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Abstract

We present a novel information measure that captures the quantity of
secret information that an unknown-message attacker can extract from
a system in a given number of side-channel measurements. We provide
an algorithm to compute this measure, and we use it to analyze hardware
implementations of cryptographic algorithms with respect to their vulner-
abilities against power and timing attacks. In particular, we show that
message-blinding – the common countermeasure against timing attacks –
does not constitute a provably secure protection against timing attacks,
but that it only reduces the rate at which information is leaked in multiple
measurements. Finally, we compare information measures corresponding
to different kinds of side-channel attackers and show that they form a
strict hierarchy.

1 Introduction

Side-channel attacks against cryptographic algorithms aim at breaking cryp-
tography by exploiting information that is revealed by the algorithm’s physical
execution. Characteristics such as running time [15, 4, 24], power consumption
[16], and electromagnetic radiation [14, 26] have all been exploited to recover
secret keys from implementations of different cryptographic algorithms. Side-
channel attacks are now so effective that they pose a real threat to the security
of devices which can be subjected to different kinds of measurements. This
threat is not covered by traditional notions of cryptographic security, and mod-
els for reasoning about the resistance against such attacks are only now emerging
[22, 29, 17].

Two quantities characterize the attacker’s effort for successfully mounting a
side-channel attack and recovering a secret key from a given system. The first is
the computational power needed to recover the key from the information that is
revealed through the side-channel. The second is the number of measurements
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needed to gather sufficient side-channel information for this task. To prove that
a system is resistant to side-channel attacks, one must ensure that the overall
effort for a successful attack is out of the range of realistic attackers.

The attacker’s computational power is typically not the limiting factor in
practice, as a large number of documented attacks show [4, 6, 8, 16, 24]. Hence,
the security of a system often entirely depends on the amount of secret informa-
tion that an attacker can gather in his side-channel measurements. Note that
the number of measurements may be bounded – for example, by the number of
times the system re-uses a session key – and must be considered when reasoning
about a system’s vulnerability to side-channel attacks.

A model to express the revealed information as a function of the number of
side-channel measurements has recently been proposed, and it has been applied
to characterize the resistance of cryptographic algorithms against side-channel
attacks [17]. The model captures attackers that can interact with the system
by adaptively choosing the messages that the system decrypts (or encrypts).

However, many documented side-channel attacks are unknown-message, i.e.,
the attacker cannot see or control the messages that are decrypted (or encrypted)
by the system, and they typically involve multiple side-channel measurements.
Such attacks in particular comprise differential power attacks [16] as well as
timing attacks against public-key cryptosystems that are run with state-of-the-
art countermeasures such as message blinding. Quantifying the information that
a system reveals in such an attack was an open problem prior to this work.

1.1 Our Contributions

We propose a novel measure for quantifying the resistance of systems against
unknown-message side-channel attacks. This measure Λ captures the quantity
of secret information that a system reveals as a function of the number of side-
channel measurements. Moreover, we provide an explicit formula for Λ when
the number of measurements tends to infinity, corresponding to the maximum
amount of secret information that is eventually leaked.

In order to apply our measure to realistic settings, we provide algorithms
for computing Λ for finite and infinite numbers of measurements, respectively.
We subsequently use these algorithms to formally analyze the resistance of non-
trivial hardware implementations of cryptographic algorithms to side-channel
attacks: First, we show that an AES SBox falls prey to a power analysis in
that the key is fully determined by a sufficiently large number of measurements.
Second, we show that finite-field exponentiation as used in, e.g., the generalized
ElGamal decryption algorithm, falls prey to timing attacks in that the key is
fully determined by a sufficiently large numbers of measurements. We use this
result to show that message-blinding, which aims at protecting against timing
attacks by decoupling the running time of the exponentiation algorithm from
the secret, does not constitute a suitable technique in general to protect against
chosen-message timing attacks: we can show that, for the analyzed exponenti-
ation algorithm, message-blinding only reduces the rate at which information
about the secret is revealed, and that the entire key information is still even-
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tually leaked. This yields the first formal assessment of the (un-)suitability of
message-blinding to counter timing attacks.

We conclude by putting our novel measure Λ into perspective with informa-
tion measures for different kinds of attacks. The result is a formal hierarchy
of side-channel attackers that is ordered in terms of the information they can
extract from a system. We distinguish unknown-message attacks, in which the
attacker does not even know the messages (as is typically the case in power at-
tacks), known-message attacks, in which the attacker knows but cannot influence
the messages, and chosen-message attacks, in which the attacker can adaptively
choose the messages (as is typically the case in timing attacks). As expected,
more comprehensive attackers are capable of extracting more information in a
given number of measurements. Moreover, we show that this inclusion is strict
for certain side-channels. We believe that clarifying on the different attack sce-
narios will provide guidance on which measure to pick for which application
scenario.

1.2 Related Work

While there has been substantial work in information-flow security on detecting
or quantifying information leaks, there are no results for quantifying the infor-
mation leakage in unknown-message attacks. Lowe [18] quantifies information
flow in a possibilistic process algebra by counting the number of distinguishable
behaviors. Clarkson et al. [10] develop a model for reasoning about an adaptive
attacker’s beliefs about the secret, which may be right or wrong. The informa-
tion measure proposed by Clark et al. [9] is closest to ours, however, it is not
applicable to side-channel attacks as it does not capture multiple computations
with the same key. The measures proposed in [17] provide tools for reasoning
about the information leakage in side-channel attacks, but only for stronger,
chosen-message, attackers.

There is a large body of work on side-channel cryptanalysis, in particular on
attacks and countermeasures. However, models and theoretical bounds on what
side-channel attackers only started to emerge. Chari et al. [7] are the first to
present methods for proving hardware implementations secure. They propose
a generic countermeasure for power attacks and prove that it resists a given
number of side-channel measurements. Micali et al. [22] propose physically ob-
servable cryptography, a mathematical model that aims at providing provably
secure cryptography on hardware that is only partially shielded. Their model
has been been specialized in a line of work by Standaert et al. [29, 19, 25]. In
[25], the success rate of a side-channel attacker with access to multiple mea-
surements is analyzed. The analysis is based on leakage functions that express
what information the side-channel reveals, e.g., the input’s Hamming weight.
Our approach tackles the problem on a different level of abstraction: starting
from a model of the physical characteristics of the system, e.g. its power or time
consumption, we capture the information that the corresponding side-channel
reveals. It is subject of future work to investigate whether our approach can be
used for instantiating the leakage functions of [25].

3



1.3 Outline

The paper is structured as follows. In Section 2, we introduce our models of side-
channels and attackers and we review basics of information theory. In Section
3, we present measures for quantifying the information leakage in unknown-
message attacks. In Section 4, we show how these measures can be computed
for given implementations. We report on experimental results in Section 5 and
compare different kinds of side-channel attacks in Section 6. We conclude in
Section 7.

2 Preliminaries

We start by describing our models of side-channels and attackers, and we briefly
recall some basic information theory.

2.1 Modeling Side-channels and Attackers

We consider systems that compute functions of type F : K ×M → D for finite
sets K, M , and D. We assume that the attacker can make physical observa-
tions about F ’s implementation IF that are associated with the computation of
F (k,m). We assume that the attacker can make one observation per invocation
of the function F and that no measurement errors occur. Examples of such ob-
servations are the power or the time consumption of IF during the computation
(see [16, 21] and [15, 6, 4, 24], respectively).

A side-channel is a function fIF
: K ×M → O, where O denotes the set of

possible observations. We assume that the attacker has full knowledge about
the implementation IF , i.e., fIF

is known to the attacker. We will usually leave
IF implicit and abbreviate fIF

by f .

Example 1. Suppose that F is implemented in synchronous (clocked) hardware
and that the attacker is able to determine IF ’s running times up to single
clock ticks. Then the timing side-channel of IF can be modeled as a function
f : K × M → N that represents the number of clock ticks consumed by an
invocation of F . A hardware simulation environment can be used to compute
f .

Example 2. Suppose F is given in a description language for synchronous
hardware. Power estimation techniques such as [23, 30] can be used to deter-
mine a function f : K × M → Rn that estimates an implementation’s power
consumption during n clock ticks.

In a side-channel attack, a malicious agent gathers side-channel observations
f(k,m1), . . . , f(k,mn) for deducing k or narrowing down its possible values.
Depending on the attack scenario, the attacker might additionally be able to see
or choose the messages mi ∈ M : an attack is unknown-message if the attacker
cannot observe mi ∈ M ; an attack is known-message if the attacker can observe
but cannot influence the choice of mi ∈ M ; an attack is chosen-message if the
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attacker can choose mi ∈ M . Most documented timing and cache attacks are
chosen-message or known-message attacks [4, 13, 15], whereas power attacks are
often unknown-message attacks [16, 28].

In this paper, we focus on the open problem of giving bounds on the side-
channel leakage in unknown-message attacks. In Section 6, we will come back to
the distinction between different attack types and formally compare them with
respect to the quantity of information that they can extract from a system.

2.2 Information Theory Basics

Let A be a finite set and p : A → R a probability distribution. For a random
variable X : A → X, we define pX : X → R as pX (x) =

∑
a∈X−1(x) p(a), which

is often denoted by p(X = x) in the literature.
The (Shannon) entropy of a random variable X : A → X is defined as

H(X ) = −
∑
x∈X

pX (x) log2 pX (x) .

The entropy is a lower bound for the average number of bits required for repre-
senting the results of independent repetitions of the experiment associated with
X . Thus, in terms of guessing, the entropy H(X ) is a lower bound for the av-
erage number of binary questions that need to be asked to determine X ’s value
after the attack [5]. If Y : A → Y is another random variable, H(X|Y = y) de-
notes the entropy of X given Y = y, i.e., with respect to the distribution pX|Y=y.
The conditional entropy H(X|Y) of X given Y is defined as the expected value
of H(X|Y = y) over all y ∈ Y , namely,

H(X|Y) =
∑
y∈Y

pY(y)H(X|Y = y) .

Entropy and conditional entropy are related by the equation H(XY) = H(Y)+
H(X|Y), where XY is the random variable defined as XY(k) = (X (k),Y(k)).
The mutual information I(X ;Y) of X and Y is defined as the reduction of un-
certainty about X if one learns Y, i.e., I(X ;Y) = H(X )−H(X|Y). The relative
entropy or Kullback-Leibler distance D(pX ‖ qX ) between two probability distri-
butions pX and qX is given by D(pX ‖ qX ) =

∑
x∈X pX (x)pX (x)

qX (x) . The relative
entropy is always nonnegative, and it is zero if and only if pX = qX .

3 Information Leakage in Unknown-message
Attacks

In this section, we first propose a novel information measure that expresses the
information gain of an unknown-message attacker as a function of the number
of side-channel observations made. Subsequently, we derive an explicit repre-
sentation for the limit of this information gain for an unbounded number of
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observations. This representation provides a characterization of the secret in-
formation that the side-channel eventually leaks. Moreover, it leads to a simple
algorithm for computing this information.

3.1 Information Gain in n Observations

In the following, let pK : K → R and pM : M → R be probability dis-
tributions and let the random variables K = idK , M = idM model the
choice of keys and messages, respectively; we assume that pM and pK are
known to the attacker. For n ∈ N , let On : K × Mn → On be defined by
On(k,m1, . . . ,mn) = (f(k,m1), . . . , f(k, mn)), where pKMn(k, m1, . . . ,mn) =
pK(k)pM (m1) . . . pM (mn) is the probability distribution on K × Mn → On.
The variable On captures that k remains fixed over all invocations of f , while
the messages m1, . . . ,mn are chosen independently.

An unknown-message attacker making n side-channel observations On may
learn information about the value of K, i.e., about the secret key. This informa-
tion can be expressed as the reduction in uncertainty about the value of K, i.e.,
I(K;On) = H(K)−H(K|On). An alternative viewpoint is to use the attacker’s
remaining uncertainty about the key H(K|On) as a measure for quantifying the
system’s resistance against an attack. Focussing on H(K|On) has the advantage
of a precise interpretation in terms of guessing: it is a lower bound on the aver-
age number of binary questions that the attacker still needs to ask to determine
K’s value [5].

Definition 1. We define Λ(n) = H(K|On) as the resistance against unknown-
message attacks of n steps.

The function Λ is monotonically decreasing, i.e., more observations can only
reduce the attacker’s uncertainty about the key. If Λ(n) = H(K), the first n side-
channel observations contain no information about the key. If Λ(n) = 0, the key
is completely determined by n side-channel observations. Clearly, Λ(0) = H(K).

Since Λ(n) is defined as the expected value of H(K|On = o) over all o ∈
On, it expresses whether keys are, on the average, hard to determine after
n side-channel observations. It is straightforward to adapt the resistance to
accommodate worst-case guarantees [17] or to use alternative notions of entropy
that correspond to different kinds of brute-force guessing [5]. For example,
min{H(K|On = o) | o ∈ On} captures the uncertainty about the key after the
side-channel observation that contains the most information.

In Section 4, we will give an algorithm for computing the resistance Λ(n)
against unknown-message attacks. The time complexity of this algorithm is,
however, exponential in n, rendering computation for large values of n infea-
sible. To remedy this problem, we will now establish an explicit formula for
limn→∞ Λ(n), which will allow us to compute limits for the resistance without
being faced with the exponential increase in n.
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3.2 Bounds for Unlimited Observations

The core idea for computing the limit of Λ can be described as follows: for a large
number o1, . . . , on of side-channel observations and a fixed key k, the relative
frequency of each o ∈ O converges to the probability pO|K=k(o). Thus, making
an unbounded number of observations corresponds to learning the distribution
pO|K=k. We next give a formal account of this idea.1

Define k1 ≡ k2 if and only if pO|K=k1 = pO|K=k2 . Then ≡ constitutes an
equivalence relation on K, and K/≡ denotes the set of equivalence classes. The
random variable V : K → K/≡ defined by V(k) = [k]≡ maps every key to its ≡-
equivalence class. Knowledge of the value of V hence corresponds to knowledge
of the distribution pO|K=k associated with k. Intuitively, an unbounded number
of observations contains as much information about the key as its ≡-equivalence
class. This is formalized by the following theorem.

Theorem 1. Let K,V and On be defined as above. Then

lim
n→∞

H(K|On) = H(K|V) (1)

For space constraints, we only sketch the proof of Theorem 1. The full proof
can be found in Appendix A.

Proof sketch: For the proof of Theorem 1, one first shows that (1) is equivalent
to limn→∞H(V|On) = 0. One then expands

H(V|On) =
∑

B∈K/≡

pV(B)
∑

o∈On

pOn|V=B(o) log
pOn

(o)
pOn|V=B(o)pV(B)

, (2)

and splits the inner sum into the observations o = (o1, . . . , on) whose empirical
distribution has Kullback-Leibler distance ≤ ε from pOn|V=B , and those with
distance > ε. Here, ε is chosen such that every o is in the ε-neighborhood of
pOn|V=B′ for at most one B′. The probability that an observation o ∈ On

is close to the underlying probability distribution converges to 1, with a rate
that is exponential in n. With this, we show that the inner sum in (2) over
the o with empirical distribution close to pOn|V=B is bounded from above by
(1 − c12−nε) log (1 + 2−nεc2), for constants c1, c2. We also show that the inner
sum in (2) over the remaining o ∈ O is bounded from above by n(n+1)|O|2−nεc3,
for a constant c3. Both partial sums converge to 0 as n → ∞. The outer sum
in (2) is finite and independent of n, hence (2) also converges to 0.

1For probabilities, this is a consequence of the law of large numbers. We are not aware of
a corresponding result for the conditional entropy.
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4 Computing the Resistance against Unknown-
message Attacks

In this section, we show how Λ(n) and limn→∞ Λ(n) can be computed for given
implementations IF of cryptographic functions F . For this, we first need a
representation of the side-channel f = fIF

; second, we need to compute Λ from
this representation.

4.1 Estimating Time and Power Consumption

We focus on implementations in synchronous hardware as time and power con-
sumption are easy to determine in this setting. We use the hardware design
environment Gezel [27] for describing circuits and for building up value table
representations of f .

For timing analysis, f(k, m) is the number of clock ticks consumed by the
computation of F (k, m) and can be determined by the simulation environment.
Specifications in the Gezel language can be mapped into a synthesizeable sub-
set of Vhdl, an industrial-strength hardware description language. The map-
ping preserves the circuit’s timing behavior within the granularity of clock cy-
cles. In this way, the guarantees obtained by formal analysis translate to silicon
implementations.

For power analysis, we use the simple, technology-independent approxima-
tion provided by Gezel: we define f(k, m) as the number of bit transitions
during the computation of F (k,m). This number serves as an estimate for
the circuit’s power consumption and can be computed by the simulation en-
vironment. We next show how Λ(n) can be computed from the value table
representation of f .

4.2 Computing Λ(n)

For computing Λ(n) we first show how Λ(n) = H(K|On) can be decomposed into
a sum of terms of the form pO|K=k(o), with k ∈ K and o ∈ O. Subsequently, we
sketch how this decomposition can be used to derive a simple implementation
for computing Λ(n).

We have the following equalities

H(K|On) = −
∑

o∈On

pOn(o)
∑
k∈K

pK|On=o(k) log2 pK|On=o(k) (3)

pK|On=o(k) =
pOn|K=k(o)pK(k)pOn(o)

pOn
(o)

(4)

pOn(o) =
∑
k∈K

pOn|K=k(o)pK(k) (5)

pOn|K=k(o1, . . . , on) =
n∏

i=1

pO|K=k(oi) , (6)
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where (4) is Bayes’ formula and (6) holds because, for a fixed key, the observa-
tions are independent and identically distributed. Furthermore, for uniformly
distributed messages, pO|K=k(o) = |{m | f(k,m) = o)}|/|M |, which can be
computed using the value table representation of f given by Gezel.

The decomposition in (3)-(6) of H(K|On) into a combination of terms of
the form pO|K=k(o) and pK(k) for k ∈ K and o ∈ O can be expressed by list
comprehensions. This is illustrated by the following code snippet in Haskell [3].
Here, pO computes pO(o) according to (5) and (6) from a list of observations
obs, a list representation keys of K, and an array p that stores the values
pO|K=k(o):

pO obs = sum [ product [ p!(o,k) | o <- obs ]| k <- keys ]
/ length keys

The computation of Λ(n) can be encoded in a similarly concise way. We have
implemented this in Haskell and use this implementation to perform experiments
in Section 5.

4.3 Computing limn→∞ Λ(n)

From Theorem 1 it follows that limn→∞ = H(K|V), where k1 ≡ k2 if and only
if pO|K=k1 = pO|K=k2 , and V(k) = [k]≡. From Proposition 2 of [17] it follows
that H(K|V) = 1

|K|
∑

B∈K/≡ |B| log |B| for uniformly distributed keys. Hence
for computing H(K|V) it suffices to determine the sizes of the ≡-equivalence
classes.

The equivalence classes of an equivalence relation form a partition of the
relation’s domain. We compute the partition of K corresponding to ≡ by refine-
ment. For this, consider the equivalence relations ≡o defined by k1 ≡o k2 if and
only if pO|K=k2(o) = pO|K=k2(o). Clearly, k1 ≡ k2 if and only if ∀o ∈ O.k1 ≡o k2.
For partitioning a set B ⊆ K with respect to ≡o, group together all k ∈ B with
the same value of pO|K=k(o). For refining a given partition P with respect to
≡o, partition all B ∈ P according to ≡o. For computing the partition corre-
sponding to ≡, successively refine the partition {K} with respect to all o ∈ O.
The following Haskell program implements this idea:

partKeys keys obs = foldr refineBy [keys] obs
where refineBy o part = concat (map (splitBlockByObs o) part)

Here, the refinement of a block by an observation is accomplished by the function
splitBlockByObs. The function refineBy applies this procedure to every block
in a given partition. The function partKeys refines the partition [keys] by all
observations in obs.

Finally, we can compute H(K|V) = 1
|K|

∑
B∈K/≡ |B| log |B| from the parti-

tion part returned by partKeys:

entropy part = sum [ b * logBase 2 b | x <- bs ] / sum bs
where bs = map length part

We use this simple prototype implementation in our experiments below.
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n = 0 n = 1 n = 2 n = 3 n →∞
Λ(n) 8 7.801 7.605 7.41 0

Figure 1: Resistance of an AES SBox to unknown-message power attacks

5 Experimental Results

We now report on case studies where we analyze implementations of crypto-
graphic algorithms with respect to their resistance against timing and power
attacks.

We compute the resistance against unknown-message power attacks of an
AES SBox with key addition. We also compute the resistance against unknown-
message timing attacks of a circuit for exponentiation in finite fields, which
is relevant, for example, in the generalized ElGamal encryption scheme [20].
Furthermore, we show how this result can be used for evaluating state-of-the-
art countermeasures against timing attacks.

5.1 Power Analysis of an AES SBox

We have analyzed the power consumption of a Gezel implementation of the
AES SBox with key addition from [28] (without any countermeasures against
power attacks). The circuit computes F : K × M → D with M = K = D =
{0, 1}8, where F (k, m) = SBox(m)⊕ k.

We assume that the circuit is in a known initial state before invocation of
F . In this way, the number of bit transitions is a function of the inputs to the
circuit, which is the side-channel f that we analyze.

Results of the Analysis The results of our analysis are depicted in Figure
1. They show that the attacker learns ≈ 0.2 bits of secret information in each of
the first three observations and that, in the limit, the entire key information is
leaked. We conclude that the circuit is vulnerable to unknown-message power
attacks.

5.2 Timing Analysis of a Finite-Field Exponentiation Al-
gorithm

We have analyzed a Gezel implementation of the finite-field exponentiation
algorithm from [12]. It takes two arguments m and x and computes mx in F2w .
The exponentiation is performed by square-and-multiply, where each multipli-
cation corresponds to a multiplication of polynomials. The entire algorithm
consists of three nested loops.

Computing Λ(n) with the implementation presented in Section 4 is expen-
sive and does not scale to large values of n and operands of large bit-widths.
To overcome this problem, we use the following approximation technique: we
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Figure 2: Resistance of a finite-field exponentiation algorithm to unknown-
message timing attacks

parameterize each algorithm by the bit-width w of its operands. Our working
assumption is that regularity in the values of Λw for w ∈ {2, . . . , wmax} reflects
the structural similarity of the algorithms. This permits the extrapolation to
values of w beyond wmax. To make this explicit, we will write Λw to denote
that Λ is computed on w-bit operands.

Results of the Analysis The results of our analysis are given in Figure 2.
The bit-width w of the operands is depicted along the horizontal axis and the
entropy is depicted along the vertical axis. The different curves represent Λw(n)
for n ∈ {0, 1, 2, 3,∞}.

We can draw the following conclusion from our data: the first timing obser-
vation reveals almost half of the secret information about the key. Subsequent
observations reduce the uncertainty at a significantly slower rate. In the long
run, however, the entire key information is leaked. Hence the circuit is vulner-
able to unknown-message timing attacks.

5.3 Implications for the Security of Message-blinding

Timing attacks typically rely on the fact that the attacker can choose the input
m ∈ M and can measure the corresponding running time. Message-blinding,
the state-of-the art countermeasure against timing attacks , renders this type of
attack impractical by decoupling the algorithm’s running time from m. Message-
blinding has been proposed for exponentiation modulo n [15], but it can directly
be applied to exponentiation in the field F2w . We illustrate message-blinding
for the common case of RSA.

Example 3. Consider an RSA decryption x = mk mod n, where m is chosen
by the attacker, x the plaintext, n the modulus and k the secret key. Message-
blinding decouples the running time of the exponentiation from m: In the blind-
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Figure 3: Resistance of a finite-field exponentiation algorithm to chosen-message
attacks

ing phase one computes m·re mod n, where r is random and relatively prime to
n, and e is the public key. The result of the decryption is (m·re)k = x·r mod n,
which yields x after unblinding, i.e., after multiplication with r−1 mod n.

The belief that message-blinding is secure is based on the assumption that
the blinding and unblinding steps do not introduce new side-channels, and
that m · re is sufficiently random. Analyzing the resistance of an exponen-
tiation algorithm with respect to unknown-message attackers and uniformly
distributed messages thus corresponds to analyzing the implementation with
idealized message-blinding and with respect to chosen-message attacker.

This correspondence enables us to use Λ for evaluating the quality of
message-blinding as a countermeasure for timing attacks against the finite-field
exponentiation circuit from Section 5.2. Figure 3 is based on data from [17]
and depicts the resistance of the same exponentiation algorithm with respect to
chosen-message attacks. Here, Φw(n) denotes the remaining uncertainty after n
steps of a chosen-message attack. The value Λw(n)−Φw(n), i.e., the difference
between the curves in Figures 2 and 3, gives a formal account of what is gained
by applying message-blinding as a countermeasure, namely that the information
is leaked at a significantly slower rate. Figure 2 shows that limn→∞ Λ(n) = 0.
This implies that, even with message-blinding applied, the timing side-channel
eventually leaks the entire key information. To our knowledge, this is the first
formal analysis of a countermeasure against timing attacks.

6 A Comparison of Side-Channel Attackers

In this section, we formally relate unknown-message, known-message and
chosen-message attackers with respect to the information that they can extract
from a given side-channel f : K ×M → O. The main purpose of this compari-
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son is a unified presentation that simplifies the task of picking the appropriate
measure for a given attack scenario.

The result of the comparison is as expected: chosen-message attackers are
stronger than known-message attackers, which are stronger than unknown-
message attackers. All inclusions are shown to be strict. Before we formally
state and prove this result, we begin with definitions of the resistance against
known-message and chosen-message attacks.

Known-message attacks: We define the resistance against known-message
attacks along the lines of Definition 1, where we express that the attacker knows
the messages by conditioning the entropy if K on Mn. Here, Mn models the n
independent choices of messages from M .

Definition 2. We define ∆(n) = H(K|OnMn) as the resistance against known-
message attacks of n steps.

Note that ∆ is an average-case measure, as H(K|OnMn) is the expected
remaining uncertainty about K if the values of On and Mn are known. It can
be adapted to accommodate worst-case guarantees by replacing the expected
value by the minimal value over all n-tuples of messages or observations.

Chosen-message attacks: A measure for the resistance against chosen-
message attacks has been defined in [17]. We next give a short account of
this definition.

A chosen-message attack is formalized as a tree whose nodes are labeled with
subsets of K. In this tree, an attack step is represented by a node v together
with its children. The label A of v is the set of keys that could have led to the
attacker’s previous observations. The labels of the children of v form a partition
of A. We require that this partition is of the form {A∩f−1

m (o) | o ∈ O} for some
m ∈ M , where fm(k) = f(k,m). This corresponds to the attacker’s choice of a
query m. By observing o, the attacker can narrow down the set of possible keys
from A to A′f−1(o) ∩ A. The child of v with label A′ is the starting point for
subsequent attack steps.

Definition 3 ([17]). An attack strategy against f is a triple (T, r, L), where
T = (V,E) is a tree, r ∈ V is the root, and L : V → 2K is a node labeling with
the following properties:

1. L(r) = K, and

2. for every v ∈ V , there is an m ∈ M with {L(v) ∩ f−1
m (o) | o ∈ O} =

{L(w) | (v, w) ∈ E}.

An attack strategy is of length l if T has height l.

A simple consequence of requirements 1 and 2 is that the labels of the leaves
of an attack strategy a = (T, r, L) form a partition Pa = {L(v) | v is a leaf of T}
(the induced partition) of K. We denote by Va the random variable that maps
k ∈ K to its enclosing block in Pa.
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Definition 4 ([17]). We define Φ(n) = min{H(K|Va) | a is of length n} as the
resistance against chosen-message attacks of length n.

We are now ready to give a formal comparison of the three kinds of attackers.

A Hierarchy of Side-Channel Attacks

Theorem 2. Let f : K ×M → O be a side-channel. Then, for all n ∈ N,

Φ(n) ≤ ∆(n) ≤ Λ(n) .

Proof. Conditioning on Mn does not increase the entropy, hence we have
∆(n) = H(K|OnMn) ≤ H(K|On) = Λ(n) for all n ∈ N. For showing
Φ(n) ≤ ∆(n) let (m1, . . . ,mn) = argminm∈Mn H(K|On(Mn = m)) and
observe that H(K|On(Mn = m)) ≤ H(K|OnMn). Define a as the at-
tack strategy where, for each node of distance i from the root, the mes-
sage mi is chosen as a query. A simple calculation shows that H(K|Va) =∑

B∈P p(B)H(K|B) = H(K|On(Mn = m)) holds, where P is the partition of
K given by

⋂n
i=1{f−1

mi
(o) | o ∈ O}. Here, ∩ denotes the intersection of par-

titions, which is defined by Q ∩ Q′ = {B ∩ B′ | B ∈ Q,B′ ∈ Q′}. Then
Φ(n) ≤ H(K|Va) = H(K|On(Mn = m)) ≤ H(K|OnMn) = ∆(n), which con-
cludes this proof.

The inequalities in Theorem 2 are strict for some side-channels f , as the
following example shows.

Example 4. Let K = {1, 2, 3, 4}, M = {m1,m2}, O = {1, 2}, and f : K×M →
O such that f−1

m1
(1) = {1, 2} and f−1

m2
(1) = {2, 3}. With a uniform distribution

on K, Φ(1) = 1 and Φ(n) = 0, for n > 1. According to Theorem 1, Λ(n) is
bounded from below by H(K|V). With a uniform distribution on M , we have
pO|K=1 = pO|K=3, hence Λ(n) ≥ H(K|V) = 1

2H(K|V = [1]≡) = 1
2 . We have

limn→∞∆(n) = 0, but ∆ will not reach its limit for a finite n as, e.g, Mn =
(m1,m1, . . . ,m1) is a possible choice of messages. Hence, Φ(n) < ∆(n) < Λ(n)
for the given f and large enough n.

We conclude that chosen-message attackers, known-message attackers, and
unknown message attackers form a strict hierarchy in terms of the information
that they can extract from a given side-channel.

7 Conclusions

We have presented a novel information measure to quantify the secret infor-
mation that is revealed to unknown-message side-channel attackers. We have
applied it to analyze hardware implementations with respect to their vulnerabil-
ity against power and timing attacks. In particular, we have used it to perform
the first formal analysis of message-blinding as a countermeasure against timing
attacks. Finally, we have given a formal account of the intuition that more com-
prehensive attackers can extract more information from a given side-channel.
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As future work, we plan to investigate whether techniques for entropy esti-
mation [1, 2] can be used to approximate the value of Λ for implementations
with operands of larger bit-widths. Furthermore, we plan to extend our work
to capture Markov-chain models of side-channels. This will enable us to give
bounds for the side-channel leakage in power attacks without the assumption
that the system’s initial state is known.

Acknowledgements We thank Patrick Schaumont for sharing his AES SBox
implementation.
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A Proof of Theorem 1

We first state two technical lemmas that we will need in the proof.

Lemma 1. Let k1, k2 ∈ K and n ∈ N. Then

1. H(On|K) = H(On|V),

2. limn→∞H(K|On) = H(K|V) iff limn→∞H(V|On) = 0.

Proof. For proving statement 1., observe that pO|K=k = pO|V=[k] and, conse-
quently, H(On|K = k) = H(On|V = [k]). Then

H(On|K) =
∑
k∈K

pK(k)H(On|K = k) =
∑

B∈K/≡

∑
k∈B

pK(k)H(On|K = k)

=
∑
B∈K

pV(B)H(On|V = B) = H(O|V) .

For proving statement 2., observe that H(KV) = H(V), as V is determined by K.
Hence H(K|On)−H(K|V) = (H(On|K)+H(K)−H(On))−(H(KV)−H(V)) =
H(On|K)+H(V)−H(On), as H(KV) = H(V). With the first part of Lemma 1,
it follows that H(On|K)+H(V) = H(On|V)+H(V) = H(OnV). As H(OnV)−
H(On) = H(V|On), Assertion (1) is equivalent to limn→∞H(V|On) = 0

Let X1, . . . ,Xn be independent and identically distributed random variables
with distribution pX . The type tx of a sequence x = (x1, . . . , xn) ∈ Xn is
the relative frequency of occurrences of each xi. We define Uε(pX ) as the
set of sequences with types of Kullback-Leibler distance ≤ ε from pX , i.e.,
Uε(pX ) = {x ∈ Xn | D(tx ‖ pX ) ≤ ε}. Let U c

ε (pX ) denote the set comple-
ment of Uε(pX ), i.e., U c

ε (pX ) = Xn \ Uε(pXn). The following lemma from [11]
shows that the probability of an observation (a set of observations, respectively)
decreases exponentially with its Kullback-Leibler distance from the underlying
distribution.
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Lemma 2 ([11]). Let X1, . . . ,Xn be independent and identically distributed ran-
dom variables with distribution pX and finite range X. Then

1. pXn
(x) = 2−n(H(tx)+D(tx‖pX ))

2. pXn
(U c

ε (pX )) ≤ (n + 1)|X|2−nε

See [11] (pp. 349 and 356) for a proof of Lemma 2. We proceed with the proof
of Theorem 1.

Proof of Theorem 1. According to Lemma 1, it suffices to show that
limn→∞H(V|On) = 0.

H(V |On) =
∑

o∈On

pOn(o) H(V|On = o) (7)

=
∑

o∈On

pOn
(o)

∑
B∈K/≡

pV|On=o(B) log (pV|On=o(B))−1 (8)

=
∑

B∈K/≡

pV(B)
∑

o∈On

pOn|V=B(o) log
pOn

(o)
pOn|V=B(o)pV(B)

(9)

To simplify notation, we will from now on abbreviate pOn|V=B by pB . Let ε > 0
such that U2ε(pB) ∩ U2ε(pB′) = ∅ for all B,B′ ∈ K/≡ with B 6= B′. Such an
ε exists, although the Kullback-Leibler distance is not a metric: the existence
of such a ε follows from D(pB ‖ pB′) ≥ 1

2 ln 2‖pB − pB′‖21, where ‖ · ‖1 is the
L1-norm (see [11], p 370), and because D(pB ‖ p′B) = 0 only if B = B′. We
next group the inner sum in (9) according to On = U c

ε (pB) ] Uε(pB) and show
that both parts converge to 0 as n →∞. As |K/≡| is finite and independent of
n, the entire term in (9) also converges to 0 as n →∞. We perform a case split
with respect to containment in Uε(pB)
o ∈ Uε(pB): From part 1 of Lemma 2 and the definition of ε it follows that

pB′(o)
pB(o)

=
2−n(H(to)+D(to‖pB′ ))

2−n(H(to)+D(to‖pB))
(10)

= 2−n(D(to‖pB′ )−D(to‖pB)) (11)

≤ 2−nε (12)
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for o ∈ Uε(pB) and B′ 6= B. Hence

0 ≤
∑

o∈Uε(pB)

pB(o) log
pOn

(o)
pB(o)pV(B)

(13)

≤
∑

o∈Uε(pB)

pB(o) log
∑

B′∈K/≡

pB′(o)pV(B′)
pB(o)pV(B)

(14)

≤
∑

o∈Uε(pB)

pB(o) log
∑

B′∈K/≡

2−nε pV(B′)
pV(B)

(15)

≤ (1− (n + 1)|O|2−nε) log 1 + 2−nε
∑

B′ 6=B

pV(B′)
pV(B)

, (16)

where the last two inequalities follow from (12) and Part 2 of Lemma 2, respec-
tively. Finally, (16) and hence (13) converge to 1 log 1 = 0 as n →∞.

o ∈ Uc
ε (pB): Let δ = min({pB(o)|o ∈ O} \ {0}). Observe that, for o ∈ On,

either pB(o) = 0 or pB(o) ≥ δn. W.l.o.g. assume pB(o) 6= 0 in the following.
Then

0 ≤
∑

o∈Uc
ε (pB)

pB(o) log
pOn(o)

pB(o)pV(B)
(17)

≤
∑

o∈Uc
ε (pB)

pB(o) log
1

δnpV(B)
(18)

≤
∑

o∈Uc
ε (pB)

pB(o)(−n log δ)
1

pV (B) (19)

≤ (n + 1)|O|2−nε(−n log δ)
1

pV (B) (20)

where the last inequality follows from Lemma 2. Finally (20) and hence (17)
converge to 0 as n →∞, which concludes our proof.
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