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Abstract. The black-box extraction problem over rings has (at least) two important interpretations
in the context of cryptography: An efficient algorithm for this problem implies (i) the equivalence of
computing discrete logarithms and solving the Diffie-Hellman problem and (ii) the inexistence of secure
ring-homomorphic encryption schemes.
For the special case of a finite field, Boneh/Lipton [BL96] and Maurer/Raub [MR07] show that there
exist algorithms solving the black-box extraction problem in subexponential time. It is unknown whether
there exist more efficient algorithms.
In this work, we consider the black-box extraction problem over finite rings of characteristic n, where
n has at least two different prime factors. We provide a polynomial-time reduction from factoring n
to the black-box extraction problem for integer rings and (multivariate) polynomial rings, assuming
that computations can be performed efficiently in the given ring. Under the factoring assumption, this
implies the inexistence of efficient generic reductions from computing discrete logarithms to the Diffie-
Hellman problem on the one side, and might be an indicator that secure ring-homomorphic encryption
schemes exist on the other side.

1 Introduction

Informally speaking, the black-box extraction problem over an algebraic structure A (like a group,
ring, or a field) can be described as follows: Given an explicit representation of A (e.g., the cyclic
group (Zn,+) with the canonical binary representation of elements) as well as access to a black-box
resembling the structure of A and hiding an element x ∈ A, the challenge is to recover the explicit
representation of x. Algorithms that work on the black-box representation of an algebraic structure
and thus on any concrete representation are called generic or black-box algorithms.

The black-box extraction problem has been studied in various variants and contexts, e.g.,
see [Nec94,Sho97,Mau05,BL96,MR07]. The case where the algebraic structure is a cyclic group
(with given representation (Zn,+)), and the extraction problem is better known as the discrete
logarithm problem, was considered by Nechaev [Nec94] and Shoup [Sho97]. They showed that the
expected running time of any generic algorithm for this problem is Ω(

√
p), where p is the largest

prime factor of the group order n. Here, the integer n as well as its factorization is assumed to be
publicly known. The provided bound essentially matches the running time of well-known generic
algorithms for the discrete logarithm problem like the Pollard-Rho [Pol78] algorithm.

Boneh and Lipton [BL96] considered the black-box extraction problem over prime fields Fp.
Based on a result due to Maurer [Mau94] they developed an algorithm solving the problem in
subexponential time (in log p). Maurer and Raub [MR07] augmented this result to finite extension
fields Fpk by providing an efficient reduction from the black-box extraction problem over Fpk to the
black-box extraction problem over Fp. Currently, it is unknown whether there exist more efficient
algorithms for black-box extraction over fields.

In this paper we address the case where the underlying algebraic structure is a finite commutative
ring with unity. More precisely, we consider the integer ring Zn as well as (multivariate) polynomial
rings of characteristic n, where n is the product of at least two different primes. We provide an
efficient reduction from computing a non-trivial factor of n to the black-box extraction problem



for virtually any such ring where computations (i.e., applying the ring operations + and ·, equality
tests and random sampling of elements) can be done efficiently. The black-box extraction problem
over fields/rings has at least two important applications in cryptography, namely in the context
of secure homomorphic encryption and regarding the equivalence of the discrete logarithm (DL)
problem and the Diffie-Hellman (DH) problem. For (Zn,+, ·) it can be interpreted as the problem
of solving the DL problem given access to an oracle for the DH problem: (Zn,+) forms a cyclic
additive group. The black-box provides access to the common operations on this group as well as to
the additional operation “·”. This extra operation can be interpreted as an oracle solving the Diffie-
Hellman problem in the group (Zn,+). Hence, an efficient algorithm for the black-box extraction
problem over (Zn,+, ·) would correspond to an efficient generic reduction from computing discrete
logarithms to solving the Diffie-Hellman problem over cyclic groups of order n. Such reductions
are known for groups where the group order is prime and meets certain properties [dB88], or if
a certain side information, depending on the respective group, is given [Mau94]. It is also known
that no efficient generic reduction exists for groups with orders containing large multiple prime
factor [MW98]. Bach [Bac84] has presented a reduction from factoring n to computing discrete
logarithms modulo n, i.e. in the multiplicative group Z∗n of order φ(n), where φ(·) is the Euler
totient function.

Futhermore, the analysis of the black-box extraction problem sheds light on the existence of
secure ring/field-homomorphic encryption schemes. Consider an encryption function enc : K×P →
C, whereK,P and C denotes the key, plaintext and ciphertext space, respectively. Moreover, assume
that P and C exhibit an algebraic structure with respect to certain operations. If for any k ∈ K the
function enck := enc(k, ·) is a homomorphism from P to C, the corresponding encryption scheme is
said to be homomorphic. For instance, unpadded RSA is group-homomorphic, since the functions
ence : Zn → Zn, ence(a) := ae satisfy

ence(a · b) = (a · b)e = ae · be = ence(a) · ence(b),

where “·” denotes the multiplication modulo the RSA modulus n. Further well-known examples
of group-homomorphic encryption schemes are native ElGamal [ElG85] and the Paillier cryptosys-
tem [Pai99].

A natural question arising in this context is whether there exist secure ring-homomorphic
encryption schemes, that is, schemes where P and C exhibit a ring structure, and enck is a ring-
homomorphism. An efficient algorithm for the black-box extraction problem over the ring P would
imply the inexistence of secure ring-homomorphic encryption schemes over P : The black-box can
be considered as an idealization of the encryption functions enck and the problem of recovering
the explicit representation of x as the problem of inverting enck. Note that since the black-box
representation enables equality checking, also the class of considered encryption schemes allows for
checking the equality of encrypted plaintexts. The results by Boneh and Lipton [BL96] and Maurer
and Raub [MR07] imply that for the special case of a finite field any such scheme can be broken in
subexponential time.

1.1 Our Contribution

In this work, we consider the black-box extraction problem over finite commutative rings with unity
whose characteristic n is the product of at least two different primes. To the best of our knowledge,
this case has not been treated in the literature yet. We present an efficient reduction from finding
a non-trivial factor of n to the black-box extraction problem over the integer ring Zn and any
(multivariate) polynomial ring R where computations can be performed efficiently. To this end,
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we extend a technique due to Leander and Rupp [LR06] which was originally used to prove the
equivalence of breaking RSA and factoring regarding generic ring algorithms.

We first provide a reduction for the case R := Zn. This case is especially interesting since
Boneh and Lipton pointed out that their subexponential time black-box extraction algorithm for
finite fields can be extended to finite rings Zn. Their extension involves the factorization of n. Our
result implies that for Zn there are no better algorithms than those that factor n. Moreover, under
the assumption that factoring n is hard, this implies the inexistence of efficient generic reductions
from computing discrete logarithms to solving the Diffie-Hellman problem in cyclic groups of order
n. Note that, in contrast to Bach [Bac84] who presented a reduction from factoring n to computing
discrete logarithms in the multiplicative group of integers Z∗n, we consider generic algorithms in
groups of order n.

In addition, we extend our reduction to rings of the form

R := Zn[X1, . . . , Xt]/J ,

where t ≥ 0 and J is an ideal in Zn[X1, . . . , Xt] for which a Gröbner basis is known. (Note that
for t = 0 we obtain the special case R = Zn.) If computation (i.e., applying the ring operations
including reduction, equality testing and random sampling) in R is efficient the same holds for our
reduction from finding a factor of n to black-box extraction over R.

Regarding secure homomorphic encryption our result has another interesting consequence:
Boneh/Lipton and Maurer/Raub show that any field-homomorphic encryption scheme can be bro-
ken in subexponential time. It is open question if there exist more efficient generic algorithms. For
a large class of rings, we can negate this question assuming that factoring the ring characteristic
cannot be done better than in subexponential time. This might be seen as an indicator for the
existence of secure ring-homomorphic encryption schemes.

2 Black-Box Rings and the Black-Box Ring Extraction Problem

Informally, black-box ring algorithms are the class of algorithms that operate on the structure of
an algebraic ring, without exploiting specific properties of the respresentation of ring elements. We
adapt Shoup’s generic group model [Sho97] to formalize the notion of black-box ring algorithms:

Let (R,+, ·) be a finite commutative unitary ring and S ⊂ {0, 1}dlog2(|R|)e be a set of bit strings
of cardinality |R|. Let

σ : R→ S

be a bijective encoding function which assigns ring elements to bit strings, chosen at random among
all possible bijections. A black-box ring algorithm is an algorithm that takes as input an encoding
list (σ(r1), . . . , σ(rk)), where ri ∈ R. Note that depending on the particular problem the algorithm
might take some additional data as input, such as the characteristic of R, for example. In order to
be able to perform the ring operations on randomly encoded elements, the algorithm may query
a black-box ring oracle OR,σ The oracle takes two indices i, j into the encoding list and a symbol
◦ ∈ {+,−, ·} as input, computes σ(ri ◦rj) and appends this bit string to the encoding list (to which
the algorithm always has access).

We capture the notion of a black-box ring representation by the following definition:

Definition 1 (Black-Box Ring Representation). Let (R,+, ·) be a finite ring. We call the
tuple (σ,OR,σ) consisting of a randomly chosen encoding function σ : R→ S, and a corresponding
black-box ring oracle OR,σ a black-box ring representation for R and denote it by Rσ.
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For short, we sometimes call Rσ a black box ring (meaning that we consider a ring exhibiting the
structure of R but whose elements are encoded by random bit strings). As an abuse of notation we
occasionally write σ(x) ∈ Rσ meaning that the unique encoding σ(x) of an element x ∈ R is given.
Moreover, when we say in the following that an algorithm A performs operations on the black-box
ring Rσ, we mean that A interacts with the black-box ring oracle as described above.

Having formalized the notion of a black-box ring, we can define the black-box ring extraction
problem:

Definition 2 (BBRE Problem). Let R be an explicitly given finite commutative ring with unity 1
and known characteristic n. Furthermore, let {1, r1, . . . , rt} be an (explicitly given) set of generating
elements of R, i.e., R = 〈1, r1, . . . , rt〉, where 〈1, r1, . . . , rt〉 denotes the ideal in R generated by these
elements. The black-box ring extraction (BBRE) problem for R is the task of computing x ∈ R,
where x is chosen uniformly random from R, given σ(x), σ(1), σ(r1), . . . , σ(rt) ∈ Rσ.

3 The Relation between BBRE and Integer Factorization for Zn

In this section we consider the BBRE problem for rings which are isomorphic to Zn, where n has
at least two different prime factors. We provide a reduction from factoring n to the BBRE problem
in the following sense: If there exists an efficient algorithm solving the BBRE problem for Zn with
non-negligible success probability, then there exists an efficient algorithm which finds a factor of n
with non-negligible probability.

Theorem 1. Let R := Zn for some integer n having at least two different prime factors. Let A
be an algorithm for the BBRE problem that performs at most m ≤ n operations on Rσ. Assume
that A solves the BBRE problem with probability ε. Then there is an algorithm B having white-box
access to A that finds a factor of n with probability at least

ε

2
− 1

2n

by running A once and performing an additional amount of O
(
m2
)

random choices and O
(
m3
)

operations on R as well as O
(
m2
)

gcd computations on log2(n)-bit numbers.

Remark 1. Assume we have a BBRE algorithm A that works for all rings R = Zn where n consists
of at least two different prime factors. Then algorithm B can be used to factor a given integer
n completely. This is done by first running B on n, i.e., B runs A on an instance of the BBRE
problem over Zn and performs some additional operations, resulting in a factor d of n with a certain
probability. If n/d is not a prime power, which can easily be determined, we can run B on n/d and
so on. If A is efficient and solves the BBRE problem with non-negligible probability, then the same
holds for the resulting factoring algorithm.

Proof Outline. In a nutshell, our proof works as follows: We replace the original black-box ring
oracle O with an oracle Osim that simulates O without using the knowledge of the secret x. We
call this setting the simulation game. Then we show that the behavior of Osim is perfectly indis-
tinguishable from O unless a certain simulation failure F occurs. Denoting the success event of A
when interacting with O and Osim by S and Ssim, respectively, it immediately follows that ε = Pr[S]
is upper bound by Pr[Ssim] + Pr[F]. In other words, the probability Pr[F] of a failure is at least
ε− Pr[Ssim]. Showing that 1/2 Pr[F] is in turn a lower bound on the the probability of revealing a
factor of n completes our proof.
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3.1 Detailed Proof of Theorem 1

Before introducing the actual simulation oracle, as announced in the proof outline, let us first define
a slightly modified but equivalent version of the original black-box ring oracle O: Instead of using
the ring R = Zn for the internal representation of ring elements, these elements are represented
by polynomials in the variable X over R which are evaluated with x each time the encoding of a
newly computed element must be determined.

Definition 3 (An Equivalent Oracle). The oracle O has an input and an output port as well
as a random tape and performs computations as follows.
Input. As input O receives the modulus n, an element x ∈U R, and the set of encodings Sn.
Internal State. As internal state O maintains two lists L ⊂ R[X] and E ⊂ Sn. For an index i
let Li and Ei denote the i-th element of L and E, respectively.
Encoding of Elements. Each time a polynomial P should be appended to the list L the following
computation is triggered to determine the encoding of P (x): O checks if there exists any index
1 ≤ i ≤ |L| such that

(P − Li)(x) ≡ 0 mod n .

If this equation holds for some i, then the respective encoding Ei is appended to E again. Other-
wise, the oracle chooses a new encoding s ∈U S\E and appends it to E. After O has determined
an encoding it writes it to its output port.
The computation of O starts with an initialization phase, which is run once, followed by the execu-
tion of the query-handling phase:
Initialization. The list L is initialized with the polynomials 1, X and the list E is initialized with
corresponding encodings.
Query-handling. Upon receiving a query (◦, i1, i2) on its input tape, where ◦ ∈ {+,−, ·} identifies
an operation and i1, i2 are indices identifying the list elements the operation should be applied to,
O appends the polynomial P := Li1 ◦ Li2 to L and the corresponding encoding to E.

A Simulation Game. Now we replace O by a simulation oracle Osim. The simulation oracle is
defined exactly like O except that it determines the encodings of elements in a different way in
order to be independent of the secret x.

Each time a polynomial P is appended to the end of list L (during initialization or query-
handling), Osim does the following: Let Lj = P denote the last entry of the updated list. Then for
each 1 ≤ i < j the simulation oracle chooses a new element xi,j ∈ R uniformly at random and
checks whether

(Li − Lj)(xi,j) ≡ 0 mod n.

If the above equation is not satisfied for any i, the oracle chooses a new encoding s ∈U S\E and
appends it to E. Otherwise, for the first i the equation is satisfied, the corresponding encoding Ei
is appended to E again (i.e., Ej = Ei). The determined encoding is written to the output port.

The algorithm is successful in the simulation game if it outputs the element x (given as input
to Osim). We denote this event by Ssim.

Note that due to the modification of the element encoding procedure, it is now possible that
both an element Li(x) is assigned to two or more different encodings and that different elements
are assigned to the same encoding. In these cases the behavior of Osim differs from that of O what
may allow to distinguish between the oracles. In the case of a differing behaviour the following
failure event F occurred (i.e., the occurrence of F is a necessary condition for a differing behavior):
There exist i < j ∈ {1, . . . , |L|} satisfying the equations

(Li − Lj)(x) ≡ 0 mod n and (Li − Lj)(xi,j) 6≡ 0 mod n, (1)
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or the equations

(Li − Lj)(x) 6≡ 0 mod n and (Li − Lj)(xi,j) ≡ 0 mod n. (2)

Remark 2. There is a technical subtlety. If there is i < j s.t. (Li − Lj)(x) ≡ 0 mod n but (Li −
Lj)(xi,j) 6≡ 0 mod n then Osim does not necessarily determine different encodings for Lj(x). There
may be some i < i′ < j such that (Li′ − Lj)(x) ≡ 0 mod n and (Li′ − Lj)(xi′,j) ≡ 0 mod n and
Ei = Ei′ . So the simulation failure event as defined by us is just a necessary but not a sufficient
condition for discriminative behaviour of O and Osim.

It is important to observe that the original game and the simulation game proceed identically
unless F occurs: To this end consider the algorithmA as deterministic Turing machine with identical
input and random tape in both games. Also, consider the oracles O and Osim as deterministic
Turing machines receiving the same inputs and random tapes.1 Assuming that F does not occur,
the algorithm receives the same sequence of encodings and thus issues the same sequence of queries
in both games. Furthermore, it outputs the same element in the end of both games and thus wins
the simulation game if and only if it wins the original game. Hence, we have the following relation
between the considered events

S ∧ ¬F ⇐⇒ Ssim ∧ ¬F

We can obtain an upper bound on Pr[S] by applying the Difference Lemma (Lemma 1) and
deriving upper bounds on Pr[Ssim] and Pr[F].

Lemma 1 (Difference Lemma [Sho06]). Let S,Ssim, and F be events over the same probability
space. If S ∧ ¬F ⇐⇒ Ssim ∧ ¬F, then it holds that

Pr[S] ≤ Pr[Ssim] + Pr[F].

Bounding the Probability of Success in the Simulation Game. Since all computations are
independent of the uniformly random element x ∈ R, the algorithm A can only guess x:

Pr[Ssim] ≤ 1
|R|

=
1
n

.

Bounding the Probability of a Simulation Failure. Let D = {Li − Lj |1 ≤ i < j ≤ |L|}
denote the set of all non-trivial differences of polynomials in L after a run of A. In the following
we show how the probability that a polynomial ∆ ∈ D causes a simulation failure is related to
the probability of revealing a factor of n by simply evaluating ∆ with a uniformly random element
from R.

For fixed ∆ ∈ D let F∆ denote the event that ∆ causes a simulation failure as defined by
Equations (1) and (2). Furthermore, let D∆ denote the event that gcd(n,∆(a)) /∈ {1, n} when
choosing an element a uniformly at random from R.

Now, we are going to express the probabilities of both events using the same terms. Let n =∏k
i=1 p

ei
i be the prime factor decomposition of n. Hence, R is isomorphic to Zpe1

1
× . . . × Zpek

k
by

1 To be precise here, we actually should have defined O to perform exactly the same random choices as Osim (i.e.,
letting O also choose the elements xi,j but without using them).
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the Chinese Remainder Theorem [Gri99, p.184]. Then we can write

Pr
a∈UR

[∆(a) ≡ 0 mod n] = Pr
a∈UR

[(∆(a) ≡ 0 mod pe11 ) ∧ . . . ∧ (∆(a) ≡ 0 mod pek
k )]

=
k∏
i=1

Pr
a∈UR

[∆(a) ≡ 0 mod pei
i ]

=
k∏
i=1

νi ,

(3)

where νi := |{a∈R | ∆(a)≡0 mod p
ei
i }|

|R| . Note that the second line of the above equation follows from
the fact that the events defined by the predicates ∆(a) ≡ 0 mod pei

i are mutually independent. Using
Equation (3) we can express the probability of F∆ by

Pr[F∆] = Pr
a∈UR

[∆(a) ≡ 0 mod n]
(

1− Pr
a∈UR

[∆(a) ≡ 0 mod n]
)

+ Pr
a∈UR

[∆(a) ≡ 0 mod n]
(

1− Pr
a∈UR

[∆(a) ≡ 0 mod n]
)

= 2

(
1−

k∏
i=1

νi

)(
k∏
i=1

νi

)
.

Similarly, we can write the probability of D∆ as

Pr[D∆] = 1− Pr
a∈UR

[∆(a) ≡ 0 mod n]− Pr
a∈UR

[(∆(a) 6≡ 0 mod pe11 ) ∧ . . . ∧ (∆(a) 6≡ 0 mod pek
k )]

= 1− Pr
a∈UR

[∆(a) ≡ 0 mod n]−
k∏
i=1

Pr
a∈UR

[∆(a) 6≡ 0 mod pei
i ]

= 1−
k∏
i=1

νi −
k∏
i=1

(1− νi)

Now, the key observation is that we have the following relation between the probabilities of the
events F∆ and D∆:

Lemma 2. ∀∆ ∈ D : 2 Pr[D∆] ≥ Pr[F∆]

Proof. We have

2 Pr[D∆]− Pr[F∆] = 2

(
1− 2

k∏
i=1

νi −
k∏
i=1

(1− νi) +
k∏
i=1

ν2
i

)
≥ 0

⇐⇒

(
1−

k∏
i=1

νi

)2

≥
k∏
i=1

(1− νi)

It is easy to prove by induction over k that the inequality(
1−

k∏
i=1

νi

)k
≥

k∏
i=1

(1− νi)
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holds for all k ≥ 1. From this our claim follows immediately since(
1−

k∏
i=1

νi

)2

≥

(
1−

k∏
i=1

νi

)k

holds for all k ≥ 2. ut

The Factoring Algorithm. Based on the relation given by Lemma 2, we construct an efficient
factoring algorithm whose success probability is half the probability of a simulation failure. Consider
an algorithm B that runs the BBRE algorithm A on an arbitrary instance of the BBRE problem
over Zn. During this run it records the sequence of queries that A issues, i.e., it records the same
list L of polynomials as the black-box ring oracle. Then for each ∆ ∈ D the algorithm B chooses
a new random element a ∈ Zn (like the oracle is doing), and computes gcd(n,∆(a)). There are
at most (m2 + 3m + 2)/2 such polynomials and each of them can be evaluated using at most
m + 1 ring operations (since it is given as a straight-line program of length at most m). Thus,
B chooses O

(
m2
)

random elements and performs O
(
m3
)

operations on R as well as O
(
m2
)

gcd
computations on log2(n)-bit numbers. Let the event that at least one of these gcd computations
yields a non-trivial factor of n be denoted by D. Then we can show the following lower bound on
the the success probability of B:

Lemma 3. 2 Pr[D] ≥ Pr[F]

To prove this bound we make use of auxiliary Lemma 4.

Lemma 4. For z ≥ 2 let A1, . . . , Az be mutually independent events over the same probability
space. Then also the events

⋃z−1
i=1 Ai and Az are independent.

Proof (Lemma 3). Let the set of difference polynomials induced by the run of A be given by D. Note
that the events (F∆)∆∈D are mutually independent and the same holds for the events (D∆)∆∈D.
The total failure probability can be written as

Pr[F] = Pr
[⋃

∆∈D
F∆

]
and the success probability of our factoring algorithm B as

Pr[D] = Pr
[⋃

∆∈D
D∆

]
.

We show our claim
2 Pr

[⋃
∆∈D

D∆

]
≥ Pr

[⋃
∆∈D

F∆

]
(4)

by induction over the size of D. For |D| = 1 the claim trivially holds due to Lemma 2. Now, let
D = D′ ·∪{∆̃} and assume that Equation (4) holds for the smaller set D′ instead of D. Then there
exists 0 ≤ α1 ≤ 1 such that

Pr
[⋃

∆∈D′
D∆

]
=

1
2

Pr
[⋃

∆∈D′
F∆

]
+ α1 (5)

Similarly, Lemma 2 yields that there exists 0 ≤ α2 ≤ 1 such that

D∆̃ =
1
2
F∆̃ + α2 (6)
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In this way we get

2 Pr
[⋃

∆∈D
D∆

]
= 2 Pr

[(⋃
∆∈D′

D∆

)
∪D∆̃

]
= 2 Pr

[⋃
∆∈D′

D∆

]
+ 2 Pr

[
D∆̃

]
− 2 Pr

[⋃
∆∈D′

D∆

]
Pr
[
D∆̃

]
= Pr

[⋃
∆∈D′

F∆

]
+ Pr

[
F∆̃

]
− 1

2
Pr
[⋃

∆∈D′
F∆

]
Pr[F∆̃]

+ 2(α1 + α2)− α2 Pr
[⋃

∆∈D′
F∆

]
− α1 Pr[F∆̃]− 2α1α2

≥ Pr
[⋃

∆∈D′
F∆

]
+ Pr

[
F∆̃

]
− 1

2
Pr
[⋃

∆∈D′
F∆

]
Pr
[
F∆̃

]
≥ Pr

[⋃
∆∈D′

F∆

]
+ Pr

[
F∆̃

]
− Pr

[⋃
∆∈D′

F∆

]
Pr
[
F∆̃

]
= Pr

[⋃
∆∈D

F∆

]
The second line follows from the fact that the events (D∆)∆∈D are mutually independent and thus⋃
∆∈D′ D∆ and D∆̃ by applying Lemma 4. To get the third line we apply Equations (5) and (6).

The first inequality follows from

2(α1 +α2)−α2 Pr
[⋃

∆∈D′
F∆

]
−α1 Pr

[
F∆̃

]
−2α1α2 ≥ α1 +α2−2α1α2 ≥ α1α2 +α1α2−2α1α2 = 0

and the last line from the fact that the events (F∆)∆∈D are mutually independent. ut

To Summarize. Remember that ε = Pr[S] denotes the success probability of the BBRE algorithm
A. From Lemma 1 follows that

Pr[F] ≥ ε− Pr[Ssim] ≥ ε− 1
n
.

Deploying the above lower bound on Pr[F] in Lemma 3 finally yields

Pr[D] ≥ 1
2

Pr[F] ≥ ε

2
− 1

2n
.

4 Extending our Reduction to Multivariate Polynomial Rings

In this section we are going to lift our reduction from the special case R = Zn to the case

R = Zn[X1, . . . , Xt]/J,

where Zn[X1, . . . , Xt] denotes the ring of polynomials over Zn in indeterminates X1, . . . , Xt (t ≥ 0)
and J is an ideal in this polynomial ring such that R is finite. Note that any finite commutative
unitary ring R with characteristic n has a representation of the form R = Zn[X1, . . . , Xt]/J , as
stated by the following lemma.

Lemma 5. Let R be a finite commutative unitary ring of characteristic n. Then there is a number
t ≤ log2 |R| and a finitely generated ideal J of Zn[X1, . . . , Xt] such that R ∼= Zn[X1, . . . , Xt]/J.

Proof. Let M = {m1, . . .mt} ⊂ R be a generating subset of R, i.e., R = 〈M〉. Consider the
mapping φ : Zn[X1, . . . , Xt]→ R such that 1 7→ 1 and Xi 7→ mi for 1 ≤ i ≤ t. Certainly, φ is a ring
homomorphism implying that J := ker(φ) is an ideal of Zn[X1, . . . , Xt]. Applying the fundamental
theorem on homomorphisms (e.g., see [Lan02, p.89]) yields that Zn[X1, . . . , Xt]/J ∼= R.
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Since Zn trivially is a Noetherian ring it follows by Hilbert’s basis theorem (e.g, see [Gri99,
p.181]) that also the polynomial ring Zn[X1, . . . , Xt] is Noetherian. Thus, every ideal of Zn[X1, . . . , Xt],
especially J , is finitely generated.

By the fundamental theorem of finitely generated abelian groups (e.g., see [Gri99, p.48]) the
additive group of a finite ring decomposes uniquely (up to order) into a direct product of cyclic
groups. Observe that a group of cardinality |R| decomposes into a product of at most log2 |R|
groups. Hence, setting M to be the set of generators of these subgroups of (R,+), we see that a
number of t ≤ log2 |R| elements is sufficient to generate the entire ring. ut

We start this chapter with presenting a useful decomposition of such rings similar to the CRT-
decomposition for Zn. Next, we state some facts about Gröbner bases over these rings and their
component rings. Finally, we use these results in a reduction proof which is similar to the one for
Zn.

4.1 A Prime-Power Decomposition for Multivariate Polynomial Rings

It is a well-known fact that any finite commutative ring is uniquely (up to order) decomposable
into a direct product of local rings [McD74, p.95]. However, since this decomposition does not meet
our requirements, we devise another simple way of decomposing R into a direct product of rings
with prime-power characteristic, but not necessarily local rings.

Lemma 6. Let R = Zn[X1, . . . , Xt]/J (where R is not necessarily finite) and n =
∏k
i=1 p

ei
i be the

prime factor decomposition of the characteristic of R. Then R is decomposable into a direct product
of rings

R ∼= R1 × . . .×Rk,

were Ri := Zpei
i

[X1, . . . , Xt]/J .

Proof. Let F be a set of polynomials generating the ideal J , we denote this by J = 〈F 〉. Note
that the ring R can equivalently be written as Z[X1, . . . , Xt]/〈n, F 〉. For 1 ≤ i ≤ k let Ji :=
〈pei
i , F 〉 which is an ideal in Z[X1, . . . , Xt]. Then for each 1 ≤ i < j ≤ k it holds that Ji +

Jj := {a+ b|a ∈ Ji, b ∈ Jj} = Z[X1, . . . , Xt]. Moreover, we have
⋂k
i=1 Ji = 〈n, F 〉. Thus, by the

generalized Chinese Remainder Theorem [Gri99, p.184], we obtain the isomorphism

Zn[X1, . . . , Xt]/J ∼= Z[X1, . . . , Xt]/〈n, F 〉
∼= Z[X1, . . . , Xt]/〈pe11 , F 〉 × . . .× Z[X1, . . . , Xt]/〈pek

k , F 〉
∼= Zpe1

1
[X1, . . . , Xt]/J × . . .× Zpek

k
[X1, . . . , Xt]/J.

ut

We call this way of decomposing R the prime-power decomposition of R.

Remark 3. Note that Lemma 6 extends to any finite commutative unitary ring of characteristic n
since any such ring can be represented as polynomial ring Zn[X1, . . . , Xt]/J for some t and J .

4.2 Gröbner Bases for Polynomial Ideals over Rings

Roughly speaking, a Gröbner basis G is a generating set of an ideal J in a multivariate polynomial
ring exhibiting the special property that reduction of polynomials from J modulo the set G always
yields the residue zero. This property is not satisfied for arbitrary ideal bases and enables effective
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computation in residue class rings modulo polynomial ideals in the first place. Gröbner bases were
originally introduced by Buchberger [Buc65] for ideals J in K[X1, . . . , Xt] where the coefficient
space K is a field. Later this notion were generalized to the case where K is a Noetherian ring such
as Zn (e.g., see [AL94, Chapter 4]).

Let us introduce some notation. A monomial or power product in indeterminates X1, . . . , Xt is
a product of the form X = Xa1

1 · . . . ·X
at
t for some (a1, . . . , at) ∈ Nt

0. In the following let an arbitrary
but admissible order > on monomials be given. For instance, this could be the lexicographic order
>lex defined as: X1 = Xa1

1 · · ·X
at
t >lex X2 = Xb1

1 · · ·X
bt
t iff the leftmost non-zero entry of (a1 −

b1, . . . , at − bt) is positive.
Let f ∈ Zn[X1, . . . , Xt] with f 6= 0. Then we can write f as f = c1X1 + . . . + csXs, where

c1, . . . , cs ∈ Zn\{0} and X1 > . . . > Xs. The leading coefficient lc(f), the leading monomial lm(f),
and the leading term lt(f) of f with respect to > are defined as lc(f) := a1, lm(f) := X1, and
lt(f) := a1X1, respectively.

Now, we are able to define the reduction of a polynomial modulo a set of polynomials. To this
end, we adopt the respective definitions from [AL94, Chapter 4]. In the following we do not mention
the fixed monomial ordering explicitly anymore.

Definition 4 (Polynomial Reduction). Let two polynomials f and h and a set of non-zero
polynomials F = {f1, . . . , fs} in Zn[X1, . . . , Xt] be given.

(a) We say that f can be reduced to h modulo F in one step, denoted by f
F−→ h, if and only

if h = f − (c1X1f1 + . . . + csXsfs) for c1, . . . , cs ∈ R and power products X1, . . . ,Xs where
lm(f) = Xilm(fi) for all i such that ci 6= 0 and lt(f) = c1X1lt(f1) + . . .+ csXslt(fs).

(b) We say that f can be reduced to h modulo F , denoted by f
F−→+ h, if and only if there exist

polynomials h1, . . . , h`−1 ∈ Zn[X1, . . . , Xt] such that f F−→ h1
F−→ h2

F−→ . . .
F−→ h`−1

F−→ h.
(c) A polynomial h is called minimal with respect to F if h cannot be reduced modulo F .
(d) We call h a (minimal) residue of f modulo F , denoted by h = f mod F , if f F−→+ h and h is

minimal.

Note that there is an efficient algorithm computing a minimal residue of a polynomial f modulo a
set F (provided that the representation of f and F is efficient) according to the above definition.
For instance, see Algorithm 4.1.1 in [AL94].

Definition 5 (Gröbner Basis). Let J be an ideal in Zn[X1, . . . , Xt] and G = {g1, . . . , gs} be a
set of non-zero polynomials such that 〈G〉 = J . Then G is called a Gröbner basis for J if for any
polynomial f ∈ Zn[X1, . . . , Xt] we have

f ∈ J ⇐⇒ f mod G = 0 .

Fortunately, there always exists an ideal basis with this special property, as stated by Lemma 7.
However, note that given an arbitrary ideal basis, a Gröbner basis for the corresponding ideal is not
always easy to compute. In the following we always assume that Gröbner bases for the considered
ideals are given.

Lemma 7. Let J be a non-zero ideal of Zn[X1, . . . , Xt], then J has a finite Gröbner basis.

The following lemma is crucial for proving that (similar to the Zn-case) an element f ∈ R ∼=
R1× . . .×Rk that is congruent to zero over a component Ri but not congruent to zero over another
component Rj (cf. Lemma 6) helps in factoring n. Observe that Lemma 8 requires that the leading
coefficients of all given Gröbner basis elements are units. For our purposes, this is not a restriction
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at all but a reasonable assumption since otherwise the given representation of R would immediately
reveal a factor of n.

A proof for this lemma based on the notion of syzygies can be found in Appendix A.

Lemma 8. Let A = Zn[X1, . . . , Xt] and n =
∏k
i=1 p

ei
i . Furthermore, let G = {g1, . . . , gs} be a

Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in A such that lc(gi) ∈ Z∗n for all 1 ≤ i ≤ s. Then for
each 1 ≤ ` ≤ s the set G` =

{
pe`
` , g1, . . . , gs

}
is a Gröbner basis for the ideal J` = 〈pe`

` , g1, . . . , gs〉
in A.

4.3 The Relation between BBRE and Integer Factorization for Zn[X1, . . . , Xt]/J

We are going to lift our reduction from the special case R = Zn to the more general case of finite
multivariate polynomials rings R = Zn[X1, . . . , Xt]/J , where J is given by a Gröbner basis. Let
n =

∏k
i=1 p

ei
i . In the case R = Zn our factoring algorithm was successful if it was able to find an

element a ∈ R such that a ∈ 〈pei
i 〉 and a 6∈ 〈pej

j 〉 for some 1 ≤ i < j ≤ k. The following theorem
shows that a generalization of this fact holds for residue class rings modulo polynomial ideals given
by Gröbner basis.

Theorem 2. Let A = Zn[X1, . . . , Xt] where n =
∏k
i=1 p

ei
i and k ≥ 2. Furthermore, let G =

{g1, . . . , gs} be a Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in A such that lc(gi) ∈ Z∗n for all
1 ≤ i ≤ s. Assume an element f ∈ A is given, such that f ∈ Ji = 〈pei

i , g1, . . . , gs〉 and f 6∈ Jj =
〈pej

j , g1, . . . , gs〉 for some 1 ≤ i < j ≤ k. Then computing gcd(lc(r), n), where r = f mod G, yields
a non-trivial factor of n.

Proof. First of all, observe that since f 6∈ Jj we have that f 6∈ J and so r = f mod G is not zero
by Definition 5. Since r is a minimal residue and the leading coefficients lc(gi) of all Gröbner basis
elements are units, it follows by Definition 4 that the leading monomial lm(r) of r is not divisible
by any leading monomial lm(gi) of a Gröbner basis element. Otherwise, r would be reducible to
r

G−→ r − lc(gi)−1lc(r)Xigi, where Xilm(gi) = lm(r), using some gi such that lm(gi) divides lm(r).
Moreover, by Lemma 8, the set Gi = {pei

i , g1, . . . , gs} is a Gröbner basis for the ideal Ji. Thus,
since f ∈ Ji also r ∈ Ji and the reduction of r modulo Gi would yield the minimal residue zero.
As the leading monomial lm(r) is not divisible by any lm(gi), the leading coefficient lc(r) must be
divisible by pei

i . Since r 6= 0 and lc(r) 6≡ 0 mod n (by definition of the leading coefficient) computing
gcd(lc(r), n) yields a non-trivial factor of n. ut

The followings example illustrates the result captured by the above theorem. Moreover, it shows
that in the case where G is not a Gröbner basis, elements f satisfying the properties from Theorem 2
seem not to reveal a factor of n by considering their residues modulo G.

Example 1. Consider the finite ring R = Z225[X1, X2]/J where 225 = 32 · 52 and J = 〈X1X2 +
1, X2

2 + 224〉. Let us use the lexicographic order where X1 > X2 for polynomial reduction. Note
that F = {X1X2 + 1, X2

2 + 224} is a generating set, but not a Gröbner basis for J with respect
to this order. Furthermore, not that G = {X1 + X2, X

2
2 + 224} is a Gröbner basis for J . Let

f = X4
1X

2
2 +224X4

1 +2X1+7X2
2 +38X2+218 = (4X2)(32)+(X4

1 +7)(X2
2 +224)+2(X1+X2) mod 225.

It holds that f ∈ J1 = 〈32, X1+X2, X
2
2 +224〉 but f 6∈ J2 = 〈52, X1+X2, X

2
2 +224〉. The polynomial

f can be reduced modulo F to the minimal residue f mod F = 2X1 + 7X2
2 + 38X2 + 218 =

f − (X4
1 + 7)(X2

2 + 224) mod 225. It is easy to see that no coefficient of this residue share a non-
trivial factor with 225. Modulo the Gröbner basis G the polynomial f can be reduced to the
minimal residue r = f mod G = 36X2 = f− (X4

1 +7)(X2
2 +224)−2(X1 +X2) mod 225. Computing

gcd(lc(r), 225) = 9 yields a non-trivial factor of 225.
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The above fact allows us to formulate and prove a theorem similar to Theorem 1.

Theorem 3. Let R := Zn[X1, . . . , Xt]/J for some integer n having at least two different prime
factors and ideal J in Zn[X1, . . . , Xt]. Assume a Gröbner basis G = {g1, . . . , gs} for J is given. Let
A be an algorithm for the BBRE problem that performs at most m ≤ |R| operations on Rσ. Assume
that A solves the BBRE problem with probability ε. Then there is an algorithm B having white-box
access to A that finds a factor of n with probability at least

ε

2
− 1

2n

by running A once and performing an additional amount of O
(
(m+ t)2

)
random choices and

O
(
m(m+ t)2

)
operations on R as well as O

(
(m+ t)2 + s

)
gcd computations on log2(n)-bit num-

bers.2

Proof. We adapt the proof of Theorem 1. The description of the original and the simulation game
almost carries over completely just by setting R := Zn[X1, . . . , Xt]/J . There are only a few slight
technical differences concerning the oracles O and Osim considered in the original game (cf. Defini-
tion 3) and the simulation game:

– The list Lmaintained by both oracles is initialized with the t+1 generating elements 1, X1, . . . , Xt

of R, and with the variable X. As before, computed ring elements are representend by polyno-
mials in R[X] = (Zn[X1, . . . , Xt]/J)[X].

– Whenever an element P ∈ R[X] is appended to the list L, say as element Lj = P , O checks
whether there exists an element Li ∈ L such that (Li−Lj)(x) ∈ J which is equivalent to checking
whether the residue r = (Li − Lj)(x) mod G is the zero polynomial over Zn. Instead of using
the given secret x in the above evaluation, the simulation oracle Osim performs this check using
a new random element xi,j ∈ R for each difference polynomial Li − Lj (i < j ∈ {1, . . . , |L|}).

The rest of the description of the games applies unchanged. Let the events S, Ssim and F be defined
analogously to the case R = Zn. We are left with deriving bounds for the success probability
Pr[Ssim] in the simulation game and for the probability Pr[F] of a simulation failure. This also
works similarly to the previous case except for some technical differences.

Bounding the Probability of Success in the Simulation Game. All computations in the
simulation game are independent of the uniformly random element x. Thus, the algorithm A can
only guess x, resulting in

Pr[Ssim] ≤ 1
|R|
≤ 1
n

.

Bounding the Probability of a Simulation Failure. Again let D := {Li−Lj |1 ≤ i < j ≤ |L|}
denote the set of all non-trivial differences of polynomials in L after a run of A, and let ∆ be some
(fixed) element of D. Let n =

∏k
i=1 p

ei
i be the prime factor decomposition of n, then R has a prime

power decomposition into

R ∼= Z[X1, . . . , Xt]/〈pe11 , G〉 × . . .× Z[X1, . . . , Xt]/〈pek
k , G〉

2 We count the addition/multiplication of two ring elements together with the reduction modulo G as one ring
operation.

13



according to Lemma 6. Let

νi :=
|{a ∈ R | ∆(a) ∈ 〈pei

i , G〉}|
|R|

be the probability that ∆(a) ∈ 〈pei
i , I〉 for a uniformly random element a ∈ R. Using this notation,

the probability that ∆ causes a simulation failure is given by

Pr [F∆] = Pr
a∈UR

[∆(a) ∈ 〈n,G〉]
(

1− Pr
a∈UR

[∆(a) ∈ 〈n,G〉]
)

+ Pr
a∈UR

[∆(a) ∈ 〈n,G〉]
(

1− Pr
a∈UR

[∆(a) ∈ 〈n,G〉]
)

= 2
k∏
i=1

νi

(
1−

k∏
i=1

νi

)
.

By Theorem 2, ∆ reveals a factor of n if we can find an element a ∈ R such that ∆(a) ∈ 〈pei
i , G〉

and ∆(a) 6∈ 〈pej

j , G〉 for some 1 ≤ i < j ≤ k. In this case computing gcd(lc(∆(a) mod G), n) yields a
non-trivial factor provided that lc(g) ∈ Z∗n for all g ∈ G. The probability of finding such an element
a by sampling uniformly at random from R is given by

Pr[D∆] = 1− Pr
a∈UR

[∆(a) ∈ 〈n,G〉]− Pr
a∈UR

[(∆(a) 6∈ 〈pe11 , G〉) ∧ . . . ∧ (∆(a) 6∈ 〈pek
k , G〉]

= 1−
k∏
i=1

νi −
k∏
i=1

(1− νi).

Note that the equations for the probabilities of D∆ and F∆ equal the ones derived in the proof of
Theorem 1.

Finally, we apply Lemma 3 and Lemma 1 to obtain

Pr[D] ≥ 1
2

Pr[F] ≥ ε

2
− 1

2n
,

where F =
⋃
∆∈D F∆ and D =

⋃
∆∈D D∆.

The Factoring Algorithm. Consider an algorithm B that first tries to find a factor of n by computing
gcd(lc(g), n) for all g ∈ G. Then it runs the BBRE algorithmA on an arbitrary instance of the BBRE
problem over R and records the sequence of queries that A issues. For each ∆ ∈ D the algorithm
B chooses a new random element a ∈ R, and computes gcd(lc(∆(a) mod G), n). There are at most
(m + t + 2)(m + t + 1)/2 such polynomials and each can be evaluated using at most m + 1 ring
operations. Thus, in total B chooses O

(
(m+ t)2

)
random elements and performs O

(
m(m+ t)2

)
operations on R as well as O

(
(m+ t)2 + s

)
gcd computations on log2(n)-bit numbers. Clearly, the

success probability of B is at least Pr[D]. ut

Note that univariate polynomial quotient rings of the form Zn[X1]/J for some ideal J in Zn[X1]
are covered by Theorem 3 as a special case. A Gröbner basis for J can always be easily determined:
If J is given by a single polynomial g we are done. In the case where J is described by a set of poly-
nomials {g1, . . . , gs}, a unique polynomial g generating J can be computed as g = gcd(g1, . . . , gs).
Furthermore, we can use the standard polynomial division algorithm (for univariate polynomials)
to implement reduction modulo g.

Let (n, t,G)← RGen(κ) be a ring instance generator that on input of a security parameter κ (in
unary representation) outputs the description (n, t,G) of a ring R = Zn[X1, . . . , Xt]/〈G〉, where n is
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an integer consisting of at least two different primes, t specifies the number of indeterminates, and
G is a Gröbner basis for the ideal 〈G〉. Note that the parameters n, t, as well as the Gröbner basis
(i.e., |G| and the individual elements of the Göbner basis) may all depend on κ. Let us assume that
addition, subtraction, multiplication, reduction modulo G as well as sampling random elements in
the rings R takes polynomial-time in κ. Furthermore, let there exist a non-constant polynomial q(·)
over N such that for all κ and possible outputs (n, t,G) ← RGen(κ) it holds that log2(n) ≥ q(κ).
Then Theorem 3 provides a polynomial-time (in κ) reduction from finding a factor of n to the
black-box ring extraction problem for the family of rings described by RGen.

5 Extending our Reduction to Product Rings

Our reduction naturally extends to product rings where at least one component is a ring already cov-
ered by Theorem 1 or Theorem 3. In particular, this includes product rings of the form Zn × . . .× Zn
which might be of special interest.

Theorem 4. Let R := R1 × . . . × R` be the direct product of finitely many rings where R1 =
Zn[X1, . . . , Xt]/J or R1 = Zn. Let the integer n consist of at least two different prime factors and
let the ideal J occurring in the latter case be given by a Gröbner basis G = {g1, . . . , gs}. Let A be an
algorithm for the BBRE problem that performs at most m ≤ |R| operations on Rσ. Assume that A
solves the BBRE problem with probability ε. Then there is an algorithm B having white-box access
to A that finds a factor of n with probability at least

ε

2
− 1

2n

by running A once and performing an additional amount of O
(
(m+ t)2

)
random choices and

O
(
m(m+ t)2

)
operations on R1 as well as O

(
(m+ t)2 + s

)
gcd computations on log2(n)-bit num-

bers (where in the case R1 = Zn the parameters t and s are set to zero).

Proof. Given σ(x) ∈ Rσ where x = (x1, . . . , x`) is uniformly chosen from R = R1 × . . . × R` the
algorithm A finds x, i.e., all components x1, . . . , x`, with probability ε. Thus, given σ(x) it outputs
an element (y1, . . . , y`) such that y1 = x1 with probability at least ε. Furthermore, observe that
choosing an element x uniformly at random from R is equivalent to choosing each component xi
uniformly at random from Ri. Thus, informally speaking, A solves the BBRE problem over each
component ring separately. Hence, we can simply apply the ideas from the proof of Theorems 1
and 3 to this case, namely to the component R1.

More precisely, we can just generalize the description of the original and the simulation game
to product rings (which is a straightforward task) except for one modification: instead of making
the computations in the simulation game independent of x, i.e., all components x1, . . . , x`, we
make them only independent of the component x1. That means, when determining encodings, the
simulation oracle Osim still evaluates polynomials over R2, . . . , R` with the given inputs x2, . . . , x`
exactly as O does and only chooses new random elements for evaluating polynomials over R1. In
this way, only the modification over R1 can lead to a difference in the behaviour of Osim and O and
so we can define the event of a simulation failure as before.

The success probability of A in the simulation game is upper bounded by the probability that
it outputs x1 which is at most 1

n . The probability of a simulation failure can be bounded exactly
as before.

Similarly, the factoring algorithm B runs A on some instance of the BBRE problem over R
and records the sequence of queries. The corresponding difference polynomials can be seen as
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polynomials over R1 and so B does the same steps as the factoring algorithm described in the
previous proof of Theorem 1 or 3 depending on whether R1 = Zn or R1 = Zn[X1, . . . , Xt]/J .

Hence, we can conclude that we obtain the same relation between the success probability of A
and B and the same number of additional operations B performs as in the case R = R1. ut

Acknowledgements. We would like to thank Roberto Avanzi, Lothar Gerritzen, and Gregor
Leander for helpful discussions.

References

[AL94] William Adams and Philippe Loustaunau. An introduction to Gröbner bases. Graduate Studies in Math.
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A Detailed Proof of Lemma 8

In this section we provide a proof for Lemma 8. Our proof is based on an alternative but equivalent
definition of Gröbner bases using the notion of syzygies. We partly make use of definitions and
theorems given in Chapters 3.2 and 4.2 of [AL94].

Throughout this section let A = D[X1, . . . , Xt] where D = Zn is a Noetherian ring. Let I =
〈f1, . . . , fs〉 be an ideal of A. Consider the A-module homomorphism

φ : As → I

(h1, . . . , hs) 7→
s∑
i=1

hifi

Then it holds that I ∼= As/ker(φ). Based on φ a syzygy is defined as follows:

Definition 6 (Syzygy). The kernel of the map φ is called the syzygy module of the 1× s matrix
[f1 . . . fs] and is denoted by Syz(f1 . . . fs). An element (h1, . . . , hs) ∈ Syz(f1 . . . fs) is called a syzygy
of [f1 . . . fs] and satisfies

h1f1 + · · ·+ hsfs = 0 .

Definition 7 (Homogeneous Syzygy). Let power products X1, . . . ,Xs and non-zero elements
c1, . . . , cs ∈ D be given. For a power product X , we call a syzygy h = (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs)
homogeneous of degree X if lt(hi) = hi, thus hi is a term itself, and Xilm(hi) = X for all i such
that hi 6= 0.

As A is a Noetherian ring, Syz(c1X1, . . . , csXs) has a finite generating set of homogeneous syzygies.
Moreover, by [AL94] we have the following equivalent characterization of Gröbner bases:

Theorem 5 (Theorem 4.2.3 [AL94]). Let G = {g1, . . . , gs} be a set of non-zero polynomials in
A. Let B be a homogeneous generating set for Syz(lt(g1) . . . , lt(gs)). Then G is a Gröbner basis for
the ideal 〈g1, . . . , gs〉 if and only if for all (h1, . . . , hs) ∈ B we have

s∑
i=1

higi
G−→+ 0 .

Our proof for Lemma 8 will essentially be based on the above theorem. However, before we can
actually give this proof we need to introduce two of auxiliary lemmas.

Lemma 9. Let {f1, . . . , fs} be a basis for an ideal I of A. For 1 ≤ i ≤ s let the leading term of fi
be denoted by lt(fi) = ciXi. If all leading coefficients ci are units in D then

BSyz(lt(f1),...,lt(fs)) =
{
Sij = Sji =

Xij
ciXi

ei −
Xij
cjXj

ej | 1 ≤ i < j ≤ s
}
,

where e1, . . . , es form the standard basis for As and Xij = lcm(Xi,Xj), is a generating set for
Syz(lt(f1), . . . , lt(fs)) of homogeneous syzygies.

Proof. First of all, if i 6= j then Xij

ciXi
ei − Xij

cjXj
ej is a syzygy of Syz(lt(f1), . . . , lt(fs)) as Xij

ciXi
lt(fi)−

Xij

cjXj
lt(fj) = 0. Furthermore, the non-zero polynomials Xij

ciXi
and Xij

cjXj
are terms and the sygyzy

Sij = Sji is homogeneous of degree Xij as Xi · Xij

ciXi
= Xij = Xj · Xij

cjXj
.
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Therefore we need to prove that BSyz(lt(f1),...,lt(fs)) is a basis of the ideal Syz(lt(f1), . . . , lt(fs)).
Let h = (h1, . . . , hs) ∈ Syz(lt(f1), . . . , lt(fs)) then

s∑
i=1

hilt(fi) =
s∑
i=1

ci · Xi · hi =
s∑
i=1

ci · Xi

(
di∑
k=1

a
(i)
k X

(i)
k

)
= 0

for hi =
∑di

k=1 a
(i)
k X

(i)
k . Let X be any power product (in the variables X1, . . . , Xt). Then the

coefficient of X in the polynomial
∑s

i=1 ci · Xi · hi must be zero. Let

{Y1, . . . ,Yd} =
s⋃
i=1

{
X (i)
k | 1 ≤ k ≤ di

}
with Y1 < · · · < Yd. Then

hi =
di∑
k=1

a
(i)
k X

(i)
k =

d∑
`=1

b
(i)
` Y` with

{
b
(i)
` = a

(i)
k if Y` = X (i)

k for some index 1 ≤ k ≤ di
b
(i)
` = 0 else

.

Moreover, let X be a power product and 1 ≤ mi ≤ d be the index such that Xi · Ymi = X for
1 ≤ i ≤ s. Then

∑s
i=1 ci · bmi = 0 and we have

(bm1 · Ym1 , . . . , bms · Yms) = bm1 · Ym1e1 + · · ·+ bms · Ymses

= bm1 · c1 ·
Ym1 · X1

c1 · X1
e1 + · · ·+ bms · cs ·

YmsXs
csXs

es

= bm1 · c1 ·
X
X12

(
X12

c1 · X1
e1 −

X12

c2 · X2
e2

)
+ (bm1 · c1 + c2 · bm2) · X

X23

(
X23

c2 · X2
e2 −

X23

c3 · X3
e3

)

+ · · ·+

s−1∑
j=1

cj · bmj

 · X
Xs−1s

(
Xs−1s

cs−1 · Xs−1
es−1 −

Xs−1s

cs · Xs
es

)

+

 s∑
j=1

cj · bmj

 · X
csXs

es

=
s−1∑
i=1

 i∑
j=1

cj · bmj

X
Xii+1

Sii+1

ut

Definition 8 (Saturation). For power products X1, . . . ,Xs and a subset J ⊆ {1, . . . , s} we set
XJ = lcm(Xj | j ∈ J). We say that J is saturated with respect to X1, . . . ,Xs provided that for all
j ∈ {1, . . . , s} the index j is an element of J if Xj divides XJ . We call the subset J ′ ⊆ {1, . . . , s}
consisting of all j such that Xj divides XJ the saturation of J . We denote with Sat(X1, . . . ,Xs) all
saturated subsets of {1, . . . , s} with respect to X1, . . . ,Xs.

Lemma 10. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I of A and let n =
∏k
`=1 p

e`
` be

the prime power decomposition of the characteristic n of D. For 1 ≤ i ≤ s let the leading term of
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gi be denoted by lt(gi) = ciXi. If all leading coefficients ci are units in D then for each 1 ≤ ` ≤ k
the set

BSyz(lt(g1),...,lt(gs),p
e`
` ) =

{
(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}
∪
{
pe`
` XJ
cjXj

ej −XJes+1 | J ∈ Sat(X1, . . . ,Xs) and some j ∈ J
}

is a homogeneous generating set for Syz
(
lt(g1), . . . , lt(gs), p

e`
`

)
.

Proof. Certainly, each element of BSyz(lt(g1),...,lt(gs),p
e`
` ) is vector of Syz

(
lt(g1), . . . , lt(gs), p

e`
`

)
as

(Sij , 0) · (lt(g1), . . . , lt(gs), p
e`
` )t = Sij · (lt(g1), . . . , lt(gs))t = 0

and
pe`
` XJ
cjXj

ej −XJes+1 · (lt(g1), . . . , lt(gs), p
e`
` )t =

pe`
` XJ
cjXj

lt(gj)−XJ · pe`
` = 0

for J ∈ Sat(X1, . . . ,Xs) and some j ∈ J . Furthermore the element (Sij , 0) is homogeneous of degree

Xij and p
e`
` XJ

cjXj
ej −XJes+1 is a homogeneous syzygy of degree Xj .

Let h = (h1, . . . , hs+1) ∈ Syz
(
lt(g1), . . . , lt(gs), p

e`
`

)
. If hs+1 = 0 then (h1, . . . , hs) is an element

of Syz(lt(g1), . . . , lt(gs)), hence by Lemma 9 (h1, . . . , hs, 0) is finite linear combination of{
(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}
.

Otherwise, using the notation from the proof Lemma 9, if hs+1 6= 0 then for a power product X ,
the coefficient of X in the polynomial

h ·
(
lt(g1), . . . , lt(gs), p

e`
`

)t =
s∑
i=1

lt(gi)hi + pe`
` hs+1 =

s∑
i=1

ciXi

(
di∑
k=1

a
(i)
k X

(i)
k

)
+ pe`

`

ds+1∑
k=1

a
(i)
k X

(i)
k


must be zero for hi =

∑di
k=1 a

(i)
k X

(i)
k and 1 ≤ i ≤ s+ 1.

Let

{Y1, . . . ,Yd} =
s+1⋃
i=1

{
X (i)
k | 1 ≤ k ≤ di

}
with Y1 < · · · < Yd. Then

hi =
di∑
k=1

a
(i)
k X

(i)
k =

d∑
`=1

b
(i)
` Y` with

{
b
(i)
` = a

(i)
k if Y` = X (i)

k for some index 1 ≤ k ≤ di
b
(i)
` = 0 else

,

for 1 ≤ i ≤ s+ 1.
Furthermore, let X be a power product and 1 ≤ mi ≤ d be the index such that Xi · Ymi = X for

1 ≤ i ≤ s + 1 with Xs+1 = 1. Then
(
bm1Ym1 , . . . , bms+1Yms+1

)
is a homogeneous syzygy of degree

X . Moreover, we assume that bms+1 6= 0 and consider the index set J ′ = {j | bmj 6= 0}\{s+ 1}. Let

J ∈ Sat (X1, . . . ,Xs) such that J ′ ⊆ J . Then we fix an index d ∈ J such that p
e`
` XJ

cdXd
ed − XJes+1 ∈

BSyz(lt(g1),...,lt(gs),p
e`
` ). It follows that

(bm1Ym1 , . . . , bms+1Yms+1)− (−bms+1) ·
(
pe`
` XJ
cdXd

ed −XJes+1

)
· X
XJ

=
(
bm1Ym1 , . . . , bmd

Ymd
+
bms+1 · p

e`
` XJ

cdXd
· X
XJ

, bmd+1
Ymd+1

, . . . , bmsYms , bms+1Yms+1 − bms+1XJ ·
X
XJ

)
=
(
bm1Ym1 , . . . ,

(
bmd

+
bms+1 · p

e`
`

cd

)
Ymd

, bmd+1
Ymd+1

, . . . , bmsYms , 0
)
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is a homogeneous syzygy with zero in the (s+ 1)-th coordinate and a linear combination of the set{
(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}
by Lemma 9. ut

Now, we are able to actually prove Lemma 8 from Section 4.2.

Proof (Lemma 8). By Theorem 5 the set G` =
{
pe`
` , g1, . . . , gs

}
is a Gröbner basis for for the

ideal Ji = 〈pe`
` , g1, . . . , gs〉 if and only if for each element h ∈ BSyz(lt(g1),...,lt(gs),p

e`
` ) the relation

h ·
(
g1, . . . , gs, p

el
l

)t G`−→+ 0 holds.
Let h ∈ BSyz(lt(g1),...,lt(gs),p

el
l ), then by Lemma 10 either h is an element of{

(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}
or h is an element of{

pe`
` XJ

lt(gj)
ej −XJes+1 | J ∈ Sat(lm(g1), . . . , lm(gs)) and some j ∈ J

}
.

For the first case, we observe that

h · (g1, . . . , gs, pel
l )t =

s∑
i=1

higi = (h1, . . . , hs) · (g1, . . . , gs)t

with (h1, . . . , hs) ∈ BSyz(lt(g1),...,lt(gs)). Since G is a Gröbner basis for the ideal I it follows by

Theorem 5 that h ·
(
g1, . . . , gs, p

e`
`

)t G−→+ 0 and thus
(
g1, . . . , gs, p

e`
`

)t G`−→+ 0.
In the other case, we have

h =
pe`
` XJ

lt(gj)
ej −XJes+1

for some J ∈ Sat(lm(g1), . . . , lm(gs)) and some j ∈ J . Furthermore,

h ·
(
g1, . . . , gs, p

e`
`

)t =
pe`
` XJ

lt(gj)
gj − pe`

` XJ =
pe`
` XJ

lt(gj)
(lt(gj) + g′)− pe`

` XJ =
pe`
` XJ

lt(gj)
g′ =

g′ · XJ
lt(gj)

pe`
`

for gj = lt(gj) + g′, thus h ·
(
g1, . . . , gs, p

e`
`

)t {pe`
` }−→+ 0 implying that h ·

(
g1, . . . , gs, p

e`
`

)t G`−→+ 0. ut
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