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ABSTRACT: Unattended wireless sensor networks
(UWSNs) operating in hostile environments face the risk
of compromise. Unable to off-load collected data to a sink
or some other trusted external entity, sensors must pro-
tect themselves by attempting to mitigate potential com-
promise and safeguarding their data.

In this paper, we focus on techniques that allow unat-
tended sensors to recover from intrusions by soliciting
help from peer sensors. We define a realistic adversar-
ial model and show how certain simple defense methods
can result in sensors re-gaining secrecy and authenticity
of collected data, despite adversary’s efforts to the con-
trary. We present an extensive analysis and a set of sim-
ulation results that support our observations and demon-
strate the effectiveness of proposed techniques.

1 Introduction

Sensors and sensor networks are deployed and utilized for
various applications in both civilian and military settings.
One of the most attractive properties of sensors is their al-
leged ease of deployment. Because of the low cost of indi-
vidual sensors and commensurately meager resources, se-
curity in sensor networks presents a number of formidable
and unique challenges. A large body of research has been
accumulated in recent years, dealing with various aspects
of sensor network security, such as key management, data
authentication/privacy, secure aggregation, secure routing
as well as attack detection and mitigation.

Recently, unattended sensors and unattended sensor
networks (UWSN) have become subject of attention in the
security research community [1,2]. In the unattended set-
ting, a sensor is unable to communicate to a sink at will
or in real time. Instead, it collects data and waits for an
explicit signal (or for some pre-determined time) to up-
load accumulated data to a sink. In other words, there
is no real-time reporting of sensed data. The inability to
off-load it in real time exposes the potentially sensitive
data accumulated on unattended sensors to certain risks.
This is quite different from prior sensor security research
where there is an assumption of an on-line sink collecting
data in a more-or-less real-time fashion.

Unattended sensors deployed in a hostile environment
represent an attractive attack target. Without external con-
nectivity, sensors can be compromised with impunity and
collected data can be altered, erased or substituted. Sen-
sor compromise is a realistic threat since sensors are often
mass-produced commodity devices with no secure hard-
ware or tamper-resistant components. Prior security work

typically assumed that some number of sensors can be
compromised during the entire operation of the network
and the main goal is to detect such compromise. This is
a reasonable goal, since given a constantly present sink,
attacks can be detected and isolated. The sink can then
immediately take appropriate actions to prevent compro-
mise of more sensors.

In our case, in contrast, the adversary can compromise
a number of sensors within a particular interval. This in-
terval can be much shorter than the time between succes-
sive visits of the sink. Thus, given enough intervals, the
adversary can subvert the entire network as it moves be-
tween sets of compromised sensors, gradually undermin-
ing security. Generally speaking, this type of adversary is
well-known in the cryptographic literature as themobile
adversary[3].1

Consequently, the main security challenge in the
UWSN scenario is:How can a disconnected sensor net-
work protect itself from a mobile adversary?Here, “pro-
tect”, means: “maintain secrecy of collected informa-
tion”, i.e., can a sensor keep the adversary from learning
sensed data even though the adversary might eventually
break into that sensor and learn all of its secrets. We view
this as an important problem because there are many sce-
narios where sensors are used to collect critical or high-
value data.

Once a sensor is compromised and the adversary learns
its secrets, collected data – even if encrypted – becomes
exposed. This holds regardless of where encrypted data is
stored: on the sensor that produced it or elsewhere. Some
recent work [2] has analyzed and confirmed the futility of
hiding data by moving it around the network.

We now zoom in further onto the problem of data se-
crecy. Considering that compromise of a given sensor has
a certain duration, data collected by the said sensor can
be partitioned into three categories, based on the time of
compromise: (1) before compromise, (2) during compro-
mise, and (3) after compromise. Obviously, nothing can
be done about secrecy of data that falls into category (2)
since the adversary is fully in control. The challenge thus
becomes two-fold:
• Forward Secrecy: the termforward means that, cate-
gory (1) data remains secret as time goes forward.
• Backward Secrecy: the termbackwardmeans that, cat-
egory (3) data remains secret even though a compromise
occurred before it was collected.

We are interested in theconfidentiality of data col-

1The mobile adversary model is used to justify proactive crypto-
graphic primitives, such as signatures and decryption [4, 5].



lected when sensors are not under direct control of the
adversary. In the cryptographic literature, notions of
intrusion-resilience[6] and key insulation[7]2 refer to
techniques of providing both forward and backward secu-
rity to mitigate the effect of exposure of decryption keys.
However, these techniques are unsuitable for solving the
problem at hand, as discussed in Section 3.2.

Data integrity is an equally important issue which is
normally considered along with data secrecy. However, in
this paper, we ignore data integrity, but, for a good reason.
We distinguish between aread-only and aread-write ad-
versary. The former is assumed to compromise sensors
and leave no evidence behind: it merely reads all memory
and storage. In contrast, a read-write adversary can delete
or modify existing – and/or introduce its own fraudulent
– data.3 We argue that a read-only adversary is more real-
istic, since its goal is to learn data while remaining unde-
tected. This kind of adversary wants to remain stealthy in
order to repeatedly “visit” the network and “harvest” po-
tentially valuable data. Whereas, a read-write (or active)
adversary might be detected after the next sink visit and
hence will no longer be able to achieve its goals once the
sink takes appropriate measures. Thus, to protect the net-
work against a read-only adversary, we focus – at least for
now – on data secrecy alone.

Contributions: In this paper we propose DISH
(DistributedSelf-Healing), a scheme where unattended
sensors collectively attempt to recover from compromise
and maintain secrecy of collected data. DISH does not
absolutely guarantee data secrecy; instead, it offers prob-
abilistic tunable degree of secrecy which depends on vari-
ables such as: adversarial capability (number of nodes
it can compromise at a given time interval), amount of
inter-node communication the UWSNs can support, and
number of data collection intervals between successive
sink visits. We believe that this work represents the first
attempt to cope with the powerful mobile adversary in
UWSNs. Consequently, it might open up a new line of
research.

Organization: The organization of the paper is as fol-
lows: Section 2 states our assumptions about the net-
work and the mobile adversary. We then propose a simple
public key-based approach in Section 3. This approach,
though less viable, is used as a security yeard-stick. We
then present the symmetric key-based DISH scheme in
Sections 4 and 5. Next, we analyze DISH with three types
of adversaries in Section 6. Section 7 presents our simu-
lation results. Section 8 reviews related work and Section
9 concludes the paper.

2 Assumptions

We now state our network assumptions and present our
model of the adversary.

2Both extend the notion offorward security[8, 9].
3In the security literature, read-only is often referred to as apassive

adversary. We do not use the term “passive” as it does not fit anadversary
who is assumed capable of compromising sensors. Whereas, read-write
is called anactiveadversary.

2.1 Sensor Network Assumptions

We envisage a homogeneous network consisting of peer
sensors uniformly distributed over a certain region. The
network operates as follows:
• Sensors are programmed to collect data periodically.4

• Each sensor obtains a single fixed-size data unit in each
collection interval. T denotes the maximum number of
collection intervals between successive sink visits.
• Sensors are unattended. Each sensor waits for either a
signal or for some pre-determined time to upload accumu-
lated data to the sink.
• The network is connected at all times. Any two sensors
can communicate either directly or indirectly, via other
sensors. We make no assumption about the communica-
tion media: it could, in fact, be wired or wireless.
• Sensors are capable of conducting certain cryptographic
computations, such as one-way hashing, symmetric en-
cryption and – optionally – public key encryption (but not
decryption). However sensors can not run a sophisticated
intrusion-detection system (IDS) on their own.
• Each sensor is equipped with either a Pseudo-Random
Number Generator (PRNG) or a Physical/True Random
Number Generator (TRNG). We elaborate on this later in
the paper.
• Regardless of its type, encryption is alwaysrandom-
ized [10]. Informally speaking, randomized encryption
means that, given two encryptions under the same key,
it is unfeasible to determine whether the corresponding
plaintexts are the same.
• There is enough storage on a sensor to containO(T )
sensed (encrypted) data items between successive sink
visits.
• Each time a sink visits the network, the security “state”
of all sensors is securely re-initialized. This includes all
cryptographic keys as well as initial seeds for PRNGs.
• There are no power constraints. Although we try to min-
imize both computation and communication costs, we as-
sume that security has a much higher priority than power
conservation.
• All sensors maintain loosely synchronized clocks.

We make no assumptions about therichnessof sensed
data: the set of possible sensor readings might be very
large or very small. It clearly depends on the specific
sensor application. In some cases, sensed data can vary
widely, e.g., for complex chemical sensors. Whereas, a
simple light sensor might only collect 1-bit values (i.e., 0
or 1).

2.2 Adversarial Model

We now describe the anticipated adversary. We refer to
it as ADV from here on. Our adversary model resembles
that in [2], albeit with somewhat different operations and
goals.
• Compromise power: ADV can compromise at most
k < n sensors during any single collection interval. We

4Event-driven sensing is also possible in the unattended setting; how-
ever, we do not consider it for the time being.



thus say thatADV is k-capable. The thresholdk may
be absolute, i.e., an integer, or relative, i.e., a fractionof
n. When ADV compromises a node, and for as long as
it remains in control of that node, it reads all of mem-
ory/storage contents and monitors all incoming and out-
going communication.
• Network knowledge:ADV knows the composition and
topology of the network. It is capable of compromising
any node it chooses.
• Key-centric: ADV is only interested in learning the se-
crets (keys) of sensors it compromises. (Since knowledge
of keys allows it to decrypt data).
• No interference:ADV does not interfere with any com-
munications of any sensor and does not modify any data
sensed by, or stored on sensors it compromises. In other
words, ADV is read-only, as discussed above.
• Stealthy operation: ADV’s movements are unpre-
dictable and untraceable. Specifically, it is infeasible to
detect when and if the adversary ever compromised (or
intends to compromise) a particular sensor.
• Atomic movement:ADV moves monolithically, i.e., at
the end of each intervalADV selects at mostk nodes to
compromise in the next interval and migrates to them in a
single action.
• Strictly local eavesdropping:ADV is unable to mon-
itor and recordall communication. It can only monitor
incoming and outgoing traffic on currently compromised
nodes.
ADV’s main goal is to learn data collected by sensors.
However, this does not imply thatADV can notguess
that data. Since there might be only a few possible values
a sensor could obtain,ADV might know well advance the
entire range of all such possible values as discussed at the
end of Section 3.1. Instead,ADV is interested in knowing
exactly which value is being sensed. In the extreme case,
this might correspond to a 1-bit flag.

Table 1 summarizes the notation used in the rest of the
paper. Note that the termsround and interval are used
interchangeably.

T number of rounds between successive sink visits
n number of sensor nodes in the network

i, j sensor indices0 < i, j ≤ n
r, r′ collection round (interval) indices,0 < r, r′ ≤ T

si sensori
dr

i
data collected bysi at roundr

Er
i

encrypted version ofdr
i

H() one-way, collision-resistant hash (e.g. SHA-2)
Enc(X, Y ) outputs randomized encryption ofY under keyX
Dec(X, Y ) outputs decryption ofY under keyX

Cr set ofcompromisedsensors at roundr
k maximum size ofCr ; assumed to be constant

Hr set ofhealthysensors at roundr
Sr set ofsicksensors at roundr
|U | number of elements in setU

Table 1:Notation summary (some defined later).

3 Public Key-based Schemes

Although, for usual performance reasons, we prefer a
scheme based on symmetric cryptography, for the sake

of completeness we start with a simple public key-based
approach and examine its advantages and limitations.

3.1 A Simple Public Key Scheme

The main features of the simple public key-based scheme
are as follows:

• The sink has a long-term public key,PKsink, known to
all sensors.
• As soon as a sensor collects datadr

i at
round r, si encrypts it to produce: Er

i =
Enc(PKsink, Rr

i , d
r
i , r, si, · · · ) where Rr

i refers to
a one-time random number included in each random-
ized encryption operation, as specified in the OAEP+
quasi-standard [10].
• When the sink finally visits the UWSN and gathers en-
crypted data from all sensors, it can easily decrypt it with
its private keySKsink.
• Note that a sensor has no secret (private) key of its own
– it merely uses the sink’s public key to encrypt data.

Since ADV does not know the sinks’s private key
(SKsink), the only way it can determine cleartext data
is by guessing and trying to encrypt it with the sink’s
public key,PKsink. In other words, given a ciphertext
Er

i (which conceals datadr
i ), ADV cycles through all

possible data valuesd′ and comparesEnc(PKsink, d′)
to Er

i . If they match, ADV learns thatd′ is the en-
crypted value. However, as discussed in Section 2.1, we
use randomized encryption and eachEr

i is computed as:
Enc(PKsink, Rr

i , d
r
i , ...) whereRr

i is a one-time random
value produced by the sensor for each encryption opera-
tion. Assuming that bit-length ofRr

i is sufficient (e.g.,
160 or more), the guessing attack becomes computation-
ally infeasible.

There is, however, a crucial security distinction based
on the source of random numberRr

i used in randomized
encryption. If random numbers are obtained from a strong
physical source of randomness, then we can trivially
achieve both forward and backward secrecy. To argue this
claim informally, we observe that a true random number
generator (TRNG) generates statistically independent val-
ues. That is, given an arbitrarily long sequence of consec-
utive TRNG-generated numbers, removing any one num-
ber from the sequence makes any guess of the missing
number equally likely. Let us suppose thatADV com-
promises a sensorsi at roundr′ and releases it at round
r′′ > r′. Encrypted data from any roundr < r′ remains
secret, since it has the form:Enc(PKsink, Rr

i , d
r
i , ...)

and all the random numbers thatADV learns while in
control ofsi are statistically independent fromRr

i . Thus,
we have forward secrecy. Similarly, any data encrypted
after roundr′′ (after ADV releasessi) also remains se-
cret, because all random numbersADV learns while in
control ofsi are statistically independent from those gen-
erated later. Thus, we have backward secrecy.

On the other hand, ifrandom numbers are obtained
from a pseudo-random number generator (PRNG), the re-
sulting security is much lower. This is because a typical



PRNG produces “random” numbers by starting with a (se-
cret) seed value and repeatedly applying a suitably strong
one-way functionH() as: Rr+1

i = H(Rr
i ). Therefore,

again assuming thatsi is compromised at roundr′ and
released atr′′, dataEr

i = Enc(PKsink, Rr
i , d

r
i , ...) for

r < r′ remains secret since computingRr
i from Rr′

i is
computationally infeasible (even ifr′ = r + 1) due to
the one-way property of functionH(). This implies that
forward secrecy is preserved. However, forr > r′′, en-
crypted data is easily guessed byADV since it is efficient
to computeRr

i from Rr′′

i by repeatedly applying (r − r′′

times) the functionH(). Therefore, backward secrecy is
lost.

3.2 Key-Insulated and Intrusion-Resilient
Schemes

We now consider more complex – and seemingly relevant
– cryptographic techniques that provide both forward and
backward secrecy. They include key-insulated [7] and
intrusion-resilient [11, 12] encryption schemes. In both
models, time is divided into fixed intervals. The pub-
lic key remains fixed throughout the entire system life-
time, whereas, the private key is updated in each interval.
When it is time to update the private key, theusercontacts
thebase, a separate secure entity typically in the form of
a remote trusted server or a local tamper-resistant hard-
ware, for help in updating its key. This way, without si-
multaneously compromising both theuserand thebase,
ADV is unable to learn future keys (thus backward secu-
rity is achieved). The difference between a key-insulated
encryption scheme and a intrusion-resilient encryption
scheme is that when theuserandbaseare compromised
simultaneously all the security including forward security
are lost in the key-insulated encryption scheme while for-
ward security is still guaranteed in the intrusion resilient
encryption scheme.

However, all such schemes are completely useless
in our scenario since nodes (sensors) do not possess
any decryption keys. They only use the sink’s public
key to encrypt data. Therefore, a key-insulated or an
intrusion-resilient scheme can only help against sink’s
private key compromise – a problem irrelevant in our
context.

Public Key Summary: To summarize our discussion thus
far, simple public key encryption can help in achieving
both backward and forward secrecy (our“holy grail” in
this paper) only if each sensor is equipped with a phys-
ical source of randomness, i.e., a TRNG. Simple pub-
lic key encryption with PRNG-equipped sensors achieves
forward secrecy but fails with regard to backward secrecy.
More exotic key-insulated and intrusion-resilient schemes
are geared for digital signatures and decryption. They are
unsuitable for the problem at hand.

4 A Simple Symmetric Key Scheme

We now construct a scheme based on symmetric cryptog-
raphy and discuss its benefits and shortcomings.

We assume that, after each sink visit (at round 1), each
si shares an initial and unique secret keyK1

i with the
sink. (This is in line with our assumptions in Section
2.1.) Then, at roundr ≥ 1, as it collects data,si pro-
ducesEr

i = Enc(Kr
i , dr

i , ...). If the encryption key does
not change as rounds go by, all encrypted data can be triv-
ially read by ADV. It only needs to compromise the sen-
sor once, obtain its key and decrypt any encrypted data,
whether generated before or after the compromise period.
Instead, we require that, at the end of each round, each
sensor evolve its key using a one-way hash functionH(),
thus achieving forward secrecy. Specifically, roundr (for
1 < r ≤ T ) key is computed as:Kr

i = H(Kr−1

i ). If
ADV breaks in at roundr, it learnsKr

i but can not ob-
tain Kr−1

i (which was used to encryptdr−1

i ) due to the
one-way property ofH().

Unfortunately, backward secrecy is lacking. This is be-
causeADV who breaks in at roundr learnsKr

i . Then,
by mimicking the key evolution process, it can obtain any
future keyKr′

i (r′ > r) as:5 Kr′

i = Hr′−r(Kr
i ). Armed

with Kr′

i , it can decrypt any data (that it might find later)
encrypted withKr′

i . Hence, there is no backward secrecy.
Worse still, aftern

k
rounds, ADV reaches asteady state,

whereby all data collected and encrypted by all sensors is
easily readable.

Based on our discussion in Section 3.1, it might seem
that, if all sensors had TRNGs, both backward and
forward secrecy are achievable. This intuition is wrong
due to the followingparadox: if si uses each random
numberRr

i as an one-time symmetric encryption key to
produceEr

i = Enc(Rr
i , d

r
i ), there is no way for the sink

to later decrypt it. This is becauseRr
i , as atrue random

number, is unpredictable, unique tosi and irreproducible
by anyone, including the sink. So, there is no other way
for si to communicateRr

i to the sink. (We leave it as an
exercise to the reader to check that all other “tricks” fail,
i..e., without an out-of-band channel between each sensor
and the sink, there is no way to benefit from true random
numbers with purely symmetric cryptography.)

Symmetric Key Summary: Having reviewed simple
public key and symmetric approaches, we observe that –
except for the public key scheme used in conjunction with
all sensors equipped with TRNGs – neither achieves the
desired level of security: forward and backward secrecy of
encrypted data. We believe that the combination of pub-
lic key encryption and per-sensor TRNG is not realistic
for many current and emerging sensor networks. Public
key encryption requires more computation and consumes
higher storage and bandwidth than symmetric encryption.
Similarly, node-specific TRNGs are not always realistic,
at least not on the scale in envisaged UWSNs. Therefore,
below we focus on symmetric key techniques which do

5The notationHp() meansp repeated applications ofH().



not assume any strong source of randomness on individ-
ual sensors.

5 Distributed Self-Healing

We now describe DISH:DistributedSelf-Healing scheme
that provides probabilistic assurance of key-insulated data
secrecy. DISH is based on symmetric cryptography, i.e.,
sensors are only required to perform hashing and symmet-
ric encryption operations. We first describe the general
idea and then present protocol details.

5.1 General Idea

Each sensorsi shares an initial unique secret keyK1
i with

the sink, as in Section 2.1. At the start, none of these keys
are known toADV. As soon as the sink collects data and
leaves the network unattended,ADV starts compromising
sets of nodes, at mostk per round.

We observe that, at round 1, whenADV first compro-
misesk sensors inC1, there aren − k sensors that have
not been compromised yet. We call such sensorshealthy
and the currently occupied sensorscompromised. While
ADV moves to the next compromised setC2 in round
2, nodes inC1 remainsick. The termsick refers to the
ADV’s ability to compute their secret keys for round 2
(and later), even though it no longer occupies them.

Our main idea is very simple: we let healthy sensors
helpcuresick sensors. Specifically, sick sensors ask con-
tribution shares from healthy sensors and healthy sensors
contribute secret values to sick sensors. A healthy sen-
sor generates each contribution share - a random number
- using its PRNG. This random number is secret toADV

since learning it requires knowledge of the healthy sen-
sor’s current PRNG state. A sick sensor uses contribution
shares from healthy sensors – along with its current key –
as input to a one-way function to generate its next round
key. As long as there is at least one contribution from a
healthy sensor,ADV is unable to learn the new key (un-
less it compromises the same sensor again in the future).
Consequently, a previously sick sensor becomes healthy
after a key update. We call a sensor asponsorof another
sensor if it furnishes the latter with a contribution in the
latter’s key update process. A sick sensor asks a set oft
sponsors for their contribution shares at the end of every
round.

Our approach can be characterized by the following ax-
ioms:
• Axiom 1: A healthy sensor in roundr can not become
sick in roundr +1, unlessADV compromises it in round
r+1. That is, a healthy sensor remains healthy untilADV

compromises it.
• Axiom 2: A compromised sensor can not become
healthy. (For it to have a chance of becoming healthy,
ADV has to release it).
• Axiom 3: A sick sensor in roundr can become healthy
in roundr + 1 if and only if at least one healthy sensor
contributes input to the computation of its (sick sensor’s)

key for roundr + 1.

To better illustrate the process, refer to Figure 1 which
shows the sensor state diagram. The description so far is
clearly too simplistic. First, a sensor has no idea whether
it is sick or healthy, since we assume thatADV is stealthy:
it moves unpredictably and leaves no trail. Thus, each sen-
sor is potentially sick and potentially healthy. For this rea-
son, we require all sensors (whether compromised, sick
or healthy) randomly select a set oft sponsors at the end
of every round and ask each sponsor for input. Because
the cure comes from peer sensors, the network exhibits
a self-healing property - something no individual node
can provide– which emerges through collaboration of all
nodes.

COMPROMISED

HEALTHY

SICK

Compromise

R
ele a se

At least one 
healthy sponsor

All sponsors 
are sick or 

compromised

Adv stays

Figure 1: Sensor State Transition Diagram.

5.2 Details of the DISH Scheme

Within each round, a sensor runs two separate processes:
main and sponsor. The main process is shown in Al-
gorithm 1 and the sponsor process in Algorithm 2. As
in Section 4, at every sink visit, eachsi is securely re-
initialized with K1

i – a unique secret generated by the
sink (details of this process are out of scope of the present
work). All sensors are thushealthyat the initial stage.

The main process (loop at line 5) shows howsi se-
lects a set oft sponsors and obtains a random contribution
HELP [p] from each. All collected contributions, in ad-
dition to the current key, are then used to derive the next
key Kr+1

i . The one-way property ofH() ensures that it
is infeasible for ADV to compute this key as long as at
least one input out of:{Kr

i , HELP [1], ..., HELP [t]} is
unknown.

As shown in Algorithms 1 and 2, each node uses its
PRNG for selecting sponsors as well as for generating
contributions (as a sponsor). As mentioned earlier, a
PRNG is typically realized as a one-way function, such
as H(). Suppose thatADV compromisessi at roundr,
copies its PRNG state and releasessi by roundr + 1.
Then, for roundr + 1, ADV can still compute: (1) the set
of si’s sponsors as well as (2) the set ofsi’s contributions
in roundr+1. In other words, even though a sensor likesi

is no longer compromised, it remainssick. Thus, for each



Algorithm 1 : DISH: sensorsi main process at roundr

/* start round r */
1 collect new sensed datadr

i
2 computeEr

i = Enc(Kr
i , dr

i , r, · · · )3 storeEr
i on local storage

4 setHELP [1..t] = ∅
5 for (p← 1 to t) do

5.1 setj = PRNG() modn
5.2 sendREQUEST to sj

5.3 setHELP [p] = REPLY (sj)

6 setKr+1

i
= H(Kr

i , HELP [1], ...,HELP [t])
7 eraseKr

i and {HELP [1], ..., HELP [t]}
/* end round r */

Algorithm 2 : DISH: sensorsi sponsor process at roundr

/* start round r */
while (;;) DO do

1 receiveREQUEST from sj

2 setHELP = PRNG()
3 composeREPLY usingHELP
4 sendREPLY to sj

5 eraseHELP

/* end round r */

sick sensor,ADV knows the entire set of its sponsors and
all of its contributions.

Recall that the sink knows all initial secrets and can
compute all intermediate states of all sensors. Therefore,
it can also re-generate all sensor keys by mimicking the
main and sponsoring processes in each round. That is, our
key update process does not affect the sink’s knowledge of
sensors’ round-specific keys and its ability to eventually
decrypt data encrypted with these keys.

6 Analysis and Discussion

We analyze DISH with three classes ofADV, based on
the compromise set (Cr+1) selection strategy:
Type A: A.ADV randomly selectsk healthy nodes to
compromise for the next round.
Type B: B.ADV selectsk healthy sponsor nodes of sick
sensors such that the largest number of nodes remain sick.
Type C: C.ADV selectsk nodes such that most sick-
healthy communication will pass through these nodes.

As shown in Figure 1, the game between the network
and ADV runs as follows. The network tries to cure sick
sensors through key update, whileADV moves around to
compromise sensors. Therefore, key update and sensor
compromise take place alternately round-by-round. We
assume that key update is performed at the end of each
round andADV compromises the next set of victims im-
mediately after key update. A sensor’s status is its state
during the interval afterADVś movement and before key
update. OnceADV compromisessi in roundr, it records
Kr

i for two reasons: (1) decryptingsi’s data generated
in roundr, (2) calculating contribution shares whichsi

sponsors to others.ADV occupiessi until its key update
is finished, records the new key (Kr+1

i ) and then (option-
ally) leavessi in the r + 1-st round. We assumeADV

maintains a network state map, so it knows current sensor
states, i.e.,Sr, Cr andHr.

Key update affects sick sensors only. A sick sensor be-
comes healthy if at least one contribution comes from a
healthy sponsor. A healthy sensor remains healthy since
its own contribution (previous round key) is unknown to
ADV. ADV’s movement affects healthy and compro-
mised sensors. A healthy sensor becomes compromised
in the next round ifADV selects it inCr+1. A compro-
mised sensor becomes sick ifADV leaves it in the next
round. We will show how the “game” between the net-
work and different types ofADV affects sensor migration
among groups.

We first consider two extreme cases. Whenk ≥ n/2,
no matter whatt is, ADV can control the network in two
rounds. Therefore in the following analysis, we assume
k < n/2. If k < n/2 and each sensor selectst = n − 1
sponsors for every key update, all sick sensors become
healthy after key update. As a consequence, there are al-
waysk compromised andk sick sensors in each round.
ADV is never able to control the whole network. How-
ever this will incur a total communication overhead of
O(n2). We want to find a balance between healing rate
and communication overhead.

6.1 A.ADV

A.ADV randomly selectsCr+1. Selection happens at the
end of roundr and before roundr + 1. Using its up-to-
date network state map,A.ADV simply picksk healthy
nodes.

Note non-neighboring nodes in the network communi-
cate to each other indirectly via other sensors. If a reply
message from a sponsor is routed through any compro-
mised node,ADV learns the contribution share. IfADV

intercepts all the contribution shares from healthy spon-
sors of a sick node,ADV can calculate its next round key
and consequently this sensor remains sick. So a sick sen-
sor can become healthy only if at least one reply mes-
sage from a healthy sensor is not routed through any of
the compromised nodes.

We define the healing rate of a sick sensor in roundr
- pr(t) - as the probability at which the said sensor can
become healthy in roundr + 1 after ther-th round key
update witht sponsors. According to the diagram in Fig-
ure 1, the network composition in ther + 1-st round with
A.ADV is as follows:

|Hr+1| = |Hr| − k + |Sr| · pr(t) (1)

|Sr+1| = |Sr| · (1 − pr(t)) + k (2)

|Cr+1| = k (3)

Now we show how to calculatepr(t). Let p(i) de-
note the probability thati of t sponsors a sensor picks are
healthy andpp(i) the probability that at least one fromi
reply messages is not routed through any of the compro-
mised nodes.pr(t) can be calculated as:

pr(t) =
t

X

i=1

p(i) ∗ pp(i) (4)



p(i) is calculated asp(i) =
(|H

r |
i )∗(n−|Hr|−1

t−i )
(n−1

t )
. Let l + 1

denote the average length of path between two nodes.
That is, a message is routed through an average ofl in-
termediate nodes. The probability that ONE message is
NOT routed through any of thek compromised nodes is

p1 =
(|H

r |−l
h

k
)

(|H
r |

k )
wherelh = |Hr |

n
l is the average num-

ber of healthy sensors in a path. Then the probability that
ALL i messages are routed through at least one of thek
compromised nodes is calculated as(1−p1)

i. Sopp(i) is
calculated aspp(i) = 1 − (1 − p1)

i.
To better understand this analytical model, we consider

a mesh network ofn = 20 × 20. We can setl =
√

n/2.
We calculate the number of sick and compromised nodes
in the first 30 rounds with differentk andt values. The re-
sults are shown in Figure 2. The analytical model demon-
strates that:
[1] The system converges quickly, after 2 or 3 rounds, in a
state with a stable number of sick and compromised sen-
sors per round. For example, whenk = 8 andt = 1, there
are 19 sick and compromised sensors each round from the
fourth round; whenk = 8 andt = 4, there are 17 sick
and compromised sensors from the third round.ADV is
unable to make further progress.
[2] DISH can achieve the same level of security as the
TRNG-based scheme ift is high enough, e.g.,t = k/2, as
shown in Figure 2.
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Figure 2: Analytical results withA.ADV.

6.2 B.ADV

B.ADV strategically selectsk healthy sponsor nodes of
sick sensors toCr. Again,Cr selection occurs at the end
of ther − 1-st round whenADV gets to knowSr. ADV

calculates sponsor nodes of sensors inSr using Algorithm
2. Finally it selectsk healthy ones from these sponsor
nodes and move to them in ther-th round.

Suppose all the healthy sponsor nodes ofsi mentioned
above are selected inCr. ADV is able to computeKr+1

i

because it knowsKr
i and controls all healthy sponsors of

si. Thereforesi is not able to become healthy through

ther-th round key update and remains sick in ther + 1-
st round. LetT r denote the set of such nodes which are
controlled byADV indirectly through the compromise of
Cr. Of |Sr| sick sensors in roundr, |T r| sensors remain
sick in roundr + 1 and|Sr| − |T r| sensors either change
or keep their status in roundr + 1 subject to the current
healing rate ofpr(t). pr(t) is also calculated with Equa-
tion 4. The network composition inr + 1-th round is as
follows:

|Hr+1| = |Hr| − k + (|Sr| − |T r|) · pr(t) (5)

|Sr+1| = (|Sr| − |T r|) · (1 − pr(t)) + |T r| + k (6)

|Cr+1| = k (7)

Compared withA.ADV, there are fewer healthy sensors,
and, consequently, more sick sensors in each round. - both
are contributed to the existence of sensors inT r. B.ADV

learns more sensor secrets, about|T r| more secrets, than
A.ADV under the same set of network parameters.

To maximize its advantage,B.ADV must maximize the
set of sensors inT r, e.g., selectk sponsor nodes so that the
maximum number of sick sensors remain sick in the next
round. It turns out that this maximumT r problem is NP.
As we consider a polynomial timeADV, the value of|T r|
is determined by the actualCr selection algorithmADV

uses to selectk sponsor nodes. We use a greedy algorithm
to simulate ADV’s selection ofk sponsor nodes in our
simulation. Apparently,t andk affectT r. If t = 1, T r ≈
k, whereas, ift > k, T r ≈ 0. Therefore, to defend against
B.ADV, the network has to sett to a large(r) value. A
larget helps in two ways: 1) increases the healing rate,
and 2) decreasesT r since adv has to occupy all healthy
sponsor nodes ofsi to keep it sick.

6.3 C.ADV

C.ADV takes advantage of communication passing
through compromised nodes. OnceC.ADV compromises
si, it recordsKr

i , stays onsi until its key update is finished
and records the new key (Kr+1

i ). Meanwhile, C.ADV

also records sick-healthy communication passing through
si and other compromised nodes. OnceC.ADV intercepts
all healthy contributions for a sick sensorsj , it can com-
puteKr+1

j . A sick sensor in roundr becomes healthy in
roundr + 1 only if at least one healthy contribution is
not routed through any sensor inCr. Therefore,C.ADV

determinesk nodes to compromise in the next round,
such that the most sick-healthy communication will pass
through these sensors.

To achieve its goal,C.ADV starts by compromising
sensors from a corner. Then, it expands its invasion area
by cordoning off all sick sensors with compromised sen-
sors – this way, it can intercept all sick-healthy commu-
nication. If C.ADV can always physically separate sick
and healthy sensors, it will eventually learn all sensors’
keys and reach a steady state. Thus, the network topol-
ogy directly influences security againstC.ADV. Intu-
itively, narrow shapes do not fare well, while more bal-
anced shapes are more resilient. For example, suppose



the network consists of 12 sensors arranged into a2 × 6
mesh. Such a network fails against a 2-capableC.ADV.
However, if the same 12 sensors are arranged into a3× 4
mesh, the network can defend itself against a 2-capable
C.ADV. Therefore, to defend againstC.ADV, the net-
work should have a certain shape being large enough such
that C.ADV is unable to separate sick and healthy sen-
sors in every round. More generally, a

√
n × √

n mesh
network can defend itself against ak-capableC.ADV if
k <

√
n. Whenk ≥ √

n, C.ADV can totally separate
sick and healthy sensors and intercept all their commu-
nications, no sensor can be cured no matter how many
sponsors it asks.

If the network is large enough, asC.ADV expands the
“sick area”, at some point it is no longer able to encircle
all sick sensors, i.e., the cordon formed by compromised
sensors will be broken andADV will be unable to in-
tercept all sick-healthy communication. Then, some sick
sensors will become healthy. Thus far, we are unfortu-
nately unable to construct an analytic model for the heal-
ing rate with C.ADV. This is because many factors (such
as: C.ADV position, routing scheme and the values oft
andk) affect the healing rate. This remains a major item
for future work.

7 Simulation Results

To verify the above analysis, we developed a UWSN sim-
ulator and obtained some simulation results.

7.1 Network Parameters and Adversary
Configuration

The UWSN is simulated as an = 20 × 20 (n = 400 sen-
sors total) mesh with each point is occupied by a sensor.
A shortest path scheme is used to route messages between
two sensors. The network is static, so the communica-
tion path between any two nodes is fixed throughout the
simulation. Each node follows the main and sponsor al-
gorithms described in Section 5.

The simulation ofA.ADV is straightforward. It main-
tains a network state map and uses it to randomly selectk
healthy nodes. We use a greedyCr selection algorithm to
simulateB.ADV. LetHi be the healthy sponsor set ofsi.
The greedy algorithm is shown in Algorithm 3.

Algorithm 3 : B.ADV: Cr Selection

Input: Sr

Output: Cr

Procedure:
S′ ← Sr

Cr ← ∅
while |Cr| < k do

1 selectsi from S′ such that:
1.1 |Cr

S

Hi| ≤ |C
r

S

Hj | for all sj ∈ S′ wherej 6= i
2 Cr ← Cr

S

Hi

3 removesi from S′

returnCr

C.ADV initially compromises the network from one
corner and then expands the sick area outwards. Ifk <√

n (k < 20 in our case) the maximum number of sick
sensors ak-capable C.ADV can totally cordon off is
k(k−1)/2 and compromised sensors form a straight line,
as shown in Figure 3. AfterC.ADV obtainsk(k − 1)/2
sick sensors, we simulate it in two variants. Variant 1 con-
tinues moving to compromise a new set of healthy sen-
sors and the newly compromised sensors always form a
straight line. Variant 2 comes back to re-compromise sen-
sors among the initialk(k − 1)/2 sick sensors (once they
become healthy). Compromised sensors do not always
form a straight line.

k

n

n

k

k
Line formed by compromised 

sensors

Figure 3: Area cordoned off byC.ADV.

7.2 Results

We set ADV’s capabilities as:k = 8, 20 and40 which
corresponds to2%, 5% and10% of the network, respec-
tively. For eachk, we adjustt to different values. We first
sett = k

8
. We then sett = k

2
- half of the capability of

ADV. Having fixedk andt, we let the network andADV

play the game for 30 rounds and record the number of sick
and compromised nodes in each round.

Figure 4 shows our simulation results with an 8-capable
ADV.
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Figure 4: 8-capableADV.

A.ADV: Whent = 1, the number of sick and compro-
mised sensors fluctuates around19.64. Whent = 4, the



system converges immediately after the first round with
an average number of sick and compromised sensors of
16.03. Both numbers agree with our analytical prediction
of 19 and17, respectively.
B.ADV: With t = 1, the average number of sick and
compromised sensors per round is27.18 - about 8 more
with B.ADV than with A.ADV- which also agrees with
our prediction of|T r| extra sick sensors. As we increaset
to 4, the average number of sick and compromised sensors
per round is reduced to18.11.
C.ADV(Variant 1): No sick sensor can become healthy
in the first four rounds becauseC.ADV can intercept
all sick-healthy communications. After the 4-th round,
C.ADV no longer intercepts all sick-healthy communi-
cations if it continues moving and some sick sensors be-
come healthy through key update. However, because the
number of healed sensors in the first several rounds is less
thank, the number of total sick and compromised sensors
keeps rising. Whent = 1, it reaches its peak of61 in the
10-th round. After that, more sensors are healed. Because
C.ADV keeps moving outward on a line, the system con-
verges in the 28-th round into a state similar to that with
A.ADV. As we increaset to 4, the number of sick and
compromised sensors reaches its peak of41 in the 8-th
round and converges in the 19-th round.
C.ADV(Variant 2): C.ADV goes back to re-compromise
sensors which are among the firstk(k − 1)/2 sick sen-
sors that become healthy later. The system is does not
converge and the number of sick and compromised sen-
sors goes up and down but remains above thek(k − 1)/2
line. The number of sick and compromised sensors when
t = 4 has smaller amplitude than that whent = 1. Also,
C.ADV goes back and forth more frequently whent = 4
than whent = 1. Apparently, the strategy of variant 2
is more effective than that of variant 1. From the simula-
tion results, we see that largert results in better protection
against bothB.ADV and C.ADV.
Figure 5 (top) shows simulation results with a 20-capable
ADV. As ADV becomes more powerful, there are more
sick and compromised sensors in each round. We can still
achieve the same level of forward and backward security
with both A.ADV and B.ADV by increasingt. However,
sincek ≥ √

n, C.ADV now can occupy all nodes in a
column (or a row), it can intercept all sick-healthy com-
munication. No matter whatt is, ADV wins the game
in the 20-th round (meaning that, thereafter,ADV knows
all network secrets and all backward security is lost.) To
complete our simulations, Figure 5 (bottom) shows the re-
sults with a 40-capableADV. Its interpretation is similar
to that of 20-capableADV.
To get a clear idea of the level of security achievable by
DISH, we compare it with the simple TRNG-based public
key scheme discussed earlier in the paper. That scheme
achieves the best level of security:ADV learns nothing
about category (1) and (3) data.
We defineData Secrecy Rate(DSR) as the ratio – across
all rounds – of healthy keys of all sensors (i.e., keys un-
known to ADV) over the total number of keys of all sen-
sors. We compare the two schemes based on DSR in a 30-
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Figure 5: 20- and 40-capableADV.

round simulation in Table 7.2. WithA.ADV and B.ADV,
with sufficiently larget, DISH achieves DSR close to that
of the TRNG-based public key scheme. With variant 1 of
C.ADV, if k is small (e.g.,k = 8), DISH also achieves
DSR close to that of the TRNG-based scheme. However,
DISH fares appreciably worse with the variant 2C.ADV.
If k ≥ √

n (k ≥ 20 sincen = 400), DISH achieves
only forward security, regardless oft. Clearly, its DSR is
much lower than that of the the TRNG-based public key
scheme.

k=8 k=20 k=40

TRNG-based 96% 90% 80%
public key scheme

DISH

A.ADV
95%(t = 1) 89%(t = 3) 77%(t = 5)
96%(t = 4) 90%(t = 10) 80%(t = 20)

B.ADV
93%(t = 1) 87%(t = 3) 75%(t = 5)
96%(t = 4) 90%(t = 10) 80%(t = 20)

C.ADV v. 1 92%(t = 1)

32% 15%
94%(t = 4)

C.ADV v. 2 90%(t = 1)
90%(t = 4)

Table 2:Data Secrecy Rate (DSR) comparison after 30 rounds



8 Related Work

Data secrecy is a fundamental security issue in sensor
networks and encryption is the standard way to achieve
it [13, 14]. Much research effort has been invested in
clever techniques for establishing pairwise keys used to
secure sensor-to-sensor and sink-to-sensor communica-
tion, e.g., [15–18].
Sensor compromise is viable since sensors are built using
low-cost commodity hardware components. Local keys
are updated periodically to mitigate the effect of sensor
compromise. Mauw, et al. [19] proposed some techniques
to provide forward-secure data authentication and confi-
dentiality for node-to-sink communication. Forward se-
cure authentication has also been considered recently in
the context of minimizing storage and bandwidth over-
head due to data authentication in the presence of a pow-
erful adversary [1]. The most related work to ours is
Whisper [20], a protocol which provides both forward and
backward security for communication between a pair of
sensors. However, the scheme’s security relies on a some-
what unrealistic assumption that the adversary is unable
to compromise both sensors simultaneously. Also, every
sensor must be equipped with a TRNG.
Recently, unattended sensors and sensor networks have
become subject of attention in the security research com-
munity and various aspects of security have been explored
[1, 2, 21, 22]. Parno, et al. proposed two distributed algo-
rithms where sensors (without interference of sink) work
collectively to detect node replication attack [21]. Secu-
rity and privacy in data-centric sensor networks - typically
running in unattended mode - have been recently studied
in [22]. Di Pietro, et al. [2] have considered data surviv-
ability in UWSNs in the presence of a mobile adversary
and proposed several simple network defense strategies.
UWSNs have also been considered in the context of min-
imizing storage and bandwidth overhead due to data au-
thentication [1]. The proposed forward-secure aggregate
authentication techniques provide efficientforward secu-
rity. Although this paper focuses on data secrecy, our re-
sults naturally extend to data authentication and to other
peer group settings (e.g., P2P systems) where a set of
nodes can be compromised by a powerful mobile adver-
sary.

9 Conclusion

In this paper, we explored novel approaches to obtain-
ing intrusion-resilient data secrecy in UWSNs. We pro-
posed DISH, a symmetric key-based self-healing scheme
that achieves both forward and backward secrecy. DISH
successfully mitigates the effect of sensor compromise.
Our simulation results clearly demonstrate the efficacy of
DISH against A.ADV and B.ADV. However, it unfor-
tunately does not appear as effective in the presence of
a more powerfulC.ADV. To this end, more advanced
counter-strategies are subject to future work.
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