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Abstract Needham-Schroedéer [DS81, N$78], carefully designed de-
facto standards like SSL and PKCS_[W$96, Ble98], and
The abstraction of cryptographic operations by term alge- current widely deployed products like Microsoft Passport
bras, called Dolev-Yao models, is essential in almost all [Fis03] and Kerberos [BCX6]. Hence work towards the
tool-supported methods for proving security protocols: Re automation of such proofs started soon after the first pro-
cently significant progress was made in proving that Dolev- tocols were developed. From the start, the actual crypto-
Yao models offering the core cryptographic operations such graphic operations in such proofs were idealized into so-
as encryption and digital signatures can be sound with re- called Dolev-Yao models, following [DY83, EGE3, Mei83],
spect to actual cryptographic realizations and securitfi-de €.9., seel[KMM94, Sch96, AG9[7, Low96, Pau98, BMV04].
nitions. Recent work, however, has started to extend DolevThis idealization simplifies proof construction by freeing
Yao models to more sophisticated operations with unique seproofs from cryptographic details such as computational re
curity features. Zero-knowledge proofs arguably contitu ~ strictions, probabilistic behavior, and error probalgkt It
the most amazing such extension. was not at all clear from the outset whether Dolev-Yao mod-
In this paper, we first identify which additional proper- €ls are a sound abstraction from real cryptography with its
ties a cryptographic zero-knowledge proof needs to fulfill computational security definitions. Recent work has largel
in order to serve as a computationally sound implementa-Pridged this gap for Dolev-Yao models offering the core
tion of symbolic (Dolev-Yao style) zero-knowledge proofs; Cryptographic operations such as encryption and digial si
this leads to the novel definition of symbolically-sound ~ natures, e.g., see [AROD, Lau0l, BPWO3, BF04, Lau04,
zero-knowledge proof systemWe prove that even in the [MWO04,[CWO05]CHOB].
presence of arbitrary active adversaries, such proof syste While Dolev-Yao models traditionally comprised only
constitute computationally sound implementations of sym-Pasic cryptographic operations such as encryption and dig-
bolic zero-knowledge proofs. This yields the first computa-ital signatures, recent work has started to extend them to
tional soundness result for symbolic zero-knowledge groof more sophisticated primitives with unique security feagur
and the first such result against fully active adversaries of that go far beyond the traditional goal of cryptography to

Dolev-Yao models that go beyond the core cryptographic solely offer secrecy and authenticity of communication.
operations. Zero-knowledge proofs constitute the most prominent

and arguably most amazing such primitive. A zero-
knowledge proof consists of a message or a sequence of
) messages that combines two seemingly contradictory prop-
1 Introduction erties: First, it constitutes a proof of a statemente.g,
x = "the message within this ciphertext begins with

Proofs of security protocols are known to be error-prone that cannot be forged, i.e., it is impossible, or at least-com
and, owing to the distributed-system aspects of multiple putationally infeasible, to produce a zero-knowledge proo
interleaved protocol runs, awkward for humans to make.of a wrong statement. Second, a zero-knowledge proof does
In fact, vulnerabilities have accompanied the design of not reveal any information besides the bare fact thedn-

such protocols such as early authentication protocols likestitutes a valid statement. Zero-knowledge proofs were in-
troduced in[[GMR8D], they were proven to exist for virtu-

*A short version of this paper appears at CSF 2008 [BU08]. ally all statementd [GMWZ91], and they in particular serve




as the central ingredient of modern e-voting and attestatio 2 Zero-Knowledge Proofs

protocols such as the Direct Anonymous Attestation (DAA)

protocol [BCCO4]. In this section, we first introduce our modeling of ab-
A Dolev-Yao style (symbolic) abstraction of zero- stract(symbolic)zero-knowledge proofsin an intuitivena

knowledge proofs has recently been put forward nertofamiliarize the reader with our notation and to prepar

in [BMUOS8]. The proposed abstraction is suitable for the ground for the examples discussed below. A formal

mechanized proofs and was already successfully usedsemantics will be given to these expressionb in Seciion 3.

to produce the first fully mechanized proof of central We afterwards review concrete zero-knowledge proofs, i.e.

properties of the DAA protocol. However, no computa- Zero-knowledge proofs in the cryptographic setting. Our

tional soundness guarantee for this abstraction has beeparticular focus is on identifying which standard and more

established yet, i.e., it is not clear if security guarastes  sophisticated properties such a proof needs to fulffill in or-

tablished using the symbolic abstraction of zero-knowsedg der to serve as a cryptographically sound implementation

will carry over to protocol implementations relying on Of abstract zero-knowledge proofs.

cryptographic zero-knowledge proofs, or which of the

various standard or nonstandard additional properties of2.1 ~Abstract Zero-Knowledge Proofs

zero-knowledge proofs would be required to achieve this

computational soundness result. We start with an example that involves a zero-knowledge
In this paper, we first identify which standard and Proof of medium complexity. Assume that an agénex-

which more sophisticated properties a cryptographic zeroPECts & message and is supposed 1o answer with an en-
knowledge proof needs to fulfill in order to serve as a Cryptionc := {{<<m7n>aml>}il(A)}ek2(S) for a random
computationally sound implementation of symbolic zero- noncen, a valuem’ € {my, ms, m3} and for some agents
knowledge proofs. This process culminates in the novel A and.S. Hereek(X) denotes the public key ok, and
definition of a symbolically-sound zero-knowledge proof R;, Rs denote the abstract randomness used to build the en-
system we remark that protocols already exist that sat- cryptions. The protocol under consideration now aims at
isfy this definition. Our main result will then show that convincing the recipien€ of ¢ thatc is of the right form,
symbolically-sound zero-knowledge proof systems consti-i.e., the inner plaintext should contain and some value
tute computationally sound implementations of symbolic m’ € {m1, ma,m3}. In addition, the protocol aims at hid-
zero-knowledge proofs. This in particular yields the first ing from C the noncen and the precise selection of the
computational soundness result against fully active kttac message:’. Zero-knowledge proofs constitute salient tools
ers of Dolev-Yao models that go beyond the core crypto-to achieve these seemingly contradictory properties ih tha
graphic operations, and it constitutes the first soundreess r they allow B to prove that it knows some terms that satisfy
sult for symbolic zero-knowledge proofs. Our soundness re-the desired properties without revealing those terms.
sult applies to trace-properties like authentication aedkv In the example we consideR intends to prove that it
secrecy. knows some abstract randomnessp. and some values

a1, 0o such that Wlthﬁl = ma, /62 = Myo, ﬁg = mas,

By := S, B5 := D, Bs := ¢, and3; := m the following

. . . formulaF' evaluates to true:
Outline of the Paper. In[Seciion 2, we briefly review the

modeling of abstract zero-knowledge proofs, and we iden- _ p1 P2
tify the properties a cryptographic zero-knowledge proof Be {{<<ﬁ7’a1>’a2>}6k(55) ek(Ba)
should fulfill to serve as a computationally sound imple- (a2 =1 Vag=[aVa=[s).
mentation of the abstractio._Sectidn 3 and 4 contain the . . . .

Immediately including the values ¢f; in the formulaF

abstract and concrete execution moddl.__Secfion 5 con- i biv h . d th dability of the f
tains our computational soundness resultforsymbolic-zeroWou arguably have Increased the readabiiity ot the for-

mula; our language defined [in_Secfidn 3, however, will re-

knowledge. quire a strict separation of the actual formufaand the
public parameters that are determined at runtime, regultin
in this slightly more complicated notation.
Notation. By [n] we denote{1,...,n}. We abbreviate Granting B the ability to produce such a proof is mod-
x1,-..,T, Dy z wheren is implicit. We will sometimes  eled by introducing an abstract construcﬂiﬁﬁ(z; a;b),
use sets and non-terminals interchangeably. E.g., given aalled azero-knowledge proof(Recall that we abbreviate
grammarA = BJ|(C, A) we might writexz € (C, A), or we tuplesry, ..., r, by r, similarly for ¢ andpd). Its arguments
might say “ has the form(C, A)”. We might also write % are an abstract randomne3sa formulafF’, as well as val-
has the forn{c, A)” for a givenc € C. uesr;, a;, b; that will serve as substitutes for the variables



pi,ay, B in F. In our example, the age® will send the Three properties are expected from a zero-knowledge
proof z := ZK?(Rl,Rg;mm;ml,mg,mg,&D,c, m). proof: It should be possible to prove correct statements
The semantics of this constructor (formally defined in (completenegsit should not be possible to prove incorrect
[Section B) will guarantee two properties: First, a zero- statementsgoundnegs and the verifier should not learn
knowledge proof can only be constructed by providing suit- anything about the witness, beyond what can be deduced
able instantiationg, a, b for p, o, 8 so that the formuld” from the fact that” is satisfiable Zero-knowledge

yields true. Second, while the formula and the values e Completenessor anyC' andw with C(w) = 1, if z

b can be retrieved from a zero-knowledge proof, the val- is the proof produced by, thenV accepts:.

uesg and the randomnegsare kept secret. These prop- e Soundnessior anyC andw with C(w) = 0, and for
erties imply that the proof indeed guarantees thathas any polynomial-time adversagy that outputs a proof
the right form without revealing any additional informatio z, the verifier does not accept

aboutn, m. In an abstract zero-knowledge proof, we call e Zero-knowledge:When computing the CRS, the al-
r; a thewitnessandb the public part gorithm K additionally outputs aimulation trapdoor

For more elaborate examples on how zero-knowledge simtd (that can be seen as a secret key for the CRS)
proofs can be used in an abstract setting, comprising arlarge ~ such that the following holds: FixC' and w with
set of base constructors such as blind signatures, we refer C(w) = 1. Let z be the proof produced by prover
the interested reader to [BMUOS]. P. Let 2z’ be the proof produced b§ on inputsimtd
andC (but notw). Thenz andz’ are computationally
indistinguishable.
In this section, we omit certain details such as the fact that
the conditions are allowed to be broken with negligible prob
We now move to concrete zero-knowledge proofs, i.e., apility. Similarly, we implicitly assume thaP and V' use
zero-knowledge proofs in the cryptographic setting. A cen-the circuitC' and the witnessy. The finalDefinifion 1 be-
tral contribution of this paper is to identify which stan- |ow will contain all these details.
dard and more sophisticated additional properties of zero- A scheme satisfying these three properties is referred to
knowledge proofs are required to establish the desired comas 3 non-interactive zero-knowledge proof system. Read-
putational soundness result. Hence we now explain in somegrs that are familiar with interactive zero-knowledge froo
detail why each such property is needed. In the end, thismay notice that the definition of interactive zero-knowledg
task will culminate in the novel definition ofsymbolically-  proofs does not include a CRS. In the non-interactive case,
sound zero-knowledge proof systewve first state the prop-  however, zero-knowledge proofs without a CRS are impos-

erties in an informal way and give the exact definitions in gjple unles&NP C BPP [Gol01, Thm. 4.4.12].
Definition 1. a

2.2 Concrete Zero-Knowledge Proofs

Extractability. While the three properties of complete-

Completeness, Soundness, and Zero-knowledgewe ness, soundness, and zero-knowledge are sufficient for
start with the basic definition of a non-interactive zero- Many applications, they do not suffice to offer a cryp-
knowledge proof. We need to focus on non-interactive tographically sound implementation of abstract zero-
proofs since the abstract model considers a proof as a sinknowledge proofs.  This can be seen by inspecting the
gle message that can processed further locally, e.g., it carfollowing example: Assume that we are using an encryp-
be encrypted. This would not be meaningful if the zero- tion scheme that permits to efficiently check that a given
knowledge proof was allowed to be interactive. ciphertextc constitutes a valid encryption of some mes-
A zero-knowledge proof consists of four algorithms S29€ (without having to know this message or the secret

K,P,V, S, called the CRS-generator, the prover, the veri- K€Y)- The/n lete := {m},, and consider the proof
fier, and the simulator, respectively. The CRS-generaterou z := ZK%& (R;m;c,a) with F := (3, = {al}g}wz)),
puts a random bitstring called tltemmon reference string i.e., a proof that one knows the message and the random-
(CRS) that can be seen as a public key for the encryptionness contained in. In the cryptographic setting, this proof
scheme. The proveP expects as inputs the CRS, a cir- would be performed by first constructing a circaltsuch
cuit C, and a witness such thatC'(w) = 1 and outputsa  thatC'(R,m) = 1 iff m is encrypted with randomnegs
corresponding proof (intuitively denoting thatC is a sat-  and the public key of: yields the ciphertext. Since one
isfiable circuit). The verifier expects the CRS, a cirauit can efficiently check it is the encryption of some message,
and a proot and checks whetheris indeed a proof forthe  one can hence efficiently check as wellithas a satisfying
satisfiability of C. (It is sufficient to consider satisfiability —input. Thus, one can prove the satisfiability @fwithout

of circuits since every NP-language can be reduced to thishaving to useR, m. Such a proof trivially conforms to the
problem.) zero-knowledge property, since the proof does not exploit



the witness, and it satisfies soundness since it only provesallednon-malleabilityand closely resembles the notion of

valid statements (i€ was not satisfiable, the proof would

not succeed). In the abstract model, however, it is obvi-

ous that one needs to know in order to produce. What

non-malleability of encryption schemes. In the context of
zero-knowledge, several properties are known to imply non-
malleability. We will exploit theextraction zero-knowledge

went wrong? The soundness condition only guarantees theroperty from[GOQ7]. Although this is a rather strong prop-
existence of a witness, but it does not require the provererty and weaker definitions of non-malleability exist, our

to actually know this witness. We introduce an additional
algorithmE (besidesk, P, V, S, called the extraction algo-

proof relies on this particular property; we leave it as an
open problem if our computational soundness result can be

rithm) to capture this requirement and define the strongerproven using a weaker formalization of non-malleability.

condition of extractability. A proof system with extractiab
ity is called aproof of knowledge
e Extractability: When computing the CRS, the algo-

rithm K additionally outputs arextraction trapdoor
extd such that: FixC' (where C may or may not
be satisfiable). For a polynomial-time adversaty
that outputs a progproof, we have that ifi” accepts
proof, then E(C, proof , extd) outputs a witnessu
with C(w) = 1.

With this definition, our example no longer causes any prob-

lems: An extractable proof system that allows to prove the
satisfiability ofC' without usingw would lead to a contradic-
tion since the machined and £ together could then com-
putew. (Technically, this is only a contradictionif is not
easy to compute fromd' in the first place.) We stress that
extractability already implies soundness:dfis not satis-
fiable, thenE(C, proof, extd) cannot output a witness
with C'(w) = 1, thus by contraposition we have tHatdoes
not accepproof .

Extraction zero-knowledge. Even complementing the
properties completeness, soundness, and zero-knowled
with the extractability property is still not sufficient for
the desired computational soundness result.
proof system with the following property: Ifroof, con-
stitutes a proof for the circuif’, andproof, constitutes a
proof for the circuitCy, then(proof |, proof ;) constitutes a
proof for the circuitCy A Cs (with (C1 A C) (w1, ws) :
Cy(w1) A Ca(ws)). This property is not unrealistic, and
for circuits that are of this conjunctive form, concatenat-
ing proofs for the individual circuits indeed often consti-
tutes the most efficient way to produce a proof for the
combined circuit. Furthermore, allowing to prove these
sub-circuit individually does not contradict the propesti
we have discussed so far. 1
ever, givenZKE (r; a; b) andZK%, (+'; a’; v'), it is not pos-
sible to construct a proaKz , . (_; _; b, b") without know-
ing 7,7, a,a’ (where _ matches everything, and where in
the formulaF”’ the p1, a1, 31 are renamed t@o, as, 52).

Consider a

In the abstract model, how

e Extraction zero-knowledgelet simid, extd be the
simulation and the extraction trapdoor as outpufy
respectively. Consider a polynomial-time adversdry
that has access to the simulation trapdsmitd and
to an extraction oracl&(C, -, extd), i.e., when invok-
ing the oracleZ(C, -, extd) with inputproof , it returns
E(C, proof , extd) whereF is the extraction algorithm.
The adversary may outp@t, w with C(w) = 1. Then
the adversary gets either (a) a real preebof pro-
duced byP, or (b) a simulated proofroof produced
by the simulatoiS (which has no access t@). We then
require that4 cannot distinguish the cases (a) and (b)
as long as it does not quepyoof from the extraction
oracle.

We stress that extraction zero-knowledge implies the zero-
knowledge property since it implies that for a@yw with
C(w) = 1 the proofs produced by the prover and the simu-
lator are indistinguishable.

Why does extraction zero-knowledge indeed imply non-
malleability? Assume that from a progfoof, for the sat-
isfiability of C;, some algorithm\/ can produce a proof

roof 5 for the satisfiability ofCy where the satisfiability of

5 follows from that of C; (in the sense that a witheas
for C; can be converted into a witneas for Cs). Then
an adversaryd could break the extraction zero-knowledge
property roughly as follows: First, it outputs;, w; and
gets a proofproof, (this might be a fake proof). It ap-
plies M to proof, and gets a prooproof, for Cs. Since
proof 5 # proof 1, the adversary may giveroof , to the ex-
traction oracle. In case (a), the extraction oracle willport
a witnessw,. In case (b), however, the propfoof, has
been produced without exploiting the witness, and so
hasproof,. Since the extraction oracle cannot produce a
witness, it will fail to produce a witness fgrroof ,, in case
(b). Thus the adversary can distinguish the two cases, con-

tradicting the extraction zero-knowledge property.

Unpredictability. We need a further property for soundly
implementing abstract zero-knowledge proofs. If a proef us

We hence have to exclude the possibility of concatenat-ing the same witness and the same public part is produced

ing proofs to generate new proofs. More precisely, we
have to ensure that given a proof for some statement

by two different agents in the abstract model, it will always
lead to two different terms because the two terms will have

it is not possible to construct a proof for another statementdifferent randomness. A proof system with the properties

2o, even ifx, is logically related tar;. This property is

described in this section, however, does not necessarily en



sure that two proofs produced with the same witness and
circuit will always be different (with overwhelming prob-
ability). Indeed, it is possible to construct proofs that ar
deterministic for at least some inputs. We hence addition-
ally require that any two independently produced proofs are
different, or equivalently:

e Unpredictability. Let a polynomial-time adversagt
output C, w, proof” with C(w) = 1. Let proof be
produced byP. Then with overwhelming probability,
proof # proof’.

Unpredictability is an easily achievable property, e.q., b
letting the prover include some randomness in the proof.

Length-regularity. To get computational soundness, we
additionally need that the length of a zero-knowledge proof
is independent of its public part (although it may depend on
the length of its public part). Consider a protocol which
chooses a noncd’ and then send$ZKX (;;N) ek(a)"
That is, the protocol produces a trivial proof and incfudes
the nonceN in the public part. Then it encrypts that
proof. Abstractly, this should preserve the secrecyoflf,
however, in the concrete model the lengthza? (;: V)

true
could depend on the first bit of, then{ZK

t?"ue(; ) N)}i(a)
might leak the length oZK %, _(;; N) and thus the first bit
of NA This example can easily be extended to leak all
bits of N and thus break the secrecy &f. Note that the
requirement of length-regularity is not particular to zero
knowledge, even the encoding of pairs needs to be length

regular.

Symbolically-sound zero-knowledge. Finally, we fur-
ther require that the verifidr and the extraction algorithm

E are deterministic. This is not strictly necessary but it
will simplify the proof of soundness, and we are not aware
of a non-interactive zero-knowledge proof system where
this condition is not fulfiled. The full name of a zero-
knowledge scheme satisfying all the above properties would
beunpredictable non-interactive multi-theorem adaptive ex
traction zero-knowledge argument of knowledge with de-
terministic verification and extractionSince this is some-
what unwieldy, we coin the terrsymbolically-sound zero-
knowledge proof systenthe following definition formally
defined the properties we informally discussed above.

Definition 1 (Symbolically-sound zero-knowledge proof
system) A symbolically-sound zero-knowledge proof sys-
temis a tuple of polynomial-time algorithn{é, P, V, S, F)
with the following properties:
e Completenesst et a nonuniform polynomial-time ad-
versary.A be given. Leters, simtd, extd) — K(17).
Let (C,w) «— A(1", crs). Letproof — P(C,w, crs).

1Remember that encryption schemes cannot hide the lengtheof t
plaintexts.

Then with overwhelming probability in, C(w) = 0
or V(C, proof , crs) = 1.

Extractability: Let a nonuniform polynomial-time ad-
versary A be given. Let(crs, simtd, extd)
K(1M). Let (C,proof) «— A(17 crs). Letw «
E(proof , extd). Then with overwhelming probability,
if V(C, proof, crs) = 1thenC(w) = 1.
Unpredictability: Let a nonuniform
polynomial-time adversary.4 be given. Let
(crs, simtd, extd) «— K(1"). Let(C,w, proof') «—
A(17, crs, simtd, extd). Then with overwhelming
probability, we haverroof’ # P(C,w, crs).

Extraction Zero-Knowledge: Let a nonuniform
polynomial-time adversaryA be given. Con-
sider the following experiment parametrized by a
bit b: Let (crs,simtd, extd) — K(17). Let
(C,w, state) «— APCextd) (11 crs, simtd).  Then
let proof — P(C,w,crs) if b = 0 and proof «—
S(C, ers, simtd) if b 1. Let guess
AECentd) (10 crs simtd, state, proof ). LetPy(n) de-
note the following probability:

«—

Py(n) := Pr[guess = 1 andC(w) = 1 and
proof has not been queried fro(-, extd)].

Then|Py(n) — P1(n)| is negligible.
Length-regularityLet two circuitsC, C’ and witnesses
w,w" with C(w) = C'(w’) = 1 be given such that
|C| = |C'| and|w| = |w'|. Let(ers, simtd, extd) «—
K(17). Then letproof « P(C,w, crs) andproof’ «—
P(C',w', crs). Then|proof| = |proof’| holds with
probability 1

Deterministic verification and extractionThe algo-
rithmsV and E are deterministic.

We stress that protocols already exist that satisfy this no-
tion, e.g., the one proposed in [GO07, Sect. 3] under the
assumption that enhanced trapdoor permutatibns [Gol04,
Def. C.1.1] exist. The latter exist, e.g., under the assump-
tion that factoring is hard. (The length-regularity prayer
can be ensured by a suitable padding.)

We have formulated symbolically-sound zero-
knowledge proof systems against nonuniform adversaries.
We believe that our results easily carry over to the uniform
case.

3 The Abstract Model

In the following we define the abstract model in which
the execution of a symbolic protocol involving zero-

2We could relax this property to require that this equalitydsconly
with overwhelming probability, or even to only require thistdbutions of
|proof | and|proof’| to be indistinguishable. We opt for this simpler for-
mulation because we are not aware of examples that need tiedlen@nt
formulations.



knowledge proofs takes place. The basic ideas follow thewould not be easily realizable computationally: In order to

framework presented in [CKKW06]. However, to incorpo-

perform the zero-knowledge proof, we need to build a cir-

rate zero-knowledge proofs, we have to make various non-cuit accepting only satisfying valuesfor the o. To build

trivial modifications to the abstract model. In the follogin

such a circuit for a formula witkk(«;), one would have to

sections, we try to highlight and explain the design choices encode a list o&ll public keys in this circuit. On the other

made in our modeling.

ZK-proofs and messages. First, we fix several count-
ably infinite sets. ByA we denote the set of agent iden-

tifiers, by Nonce the set of nonces. We use elements from

hand, in the case ek(s3;), the valueb; substituted fog; is
known while constructing the circuit, thus we can directly
hard-codek(b;) into the circuit.

Given the syntax for ZK-formulas, we can define the set

Garbage to representill-formed messages (corresponding to M of messages as

unparseable bitstrings in the concrete model). Finally el

ments ofRand denote abstract randomness used in the con-
struction of ciphertexts and zero-knowledge proofs. We as-

sume thatNonce is partitioned intdNonce,, andNonce,4y,

representing the nonces of honest agents and the nonces of

the adversary. SimilarlyRand is partitioned intoRand,
andRand g4, .

M = A | Nonce | ek(A) | ek(Garbage) | dk(A) | (M, M)
| {M B | {Garbage}SIf(rgarbage)

ek(A)
| ZKRand | (Rand*; M*; M*).

Formula

| Garbage

with the following additional condition: For each subterm
ZK®e (1 4: b), we have thatr|, |al, |b| are thep-arity, a-

We proceed by defining the syntax of messages that can, i, and-arity of £, respectively. Herek(a) anddk(a)
be sent in a protocol execution. Since such messages cafppresent encryption and decryption keys for the agent

contain zero-knowledge proofs, and these are parametrizeq, 3
over a statement that is to be proven, we first have to define' ’

the syntax of these formulas. Let

ZKTerm = ek(8:) | o | i |
(ZKTerm, ZKTerm) | {ZKTerm}?; ; |

wherei = 1,2,.... We call terms produced by this gram-
mar ZK-terms. On the intuitive levedk(a) denotes a public
encryption key of agen, (-,-) a pair, and{t}ﬁ(a) an en-
cryption oft with the public key ofa using randomnesi.

Then a ZK-Formula' is a Boolean formula over terms
of the formZKTerm = ZKTerm satisfying the following
conditions: Ifa; occurs inF, thenaq, ..., a; occur all in
F. An analogous condition holds fpg andﬁiﬁ We denote
the set of ZK-Formulas witfrormula. Thex-arity of a ZK-
FormulaF is the largest index of an; occurring inF'. The
p-arity and the3-arity are defined analogously.

The intuitive interpretation of a ZK-formula is that it is
a term with free variableg, «, andg. The p will be sub-

stituted with randomness, the and 3 with messages. A

zero-knowledge prooZKff(z; a; b) then represents a proof
that when substituting, a, b for p, a, 8, the resulting ex-

pressionF{pI’%g} is a true statement. The randomness

and the messageswill be considered secret, while the mes-
saged will be contained in the proofin clear (one can think
of the formula as being parametrized in the valbles

Note the following interesting asymmetry: We allow
ek(f;) to appear in a formula, but nek(«;). This is due
to the fact that a proof with a formula containirg(«;)

SWe actually use this condition in the proof only for the However,
we included the condition also far and3 for symmetry.

means pairing{t}i(a) is the encryption of message

under the keyk(a) with randomness, andZK?(g; a;b)
denotes a zero-knowledge proof for the formblaroduced
using the randomneggwhere the (secret) witness consists
of the randomnegsand the messagesand the public part
consists of the messagks

Since both honest agents and the adversary should only
send ZK-proofs that actually correspond to true statements
we will need the following definition that characterizes the
messages that do not contain wrong proofs.

Definition 2 (True ZK-Proofs) Let a message of the form
Z = ZK%(r; a; b) be given.

Let 7z, := F{pﬂ,ﬁ}. Replace all subterms df; that
are of the formt = ¢ by True and all subterms of; that
are of the formt = u with ¢ # u (where# is meant as
being syntactically different as terms, no equational tigeo
is involved) byFalse. Call the resultZ,. Note thatZ; is a
Boolean formula without variables.

We say thatZ is a true proofif all subterms of7; are
messagésand Z, evaluates tdlrue.

We say a messag@ contains true proofd every sub-
term of M of the formzKR2"d (...} is a true proof.

Formula

4,0

Deduction rules. In order to restrict the actions the ad-
versary may perform during a protocol execution, we have
to introduce a deduction relatidn which is given by the
rules in[Figure]l. The rules for the deduction are stan-
dard, only the rules concerning zero-knowledge proofs
merit additional comment. The rulet ZK%(r;a;0) =

“This would be violated, e.g., bZKE(R';;¢c,m,n) with F :=
(B1 = {B2 }epkl(,Bg)) wheren is a nonce.
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Figure 1. Deduction rules for the adversary.

© F brepresents the zero-knowledge property; from a zero-Patterns.

knowledge prooZK7% (r; a; b), all that can be extracted is

In order to conveniently define the notion of a
protocol, we need a way to succinctly describe how mes-

the public parb, but not the witness, a. sages are parsed and constructed by honest agents. To this
More interesting and involved is the last rulg in Figufe 1. aim, we define the concept of a pattgrn.
This rule states under which conditions the adversary may Let X.a, X.n, X.p, X.c, X.z be countably infinite sets

construct a zero-knowledge pro@Ky (r; a;b). First, of

(variables of sort agent, nonce, pair, ciphertext, ZK-froo

course, the resulting proof must be a proof of a true staterespectively). LeX := X.a|X.n|X.e[X.p|X.c|X.z. In the

ment. This is represented by the condition tﬁq&%} is

following, when considering mappings from variablés

atrue proof (as il Definition] 2). Furthermore, we have to re- 0 message#!, we will always assume that a variable is

quire that the adversary actually knows the witnessand
the public parth, corresponding to the fact that we model
proofs ofknowledge For a andb this condition is modeled
by requiringy - a andy + b. For the randomness how-

mapped to a message of corresponding type. We then de-
fine the sePat of patterns as

Rand

Pat = X | ek(X.a) | (Pat, Pat) | {Pat}&X .

| {Pat}gk(x,a) |
Rand

ever, the condition is more involved. The adversary may ZKgimu.(Rand™; Pat™; Pat™) | ZKg,, . (U5 "5 Pat™)

know some randomnessin two cases. First, if it is its own
randomness; € Rand,4,. Second, it may be able to ex-

tract that randomness from an encryption produced by som
honest party. Namely, the condition that a cryptosystem is
IND-CCA secure does not imply that one cannot retrieve the

randomness used in an encryptfonvided one can decrypt
that message.For example, in the popular RSA-OAEP

cryptosystem[[BR95, FOPS04], the randomness used for?
encrypting a message is actually computed during an hon
est decryption. Thus we have to allow the adversary to use,

randomness; from messages it was able to decrypt. As

an example why this condition is actually needed for com-
putational soundness, consider the following simple proto

col. Agenta sends: := {m}[ ) and if it receives a proof
matchingZKz (_;;b,m, ¢) with F := (85 = {02 Skl(gl))'

with the following additional conditions: For each subterm

eZKIR:'and(E a; b), we have thatﬂ’ |Q|7 |I_)| are thep-arity, a-

arity, andg-arity of F', respectively, and iek(3;) occurs
in F, thend; has the formek(A) or ek(X.a). These condi-
tions are needed to ensure that a pattern (containing no )
becomes a valid message when the variables are instanti-
ted.

_ The symbol _ is supposed to match anything. More ex-
actly, we say a message € M matches a patterm € Pat

if there is a substitutiodl : X — M such thapf equalsm

up to occurrences of _ ipd (where distinct occurrences of

__may correspond to different subtermsif. We callf the

matcher ofm andp. Thus intuitively _ in a pattern corre-
sponds to a value we do not care about and that we do not

the protocol fails (here the symbol _ matches everything).in this case. The rough reason why this is not necessarytisf tie: con-

If we would only allow the adversary to usg € Rand,g,

in the witness, the protocol would be secure abstractlyy eve
if the adversary knows the secret kek(b). Yet a con-
crete adversary could possibly (depending on the encnyptio
scher[ge) extract the randomness froand produce such a
proof

SAfter these explanations, the reader might wonder why airrald-
justments are not necessary for, e.g., the rule for deducipigertexts
{m}:k(b) since a concrete adversary could use extracted randomisess a

7

crete randomness is used to encrypt another message or under another
key, we can consider it to be another abstract randomnes$y iCthe
samem is encrypted under theameek(b), we will have to consider the
concrete randomness to be the same. However, in this casesthiéng
ciphertext will be also be the same, thus the adversary lsapjoduced a
message it already knew.

6Note that one could be tempted to define a pattern just as aageess
with variables in it. However, this definition would leaveveral points
open, e.g., variables of what type might occur in which paosjtetc. Thus
we give an explicit grammar and use this opportunity to redine set
of patterns to such that make sense in protocols (e.g., aqmiotay not
explicitly sendGarbage.



intend to (and cannot) extract, e.g., the randomness used in  m’ := ro6 is computed. Ifm’ does not contain true
a ciphertext or the witness of a zero-knowledge proof. proofs [Definition 2), the transition will not be taken.

Note that patterns do not contain explicit nonces, agent Otherwise follow the edge, send messageand let
identifiers, or garbage. We omit garbage because we do  the new state be U 0.

not want the protocol to explicitly constructill-formed st 5 ,ode may have several outgoing (ordered) edges, in this

sages. Nonces and agents are not needed since the protocghse the first one will be chosen that matches and results
execution (see below) will provide pre-initialized varie® in a messagen’ containing true proofs. If no such edge

for the nonces used by an agent and for the ids of the COMis found, the role will ignore the message(i.e., the state
munication partners in a given protocol session. We disal-jg unmodified). A role may access the agent id of &k

low patterns of the formik(a) since we do not allow proto- ¢ mmynication partners in its session via the pre-iniédi
cols to explicitly use their private keys (except for detryp \ariapled; € X.q, and accesses its own nonces via the pre-
ing). This is to ensure that no key cycles occur; itis known jniiajized variablesX’, € X.n (accessing the nonces via

that theiNd-CCA property does not guarantee security in the \ ariaples enables us to model that each session has differen
presence of key cycles. nonces).

This model of a role is very similar to that presented
Roles and protocols. We are now ready to define whata in [CKKWOB] with the exception of the additional check
protocol is. For space reasons, we only give an informal de-whether the outgoing messagé contains true proofs. This
scription and postpone exact definitions to Appeidix A. A check is necessary, since we have no syntactic condition
k-party protocolll is a mapping that assigns eacke [k] that guarantees that a role can only generate true proofs. In
arolell(i). In our setting, aole is modeled as an ordered particular, if a role produces proofs that depend on incom-
edge-labeled finite tree. The nodes of the role tree correing messages, and if these messages happen to be modified
spond to states of an agent executing that role, and the edgesy the adversary, it may happen that the proofs are instan-
correspond to transitions caused by incoming messages. Wgated with the wrong values. Thus we have to make a de-
assume only insecure channels between agents, theréfore adign choice. We can restrict the patterns such that no matter
messages are sent to the adversary and received from the aflow the variables are instantiated, no incorrect proofs can
versary. What messages a role sends, and the state the rolge produced. We can impose a static condition on the roles
enters upon receipt of a given message is specified by the lathat guarantees that for no sequence of incoming messages,
bels on the edges of the role tree. More concretely, an edgean incorrect proof can be produced. Or we can perform
is labeled with a pai(l,r) of patterns. Heré represents  a runtime check to avoid incorrect proofs. The first method
the pattern for matching incoming messages, atfte pat-  seems very restrictive, the second might make the definition
tern for constructing the answers to these messages. Moref a role unnecessarily complicated, thus we have opted for
exactly, the state of a role consists of a node in its tree, andthe third variant. Note that not all current tools for proto-
a partial mapping : X — M representing (fragments of)  col verification are able to handle such runtime checks and
messages parsed so far. Given an incoming message  might need to be extended.

states, and an edgé/, ), the following steps take plae: .
e First, in the patterr, the variables that have already Of course, not all trees with edges labeled by patterns

) . ! represent valid protocol roles. Instead, we have to impose a
been assigned are instantiated. Formally, the pattern " . o :
o is computed. variety of sanity condlt_lons, e.g., we have to require thett
« Thenm is matched againgt. If this succeeds, let be patternr (for constructing messages) does not contain free

. - . _variables, or that the pattern matching an incoming message
the matcher. Otherwise, the transition corresponding does not imolv decrvoting with someone else’s secret ke
to the edgé!, r) will not be taken. Py yping y

\ . : . . Most conditions are of this kind and just guarantee that the
e Now all variables in the outgoing patterrare instanti- ) .
. . : . . : abstract protocol can indeed be implemented as a concrete
ated, either with variables assigned previously jror . eI Definiidn 5 |
in the previous stepd]. More formally, the message proto_col. Compl_ete o_letalls are given.in L 6N 5 n Ap-
' ' pendix[A. At this point, we only mention two conditions
that are of particular importance.

70n the preceding page we said that it is possible to extradoraness

from ciphertexts. However, at that point we were talkingwtitbe adver- ; ;
sary and had to assume the worst case. When defining prqoteeinay First, as already discussed on the current page, a pattern

only include capabilities that may be implemented with angreption cannot explicitly contain secret keys. Thus a role cannot
scheme. E.g., in the Cramer-Shoup cryptosysfem [CS98hatitg the sent these keys over the network. (Note that the adversary
randomness implies breaking the discrete logarithm proplven when  can however get access to secret keys by corrupting parties
given the private key. - and can then send them.) This condition is not related to
Actually, this is not part of the definition of a role, but oktiprotocol . . .
execution. However, we describe it here so that the intebeéavior of a the introduction of zero-knowledge proofs; it is also prese

role becomes clear. e.g., in [CKKWO06].



Since both encryption and zero-knowledge proofs are A detailed definition is postponed to Appendix A. An ab-
probabilistic, we have to ensure that each randomness isstract trace for &-party protocoll is a sequence of global
used only once. In a model without zero-knowledge proofs states with some restrictions on the possible transitides (
(as, e.g., [ [CKKWO0B]) this can be done by requiring that for tailed below). Aglobal stateis a triple (Sid, f, ) where
any randomnesg, there is at most one subterm containing ¢ is the set of messages the adversary learned so far (the
R (but the same subterm may occur several times to allowadversary knowledgénitially set toNonce,4,), the seSSid
for sending several copies of a single ciphertext). In the contains the ids of all sessions currently running, and the
presence of zero-knowledge proofs, however, such a rulefunction f maps every session igid in Sid to the local
would be too restrictive. For example, an agent might want state of that session. A session contains exactly one agent
to send a ciphertext:= {t}éﬁ(a) and then prove thdtsatis- a executing one role. However, since the intended protocol

fies some propert(t), i.e., it sends := ZK? (R:t;¢,a) execution always involvek parties, a session additionally
with F = (3, = {al}pklw A P(ay)). Since bothe and specifies what other agents the ageig (supposedly) com-
ek(B2

» containR, such an agent would be disallowed. To relax Municating with.  Thelocal stateof a given session is a
this restriction, we have to allow the use of a given random-tUPI€ (i 9, p, (a1, ..., ax)). Herei is the number of the role
nessR in the (p-part of the) witness of a zero-knowledge (he @gent: executes in this session. The tuple, ..., a)
proof. However, allowing completely unrestricted use of spec:|f_|es the_ indented cor_nmunlca'uon partne_rs for.that ses-
R in the witness could also lead to problems. For exam-Sion. in particulara = a; is the agent executing this ses-
ple, consider an agent creating and sending a ciphertext SION- The state of the agemis given by the current noge
using a given randomned and then trying to produce a of the role tredI(:) and the mapping that maps vgrlables
zero-knowledge proof proving a statement aboahother  1© (fragments of) messages received by the agentthat
ciphertext¢’ using thesamerandomnessk. In this case, session. See the discussion of the role tree on the preceding
the adversary learns the ciphertexand whether the proof page.

z is true (since the further actions of the agent depends on We allow three kinds of transitions between global
whether it succeeded in constructing the proof or not). It states, namelyorrupt(as,...,qa;), new(i,as,...,ax),

is not clear that the information whether the prea$ true and send(sid, m). In a corrupt(as,...,q;) transition,
might not already leak up to one bit of information about the adversary specifies an list of ageats. .., a; whom

c. We therefore have to ensure that a given randomRess it wants to corrupt. In consequence, the adversary’s
occurs only in a single subtermplus additionally in the  knowledgey in the next global state will be extended by
witness of zero-knowledge proo#s long as it is used in  {dk(a1),...,dk(a;)}, i.e., the adversary learns all secrets
the formula to produce the same tetm To capture this  of the corrupted parties. Only the first transition is allowe
more formally, we introduce the notion of an effectiize to be of this type, i.e., we consider static corruptions. In a

subpattern. Roughly, an effectivesubpattern of a pattern new(i, a1, ..., ax) transition, a new session idd is allo-
P is either a subterm aoP, or a subterm that results from cated and added &d. The local state ofid is initialized as
substituting the arguments of a zero-knowledge prod?in (i, 0,¢, (a1, ..., ar)) wheres is the root of the role treH (i)

into its formula. Formally, we get the following definition: ~ ando maps the variabled; to a; and the variablerﬁh to
fresh nonces. In other words, a new session is initialized

Definition 3 (Effective subpatterns).et P be a pattern. We  in which agent; runs rolell(i) together with(as, . . ., a).
say that a patterrb is aneffective subpatterof P if The most important transition igend(sid, m). Here, the

e Sis asubterm of’, or agenta executingsid is given the message: and its an-

o there is a subternZKi(r;a;b), and a ZK-Termz  swerm’ is added to the adversaries knowledgeAssume
in the ZK-formulaF’, such thatS is a subpattern of  that agent: has the local staté, o, p, (a1,...,ax)). Then
Z{% : to compute the answer’, the first outgoing edge fromis

We call S an effective R-subpatternif it is of the form  searched such that its lab@l ) matchesn and produces
{Pat}i or ZKE . ..(Rand*; Pat™; Pat™). an answern’ that contains true proofs. Details on how this

is done have already been given in the discussion of roles on
We can now formulate the condition that randomness the previous page. If no such edge is found, both the local
may not be reused: For any randomn&sshere is at most  state as well as the knowledge of the adversary are unmodi-
one effectiveR-subpattern in the role tred (k) (but that  fied. Note that the only change with respect to the modeling
subpattern may occur in several places). in [CKKWO#] is that we have introduced the additional con-
dition for taking an edge that the answer should contain true

Protocol execution. The definition of the execution of Proofs.
an abstract protocoll closely resembles the one in We call sequences of global states satisfying these rules
[CKKWO0§g], so we only quickly mention the main points. symbolic execution traces Dolev-Yao traces The set of



Dolev-Yao traces fofI is denotedExec’ (I1).

4 The Concrete Model

a pattern and a partial mapping X —{0,1}* If,e.g.,r
is an encryption = {r'} & (a)» the functionconstruct(r, 7)
recursively invokesn’ := construct(r 7) and then en-
cryptsm’ using the public key of agent and using ran-

We now proceed to define the concrete execution of adomnessape®*(R) for the encryption algorithm. Pairs

protocolll. We use the same protocdlsas in the abstract

and zero-knowledge proofs are handled similarly: # X,

model in the preceding section, but the messages exchangeienconstruct(r, 7) just returns the stored valugr). We

over the network now are bitstrings, and the pattéins)

give the details ofonstruct in[Definition 8 in AppendiXB.

on the edges of the role tree specify how to parse or conAt this point, we would only like to comment on the opera-

struct these bitstrings, respectively.

Since the concrete execution model is quite straight-
forward and furthermore very similar to the model from
[CKKWO0§6], we only sketch it here and concentrate on the
design issues particular to the inclusion of zero-knowéedg
proofs. The details are postponed to Appendix B.

Fix a security parameter € IN. A concrete trace is a
sequence otoncrete global statesf the form (Sid, g, C)
whereSid is the set of session idg, maps sessions ids to
concrete local states ar is the list of corrupted agents.
A concrete local statés of the form(i, 7, p, (a1, ..., ax)).

As for the abstract state,is the role executed by;, the
nodep indicates which point of the role tree the agent
has reached so far, ar{d,,...,ax) list the communica-
tion partners. The mapping maps variables to bitstrings

tion of construct(ZKE (r; a; b), 7), i.e., on the construction
of zero-knowledge proofs, since it contains several reieva
points.

To produce a zero-knowledge proof for witness
r1,...,Ts;a1,...,a, and public parby, ..., b,, (where we
assume that, a,b have already been assigned bitstrings
using recursive calls teonstruct), we first have to con-
struct a circuitC’ whose satisfiability we will prove in zero-
knowledge. For this, let := |a;|. Then byC := C52t
we denote the circuit that expects argumerits . ., a/, of
lengths!y, ..., I, and arguments],...,r,, all of length
n, and then performs the operations described by the ZK-
formula F' wherep; is instantiated with the input, o;
with input a;, and occurrences @, are replaced with the
hardcodedvalueb;. Details are given in Definition] 7 in Ap-

(instead of terms_)_ that result from parsing incoming_ mes-pendiXA. Then the prover of the zero-knowledge scheme is
sages. The transitions between the global states are idvokeinvoked for the circuiC’ and for witness:, a (as bitstrings)

by a probabilistic polynomial-time adversa/. The ad-
versary may invoke aorrupt(aq, ..., a;) transition (only

using randomnesgipe®**¢(R). Call the resulting proof.
Then the bitstring returned lynstruct(ZK2 (r; a; b), 7) is

in the first step) and will then learn the secret keys of the the tuple(z, F, s, n, 1, b) with appropriate tagging to mark it

agentsas, ..., a;. Further the idsiy,...,a; are stored in
the setC' in the global state. The adversary may invoke a
new(i,ay,...,ax) transition. In this case a new session
id sid with concrete local staté, 7, p, (a1,...,ax)) is al-
located where in the mappingthe varlables4 andX7

are preinitialized taz; and fresh nonces, respectlvely Fi-
nally, the adversary may invokesend(sid, m) transition
wherem is a bitstring. In this case, for each edge leaving
the current node, the following is tried: Let(l,r) be the
label of that edge. Then the bitstrimg is parsed according
to the patterrd using the variable substitutian(see below).
This results in a new substitutioti where the variables that
were free inl are now assigned bitstrings. Then the pattern
r is used with the variable assignmentsto construct a
new bitstringm’ (see below). If both parsing and construct-
ing succeed, this edge is takeri,becomes part of the new
local state of the sessiaofid, and the adversary gets as
input. If no edge matches, no action is taken.

It is left to explain how a pattern is used to parse or
construct a bitstring. Fotonstructingbitstrings, we first
randomly choose a family of random valuégpe® **
Rand,, — {0,1}" parametrized over the agentthe ses-
sion sid [§ Then we define a functioronstruct(r, 7) taking

9For notational simplicity, we assume that any operatiorit becrypt-
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as a zero-knowledge proof. Note that this construction does
not completely hide all information on the witness since it
leaks the length of the individual components. This is com-
parable to the situation with encryption schemes which also
cannot completely hide the length of the plainf&kif the
zero-knowledge proof fails (because: is not a witness for

C) the functionconstruct aborts (and the next edge in the
role tree is tried). Note that the circuit = C’;fgl can be
constructed given only’, s, n, [, b; this is important since
for verifying a proof, we need to constructfirst.

For parsing bitstrings, we define a function
parse(m, [, 7) taking a bitstringm, a pattern/, and a
partial mappingr : X — {0,1}*. Then if, e.g.,l is an
encryption pattern of the forr{i’}gk(Ai) wherei is the role
executed by agent in the current session, the bitstring
m is decrypted with the secret key of agentresulting
in the plaintextm’, and then functiorparse(m/,l’, 7) is

ing or performing zero-knowledge proofs, needs at mdsts. This can be
easily achieved by using a pseudorandom generator if thextipe needs
more randomness.
10Note however that in the case of zero-knowledge proofs, ishist

a principal impossibility. For example, [BGD2] presentcadled univer-
sal arguments that can be transformed into length-hiding-keowledge
proofs. These schemes however are very complex and far feamg prac-
tically usable.



invoked. Pairs and zero-knowledge proofs are handled We say that® is a concrete instantiatioof ¢* (written
analogously. Wher is a free variable (i.e., unassigned t* < t°) if there exists a partial injective function: M —
in 7), it is checked whether is of the right type and {0, 1}* such that® <¢ ¢°.
then assigned ta(I) (resulting in an extended mapping
7). If [ is a bound variable (assigned 1), it is checked
whetherm = 7(1). If [ is of the form{-}% or ZK{(...)
(i.e., contains explicit randomness), the messages
not parsed further but compared ¢onstruct(l, 7) (this
enables matching against encryptions or ciphertexts anTheorem 1 (Computational soundness of zero-knowledge
agent produced itself). Finally, if all checks succeeded, t proofs) Let IT be a k-party protocol. Assume thatlé
(now possibly extended) mappings returned. Details are  is anIND-CCA secure encryption scheme and t&k is a
postponed tb Definition9 in AppendiX B. symbolically-sound zero-knowledge proof system.A be

We assume explicit type information on each bitstring. a nonuniform polynomial-time adversary. Then the follow-
We achieve this by requiring that every bitstring carries a ing probability is overwhelming in:
type tag distinguishing between agents, nonces, pairs, ci-
phertexts and zero-knowledge proofs. Furthermore, we reP’r [Execty 4(n) € {t°: 3t° € Exec®(IT) such that* < ¢°}].

quire that a bitstring tagged as a zero-knowledge proof is Proof sketch.(The full ;

. e . proof is postponed {o AppendiX C.)
o_n_Iy considered to be of t_y_pe ;ero-knc_)wl_edge proof if it _ad- To establish the theorem, it is sufficient to find an injective
ditionally passes the verification. This is necessary Smcemapping&that maps bitstrings to terms such that a concrete

&thtelrv;/lse ('FJI‘I b|ttstr|ng cou_i_d bt_e as_3|gne(tj tot? \t’f]mable tracet® (chosen according tBxecy; 4(n)) will be mapped
atiaterwiifnot pass veritication, In contrast fo the to a Dolev-Yao trace(t“). Then the inverse! satisfies

case where only true proofs can be assigned to —en el e -
Thus for any adversanf and any securty parametsr iy £ T SRR S RERE, T TERED,
we get a distribution on computational traces which we de- ", "~ vay, y by p g every
bitstring m to a term. To this aim, we use the decryption

note byExect; 4(n). A detailed description of the concrete . .
L . . keys to parse encryptions, and the extraction trapdoof
b Definition 1 dix B. \
execution|s given | on 20 in Appendi¥ B ZK to recover the witnesses of zero-knowledge proofs. Un-

parseable bitstrings are mapped to distinct terntsibage.

A small difficulty occurs when trying to extract the random-

) i ) ness used for encryptions or zero-knowledge proofs. In gen-
In the preceding two sections, we have described thegry| an encryption scheme may not allow to extract the ran-

abstract and the concrete execution model involving zero-yomness used when decrypting, even given knowledge of

knowledge proofs and encryptions. To be able to statehe gecret kel Moreover, some of the randomness might

our main computational soundness result, we have to forgen pe information-theoretically lost, so it is impossibl

malize the statement that a given concrete tréic€or- 4 recover the randomness that is actually used. Thus for

responds to a given abstract trate Here we follow  44yersary-generated bitstrings we do not aim to extract
[CWOS,[MWO4,[CKKWO6] and require that there exists a tha randomness but instead consider the full bitstringsas it
mappingc that maps every message frafto a bitstring own randomness.

of £ in a consistent fashion. The exact definition is almost  \ye have to show thay(t°) constitutes a Dolev-Yao trace
identical to the one of [CKKW(6], except that we add the it overwhelming probability. Assume thatt¢) is not a
requirement that the adversary corrupts the same agents ifhqjey-Yao trace. This can be becauge’) does not ful-

the abstract and the concrete trace. fill the syntactic conditions of a trace (e.g., the knowledge

Equipped with this definition, we can formulate our
soundness result. Namely, with overwhelming probability,
a concrete trace is a concrete instantiation of some abstrac
Dolev-Yao trace.

5 Computational Soundness

Definiton 4 (Concrete instantiations) Let t* = of the adversary changes in an unexpected way, or the lo-

(Sid$, f1,¢1),- .-, (Sid>., fm,om) be a symbolic exe- cal state of some machine does not correspond to the mes-

cution trace and® = (Sid{, g1, C1), ..., (Sid;,, gn, Cy) @ sages received), or the adversary might send a message that

concrete execution trace. cannot be deduced from the messages that were output by
We say that the trac& is a concrete instantiatioof ¢* the honest agents. In this proof sketch, we will only con-

with partial mappinge : M — {0, 1}* (written ¢5 <¢ ¢) sider the latter case. We will therefore assume that with

if m = n and for every¢ € [n] it holds thatSid; = Sidj, non-negligible probability, in step, a messagen is sent

andCy = {a : dk(a) € ¢}, and for everysid € Sid; the such that
following holds:

For (0_’ i,p, (al, o ,ak)) — f[(SZd) and Nonceadv U {dk(a) ac€ C} @] {E(Th) tm € Sg} ¥ E(m])-
(1,4,4, (b1,...,bn)) := ge(sid) we have thatr = c o o, ()
andi = j, andp = ¢, and(aq,...,a,) = (b1,...,bn). 11E g., the Cramer-Shoup cryptosystem[cf.footnote 7.
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holds, whereC' denotes the set of corrupted agents. From cases, it follows that the probability that the abstraatdra
this we will derive a contradiction to the cryptographic as- is a Dolev-Yao trace changes only by a negligible amount
sumptions used in the theorem by transforming the concretevhen replacingProof by Simulate. Thus [1) still holds
execution in several steps into an adversary againstithe  with non-negligible probability. Moreover, in contrast to
CCA assumption. Proof , the oracleSimulate only expects the statemengs

. . ] input, but no witness.
Simulating the zero-knowledge proofs.As a first step to-

wards a contradiction, we will replace all zero-knowledge USing fake encryptions. The next step towards deriving a
proofs by fake proofs produced by the simulator. For this, contradiction is to replace the encryptions created by hon-
we first introduce two oracles into our execution: A proof €St agents by fake encryptions. Since this step is very simi-
oracle Proof and an extraction oraclBrtract. Whenever lar to the introduction of the oracleémulate and Extract,

an honest agent wants to produce a zero-knowledge proof ofVe only give a rough idea. All encryptions and decryptions
some statement with witnessuw, it invokes Proof (z,w); ~ Performed by honest agents (with respect to public keys of
when the implementation afextracts the witness of some Uncorrupted agents) are replaced by calls to an encryption
zero-knowledge proof, it invokes Extract(z). Note that ~ OF decryption oracle. By performing a lookup in the list of
for this, it must be guaranteed that each zero-knowledge@ll encryptions produced so far, we can ensure that the de-
proof produced by honest agents uses a different randomcryption oracle is only invoked for ciphertexts not proddice
nessk[H and that this randomness is only used for the zero-PY the encryption oracle. Then tiep-ccA property guar-
knowledge proof. By the definition of valid roles, we have antees that we can replace the encryption oracle by an or-
that for any randomnes®, there is at most one effective- acle Fake Encrypt that encryptions random messages (and
subpattern in any path of the role tree of any agent. If this thus is independent of its input). Some care has to be taken
effective R-subpattern is a term of the forgK % (. . . ), then concerning the randomness: We do not guarantee that the

R does not appear in the witness of any zero-knowledge@ndomness used by the encryption oracle is used exactly
proof since terms of the forrdK%(...) may not appear ~ ONnce, but instead may also use it in the witnesses of zero-
in ZK-formulas. Thus any randomnessthat is used for ~knowledge proofs. However, exploiting théimulate does
some ZK-proof is used only for that proof (if the proof is Not need a witness, one can show that the replacement of
performed several times with the same witness, statementh® encryption byFukeEncrypt leads to an indistinguish-
and randomness, theroof oracle will not be invoked again ~ a@ble trace. We refer to the full proof for details.

but the old result will be reused). Note the following facts: |gentifying the underivable subterm. In order to derive a
e The oracleEztract is never invoked with a proafthat  contradiction from[{ll), we have to identify the subterm of
has previously been output roof . This holds since () whose “fault” it is thaté(m) cannot be derived. We
¢ by definition only extracts proofs that have not been il then use this term to construct an attack againstibe
generated by an honest agent, and only honest agentgca. For this, we need the following characterization of un-

useProof . derivable messages:
e The oracleProof is never invoked with(z, w) such

thatw is not a witness of.. This holds since honest
agents check whether is a witness before construct-
ing a proof.
Hence, since both the execution of the concrete trace, a
well as the application of the mappiagun in polynomial-
time, we can exploit thatZXC has the extraction zero-
knowledge property, and hence replace fheof oracle by
a simulation oracl&imulate using the simulation trapdoor () or {JRandus o zKRandun( )
of the CRS such that(t¢) (which is the output of aref- ’ ek(*) Formula
ficient function ¢) is computationally indistinguishable in £ thermore. we have tha$’ ¥ T and thatT satisfies
both case&] Whether a given abstract trace is a Dolev-Yao 4,6 of the f,ollowing conditions: (aJ' € Nonce,,, or
trace can checked in polynomial-time. Thus from the com-(b) T {.}Randag or ()T = 7KRandag () or (d)gT -

putational indistinguishability of the abstract trace®ath Rand. . ok(a) Formula
ZKE2"Cad (r: g0 b) and for some, r; is not known.

Formula
12Here and in the following, when we reason about a randomness _ .
R € Rand,, in the concrete model, we mean the symbolic vaiiihat is Thus by[[1) such a subterinof M = ¢(m) exists. We have

used to select the corresponding bitstring from the randape tising the ~ to show that each of the four cases leads to a contradiction.

function tape. . .
13Here we really need extraction zero-knowledge and not drdyeix- T is a nonce. In case(n) we havé' € Nonce,,. Since

traction oracleBztract is used. S" ¥ T, for any messagen sent to the adversary, the

Lemma 1. Let C be the set of corrupted agents, let :=
¢(m), let S be the set of messages output by honest agents
up to step?, and letS” := SU{dk(a) : a« € C} UNonceyay
éthe knowledge of the adversary after that step).

Then there exists a terfil € M and a contextD such
that M = D[T] and all terms on the path frof/ = D[T]
to T (not includingT’) are of the form
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nonceT" occurs in¢(m) only inside an encryption (with a
public keyek(a) with a ¢ C) or inside the witness of a

Rand,q, s € N we denote distinct symbolic randomnesses.
BY v,,s we denote a mapping that maps everg Rand,,

zero-knowledge proof. Since honest agents construct sucho r% "%,

encryptions and zero-knowledge proofs using the oracles

Simulate and FakeEncrypt, the message: is computed
without using the bitstring corresponding 1g thus it is
not possible to extract that bitstring from. On the other
hand, from the message sent by the adversary, we can
retrieve the nonce as follows. W = ¢(m), theRn%nce
andgdy

T is protected only by terms of the forfy, -), {-}ek(_)

or ZKRandsw () * The pair can directly be parsed, in the

Formula
case of{ - }Randaaw gr zKRandwio () ‘\ye can call the oracles

ek(-) Formula
Decrypt and Extract, respectively. Since these oracles are
also used by the function (at least for terms where as-
signs randomned8and, 4, and notRand,), these oracles
will answer consistently with the parsing = ¢(m) of m.
Thus we can guess the norifeleading to a contradiction.

Cases|[(b) andic) 1 are taken care of similarly.

T is an adversary-generated zero-knowledge proofin
case[(tl), we have that = ZKF2"9w (1 : b) and thatr;

is not known (in the sense 1). In this case the
argumentation used for case (a) cannot be used be@ause

does not correspond to a bitstring generated by an honest
agent. However, as in the preceding argument, the adver-

sary can extract the bitstring correspondingtaand using
the oracleFztract it can extract the concrete randomness
corresponding to-;. By definition of the functiorg, this

randomness will be the randomness used in an encryption

with respect to somek(a) performed by an honest agent
(otherwise the functiom would have assigned a random-
nessr; € Rand,q,). We distinguish two cases: ¢ C and
a € C. If a ¢ C, then the encryption has been generated
using the encryption oraclBncrypt. Being able to retrieve
the randomness used in that encryption contradicts\ihe
cca property of AE. If a € C, then the randomness has
been used to generate the bitstring corresponding to a ter
¢ = {t}F"% with a € C. Sincer; is not known, we have

thatS’ ¥ ¢. With an analogous argument as above, we can

For the following definition, we use the following nota-

tion: For an edge A, ginalabeled tree, the free variables
of (I,r) are the variables that occur iror » but are not in
the label of any edge on the path from the rooptoor are
in{A; :j € [k]} U{X}), :j € N} (where the numbek

of parties and the role-indexwill be clear from the context
below).

Definition 5 (Role). A role tree R is an ordered edge-
labeled finite tree where each edge is labeled by an agent
rule (I,r) wherel, r € Pat.
A role for agenti in a k-party protocolis a role treeR
satisfying the following conditions for each nogdef R:
1. For everyr € Rand,g, there is at most one effective
r-subpattern in the labels of the path pqbut that ef-
fectiver-subpattern may occur several times).
. For any subterm of of the form{t}; it holds that
t = ek(Az)
3. For any subterm af of the form{¢}%2"4 it holds thatt
andt’ do not contain free variables.
4. For any subterm dfof the formzKE2"® (Rand*; a; b)
it holds thata andb do not contain free variables.
5. r does not contain _ nor free variables that are not free
inli.
6. [ and r do not contain subterms that are Rand \
Randgg.

Definition 6 (Formal execution) Let k-party protocolll be
iven.

A global stateis a triple (Sid, f, ¢) whereyp is a set of
messages (thadversary knowledgeSid is a finite set of
session ids, and the functighmaps every session idd
in Sid to the current state of the sessieii. This state is

Malled thelocal stateand is of the fornti, o, p, (a1,...,ax))

wherei € [k] is the index of the role executed in this session,
the partial functions : X — M is a substitution mapping

see that all bitstrings sent by honest agents can be computeg, iaples of the agent to messaggss a node in the role

without actually computing the bitstring corresponding.to

But in this case, that fact that the adversary is able to guesSoe ; in this session (thus;
(3

the randomness used to produds a contradiction. [
A The Abstract Model — Postponed Defini-
tions

In the following, let A; € X.a be pairwise distinct
agent variables (fof € N), and IetXf% € X.n be pair-
wise distinct nonce variables (forj € N). Assume that
X.a\{A; 11 € N} andX.n\ {X7 } are infinite.

By n®7* € Nonce,, With a € A andj, s € N we de-
note distinct nonces. By*7:* € Rand,, Witha € A,j €
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tree II(7), anda; € A is the agent identifier assigned to
is the agent carrying out this
session).
The initial state isj; = (&, @, Nonceyay ).
We allow three kinds of transitions between global states.
e Corruption.The adversary corrupts a subset of the par-
ties involved in the protocol and learns their private
keys. This transition can only be applied in the begin-
ning.

corrupt(a;
ar

(@, 2, Noncega, U {dk(a;) : 5 € [1]}).



e Session initializationThe adversary can initialize new
sessions.

Heresid := |Sid|+1 is the identifier of the new session
andSid’ := Sid U {sid}. The functionf’ is defined
as f'(sid") = f(sid') for sid’ € Sid and f'(sid) =
(i,0,¢,(a1,...,ar)). Hereeis the root of the role tree
I1(¢) and the substitutiom is defined by (A4;) := q;
forall j € [k] ando(X?,) := n%* for every X’
occurring inII(z7).
e Sending of messagesThe adversary can send mes-
sages to agents.
(Sid, f, ) SR Gy 1 ).
Here we requiresid € Sid, m € M, ¢ - m, andy’ and
1 are defined as follows. We defifiésid’) = f(sid’)
for everysid’ # sid. Let (i,o,p,(a1,...,ax)) :
f(sid). Thenlet(l, r) be the label of the first outgoing
edge fronmp such that the following holds:
— The messagen matches the patteriry,; siqo.
Let# denote the matcher.
— Letm TYa,;,sid00. Thenm contains true
proofs.
If no such edge exists, l¢t(sid) = f(sid) andy’ =
. Otherwise, letf’(sid) = (i,0 U 0,7, (a1,...,ax))
wherep’ is the successor gfalong that edge, and let
¢ =pU{m}.

A finite sequence of global states starting wjthwith
the above transitions is called symbolic execution trace
or Dolev-Yao tracefor TI. The set of Dolev-Yao traces for
IT is denotedExec® (I1).

B The Concrete Model — Postponed Defini-
tions

For the following definitions, we assume that
tape®*(R) € {0,1}" are uniformly and indepen-
dently chosen for each € A, sid € N, andR € Rand,,.

e It expects inputs,...,r, of lengthn, and inputs
ai,...,a, Oflengthdy, ... 1, respectively.

e If s is not thep-arity of T', or n is not thea-arity of
T, or |l| # n, or |b] is not thes-arity of T', thenC' is
undefined.

o If T =ek(f;) or T' = {-},,5,) With b; ¢ A, thenC'is
undefined.

o If T'= «;, thenC computes; (i.e.,C is a projection).

o If T = 3;, thenC returnsb; (i.e., C computes a con-
stant function

o If T = ek(B;) andb, € A, thenC returns the public
key of agenb; (i.e.,C computes a constant function).

o If T = (T1,T), thenC computesn; := C;’l’f;} and

me 1= C;’;fl;l, and then returns the bitstringn, ms).

o If T ={T" gﬁ(gj) andb; € A, thenC computesn’ :=

C;’,’fl;l and then returns the encryption of under the
public key of; using randomness.
The circuitC;’l’fTQ_’b expects inputsi, . .., r, of length
n, and inputsay, . .., a, Of lengthsly, ..., [,, respectively.
It computesn; := Cj:"! fori = 1,2 and returnsl. if m,
mo and0 otherwise.
For a ZK-formula ¥ = B(T,...,T,) where B
a Boolean predicate and’ are of the formZKTerm
ZKTerm, the circuit C3"t expects inputs-,...,r, of
lengthn, and inputszy, . . ., a,, oflengthdy, ... [, respec-

tively. It computes; := C;’i’ff for i € [¢] and returnsB(t).

is

Types of bitstrings We assume that pairs, agent ids, ci-
phertexts, zero-knowledge proofs, and nonces in the con-
crete model all come for different efficiently recognizable
sets, so that it is meaningful to speak about bitstringsu ty
pair, agent id, ciphertext, zero-knowledge proof, or nonce
One possibility to achieve this is to add type tags to the bit-
strings. We assume that encryptions are additionally hgge
with their public key. In the case of the type zero-knowledge
proofs, we impose an additional condition. A bitstring of
type zero-knowledge proof is a tuple, F, s, n, [, b) satis-
fying that circuitC' := C;’,’g’l is defined and the verification
algorithm of ZKC accepts the proof for the circuitC'. This

In an implementation, these values would, of course, berestriction on the type zero-knowledge proof has the effect

sampled upon first use. Similarly, we assume thatis
chosen according to the CRS-generation algorithinof
ZK.

For convenience, we will identify elementsdfwith the
bitstrings encoding them.

Definition 7 (Circuits for ZK-formulas) Fix a security pa-
rameter. Let a ZK-formulaF’ of p-arity s, a-arity n and-
arity m be given, as well as bitstrinds, . . ., b,, € {0, 1}*.
Letly,...,l, € N.

For a ZK-termT, the circuitC' = C3* is recursively
defined as follows: -
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that only valid proofs can be assigned to variaties

Definition 8 (Constructing bitstrings)Let a session idid,
an agenta € A, a patternr, and a mapping- from vari-
ables to bitstrings be given. We definmstruct®* (r, 1)
recursively as follows:

Caser = z € X: If 7(x) is defined, returrr(z). Other-
wise, abort.

1Here it is important that for different valués of the same length, the
corresponding circuits have the same size. See the disousasilength-
regularity on paggls.



Caser = ek(z): If a := 7(z) is not defined, abort. Oth-
erwise, retrieve the public key: belonging to agent id. If
no such public key exists, abort. otherwise retpin

Caser = (ry,rq): Setm; := construct®**(r;, ) for
1 = 1, 2. If one of the invocations aborts, abort. Otherwise
return the pair(m, m2>

Caser = {r'}& ek(z): Let R := tape®™*(R), let
a = 7(x), and letpk be the public key of agent If
a or pk is undefined, abort. Otherwise invoke’ :=
construct®* (¢’ 7). If it aborts, abort. Otherwise com-
pute the encryptiom of m’ under public keyk using ran-
domnessk. Returnm.

Caser = ZKF(Rl, oo, Rizar, ..o an; b, ... b)) Let
R := tape®*(R) and R; := tape®*"*(R;) for i = [I].
If one of these is undefined, abort. For alle [n], com-
puted; := construct®*(a;, 7), and for alli € [s], com-
putel;i := construct®*(b;, 7). If one of these invocations
aborts, abort. Otherwise sét := |a;| and letC := o™,

F.b
Setw := (R,a). Use the proverP of ZK to produce a

proof z for circuit C' and witnessv where the prover uses

randomnesg. If this fails (e.g., because the witness does

not fulfill the statement), abort. Otherwise return
In any other case, abort.

Definition 9 (Parsing bitstrings) Let a bitstringm, a pat-
ternl, and a mapping from variables to bitstrings be given.
We defingarse®**(m, [, 7) recursively as follows:

Casel = x € X: If the type ofm does not match the
type ofz[1§ abort. If 7(z) = m, then returnr. If 7(z) is
defined, but-(z) # m, abort. Otherwise returar[x := m].

Casel = ek(x) € ek(X.a): If mis not of type ciphertext,
abort. Otherwise, if there is an agentadsuch thatn is the
public key ofa and 7(z) is not defined or equals, return
7(z)[z := a]. Otherwise abort.

Casel = (l1,13): If m is not a pair, abort. Otherwise
parsem as (m, mo) and let7’ := parse®*(my,ly,7)
and 7" := (ma,l2, 7). If one of the invocations aborts,
abort. Otherwise returrr”.

Casel € {Pat}fiy, or 1 € ZKE,,(Rand*; Pat™;

Pat*): Invokem’ := construct®*?(l,7). If m # m/,
abort. Otherwise, returm.
Casel = {I }ek A)) with j € [k]: If m is not an encryp-

tion, abort. OtherW|se, extract the public key from m.
If pk is not the public key belonging to the agentrigd; ),
abort. Otherwise decrypt: with the secret key belonging
toa := 7(A;) and letm’ be the corresponding ciphert

15Here we assume some encodingaf1, m2) such that the length of
(m1,m2) only depends on thiengthsof m; andms. See the discussion
on length-regularity on padé 5.

18t X.z this implies invoking the verification algorithm & onm.

17Note that due to the definition of roles, this will only needbedone
by agenta itself.
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If this fails, abort. Otherwise let’ := parse®*'®(m/, I, )
and returnt’ (or abort if the invocation aborts).

Casel € ZKg(_*;_*;ma,...,my): If m is not of
type zero- knowledge proof, ab@t Otherwise,m =:
(z,F',s,n,1,b). If F # F’, abort. Otherwise for =
1,...,n run the following: 7; := parse®*(b;,l;, 7i_1)
with 5 := 7. If one of the invocations aborts, abort. Other-
wise returnr,,.

In any other case, abort.

Definition 10 (Concrete execution model)A concrete
global stateis a triple (Sid, g, C') whereSid is a finite set
of session-ids, and is a function mapping evenid € Sid
to a concrete local state, and is the set of corrupted par-
ties.

A concrete local statis of the form(i, 7, p, (a1, . .., ax))
wherei € [k] is the index of the role executed in this session,
the partial functions : X — {0, 1}* is a substitution map-
ping variables to bitstringg is a node intI(¢), anda; € A
is the agent identifier assigned to rojén this session.

Let a probabilistic interactive Turing maching be
given. Theconcrete trac&xecy; 4(n) for security parame-
tern is a (distribution over) sequences of global states given
by the following algorithm.

e Whenever a public or secret key of some agesat A

is used for the first time, the key pair is generated using
the key generation algorithm ofE. We further gived
access to the public keys of all agents.

e The initial global state i@, &, @). In the first step,

A is invoked with input”.

e When A outputs corrupt(aq,...,a;) with
ai,...,a, € A in its first activation, the adver-
sary is given the secrets keysaf,. . ., a, as input.
The next global state i&7, &, {a1, ..., a1 }).

e When A outputsnew(i,aq,...,a;) in global state
(Sid, g,C) wherei € [k] anday,...,ar € A, the
next global state i$Sid’, ¢’, C).

Here sid := |Sid| + 1 is the identifier of the new
session andid’ := Sid U {sid}. The functiong’
is defined ag)/(sid') = g(sid’) for sid’ € Sid and
g'(sid) = (i,7,¢,(a1,...,ax)). Heree is the root of
the role treell(i) and the substitution is defined by
o(A;) = a;forall j € [k] ando (X7 ) is initialized
with a randony-bit nonce for everyXf;,i occurring in
I1(z). The adversary is given empty input.

e When A outputs send(sid,m) in global state
(Sid, g, C) wheresid € Sid, the next global state is
(Sid, ¢’, C).

Here ¢'(sid’) :=
g (sid) = (7.i,p,
(1,4,p, (a1,...,ak)

g(sid") for all sid # sid’,
(a1,...,ax)) is computed from
) := g(sid) as follows:

18By our definition of the type zero-knowledge proof, this ireplinvok-
ing the verification algorithm o£XC.



For each edge b, p” starting inp (in their natural
order, remember that the role trelé(i) has ordered
edges), first invoke” := parse®*@(m, 1, 7). If this
fails, continue with the next edge. Then invake:=
construct®-* (r, 7). If this fails, continue with the
next edge. Otherwise set := 7/ andp’ := p”, let
the next input of4 bem’, and do not proceed with the
next edges.

If no edge lead to a definition of , p’ and an output
for A, setr’ := 7 andp’ := p and let the next input of
A be the empty string.

Thus in the remainder of this proof, let be distributed
according tcExecy; 4(n). We will construct and show that
¢(t¢) is a Dolev-Yao trace with overwhelming probability
which then establishes the theorem.

The mapping ¢. The mappingec works by parsing any
messagen € {0, 1}* in a manner similar to thparse func-

tion from[Definition 9. However, in contrast fearse, the
mappingc has to parse any bitstring and not only terms
matching some pattern. In particularhas to extract the
witnesses of the zero-knowledge proofs and decrypt all ci-

e When the adversary outputs anything else, the exephertexts. Moreovet,will have to assign symbolic random-
cution terminates and the concrete trace ends at this ness fromRand to any ciphertext or zero-knowledge proof.

point.

C Proof of[Theorem 1

Proof. In the following, let ak-party protocolll and a
polynomial-time adversaryl be fixed. We have to show
that

Pr[Execf; 4(n) € {t : 3t° € Exec’(II) such that® < t°}].

is overwhelming in.

For this, we will give a construction of an injective
mappinge : {0,1}* — M that may depend om as
well as of some of the values occurring Execy; 4(n)

such as the CRS, its extraction trapdoor, or the pri-
We extend this mapping to
concrete traces as follows: A concrete execution trace

vate keys of the parties.

te (Sid1,91), - .-, (Sidn, gn) is mapped to an abstract
trace ¢(t°) (Sid1, f1,¢1), .-+, (Sidyn, fn, pn) as fol-
lows. We letf,(sid) = (co 7,i,p,(a1,...,ax)) Where
(1,4,p, (a1,...,ax)) := ge(sid), and we define the adver-
sary’s knowledgep, as follows: We setp; := Nonceygy, -
For ¢,+1 we distinguish three cases. If theth transi-
tion was anew-transition, we setpy; := . If the ¢-
th transition was &orrupt(aq, ..., a;)-transition, we set
et = e U {dk(a;) : j € [I]}. If the ¢-th transition was
asend(sid, m)-transition, letm be defined as in the corre-
sponding part df Definifion]6 and set1 := p, U {m} if

m is defined andpy; := p, otherwise.

We will then show that ift¢ is chosen according to the
distribution Execy; 4(n), with some overwhelming proba-
bility 1 — 1(n) we have that(t®) is a Dolev-Yao trace.

Since¢ is injective, we have that—! is an injective
partial function, and by construction eft¢) we have that
c(t) <" ¢, Thus, assuming that(t®) is a Dolev-Yao
trace with probabilityl — 1, we have

Pr[Execyy 4(n) € {t : 3t° € Exec®(II)
such that® < t°}] > 1 — pu(n).
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Decrypting the ciphertexts is easy, since we alloto
access the secret keys of all agents. This allows to decrypt
all ciphertexts that use a public key corresponding to an ex-
istent agent. All other ciphertexts may be safely considlere
as invalid, since no honest party will ever be able to decrypt
them.

To extract the witnesses from the zero-knowledge proofs,
we use the extractability property gfiC. Using the extrac-
tion trapdoor for the CRS; can recover the witness for the
proof and use it for further parsing.

However, extracting the randomness is non-trivial. In
general, an encryption scheme may not allow to extract
the randomness used when decrypting, even given knowl-
edge of the secret k@. Moreover, some of the random-
ness might even be information-theoretically lost, so even
an inefficient mapping would not be able to recover that ran-
domness. Similar reasoning applies for the zero-knowledge
proofs. Fortunately, it turns out not to be necessary that
identifies the actual randomness, but only some value such
that different encryptions or proofs of the data will resalt
different terms. Thus, instead of trying to extract the ran-
domness from a messagegenerated by the adversary, we
interpret the whole message as its randomness and map
m to a symbolic randomneds, (depending on whether
m was generated by an honest party or the adversary).

Furthermore, we will definé in a way so that it can be
efficiently evaluated without decrypting the ciphertexaésg
erated by honest agents or extracting from zero-knowledge
proofs generated by honest agents. This can be done be-
cause if an honest agent explicitly computed the bitstring,
we simply store the inputs of that operation.

For the actual definition of, we fix arbitrary (but ef-
ficient) injective mappingsRua» : {0,1}* — Randggy,

Baav : {0,1}* — Nonceyqy, andG : {0,1}* — Garbage

and write their arguments as superscripts. Hefg, de-
notes the randomness used by the adversary to construct the
messagen. Similarly, BT, denotes the nonca whenm

is generated by the adversary. And finatlf?* will be used

to abstractly represent unparsable bitstrings.

19g.g., the Cramer-Shoup cryptosystem[cf.footnéte 7.



The terme(m) € M is then recursively defined as follows:

Case'm e A”. Returnm.

Case" m is of type public key! Finda € A such that
m is the public key for. If no sucha exists, returrek(G™).
Otherwise returrek(a).

Case"“m is of type pair”.
return(c(mz), c¢(ma2)).

Case" m is of type nonce” First check whethem
was generated as the value of some var@QLE by some
honest agent in some sessiorid. More exactly, check
whether a global statsid, f, ¢) occurs in the trace where
f(sid) = (i,0,...,...) for somei ando, ando (X7 ) =

m for somej. If so, returm 754, (Remember that®7>i

Parsem as(mi, mq) and

is the nonce that is assigned in the abstract model to th

nonce variableXﬁ, in sessionsid run by agent..) Other-
wise, returnB™

adv*

Case"m is of type ciphertext aneh has not been gener-
ated by an honest agent” Extract the public keyk
contained inn. Letek(a) := ¢(pk). If a € Garbage, return

{Gm}iﬁ“ Otherwise, letsk be the secret key of ageat
and decryptm usingsk and call the resuhtn’ If this fails,
return{Gm} Otherwise, returr{m’} ‘”“

ad@

ek(a)"
Case“ m is of type ciphertext andh has been generated
by an honest agent” l.e., m was the result of a call
construct® “d({t}ek(m), 7) by agenta in sessionsid for
someR € Rand,y, # € X.a, and some mapping from
variables to bitstrings. Let be the bitstring that was com-
puted byconstruct®**(t, 7). Let thent” := &(t') (this
gives the same result as applyiatp all variables inr and
then computing” := ¢7’ wherer’ is the mapping resulting

from that substitution). Then retuft”} 7 . mj) (Remem-

ber thatr® i is the randomness that is actually used in
the abstract model when ageninstantiates a pattern with
randomnesg in sessionsid.)

Case“m is of type zero-knowledge proof and has
not been generated by an honest agent”  Extract
the formula F’ and the statement from m. Use the
ZK extraction algorithm and the extraction trapdoor of
ZK (cf. [Definition 1) to extract the witness of z
Parsex as a tuple(by,...,bs), and parsew as a tuple
(ri,...,ra1,...,a,). Letd, := &(b;) anda; c(a;)
for all i. To compute the abstract randomnelstor some;,
proceed as follows: Let be an arbitrary subterm af of
the forme = {¢'};*. Construct the bitstring’ correspond-
ing toe. Thene’ will be a bitstring of type ciphertext. Let
¢ := ¢(e’). Thene” will have the form{...}"". Set
r, .= r’. If any of these operations fails (which can only
happen if the ZK extraction algorithm fails aris not a wit-
ness ofr under the circuitr), we returnG° and say that a
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,R,sid .
&k

ZK-break occurred (the valug® is arbitrary, we will later
see that ZK-breaks occur only with negligible probability

anyway). Otherwise, returﬁK};%’ (r',d,b").

type zero-knowledge proof
and m been generated by an honest
agent”. l.e., m was the result of a call
construct“’Sid(ZKg(rl,...,rl;al,...,an;bl,...,bs),T)

by agenta in sessionsid for some R,r; € Randgg,
ai,b; € M, and some mappingr from variables
to bitstrings. Leta, be the bitstring that was com-
puted by construct®*(a;,7) and b; analogous. Let
then a ¢(al) (this gives the same result as ap-
plying ¢ to all variables in+ and then computing
a! a;7' where 7' is the mapping resulting from
that substitution). Definé! analogously. Then return

K3

_ a”;b"). (Remember that
reftsid is the randomness that is actually used in the
abstract model when ageant instantiates a pattern with
randomnesg in sessionsid.)

m is of

has

Case

a,ry,sid.
T )

Case’ m does not match any of the above cases” Re-

turn G™.

Note thate is injective unless a ZK-break occurs: For
pairs and agent ids this is obvious. In the case of nonces,
garbage, encryptions and zero-knowledge proofgener-
ated by the adversary, this follows since we include the mes-
sagemn explicitly in the superscript oB?%, , G™, andR"",
respectively. For nonces, encryptions and zero-knowledge
proofs m generated by honest parties, this also follows,
since we assigm the abstract messagevhose evaluation
resulted inm, and since repeated evaluationtadoes not
yield different values in a concrete execution (the random-
ness to be used is explicitly referenced)ineach ternt can
only be assigned to a single value

Finally, we see that ZK-breaks occur only with negligi-
ble probability: A ZK-break implies that a witnessis ex-
tracted from a zero-knowledge proof that is not a witness
for the statement of that proof, although the proof has been
successfully verified. This is a contradiction to the profof o
knowledge property o£K.

The trace ¢(t°) is a pre-DY trace. In the following, by

a pre-DY tracewe denote an abstract trace that satisfies
with the (possible) exception of the condition
that in the transition

(Sid, f, ¢ (Sid, f,¢"),

we havey - m. That is, in a pre-DY trace we allow the
adversary to send messages it cannot derive.

To see that(t¢) is a pre-DY trace with overwhelming
probability, we have to check that for adythe ¢-th transi-
tion in ¢(t¢) is a valid transition. In the case ebrrupt

) send(sid,m)
_—



andnew transitions, this follows directly from the defini- agents andS, the messages given to the adversary in the
tion of the corresponding transitions in the concrete execu send transitions in the concrete model up to the transition
tion and from the construction @f¢¢) (and in particular of  leading top,.

the knowledgep,, 1 in that trace). We therefore consider

the case that théth transition is a transition of the form The trace &) is a Dolev-Yao trace. We will now pro-

. o ceed to show that(t¢) is a Dolev-Yao trace with over-
(5id, £,) (Sid, ,')- whelming probability. Since we already know tl@t) is

First note that all (honestly generated) nonces and all ran@ Pre-DY trace, and that the adversary’s knowleggen
domnesses of honest agentgirare assigned differentval- the (-th step ofe(t¢) is p, = Noncegay U {dk(a) : a €
ues with overwhelming probability. Similarly, any two zero C} U {¢(m) : m € 5} (whereC denotes the corrupted
knowledge proofs or encryptions (unless generated with the@gents and, the messages given to the adversary), it will
same randomness) produced by honest agents are differefte enough to show that in evesgnd (sid, m) transition in
because of the unpredictability propey. the concrete model, we have that

Thus, assume that all nonces, randomnesses, encryp- o -
tions, and zero-knowledge proofs of honest agents are Nonceqdy U {dk(a) : a € C} U {e(m) : m € Se} F e(m)
assigned different values.

Then a detailed case analysis over the construction
of parse and the definition of thesend transition in
the concrete model shows that for a concrete transition
send(sid, m) with local state(i,7,p, (a1,...,ar)), we
have that the invocation” := parse®*(m,[, 1) suc-
ceeds if and only if(m) matches,, siqo Whereo := cor.
Furthermore, if it matches with matchér we have that
ocUf=cort”.

Similarly, a detailed case analysis over the construc-
tion of construct and the definition of thesend transi-
tion in the concrete model shows that for a concrete tran-
sition send(sid, m) with local state(s, 7, p, (a1, ..., ax)),
we have that the invocatiom’ := construct®**(r, 7' Simulating the zero-knowledge proofs. As a first step
succeeds if and only ify,, s4(¢ o 7’) contains true proofs.  towards a contradiction, we will replace all zero-knowledg
(Note that the condition of having true proofs corresponds proofs by fake proofs produced by the simulator. For this,
to the fact that the construction of a zero-knowledge proof we first introduce two oracles into our execution: A proof or-
in construct will fail if the witness constructed is not ac- acle Proof and an extraction oraclBztract. Whenever an
tually a witness.) And in this case, we hawen') = honest agent wants to produce a zero-knowledge proofs of
TYas,5id (€0 T") = 1Ya,,5id00. some statement with witnessw, it invokes Proof (x, w),

Thus the first edge satisfying the conditions in the defini- and when the implementation afextract the witness of
tion of thesend transition in the abstract model is the same some zero-knowledge proof it invokes Eztract(z). Note
as the first edge satisfying the corresponding conditions inthat for this, it must be guaranteed that each zero-knoveledg

send (sid,c(m))
_—

(with overwhelming probability).

In order to prove this, we will assume that this is not the
case, i.e., that with non-negligible probability, in stem
messagen is sent such that

Nonceyar U {dk(a) : a € C} U {c(m) : m € Sp} ¥ é(m)

)
From this we will derive a contradiction to the crypto-
graphic assumptions used in the theorem by transforming
the concrete execution in several steps into an adversary
against thend-cca assumption.

the concrete model. From this we can conclude that proof produced by honest agents uses a different random-
o nessk 1 and that this randomness is only used for the zero-
(Sid, f,») send(eid2m)), (Sid, ', ¢). knowledge proof. BY Definitionl5, we know that for any
. . » randomnesse, there is at most one effective-subpattern
is a valid transition. Note that the faetm’) = rv,,,si000 in any path of the role tree of any agent. If this effec-

also implies thap’ = pU{c(m’)} wherem' is the message  tive R-subpattern is a term of the for#k 2(... ), then R
passed to the adversary in the concrete exectfihsuch  goes not appear in the witness of any zero-knowledge proof
amessage was given to the adversary). since terms of the forn@KZ%(...) may not appear in ZK-
. . . formulas. Thus any randomnessthat is used for some
Thus we have shown that with overwhelming probabil- ZK-proof is used only for that proof (the proof may be per-

ity, ¢(t°) is a pre-DY trace. Furthermore, from the analysis {rmeqd several times with the same witness, statement and
of the send transition we know thap, = {dk(a) : a €
C} U {E(m) :m € Sl} whereC' denotes the corrupted 21Here and in the following, when we reason about a randomness
R € Randg in the concrete model, we mean the symbolic vaihat is

20which holds forZ K by assumption and which can be easily seen to used to select the corresponding bitstring from the randipe tising the
also hold for anyND-CCA secure encryption scheme. function tape.
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randomness, but in this case tReoof oracle will not be
invoked again but the old result will be reused).
Note the following facts:
e The oracleFztract is never invoked with a proafthat
has previously been output Broof . This holds since

invocation of Encrypt. The third case is captured by the
fact that we do not need to construct the witnessince the
oracleSimulate introduced above does not need a witness.
It remains to see that we can check whether the witness
is valid without explicitly constructing it or accessingeth

¢ by definition only extracts proofs that have not been randomnessk. However, any ZK-term contained in the
generated by an honest agent, and only honest agentZK-formula F' will, after substituting the witness, contain

useProof.

e The oracleProof is never invoked with(z, w) such
that w is not a witness ofc. This holds since by
honest agents check whetheiis a wit-
ness before constructing a proof.

R only in subterms that are equal to(otherwisec there
would be more than one effectiv@-subterm). For these
subterms, we reuse the result of the invocatiodwotrypt

(or, if ¢ has not been evaluated yet, invoKecrypt now

and reuse the result later when it is needed for constructing

Hence, since both the execution of the concrete trace, as bitstring). Thus we do not need to access the randomness

well as the application of the mappiagun in polynomial-
time, we can use the fact th&kC has the extraction zero-
knowledge property and replace tRevof oracle by a simu-
lation oracleSimulate using the simulation trapdoor of the
CRS such that(t¢) (which is the output of aefficientfunc-
tion ¢) is computationally indistinguishable in both caes.

R used by the encryption orackencrypt directly.

We can further change the invocations of the decryption
oracle as follows. If a ciphertextis to be decrypted with
respect talk(a) that was previously returned by the oracle
Encrypt for some plaintext: with respecttek(a), then do
not call Decrypt but use the plaintext: directly. We end

It can easily be seen that it can be checked in polynomial-up being in a situation wherBecrypt is only invoked for
time whether a given abstract trace is a Dolev-Yao trace.encryptions that have not been returneddayrypt. Hence,
Thus from the computational indistinguishability of the ab becauseA€ is IND-CCA secure, we can repladencrypt by
stract traces in both cases, it follows that the probability an oracleFake Encrypt that instead of a plaintext expects
that the abstract trace is a Dolev-Yao trace changes onlyonly its lengthl, and that returns the encryption of a ran-

by a negligible amount when replaci®yoof by Simulate.

Thus [2) still holds with non-negligible probability. Note

further that in contrast t@roof, the oracleSimulate only
expects the statementas input, but no witness.

Using fake encryptions. The next step towards deriving

dom string of length. This will lead to a computationally
indistinguishable trace(t¢), and thus[(R) still holds with
non-negligible probability.

Identifying the underivable subterm. In order to derive
a contradiction from{2), we have to identify the subterm of

a contradiction is to replace the encryptions created by honé(m) whose “fault” it is thaté(m) cannot be derived. We

est agents by fake encryptions. l@tdenote the set of cor-
rupted agents. Since th@mrrupt transition must be the

will then use this term to construct an attack againstnbe
CCA. For this, we need the following characterization of un-

first transition,C' is known whenever an encryption has to derivable messages:

be produced. We can now introduce an encryption oracle

Encrypt and a decryption oracl®ecrypt that handle en-

cryptions and decryptions performed by honest agents with

respect to any keyk(a) ordk(a) witha € A\ C.

Again, we have to verify that the randomness used for

an encryption is never reused. Fix a randomriedhat is
used in some encryptian := {t}é}’((a). Again, we exploit
that for any randomneds, there is at most one effective-

subpattern in any path of the role tree of any agent. In this
case, it will bec. Thenc may occur directly as a subterm of
the message to be sent, or it may result from substituting the
p, o, B in a ZK-formulaF with some other terms. Thus the
randomness$ may be used in three places: In the compu-

tation of the bitstring corresponding ¢pin the verification
whether the witness used for some ZK-proof with some
formula F' is valid, and as part of the witness The first

case is a normal encryption and thus can be replaced by a

22Here we really need extraction zero-knowledge and not dreyex-
traction oracleEztract is used.
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Lemma2. FixC C A, S C MandM € M and setS’ :=
SU{dk(a) : a € C} UNonceyq,. Assumes’ ¥ M and that
M, S do not contain a subterm of the fordi(A). Assume
further that M contains true proofs. We say <€ Rand is
knownif » € Rand,q4, Or there area € C andt € M such
thatS” = {t}. .-
Then there exists a terfi € M and a contextD such
that M = D[T] and all terms on the path frof/ = D[T]

to T (not includingT’) are of the form
<.’ .> 07"

Furthermore, we have the’ ¥ T and thatT" satisfies one
of the following conditions:
(@) T € Nonce,g, or

Rand,,
Igb) T = {-}ek(a) , or

©) T =2ZK (.., or

Formula

(d) T = zZKRa"datr (1 - b) and for some, r; is not known.

Formula

{.}Randadu or

o ZKRandaa (-

Formula



Proof. We prove the lemma by structural induction &h.
In the base casé{ is a nonce, an agent identifier, a public
key, or garbage. In the last three cases, we I$4¥e M, so
the lemma is not applicable. M/ is a nonce, we distinguish
M € Nonce,q, andM € Nonce,,. In the first caseS’ -
M holds, thusM is not applicable. In the second case, the
conclusion of the lemma is fulfilled with' := M.

In the induction step we distinguish the following cases:

Case" M = (My, Ms)". SinceS’ ¥ M, we have
S’ ¥ M, for somei € {1,2}. Hence there exists a sub-
termT of M; satisfying the conclusion of the lemma fbf;,
and thisT is also a subterm aof/ satisfying the conclusion
for M.

Case’ M = {M'} 2o or M = ZKmw (... In

Formula

these cases := M %ulfills the conclusion of the lemma.
Case' M = {M'} 0" In this case, sincé ¥ M
andS F ek(a), we have thatS ¥ M’. Hence there exists
a subternil” of M’ satisfying the conclusion of the lemma
for M’, and thisT is also a subterm oMM satisfying the
conclusion forM.

Case“M = ZKFdaw(rq:b) and all  are known”
Sincer are known, if we had’  a, b we would also have
S’ + M. Thus for someM’ € {a,b} we haveS’ ¥ M’.

Hence there exists a subtefirof M’ satisfying the conclu-
sion of the lemma fo\/’, and thisT is also a subterm of

M satisfying the conclusion fal/.

Case* M = ZKFdw(rq:b) and one of ther is not

known”. ThenT := M fulfills the conclusion of the
lemma. O

In a trace satisfyind {2), we can apply this lemma with
C being the corrupted agents afd:= {¢(m) : m € S}
being the messages up to th¢h step, andV/ := ¢(m) be-
ing the message in tifeth step. The condition th&t, A/ do
not contain subterms of the fordk(A) is fulfilled since the
functione by definition never outputs such terms. Similarly,
¢ will not output anM that does not contain true proofs
sincec checks the witnesses it extracts. Siride (2) holds with
non-negligible probability, we have that with non-nedbigi
probability, a subterni” of M as ifLemmaR exists.

The termT satisfies one of the four propertigs[(h—d). In
the following, we will examine each of these conditions sep-
arately and in each case derive a contradiction.

T is a nonce. In case[(p) we hav# € Nonce,,. Since

S" ¥ T, for any messagen sent to the adversary, the
nonceT occurs iné(m) only inside an encryption (with a
public keyek(a) with a ¢ C) or inside the witness of a

Simulate and FakeEncrypt, the message: can be com-
puted without knowing the bitstring correspondingt®
Then the value ofl" is only used in comparisons, namely
when checking whether a given witnggsa) is valid or to
perform pattern matching. Thus it might be that these com-
parisons leak information about the noriE€up to one bit
per comparison). However, it is easy to see that only by
comparing (polynomially many) values 14 it is not possi-
ble to gues§” with more than negligible probability. On the
other hand, from the messagesent by the adversary, we
can retrieve the nonce as follows. Mi = ¢(m), the nonce

T is protected only by terms of the forin, -), {-}5i)""

or ZKRardear () The pair can directly be parsed, in the

Formula
case Off -}y or ZKianie (... ), we can call the oracles
Decrypt and Extract, respectively. Since these oracles are
also used by the function (at least for terms where as-
signs randomned8and,q4, and notRand,,), these oracles
will give answers consistent with the parsifg = ¢(m) of
m. Thus we can guess the noriEavhich leads to a contra-

diction.

T is an honestly-generated encryption or zero-
knowledge proof. In the cases{b) andi(c) bf Lemmh 2,
completely analogous reasoning to case (a) applies. In
these cases, the terf will correspond to an encryption

or zero-knowledge proof that was generated by honest
agents. Since zero-knowledge proofs and encryptions have
the unpredictability property, we get a contradiction by
showing that the adversary can gu&ssvithout 7' being
used.

T is an adversary-generated zero-knowledge proof. In
case[(tl), we have that = ZKF2"% (1 ¢; b) and thatr; is

not known (in the sense 2). In this case the argu-
mentation used for the casesfa—c) cannot be used because
T does not correspond to a bitstring generated by an honest
agent. However, as in the preceding paragraphs, the adver-
sary can extract the bitstring correspondin@taand using

the oracleFEztract it can extract the concrete randomness
corresponding to-;. By definition of the functiorg, this
randomness will be the randomness used in an encryption
with respect to somek(a) performed by an honest agent
(otherwise the functiom would have assigned a random-
nessr; € Rand,q,). We distinguish two cases: ¢ C and

a € C. If a ¢ C, then the encryption has been generated
using the encryption oraclBncrypt. Being able to retrieve

the randomness used in that encryption contradicts\ihe

cca property of AE. If a € C, then the randomness has
been used to generate the bitstring corresponding to a term

23These oracles expect only thength of the witness or plaintext, re-
spectively. This length can be computed since the lengthehbnce is

Zero'kn_OW|edge proof. Since honest agems_ construct sUCHiyed and thus known. Note that this uses the length-regylafithe zero-
encryptions and zero-knowledge proofs using the oraclesknowledge scheme.

20



¢ = {t}r2" with a € C. Sincer; is not known, we have
that.S’ ¥ c. With an analogous argument as above, we can
see that all bitstrings sent by honest agents can be computed
without actually computing the bitstring corresponding.to
But in this case, that fact that the adversary is able to guess
the randomness used to produde a contradiction. [
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