote a mapping that maps everg Rand,,
to 7o, ‘

For the following definition, we use the following nota-
tion: For an edge A, ginalabeledtree, the free variables
of (I,r) are the variables that occur iror r but are not in

14

the label of any edge on the path from the roop taor are
in{A; :j € [k]} U{X}, :j € N} (where the numbek
of parties and the role-indexwill be clear from the context
below).

Definition 5 (Role). A role tree R is an ordered edge-
labeled finite tree where each edge is labeled by an agent
rule (I,) wherel, r € Pat.

A role for agenti in a k-party protocolis a role treeR
satisfying the following conditions for each nogef R:

1.

For everyr € Rand,g, there is at most one effective
r-subpattern in the labels of the path pqbut that ef-
fectiver-subpattern may occur several times).

. For any subterm of of the form{t}; it holds that

= ek(A;).

. For any subterm dfof the form{¢}R2"¢ it holds thatt

andt’ do not contain free variables.

. For any subterm dfof the formzKR2" ~(Rand*; a; b)

Formula

it holds thata andb do not contain free variables.

. r does not contain _ nor free variables that are not free

in.

. L andr do not contain subterms that are Rand \

Rand,,.

Definition 6 (Formal execution) Let k-party protocolll be
given.

A global stateis a triple (Sid, f, ¢) whereyp is a set of
messages (thadversary knowledgeSid is a finite set of
session ids, and the functighmaps every session idd
in Sid to the current state of the sessieiil. This state is
called thelocal stateand is of the fornti, o, p, (a1, . . ., ax))
wherei € [k] is the index of the role executed in this session,
the partial functions : X — M is a substitution mapping
variables of the agent to messaggss a node in the role
treeII(7), anda; € A is the agent identifier assigned to
role j in this session (thus; is the agent carrying out this
session).

The initial state isj;; = (&, &, Nonceyay).

We allow three kinds of transitions between global states.

Corruption.The adversary corrupts a subset of the par-
ties involved in the protocol and learns their private
keys. This transition can only be applied in the begin-
ning.

corrupt(ai,...,a;)
q ——————

(@, 2, Noncega, U {dk(a;) : 5 € [1]}).

Session initializationThe adversary can initialize new
sessions.

(Sid, f,¢p) 2t (i f).

Heresid := |Sid|+1 is the identifier of the new session
andSid’ := Sid U {sid}. The functionf’ is defined

http://www.brics.dk/~jg/MultiStringModelFull.pdf

as f'(sid") = f(sid") for sid" € Sid and f'(sid) =
(i,0,¢,(a1,...,ar)). Heree is the root of the role tree
I1(z) and the substitution is defined by (A4;) := a;
for all j € [k] ando (X%) = n%* for every X7
occurring inII(7).

e Sending of messagesThe adversary can send mes-
sages to agents.

(Sid, £,) (Sid, £, ¢).

Here we requiresid € Sid, m € M, ¢ - m, andy’ and
1 are defined as follows. We defifiésid’) = f(sid’)
for everysid’ # sid. Let (i,o,p, (ai,...,ax))
f(sid). Thenlet(l, r) be the label of the first outgoing
edge fronmp such that the following holds:
— The messagen matches the patteriry,, siqo.
Let# denote the matcher.
— Letm = 17, sq00. Thenm contains true
proofs.
If no such edge exists, l¢t(sid) = f(sid) andy’ =
p. Otherwise, letf’(sid) = (1,0 U0, p’, (a1,...,ax))
wherep’ is the successor gf along that edge, and let
¢ =pU{m}.

A finite sequence of global states starting wjthwith
the above transitions is called symbolic execution trace
or Dolev-Yao tracefor TI. The set of Dolev-Yao traces for
IT is denotedExec® (I1).

send (sid,m)
-

B The Concrete Model — Postponed Defini-
tions

For the following definitions, we assume that
tape®*'(R) € {0,1}" are uniformly and indepen-
dently chosen for each € A, sid € N, andR € Rand,,.

o If T'= «;, thenC computes; (i.e.,C' is a projection).

o If T = (3;, thenC returnsb; (i.e., C computes a con-
stant function).

o If T = ek(B;) andb,; € A, thenC returns the public
key of agenb; (i.e.,C computes a constant function).

s,m,l

o If T = (T, T>), thenC computesn; := C; b and
meo 1= C;"bl, and then returns the bitstringnl, ma).
o If T = {T’}pl y andb; € A, thenC' computesn’ :=

oyt and then returns the encryption of under the
publlc key ofh; using randomness.

The circuitC; an » EXpects inputsy, ..., 7 of length
n, and inputsay, . .., a, of lengthsly, ..., [,, respectively.
It computesn; := C;i’_‘bl fori=1,2and returnsl if my
ms and0 otherwise.

For a ZK-formulaF' = B(Ty,...,T,) where B i
a Boolean predicate and’ are of the formZKTerm
ZKTerm, the circuit C3"! expects inputs, ..., 7,
lengthn, and inputsuy, . . ., a,, of lengthd, .. ., 1, respec-

tively. It computes; := C;”lf for i € [¢] and returnsB(%).

Types of bitstrings We assume that pairs, agent ids, ci-
phertexts, zero-knowledge proofs, and nonces in the con-
crete model all come for different efficiently recognizable
sets, so that it is meaningful to speak about bitstringsyu ty
pair, agent id, ciphertext, zero-knowledge proof, or nonce
One possibility to achieve this is to add type tags to the bit-
strings. We assume that encryptions are additionally hgge
with their public key. In the case of the type zero-knowledge
proofs, we impose an additional condition. A bitstring of
type zero-knowledge proof is a tuple, F, s, n, [, b) satis-
fying that circuitC' := Cp* Lis defined and the verification
algorithm of ZKC accepts the proof for the circuitC. This

In an implementation, these values would, of course, berestriction on the type zero-knowledge proof has the effect

sampled upon first use. Similarly, we assume thatis
chosen according to the CRS-generation algorithinof
ZK.

For convenience, we will identify elementsdfwith the
bitstrings encoding them.

Definition 7 (Circuits for ZK-formulas) Fix a security pa-
rameter). Let a ZK-formulaF’ of p-arity s, a-arity n and3-
arity m be given, as well as bitstrinds, . . ., b, € {0,1}*.
Letly,...,l, € N.

For a ZK-termT', the circuitC' = C;’,’g’l is recursively

defined as follows:

e It expects inputs+,...,r, of lengthn, and inputs
ai,...,a, oflengthdy, ..., 1,, respectively.

e If s is not thep-arity of T, or n is not thea-arity of
T, or |l] # n, or |b| is not theS-arity of T, thenC' is
undefined.

o If T =ek(B;) or T' = { -}, 5, Withb; ¢ A, thenC'is
undefined.

15

that only valid proofs can be assigned to variat{es

Definition 8 (Constructing bitstrings)Let a session idid,
an agenta € A, a patternr, and a mapping- from vari-
ables to bitstrings be given. We definistruct®*(r, 1)
recursively as follows:

Caser = z € X: If 7(x) is defined, return-(z). Other-
wise, abort.

Caser = ek(z): If a := 7(z) is not defined, abort. Oth-
erwise, retrieve the public key: belonging to agent id. If
no such public key exists, abort. otherwise retpin

Caser = (ry, 7). Setm; := construct®**(r;, 7) for
1 = 1,2. If one of the invocations aborts, abort. Otherwise
return the pair(ms, m2>

Caser {r"}E ek(z)- Let R tape®*(R), let
a = 7(x), and let pk be the public key of agent. If
a or pk is undefined, abort. Otherwise invoke’' :
construct®*“(r' 7). If it aborts, abort. Otherwise com-

pute the encryptiom of m’ under public keyk using ran-
domnessk. Returnm.

Caser = ZKR(Ry,...,Ri;a1,...,an;b1,...,bs): Let
R := tape®*(R) and R; := tape™*'*(R;) for i = [I].
If one of these is undefined, abort. For alle [n], com-
puted; := construct®**(a;,), and for alli € [s], com-
puteBi := construct®*(b;, 7). If one of these invocations

aborts, abort. Otherwise sét := |a;| and letC' := C;Zl

Setw = (E, a). Use the proverP of ZK to produce a
proof z for circuit C' and witnessv where the prover uses

to a concrete local state, and is the set of corrupted par-
ties.

A concrete local statis of the form(i, 7, p, (a1, . .., ax))
wherei € [k] is the index of the role executed in this session,
the partial functions : X — {0, 1}* is a substitution map-
ping variables to bitstringgy is a node intI(7), anda; € A
is the agent identifier assigned to rglén this session.

Let a probabilistic interactive Turing machingl be
given. Theconcrete trac&xecy; 4(n) for security parame-
tern is a (distribution over) sequences of global states given

randomness. If this fails (e.g., because the witness does by the following algorithm.

not fulfill the statement), abort. Otherwise return
In any other case, abort.

Definition 9 (Parsing bitstrings) Let a bitstringm, a pat-
ternl, and a mapping from variables to bitstrings be given.
We defingarse®**(m, [, 7) recursively as follows:

Casel = x € X: If the type ofm does not match the
type ofz[4 abort. If 7(x) = m, then returnr. If 7(z) is
defined, but-(z) # m, abort. Otherwise returar[x := m].

Casel = ek(z) € ek(X.a): If mis not of type ciphertext,
abort. Otherwise, if there is an agentidsuch thatn is the
public key ofa and 7(z) is not defined or equals, return
7(z)[x := a]. Otherwise abort.

Casel = (ly,l3): If m is not a pair, abort. Otherwise
parsem as (mq, mo) and let7’ := parse®**(my,ly,7)
and 7" := (ma,l2, 7). If one of the invocations aborts,
abort. Otherwise returr”.

Casel € {Pat}fiy¢, orl € ZKFn,,(Rand”; Pat™;

Pat*): Invokem’ := construct®*(l, 7). If m # m/,
abort. Otherwise, returm.

Casel = {l’}gk(Aj) with j € [E]: If m is not an encryp-
tion, abort. Otherwise, extract the public ke¥ from m.
If pk is not the public key belonging to the agentrigd;),
abort. Otherwise decrypt: with the secret key belonging
toa := 7(A;) and letm’ be the corresponding ciphertext.
If this fails, abort. Otherwise let’ := parse®*'d(m/, I,)
and return7’ (or abort if the invocation aborts).

Casel € ZKg(_*;_*;mi,...,my): If m is not of
type zero-knowledge proof, abgft. Otherwise,m =:
(z,F' s,n,l,b). If F # F’', abort. Otherwise fori =
1,...,n run the following: ; := parse®*(b;,l;, 7i_1)

with o := 7. If one of the invocations aborts, abort. Other-

wise returnr,, .
In any other case, abort.

Definition 10 (Concrete execution model)A concrete
global stateis a triple (Sid, g, C') whereSid is a finite set
of session-ids, andis a function mapping evenid € Sid

121f X.~ this implies invoking the verification algorithm &C onm.

13Note that due to the definition of roles, this will only needbedone
by agenta itself.

14By our definition of the type zero-knowledge proof, this ifeplinvok-
ing the verification algorithm o£XC.

16

e Whenever a public or secret key of some agesat A
is used for the first time, the key pair is generated using
the key generation algorithm of€. We further gived
access to the public keys of all agents.

e The initial global state i<, @, @). In the first step,
A is invoked with input”.

e When A outputs corrupt(aq,...,a;) with
ai,...,a, € A in its first activation, the adver-
sary is given the secrets keysaf, ..., a, as input.
The next global state i&z, @, {a1, ..., a;}).

e When A outputsnew(i,aq,...,a;) in global state
(Sid, g,C) wherei € [k] anday,...,ar € A, the
next global state i¢Sid’, ¢/, C).

Here sid := |Sid| + 1 is the identifier of the new
session andid’ := Sid U {sid}. The functiong’
is defined ag/(sid") = g(sid") for sid’ € Sid and
g'(sid) = (i,7,¢,(a1,...,ax)). Heree is the root of
the role treell(i) and the substitution is defined by
o(Aj) = ajforall j € [k] ando (X7,) is initialized
with a randonw)-bit nonce for ever;Xﬁh occurring in
I1(7). The adversary is given empty input.

e When A outputs send(sid,m) in global state
(Sid, g,C) wheresid € Sid, the next global state is

(Sid, ¢’, C).

Here ¢'(sid") := g(sid") for all sid # sid’,
g'(sid) == (7',i,p',(a1,...,ax)) is computed from
(1,4,p, (a1,...,ax)) := g(sid) as follows:

For each edge br, p” starting inp (in their natural
order, remember that the role trélé(i) has ordered
edges), first invoke” := parse®*(m, [, 7). If this
fails, continue with the next edge. Then invake:=
construct®-*(r, 7). If this fails, continue with the
next edge. Otherwise set := 7/ andp’ := p”, let
the next input of4 bem’, and do not proceed with the
next edges.
If no edge lead to a definition of, p’ and an output
for A, setr’ := 7 andp’ := p and let the next input of
A be the empty string.

e When the adversary outputs anything else, the exe-
cution terminates and the concrete trace ends at this
point.

C Proof of[Theorem 1

Proof. In the following, let ak-party protocolll and a
polynomial-time adversaryl be fixed. We have to show
that

Pr[Execf; 4(n) € {t° : 3t° € Exec’(II) such that® < t°}].

is overwhelming in.

For this, we will give a construction of an injective
mappinge : {0,1}* — M that may depend om as
well as of some of the values occurring Execy; 4(n)

such as the CRS, its extraction trapdoor, or the pri-

vate keys of the parties.

all ciphertexts that use a public key corresponding to an ex-
istent agent. All other ciphertexts may be safely considlere
as invalid, since no honest party will ever be able to decrypt
them.

To extract the witnesses from the zero-knowledge proofs,
we use the extractability property &C. Using the extrac-
tion trapdoor for the CRS; can recover the witness for the
proof and use it for further parsing.

However, extracting the randomness is non-trivial. In
general, an encryption scheme may not allow to extract
the randomness used when decrypting, even given knowl-
edge of the secret k@. Moreover, some of the random-
ness might even be information-theoretically lost, so even

We extend this mapping to an inefficient mapping would not be able to recover that ran-

concrete traces as follows: A concrete execution tracedomness. Similar reasoning applies for the zero-knowledge

te (Sid1,91), - .-, (Sidn, gn) is mapped to an abstract
trace &(t°) := (Sidy, f1,¢1),...,(Sidn, fn, on) as fol-
lows. We letf,(sid) = (co 7,4,p,(ay,...,ax)) where
(1,4,p, (a1,...,ax)) := ge(sid), and we define the adver-
sary’s knowledgep, as follows: We setp; := Nonceygy -
For ¢,+1 we distinguish three cases. |If theth transi-
tion was anew-transition, we setpy; := ;. If the ¢-
th transition was &orrupt(aq, ..., a;)-transition, we set
weg1 = e U {dk(a;) : j € []}. If the ¢-th transition was
asend(sid, m)-transition, letm be defined as in the corre-
sponding part df Definifion|6 and set.; := ¢, U {m} if

m is defined andpy; := py otherwise.

We will then show that it is chosen according to the
distribution Execy; 4(n), with some overwhelming proba-
bility 1 — 1(n) we have that(t®) is a Dolev-Yao trace.

Since¢ is injective, we have that—! is an injective
partial function, and by construction eft¢) we have that
c(t) <" ¢, Thus, assuming that(t®) is a Dolev-Yao
trace with probabilityl — 1, we have

Pr[Execy; 4(n) € {t° : 3t° € Exec®(II)
such that® < t°}] > 1 — p(n).

Thus in the remainder of this proof, lét be distributed
according tdExecy; 4(n). We will construct and show that
¢(t¢) is a Dolev-Yao trace with overwhelming probability
which then establishes the theorem.

The mapping &. The mappingec works by parsing any
messagen € {0, 1}* in a manner similar to thparse func-
tion from[Definition . However, in contrast tearse, the
mappingc has to parse any bitstring and not only terms
matching some pattern. In particularhas to extract the

witnesses of the zero-knowledge proofs and decrypt all ci-

phertexts. Moreoveg,will have to assign symbolic random-
ness fromRand to any ciphertext or zero-knowledge proof.
Decrypting the ciphertexts is easy, since we alloto

proofs. Fortunately, it turns out not to be necessary that
identifies the actual randomness, but only some value such
that different encryptions or proofs of the data will resalt
different terms. Thus, instead of trying to extract the ran-
domness from a messagegenerated by the adversary, we
interpret the whole message as its randomness and map
m to a symbolic randomneds)’, (depending on whether
m was generated by an honest party or the adversary).

Furthermore, we will define in a way so that it can be
efficiently evaluated without decrypting the ciphertexeésg
erated by honest agents or extracting from zero-knowledge
proofs generated by honest agents. This can be done be-
cause if an honest agent explicitly computed the bitstring,
we simply store the inputs of that operation.

For the actual definition of, we fix arbitrary (but ef-
ficient) injective mappingsRaq4, : {0,1}* — Randay,
Badw : {0,1}* — Nonceyg,, andG : {0,1}* — Garbage
and write their arguments as superscripts. Hefg, de-
notes the randomness used by the adversary to construct the
messagen. Similarly, B, denotes the nonce whenm
is generated by the adversary. And finadl;" will be used
to abstractly represent unparsable bitstrings.

The termé(m) € M is then recursively defined as follows:
Case'm e A”. Returnm.

Case" m is of type public key” Finda € A such that
m is the public key for. If no sucha exists, returrek(G™).
Otherwise returrek(a).

Case"“m is of type pair”.
return{é(my), é¢(ms)).

Parsem as (mi, m2) and

Case" m is of type nonce” First check whethem
was generated as the value of some variaibjg by some
honest agent in some sessiorid. More exactly, check
whether a global statsid, f, ¢) occurs in the trace where
f(sid) = (i,0,...,...) for somei ando, ando (X7)

access the secret keys of all agents. This allows to decrypt 15E.g., the Cramer-Shoup cryptosystem[cf_footnote 5.

17

m for somej. If so, returm®7:5'¢, (Remember thai®7-s%

is the nonce that is assigned in the abstract model to thezik:"

nonce varlabIeXf4 in sessionsid run by agent:..) Other-
wise, returnB”

adv*

Case"m is of type ciphertext aneh has not been gener-
ated by an honest agent” Extract the public keyk
contained inn. Letek(a) := ¢(pk). If a € Garbage, return

{Gm}i%;). Otherwise, letsk be the secret key of ageat
and decryptm usingsk and call the resuhtn’ If this fails,

return{G™} k‘z‘“) Otherwise, returr{m’} ‘”“

Case"m is of type ciphertext andh has been generated
by an honest agent” l.e., m was the result of a call
construct™** ({t} [), 7) by agenta in sessionsid for
someR € Rand,,, € X.a, and some mapping from
variables to bitstrings. Let be the bitstring that was com-
puted byconstruct®** (¢, 7). Let thent” := &(t') (this
gives the same result as applyiatp all variables inr and
then computing” := t7’ wherer’ is the mapping resulting

a,R,sid

from that substitution). Then retuf”}7, (Remem-

ber thatr® ¢ is the randomness that |s actually used in
the abstract model when ageninstantiates a pattern with
randomnes® in sessiorsid.)

Case“m is of type zero-knowledge proof and has
not been generated by an honest agent” Extract
the formula F' and the statement from m. Use the
ZK extraction algorithm and the extraction trapdoor of
ZK (cf. [Definition 1) to extract the witness of z
Parsex as a tuple(by,...,bs), and parsew as a tuple
(ri,...,r5a1,...,a,). Letd; := &(b;) anda), := é(a;)

for all <. To compute the abstract randomnesir somei,
proceed as follows: Let be an arbitrary subterm af of
the forme = {¢'};?. Construct the bitstring’ correspond-
ing toe. Thene’ will be a bitstring of type ciphertext. Let
¢ := ¢(e’). Thene” will have the form{...}"". Set

r, .= r’. If any of these operations fails (which can only
happen if the ZK extraction algorithm fails aris not a wit-
ness ofr under the circuitx), we returnG° and say that a
ZK-break occurred (the valug® is arbitrary, we will later
see that ZK-breaks occur only with negligible probability

anyway). Otherwise, returﬁK};%’ (r',d',b").

Case “m is of type zero-knowledge proof
and m has been generated by an honest
agent”. l.e., m was the result of a call
construct“’Sid(ZKg(rl,...,rl;al,...,an;bl,...,bs),r)

by agenta in sessionsid for some R,r; € Randgg,
a;,b; € M, and some mapping- from variables
to bitstrings. Leta, be the bitstring that was com-
puted by construct®**¢(a;,7) and b; analogous. Let

then a] := ¢&(a}) (this gives the same result as ap-
plying ¢ to all variables in7 and then computing
al := a;7/ where 7' is the mapping resulting from

18

that substitution). Definé; analogously. Then return
o (rarosid o paresid, gy - (Remember that
“R“d is the randomness that is actually used in the
abstract model when ageant instantiates a pattern with
randomnes® in sessiorsid.)

Case’ m does not match any of the above cases” Re-
turnG™.

Note thate is injective unless a ZK-break occurs: For
pairs and agent ids this is obvious. In the case of nonces,
garbage, encryptions and zero-knowledge proofgener-
ated by the adversary, this follows since we include the mes-
sagemn explicitly in the superscript oB?%, , G™, andR"",
respectively. For nonces, encryptions and zero-knowledge
proofs m generated by honest parties, this also follows,
since we assigm the abstract messagevhose evaluation
resulted inm, and since repeated evaluationtadoes not
yield different values in a concrete execution (the random-
ness to be used is explicitly referenced)ineach ternt can
only be assigned to a single value

Finally, we see that ZK-breaks occur only with negligi-
ble probability: A ZK-break implies that a witnessis ex-
tracted from a zero-knowledge proof that is not a witness
for the statement of that proof, although the proof has been
successfully verified. This is a contradiction to the profof o
knowledge property o£K.

The trace ¢(t°) is a pre-DY trace. In the following, by

a pre-DY tracewe denote an abstract trace that satisfies
[Definition 8 with the (possible) exception of the condition
that in the transition

(Sid, £, p) 20 (Sid, £,),
we havey F m. That is, in a pre-DY trace we allow the
adversary to send messages it cannot derive.

To see that(t¢) is a pre-DY trace with overwhelming
probability, we have to check that for atiythe ¢-th transi-
tion in ¢(¢¢) is a valid transition. In the case ebrrupt
andnew transitions, this follows directly from the defini-
tion of the corresponding transitions in the concrete execu
tion and from the construction aft°) (and in particular of
the knowledgep,, 1 in that trace). We therefore consider
the case that théth transition is a transition of the form

. send(sid,c(m)) .
(Sid, f,) —————— (Sid, f, ¢').

First note that all (honestly generated) nonces and all ran-
domnesses of honest agentgirare assigned different val-
ues with overwhelming probability. Similarly, any two zero
knowledge proofs or encryptions (unless generated with the

same randomness) produced by honest agents are differerte enough to show that in evesgnd(sid, m) transition in

because of the unpredictability propeﬁy. the concrete model, we have that
Thus, assume that all nonces, randomnesses, encryp- o
tions, and zero-knowledge proofs of honest agents are Nonceqq, U {dk(a) : a € C}U {e(m) : m € S¢} + e(m)

assigned different values.

Then a detailed case analysis over the construction
of parse and the definition of thesend transition in
the concrete model shows that for a concrete transition
send(sid, m) with local state(i,7,p, (a1,...,ar)), we
have that the invocation” := parse®*(m,[,1) suc-
ceeds if and only if(m) matchegy,, siqo Whereo := cor.
Furthermore, if it matches with matchér we have that
cUl=cort".

Similarly, a detailed case analysis over the construc-
tion of construct and the definition of thesend transi-
tion in the concrete model shows that for a concrete tran-

sition send(sid, m) with local state(i, 7, p, (a1, . .., ax)),)) _
we have that the invocatiom’ := construct® 5 (r,) Simulating the zero-knowledge proofs. As a first step

succeeds if and only ify,, 4iq(¢ o 7) contains true proofs. towards a contradiction, we will replace all zero-knowledg
(Note that the condition of having true proofs corresponds Proofs by fake proofs produced by the simulator. For this,

to the fact that the construction of a zero-knowledge proof Ve firstintroduce two oraqles into our execution: A proof or-
in construct will fail if the witness constructed is not ac- acleFroof and an extraction oraclBztract. Whenever an

tually a witness.) And in this case, we hawgn’) = honest agent wants to produce a zero-knowledge proofs of
ar 5ia (€0 T") = 10, 51400 some statement with witnessw, it invokes Proof (z, w),
Thus the first edge satisfying the conditions in the defini- @1d when the implementation afextract the witness of

tion of thesend transition in the abstract model is the same SOMe zero-knowledge proof it invokes Extract(z). Note
as the first edge satisfying the corresponding conditions inthat for this, it must be guaranteed that each zero-knoweledg

the concrete model. From this we can conclude that proof produced by honest agents uses a different random-
nessk[H and that this randomness is only used for the zero-

(with overwhelming probability).

In order to prove this, we will assume that this is not the
case, i.e., that with non-negligible probability, in stem
messagen is sent such that

Nonce,qy U {dk(a) : a € C} U {e(m) : m € S¢} ¥ ¢(m)

2)
From this we will derive a contradiction to the crypto-
graphic assumptions used in the theorem by transforming
the concrete execution in several steps into an adversary
against thenp-cca assumption.

(Sid, f,) send (sid,e(m)) (Sid, ', ¢'). knowledge proof. By Definitionl5, we know that for any
o T randomness, there is at most one effective-subpattern
is a valid transition. Note that the faetm’) = 4, w00 in any path of the role tree of any agent. If this effec-

also implies thap’ = ¢U{&(m’)} wherem/ is the message tive R-subpattern is a term of the for@Kf(...), thenR

passed to the adversary in the concrete execttiGhsuch ~ does not appear in the witness of any zero-knowledge proof

a message was given to the adversary). since terms of the fornZKl{f(. ..) may not appear in ZK-
formulas. Thus any randomnessthat is used for some

Thus we have shown that with overwhelming probabil- ZK-proofis used only for that proof (the proof may be per-
ity, 2(¢°) is a pre-DY trace. Furthermore, from the analysis formed several times vyith the same witness, statement and
of the send transition we know tha, = {dk(a) : a € _randomness_, but in this case tﬁ’e_oof oracle will not be
C} u{e(m) : m € S;} whereC denotes the corrupted invoked again but.the old result will be reused).
agents ands, the messages given to the adversary in the ~ Note the following facts:

send transitions in the concrete model up to the transition ©® The oraclefztract is never invoked with a proafthat
leading toy,. has previously been output Broof. This holds since

¢ by definition only extracts proofs that have not been
generated by an honest agent, and only honest agents
useProof.

e The oracleProof is never invoked with(z, w) such
that w is not a witness ofe. This holds since by
[Definition 8 honest agents check whetheiis a wit-
ness before constructing a proof.

The trace ¢(t¢) is a Dolev-Yao trace. We will now pro-
ceed to show that(t°) is a Dolev-Yao trace with over-
whelming probability. Since we already know tletc) is
a pre-DY trace, and that the adversary’s knowleggen
the ¢-th step ofc(t€) is ¢, = Noncegq, U {dk(a) : a €
cru{e(m) : m € S¢} (whereC denotes the corrupted

agents and,; the messages given to the adversary), it will ~ "Here and in the following, when we reason about a randomness
R € Randg in the concrete model, we mean the symbolic vaiinat is

18which holds forZ K by assumption and which can be easily seen to used to select the corresponding bitstring from the randigpa tising the
also hold for anyND-CCA secure encryption scheme. function tape.

19

Hence, since both the execution of the concrete trace, as bitstring). Thus we do not need to access the randomness
well as the application of the mappi@gun in polynomial- R used by the encryption orackencrypt directly.

time, we can use the fact th&k has the extraction zero- We can further change the invocations of the decryption
knowledge property and replace tReoof oracle by asimu- oracle as follows. If a ciphertextis to be decrypted with
lation oracleSimulate using the simulation trapdoor of the respect talk(a) that was previously returned by the oracle
CRS such that(t¢) (which is the output of aefficientfunc- Encrypt for some plaintextn with respect tek(a), then do
tion ¢) is computationally indistinguishable in both cal®s. not call Decrypt but use the plaintext: directly. We end

It can easily be seen that it can be checked in polynomial-up being in a situation wherBecrypt is only invoked for
time whether a given abstract trace is a Dolev-Yao trace.encryptions that have not been returneddy:rypt. Hence,
Thus from the computational indistinguishability of the ab becauseA€ is IND-CCA secure, we can repladencrypt by
stract traces in both cases, it follows that the probability an oracleFakeEncrypt that instead of a plaintext expects
that the abstract trace is a Dolev-Yao trace changes onlyonly its lengthl, and that returns the encryption of a ran-
by a negligible amount when replacidtyoof by Simulate. dom string of length. This will lead to a computationally
Thus [2) still holds with non-negligible probability. Note indistinguishable trace(t¢), and thus[{R) still holds with
further that in contrast t@roof, the oracleSimulate only non-negligible probability.

expects the statementas input, but no witness.

Identifying the underivable subterm. In order to derive
Using fake encryptions. The next step towards deriving a contradiction fron{{2), we have to identify the subterm of
a contradiction is to replace the encryptions created by honé(m) whose “fault” it is thaté(m) cannot be derived. We
est agents by fake encryptions. l@tdenote the set of cor- will then use this term to construct an attack againstibe
rupted agents. Since th@rrupt transition must be the ccA. For this, we need the following characterization of un-
first transition,C' is known whenever an encryption has to derivable messages:

be produced. We can now introduce an encryption oracle . ,

Encrypt and a decryption oracl®ecrypt that handle en- ;im{?ﬁj) FC'LXEC Cg} S;\Iin%eM arfsjé/ﬁ ée;l*/'l ;nﬁjssr:i th;t
i i H : adv -

cryptions and decryptions performed by honest agents WIthM7 $ do not contain a subterm of the fordi(A). Assume

respect to any keyk(a) or dk(a) witha € A\ C. . .
Again, we have to verify that the randomness used forfurther_thatM contains true proofs. We say€ Rand is
knownif » € Rand,g4, Or there area € C andt € M such

an encryption is never reused. Fix a randomriedbat is) -
used in some encryptian := {t}i(a). Again, we exploit that 5" I- {t}ek(a)'.

that for any randomneds, there is at most one effective- Then there exists a terffi € M and a contextD) such
subpattern in any path of the role tree of any agent. In thisthatM :_D[T] _and all terms on the path froth/ = D[]
case, it will bec. Thenc may occur directly as a subterm of to T (notincludingT) are of the form

the message to be sent, or it may result from substituting the () or {.}Randadv or ZKRandad,U()

p, ., 3 in a ZK-formulaF with some other terms. Thus the ’ ek(-) Formula 1
randomnes$ may be used in three places: In the compu-
tation of the bitstring corresponding ¢oin the verification
whether the witness used for some ZK-proof with some
formula F' is valid, and as part of the witness The first Rand
case is a normal encryption and thus can be replaced by algb) T= {'}ek(a)ag’ or

invocation of Encrypt. The third case is captured by the () T = ZKF (..., or

fact that we do not need to construct the witnessince the (d) 7' = ZK{2"= (1 4 b) and for some, r; is not known.
oracleSimulate introduced above does not need a witness.

It remains to see that we can check whether the witness Proof. We prove the lemma by structural induction of.

is valid without explicitly constructing it or accessingeth N the base caséy/ is a nonce, an agent identifier, a public
randomnessk. However, any ZK-term contained in the key, or garbage. In the last three cases, we save M/, so
ZK-formula F will, after substituting the witness, contain the lemmais notapplicable. }/ is a nonce, we distinguish
R only in subterms that are equal to(otherwisec there ~ M € Nonceag, andM € Nonce,,. In the first cases’ -
would be more than one effectiie-subterm). For these M holds, thusl/ is not applicable. In the second case, the

Furthermore, we have thef’ ¥ T and thatT" satisfies one
of the following conditions:
(@) T € Nonce,g, Or

subterms, we reuse the result of the invocatiomotrypt conclusion of the lemma is fulfilled witlh" := M.

(or, if ¢ has not been evaluated yet, invokecrypt now In the induction step we distinguish the following cases:

and reuse the result later when it is needed for constructing-gge« 3 — (My, Ma)". SinceS’ ¥ M, we have
18Here we really need extraction zero-knowledge and not drdyeix- S ¥ M, for Somel: € {1,2}. Hence there exists a sub-

traction oracleEztract is used. termT of M; satisfying the conclusion of the lemma fif;,

20

and thisT is also a subterm aof/ satisfying the conclusion
for M.
Rand

Case* M = {M'}R% or M = ZKZ2"

) In
) . Foana()
these case® := M %ulfllls the conclusion of the lemma.

Case’ M = { M} In this case, sincé ¥ M
andS F ek(a), we have thatS ¥ M’. Hence there exists
a subternil” of M’ satisfying the conclusion of the lemma
for M’, and thisT is also a subterm ol satisfying the
conclusion forM.

Case“M = ZK{«(rq:b) and all r are known”,
Sincer are known, if we had’ + a, b we would also have
S’ + M. Thus for someM’ € {a,b} we haveS’ ¥ M’.
Hence there exists a subtefirof M/’ satisfying the conclu-
sion of the lemma fol/’, and thisT is also a subterm of

M satisfying the conclusion fal/ .

Case“ M = ZK{9w(r:q:b) and one of ther is not
known”. ThenT := M fulfills the conclusion of the
lemma.

O

In a trace satisfyind {2), we can apply this lemma with
C' being the corrupted agents afd:= {¢(m) : m € S}
being the messages up to théh step, andV/ := ¢(m) be-
ing the message in tifeth step. The condition th&t, A/ do
not contain subterms of the fordk(A) is fulfilled since the
functione by definition never outputs such terms. Similarly,
¢ will not output anM that does not contain true proofs
sincec checks the witnesses it extracts. Siride (2) holds with
non-negligible probability, we have that with non-nedbigi
probability, a subterr” of M as ifLemmalR exists.

The termT satisfies one of the four propertigs[(h—d). In
the following, we will examine each of these conditions sep-
arately and in each case derive a contradiction.

T is a nonce. In caselfn) we havé’ ¢ Nonce,,. Since

S" ¥ T, for any messagen sent to the adversary, the
nonceT" occurs in¢(m) only inside an encryption (with a
public keyek(a) with a ¢ C) or inside the witness of a

other hand, from the messagesent by the adversary, we
can retrieve the nonce as follows. M = ¢(m), the nonce
T is protected only by terms of the forgn, -), {-}Randea

k()
or ZKEandsi (). The pair can directly be parsed, in the

case off -} {7 or ZKianie (...), we can call the oracles
Decrypt and Extract, respectively. Since these oracles are
also used by the function (at least for terms where as-
signs randomnes8and, 4, and notRand,,), these oracles
will give answers consistent with the parsing = ¢(m) of

m. Thus we can guess the nori€avhich leads to a contra-

diction.

T is an honestly-generated encryption or zero-
knowledge proof. In the cased{b) andi(c) bf Lemmh 2,
completely analogous reasoning to case (a) applies.
these cases, the terf will correspond to an encryption
or zero-knowledge proof that was generated by honest
agents. Since zero-knowledge proofs and encryptions have
the unpredictability property, we get a contradiction by
showing that the adversary can gu&ssvithout 7' being
used.

In

T is an adversary-generated zero-knowledge proof. In
case[(tl), we have that = ZKF2"% (1 ¢: p) and thatr; is
not known (in the sense 2). In this case the argu-
mentation used for the casesa—c) cannot be used because
T does not correspond to a bitstring generated by an honest
agent. However, as in the preceding paragraphs, the adver-
sary can extract the bitstring correspondingtaand using

the oracleFEztract it can extract the concrete randomness
corresponding to-;. By definition of the functiory, this
randomness will be the randomness used in an encryption
with respect to somek(a) performed by an honest agent
(otherwise the functiom would have assigned a random-
nessr; € Rand,q,). We distinguish two cases: ¢ C and

a € C. If a ¢ C, then the encryption has been generated
using the encryption oraclBncrypt. Being able to retrieve

the randomness used in that encryption contradicts\the

ccA property of AE. If a € C, then the randomness has

zero-knowledge proof. Since honest agents construct such,oq ;sed to generate the bitstring corresponding to a term

encryptions and zero-knowledge proofs using the oracles

Simulate and FakeEncrypt, the message: can be com-
puted without knowing the bitstring correspondingZt@d
Then the value ofl" is only used in comparisons, namely
when checking whether a given witnessa) is valid or to
perform pattern matching. Thus it might be that these com-
parisons leak information about the norit€up to one bit

per comparison). However, it is easy to see that only by
comparing (polynomially many) values 1 it is not possi-

ble to gues§” with more than negligible probability. On the

19These oracles expect only thength of the witness or plaintext, re-
spectively. This length can be computed since the lengthehbnce is
fixed and thus known.

21

¢ = {t}5" with a € C. Sincer; is not known, we have
thatS’ ¥ ¢. With an analogous argument as above, we can
see that all bitstrings sent by honest agents can be computed
without actually computing the bitstring corresponding.to

But in this case, that fact that the adversary is able to guess
the randomness used to produde a contradiction. [

	1 Introduction
	2 Zero-Knowledge Proofs
	2.1 Abstract Zero-Knowledge Proofs
	2.2 Concrete Zero-Knowledge Proofs

	3 The Abstract Model
	4 The Concrete Model
	5 Computational Soundness
	Appendix
	A The Abstract Model -- Postponed Definitions
	B The Concrete Model -- Postponed Definitions
	C Proof of Theorem 1

