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1. Introduction and Preliminaries

The differential cryptanalysis presented by Biham and Shamir[2] is based on
the study of how differences in an input can affect the resultant differences
at the output. The resistance to differential attacks for a function f from
F2n to F2n , used as an S-box in the cipher, is high when the value

δf = max
a,b∈F2n ,a6=0

|{x ∈ F2n : f(x + a) + f(x) = b}|,

is small. The functions with the smallest possible differential uniformity[3]

, that is, with smallest δf , oppose an optimum resistance to the differential
attack. They are called almost perfect nonlinear(APN).

The extended walsh transform of f at (a, b) is given by

fW (a, b) =
∑

x∈F2n

χ(ax + bf(x)),
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where χ(x) = (−1)Tr(x), for each a, b ∈ F2n . Then we can define the ex-
tended walsh spectrum of f as the set

Λf = {fW (a, b) : a, b ∈ F2n , b 6= 0},
The linear cryptanalysis introduced by Matsui[4] is based on finding

affine approximations to the action of a cipher. And the nonlinearity of a
function is the value

NL(f) = 2n−1 − 1
2

max
a,b∈F2n ,b 6=0

|fW (a, b)|,

which equals the minimum Hamming distance between all nonzero linear
combinations of the coordinate functions of f and all affine Boolean func-
tions on n variables. It has been proved[5] that NL(f) ≥ 2n−1 − 2

n−1
2 ,

and the functions achieving the maximal possible nonlinearity NL(f) =
2n−1 − 2

n−1
2 possess the best resistance to the linear attack, which are

called almost bent(AB) or maximum nonlinear. Furthermore, it is showed
that f(x) is AB if and only if it has a 3-valued extended walsh spectrum
{0,±2

n+1
2 }, in which case n must be odd[6].

CCZ equivalence[6] is a standard measure to determine whether two
functions are essentially the same for AB and APN properties, because δf

and Λf is invariant under it. This relation generalizes extended affine(EA)
equivalence. A family of APN functions is new if they are CCZ inequivalent
to any previously know family.

All known APN functions are only in a short list of power functions,
which are all contained in Table 1, and all known AB functions are contained
in Table 2, until 2006 when new examples began to appear in the literature.
The first function was given in[7]. Until now, there are 8 families of new
quadratic APN functions, which are all presented in Table 3. They have
been shown CCZ-inequivalent to any power APN functions on F2n , for
some n, by technical construction and calculating the CCZ-invariants, like
extended walsh spectrum[6] or Γ-rank[7]. However, it has not been proved
that these functions are CCZ-inequivalent to all power functions on F2n ,
for any n, or for infinite n.

By calculating the extended walsh spectrum of APN functions, we can
get some important results. Firstly and apparently, the nonlinearity of these
functions. Secondly, by comparing the extended walsh spectrum, we may
tell whether a new APN function is CCZ-inequivalent to those known APN
functions for infinite n.

It is well known that every AB function on F2n is also APN function[5].
If n is odd, f is quadratic and f is APN also, then it is necessarily AB[6].
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Table 1. Known APN Power Functions on F2n

functions exponents conditions

Gold[3] 2i + 1 gcd(i, n) = 1

Kasami[12] 22i − 2i + 1 gcd(i, n) = 1

Welch[14] 2t + 3 n = 2t + 1

Niho[13] 2t + 2
t
2−1, t even; 2t + 2

3t+1
2 −1, t odd n = 2t + 1

Inverse[3] 22t − 1 n = 2t + 1

Dobbertin[15] 24t + 23t + 22t + 2t − 1 n = 5t

Table 2. Known AB Power Functions on F2n ,where n is odd

functions exponents conditions

Gold[3] 2i + 1 gcd(i, n) = 1

Kasami[12] 22i − 2i + 1 gcd(i, n) = 1

Welch[21] 2t + 3 n = 2t + 1

Niho[21] 2t + 2
t
2−1, t even; 2t + 2

3t+1
2 −1, t odd n = 2t + 1

Table 3. Known APN quadratic Functions on F2n

No. functions conditions Walsh spectrum

n = 3k,gcd(k, 3) = gcd(s, 3k) = 1,

1[16] x2s+1 + wx2ik+2mk+s
k ≥ 4, i = sk mod 3, m = 3− i, unknown

ord(w) = 22k + 2k + 1

n = 4k,gcd(k, 2) = gcd(s, 2k) = 1,

2[17] x2s+1 + wx2ik+2mk+s
k ≥ 3, i = sk mod 4, m = 4− i, unknown
ord(w) = 23k + 22k + 2k + 1

n = 2m,m ≥ 3,q = 2m, cq+1 = 1 5 values, proved in

3[1] x22s+2i
+ bxq+1 c /∈ {λ(2i+1)(q−1), λ ∈ F2n} Theorem 1 of the

+cxq(22i+2i) gcd(i, m) = 1,cbq + b 6= 0 present paper

n = 2m,m ≥ 3,q = 2m, gcd(i, m) = 1,

4[1] x(x2i
+ xq + cx2iq) s /∈ {Fq}, x2i+1 + cx2i

+ cqx + 1 unknown

+x2i
(cqxq + sx2iq) + x(2i+1)q is irreducible over F2n

n ≥ 7,n > 2p,

5[18] x3 + tr(x9) for the smallest possible p > 1, 5 values, n even;

such that p 6= 3, gcd(p, n) = 1 3 values, n odd[10]

3|(k + s), (s, 3k) = (3, k) = 1,

6[19] u2k
x2−k+2k+s

+ ux2s+1 n = 3k,u is primitive in F23k , unknown

+vx2−k+1 + wu2k+1x2k+s+2s
v, w ∈ F2k ,v 6= w−1

gcd(k, s) = 1, 2 - k, 2 - s,
7[20] αx2s+1 + α2k

x2k+s+2k
α, β is primitive in F22k , , 5 values[9]

+βx2k+1 +
∑k−1

i=1 γix
2k+1+2i

γi ∈ F22k ,v 6= w−1

3|(k + s), (s, 3k) = 1,

8[20] ux2−k+2k+s
+ u2k

x2s+1 n = 3k, 3 - k, unknown

+vx2k+s+2s
u, v is primitive in F2k
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When n is even, an APN function may have a large extended walsh spec-
trum (more than 5 values), which means it could be less resistant to linear
attack. It should be remarked that not all quadratic APN functions always
have 5 values, which is the same as the Gold functions for even n. The ex-
tended walsh spectrum of a quadratic APN function may have more than
5 values, and an example with 7-valued spectrum was shown in[8]. Because
all the new APN functions in Table 3 are quadratic, we only to calculate
the extended walsh spectrum when n is even, and that of two functions(No.
5 and No. 7) in Table 3 has been worked out.

The new family of APN trinomial (No.3) was given in [1], along with
No.4. And it was shown to be CCZ inequivalent to Dobbertin functions for
any m, and inequivalent to any APN power functions when m = 3.

In this paper, we compute the extended walsh spectrum of these tri-
nomials, and show that it is 5-valued, which is the same as that of the
Gold functions x2i+1, where (i, n) = 1. Furthermore, we know that these
new functions can’t be proved to be CCZ-inequivalent to Gold functions by
calculating the extended walsh spectrum.

To prove the main result of this paper, we need the following two lem-
mas.

Lemma 1.1. Let d = gcd(m,n), then gcd(2m − 1, 2n − 1) = 2d − 1 and

gcd(2m − 1, 2n + 1) =

{
1 + 2d if m/d is even and n/d is odd

1 otherwise.
(1)

Lemma 1.2. [9] Let n, s, d be integers, and gcd(n, s) = 1. Then linearized
polynomial

L(x) =
d∑

i=0

aix
2is ∈ F2n [x],

has at most 2d roots in F2n .

2. The extended walsh Spectrum of New APN Functions

Let m, i be integers, where m ≥ 3, and let n = 2m. In [1] a new quadratic
function was shown to be APN over F2n :

f(x) = x22i+2i

+ βxq+1 + θxq(22i+2i) (2)

where q = 2m, θ 6∈ {λ(2i+1)(q−1), λ ∈ F22m}, θq+1 = 1, gcd(i,m) = 1, θβq +
β 6= 0.
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From lemma 1.1, we know that gcd(22m − 1, 2i + 1) = 1 when i is even,
since gcd(i,m) = 1. Then x2i+1 is a permutation on F22m , which means
there is no θ such that θ 6∈ {λ(2i+1)(q−1), λ ∈ F22m} and θq+1 = 1. Hence,
we can let i be odd directly.

Since F22m has even degree, the extended walsh spectrum of f is not
determined even though it is APN.

Theorem 2.1. Let f(x) be defined on L = F22m as in (2), i is odd, and let
fW (a, b) be the extended walsh spectrum of f(x). Then

Λf = {0,±2
n
2 ,±2

n+2
2 }

Proof. By definition, we have

fW (a, b)2 =
∑

x, u∈L

χ(ax + bf(x) + a(x + u) + bf(x + u))

=
∑

x, u∈L

χ(au + b(f(u) + x22i

u2i

+ βxqu + θxq22i

uq2i

+ u22i

x2i

+ βxuq + θuq22i

xq2i

))

=
∑

u∈L

χ(au + bf(u))
∑

x∈L

χ(xLb(u)),

where χ(x) = (−1)Tr(x), x ∈ F22m and

Lb(u) = su2i

+ s2−i

u2−i

+ bβu2m

+ (bβ)2
m

u2m

= su2i

+ s2−i

u2−i

+ tu2m

,

for s = (b + (bθ)2
m

)2
−i

, t = bβ + (bβ)2
m

.
Furthermore, let Ub be the kernel of Lb(u), then we have

fW (a, b)2 = 2n
∑

u∈Ub

χ(au + bf(u)),

It is easy to verified that φ(x) = Tr(ax + bf(x)) is linear on Ub, which is a
linear subspace of F22m , Thus χ(φ(·)) is a character of Ub, from which we
deduce that

|fW (a, b)| =
{

2m|Ub|1/2 if φ(au + bf(u)) = 0,∀u ∈ Ub,

0 otherwise.
(3)

Since Ub is a linear subspace and n is even , we get that |Ub| must be an even
power of 2 to keep sure that |fW (a, b)| is an integer. Now, what remains to
be calculated is |Ub|.
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First, assume that s = 0, then we have b = (bθ)2
m

,Lb(u) = tu2m

. If
t = 0, then we have θ = β2m−1, which means θβ2m

+ β = β22m−1 + β = 0.
It contradicts the condition of θ and β, hence t 6= 0, from which we can
deduce that Lb(u) = tu2m

has only one root.
Second, suppose t = 0, then Lb(u) = su2i

+ s2−i

u2−i

. Due to
gcd(i, 2m) = 1 and lemma1.2, it has at most 22 roots.

Now, we assume that both s and t are non-zero.For an nonzero u ∈ Ub,
let’s consider

uLb(u) = su2i+1 + s2−i

u2−i+1 + tu2m+1 = 0,

Since t = bβ + (bβ)2
m

, tu2m+1 ∈ F2m , which means su2i+1 + s2−i

u2−i+1 ∈
F2m . Thus we have

(su2i+1 + s2m

u2m+i+2m

)2
−i

= su2i+1 + s2m

u2m+i+2m

,

Then g(u) , su2i+1 + s2m

u2m+i+2m ∈ F2i . Furthermore, as gcd(i,m) = 1
and g(u) ∈ F2m , we have g(u) ∈ F2.

If g(u) = 0, then su2i+1 = (su2i+1)2
m

, i.e. su2i+1 ∈ F2m . According to
s = (b + (bθ)2

m

)2
−i

, we have

(b2m

+ bθ)2
−i

(u2i+1)2
m

= (b + (bθ)2
m

)2
−i

(u2i+1),

which means

b + (bθ)2
m

b2m + bθ
= (u2i+1)(2

m−1)2i

,

which is equal to

θb + b2m

θ(b2m + bθ)
=

1
θ

= (u2i+1)(2
m−1)2i

, (4)

since θ2m+1 = 1. Because (4) contradicts the condition of f(x), we have
g(u) + 1 = 0.

Now, we use a trick to get a new linearized equation. Let ∆i(x, y) =
xy2i

+ x2i

y, φ(x) = (x2τk+1)2
−γk

. And it can be verified that

(x + y)(yφ(x) + xφ(y)) + xyφ(x + y) = ∆τ−γ(x, y)∆2−γk

γ (x, y),

The, we choose some nonzero v ∈ Ub and v 6= u , let φ(u) = g(u), and
consider

(u + v)(v(g(u) + 1) + u(g(v) + 1)) + uv(g(u + v) + 1) = 0,

which equals to

s2m

(∆i+m(u, v) + ∆2m

−m) + u2 + v2 + uv = 0,
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s2m

(u2i+m

v + v2i+m

u)(u2m

v + v2m

u) + u2 + v2 + uv = 0, (5)

Replace u by vw in (5) and divide it by v2 to obtain

s2m

v2m+i+2m

(w + w2m+i

)(w + w2m

) + w2 + w + 1 = 0, (6)

If w + w2m

= 0, i.e. w ∈ F2m , then w2 + w + 1 = 0, which means
w ∈ F22\F2 and 2|m.

If w + w2m 6= 0, raising (6) to the 2m-th power and adding it to (6), we
get

(w+w2m

)(sv2i+1(w2m

+w2i

)+s2m

v2m+i+2m

(w2m+i

+w)+(w+w2m

)+1) = 0,

which divided by w + w2m

is

sv2i+1(w2m

+ w2i

) + s2m

v2m+i+2m

(w2m+i

+ w) + (w + w2m

) + 1 = 0,

Due to v obeys the expression g(v) + 1 = sv2i+1 + s2m

v2m+i+2m

+ 1 = 0,
the equation above becomes

sv2i+1(w + w2i

) + s2m

v2m+i+2m

(w2m+i

+ w2m

) + 1 = 0, (7)

Now, consider our original equation Lb(u), and replace u with vw, we
have

Lb(vw) = sv2i

w2i

+ s2−i

v2−i

w2−i

+ tv2m

w2m

,

Then we have

w2m

= t−1(sv2i−2m

w2i

+ s2−i

v2−i−2m

w2−i

),

w2m+i

= t−2i

(s2i

v22i−2m+i

w22i

+ sv1−2m+i

w),

After substituting the expression of w2m

and w2m+i

into (7) and then raising
to 2i-th power, we obtain an equation of this form

δ3w
23i

+ δ2w
22i

+ δ1w
2i

+ δ0w + 1 = 0,

which has at most 23 roots, since gcd(i, 2m) = 1, due to lemma 1.2.
From all the discussion above, we know that |Ub| is at most 2+23 = 10.

Furthermore, as |Ub| must be an even power of 2, it follows that |Ub| ≤ 4.
Since there is no AB functions on F2m

2 , the extended walsh spectrum of
f(x) is {0,±2

n
2 ,±2

n+2
2 }

In fact, we’ve attempted to use the method above on the other functions
in Table 3, but it doesn’t work well. And we present some open problems.



April 5, 2008 21:2 WSPC - Proceedings Trim Size: 9in x 6in ”The Walsh Spectrum of a New Trinomial APN Functions”

8

Open problem 1: Calculate the extended walsh spectrum of all the new
APN quadric functions in Table 3.

Open problem 2: Construct new APN quadric functions on F2n , with
extended walsh spectrum more than 5, when n is even.
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