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Abstract

In an oblivious transfer (OT) protocol, a Sender with messages M1, . . . ,MN and a Receiver
with indices σ1, . . . , σk ∈ [1, N ] interact in such a way that at the end the Receiver obtains
Mσ1 , . . . ,Mσk

without learning anything about the other messages, and the Sender does not
learn anything about σ1, . . . , σk. In an adaptive protocol, the Receiver may obtain Mσi−1 before
deciding on σi. Efficient adaptive OT protocols are interesting both as a building block for secure
multiparty computation and for enabling oblivious searches on medical and patent databases.

Historically, adaptive OT protocols were analyzed with respect to a “half-simulation” defi-
nition which Naor and Pinkas showed to be flawed. In 2007, Camenisch, Neven, and shelat, and
subsequent other works, demonstrated efficient adaptive protocols in the full-simulation model.
These protocols, however, all use standard rewinding techniques in their proofs of security and
thus are not universally composable. Recently, Peikert, Vaikuntanathan and Waters presented
universally composable (UC) non-adaptive OT protocols (for the 1-out-of-2 variant). However,
it is not clear how to preserve UC security while extending these protocols to the adaptive k-out-
of-N setting. Further, any such attempt would seem to require O(N) computation per transfer
for a database of size N . In this work, we present an efficient and UC-secure adaptive k-out-of-N
OT protocol, where after an initial commitment to the database, the cost of each transfer is
constant. Our construction is secure under bilinear assumptions in the standard model.

1 Introduction

Oblivious transfer (OT) was introduced by Rabin [29] and generalized by Even, Goldreich and
Lempel [19] and Brassard, Crépeau and Robert [9]. It is a two-party protocol, where a Sender
with messages M1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact in such a way
that at the end the Receiver obtains Mσ1 , . . . ,Mσk

without learning anything about the other
messages and the Sender does not learn anything about σ1, . . . , σk. Naor and Pinkas were the first
to consider an adaptive setting, OTN

k×1, where the Receiver may obtain Mσi−1 before deciding on
σi [26]. Efficient OT schemes are very important. OT4

1 is a key building block for secure multi-party
computation [31, 20, 24]. OTN

k×1 is a useful and interesting tool in its own right, enabling oblivious
databases for applications such as medical record storage and patent searches [27].

Unfortunately, developing efficient adaptive protocols appears to be a more difficult and in-
volved process than that of developing efficient non-adaptive protocols. Indeed, even finding the
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right security definition has proven challenging. Historically, many efficient OT constructions were
analyzed under a “half-simulation” definition, where the Sender and Receiver’s security are de-
scribed by a combination of simulation and game-based definitions. Naor and Pinkas [26] showed
that schemes analyzed under this definition may admit practical attacks on the Receiver’s privacy.
To address this, Camenisch, Neven and shelat [10] and subsequently Green and Hohenberger [21]
proposed efficient and fully-simulatable OTN

k×1 protocols under bilinear assumptions. Each of these
protocols achieve the optimal total communications cost of O(N + k) with reasonable constants.
Unfortunately, the security proofs for these protocols employ adversarial rewinding, and thus do
not imply security under concurrent execution.

Recently, Lindell [25] showed how to achieve efficient and fully-simulatable non-adaptive OT2
1

under the DDH, Nth residuosity and quadratic residuosity assumptions, as well as the assumption
that homomorphic encryption exists. Simultaneously, Peikert, Vaikuntanathan and Waters [28]
proposed several non-adaptive, but universally composable OT2

1 protocols based on DDH, quadratic
residuosity and lattice-based assumptions. While both of these valuable works add to our collective
knowledge for non-adaptive OT, they do not shed much light on how to achieve efficient adaptive
protocols. Indeed, Lindell points out that the adaptive case is considerably harder [25].

The general framework used in [25, 28] (where the Receiver chooses the encryption keys) seems
inherently at odds with allowing efficient adaptive schemes. Each transfer requires O(N) work for
the Sender, whereas this can be constant in our protocols. Even more alarming, it isn’t clear how
(without killing the efficiency and perhaps the UC security of [28]) a Sender could convince the
Receiver that he is not changing the database values with each request. This problem of ensuring a
consistent database gets even worse when multiple Receivers are considered, as we do in Section 5.

Our Results. In this work, we take a different approach to constructing OT protocols, which
allows them to be simultaneously efficient, adaptive, universally composable and globally consistent.
We summarize what is known about OTN

k×1 protocols in Figure 1. Let us describe some highlights.

1. Universal Composability: The Universal Composability framework [13] allows for the design
of concurrent and composable cryptographic protocols, which are important properties in
any practical deployment of an oblivious database. Canetti and Fischlin showed that OT
cannot be UC-realized without additional trusted setup assumptions such as the existence
of a Common Reference String (CRS) [15]. This is formally referred to as the FCRS-hybrid
model, and is assumed by the constructions of Peikert et al. [28] as well as those in this work.

2. Efficiency: Our protocol is practical. The initialization phase requires O(N) communication
cost, and each transfer phase requires only constant cost, for reasonable constants. Our CRS
can be only 15 group elements, and can be sampled from an arbitrary common random string
(see Sections 4.1 and 4.2 for more details.) In contrast, simply repeating a OTN

1 scheme (such
as [28]) k times would require O(N) communication cost for each transfer plus the additional
work required for the Sender to convince the Receiver that he isn’t changing the database
values dynamically.

Moreover, the message space of our protocol is a group element (so at least 160 bits), whereas
the quadratic residuosity and lattice-based schemes of [28] have one-bit message spaces. We
note, however, that the DDH-based scheme of [28] allows for longer messages.

3. Global Consistency: In our constructions, the sender publishes some form of commitment to
the database at the beginning of the protocol. When joint state is allowed (see Sections 2
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Protocol Rounds Communication Assumption

Half Simulation:
NP99 [26] `k log N + 1/2 – Sum Consistent Synthesizers + `-round OT2

1
CT05 [18] O(k) + 1/2 O(N) Decisional DH (in ROM)

Full Simulation:
CNS07 [10] 4k + 1/2 O(N) y-Power Decisional DH + q-Strong DH
CNS07 [10] O(k) + 1/2 O(N) Unique blind signature (in ROM)
GH07 [21] k + 1/2 O(N) Decisional Bilinear DH (in ROM)

UC (FCRS-hybrid):
This work (§4) k + 1/2 O(N) q-Strong Decision Linear + Uniform q-Hidden Strong DH

Figure 1: Survey of efficient, adaptive k-out-of-N Oblivious Transfer protocols.

and 5), then multiple receivers, all of whom start with the same commitment, can be sure that
whenever their request on index i succeeds, they receive the same message Mi as any other
receiver. In other words, globally consistency ensures that a sender cannot return patent Mi

to Alice and a different patent M ′
i 6= Mi to Bob.

4. Model and Assumptions: Our construction does not require random oracles and can be imple-
mented under Uniform q-Hidden Strong Diffie-Hellman [8, 3] and q-Strong Decision Linear.

Intuition behind the Construction. Oblivious Transfer protocols can be roughly divided into
two categories. Let’s restrict our attention to non-adaptive OTN

1 for the moment. In approach (1),
which is used by [29, 19, 25, 28], the Receiver transmits a collection of specially-formed encryption
keys to the Sender, who encrypts each message and returns the N ciphertexts to the Receiver. The
protocol is secure provided that the encryption keys are formed such that a Receiver is able to
decrypt at most one of the resulting ciphertexts. In approach (2), which is used by [10, 21] and this
work, the Sender encrypts the message collection under keys of her own choosing, and— in some
interactive protocol with the Receiver— helps to decrypt one ciphertext.

While both approaches can be used to implement adaptive OT, the first approach requires that
the Sender generate a new set of ciphertexts at each transfer stage (for each receiver), requiring at
least O(N · k) cost. Even worse, the Sender might be able to maliciously change the database from
one transfer stage to another and to present different versions of the database to different receivers.

The latter approach is better suited for the adaptive case. A single database can be committed
to and then each decryption can be performed in constant computational and communication cost,
for a total O(N + k) cost. This approach is taken by the fully-simulatable protocols of [10, 21],
which both use rewinding in their simulations to (1) simulate proofs and (2) extract knowledge. Our
protocol in Section 4 achieves composability by using the proof techniques of Groth and Sahai [23].
This is non-trivial for three reasons. First, the Groth-Sahai proofs have not yet been shown to be
either simulation-sound or UC in general, and thus we must be careful how we use them. Second, the
Groth-Sahai techniques provide broad support for non-interactive, witness indistinguishable proofs
of algebraic assertions in bilinear groups, but only provide non-interactive, zero-knowledge proofs
for a restricted class of algebraic assertions. This requires us to design an efficient OT protocol
from a more restricted set of NI tools. Third, all known security proofs of adaptive OT protocols
require some form of extraction (e.g., extracting the chosen index from the adversarial Receiver
or extracting the secret encryption keys from the adversarial Sender); unfortunately, Groth-Sahai
proofs of knowledge are f -extractable (but not fully extractable), where only some one-way function
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of the witness, f(w), can be extracted and not the witness w itself.1 This complicates matters.
Thus, while these new proof techniques are useful and powerful, they cannot simply be plugged
into existing adaptive OT protocols. Indeed, our construction starts from scratch.

2 Definitions

Notation. By OTN
k (resp., OTN

k×1), we denote a non-adaptive (resp., adaptive) k-out-of-N oblivi-

ous transfer protocol. Let
c
≈ denote computational indistinguishability, as defined in [13].

Adaptive k-out-of-N Oblivious Transfer. OTN
k×1 protocols consist of two phases: Initialization

and Transfer. In the Initialization phase, the Sender commits to the input database M1, . . . ,MN .
Subsequently, the Sender and Receiver engage in up to k Transfers. During the ith Transfer, the
Receiver adaptively selects a message index σi ∈ [1, N ] and engages in a protocol such that it
obtains Mσi (or ⊥ if the protocol fails) and nothing else, while the Sender learns nothing about
σi. The simulation-based nature of the security definition we use ensures that protocol failures
must occur independently of the message index σi chosen by the Receiver (capturing the strong
selective-failure blindness property [10].)

Universally Composable Security. Here, as in [28], we work in the standard UC framework with
static corruptions, where all parties are modeled as p.p.t. interactive Turing machines. Security of
protocols is defined by comparing the protocol execution to an ideal process for carrying out the
desired task. More formally, there is an environment Z whose task is to distinguish between two
worlds: ideal and real. In the ideal world, “dummy parties” (some of whom may be corrupted by
the ideal adversary S) interact with an ideal functionality F . In the real world, parties (some of
whom may be corrupted by the real world adversary A) interact with each other according to some
protocol π. We refer to Canetti [13, 14] for a fuller description, as well as a definition of the ideal
world ensemble IDEALF ,S,Z and the real world ensemble EXECπ,A,Z . We use the established notion
of a protocol π securely realizing an ideal functionality F as:

Definition 2.1 Let F be a functionality. A protocol π is said to UC-realize F if for any adversary
A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c
≈ EXECπ,A,Z .

Canetti and Fischlin showed that OT cannot be UC-realized without some form of trusted setup
assumption [15]. Thus, as in [16, 28], we assume the existence of an honestly-generated Common
Reference String (crs), and are thus secure in the so-called FCRS-hybrid model. The functionality
is parameterized by a distribution D and a set P of recipients. For our purposes, P will include the
OT Sender and Receiver only. Here the environment Z learns about the reference string value from
the adversary, and thus the simulator can set up a reference string with “trapdoor information” or
even with a slightly different distribution.

Figure 2 describes the FCRS functionality and Figure 3 describes the FN×1
OT functionality.

We briefly mention that there are techniques for designing and analyzing multiple OT protocols
which use a single reference string; i.e., a multi-session extension. One might worry that if multiple

1For example, if the witness is a value x, the extractor might be able to recover the value gx.
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Functionality FD,P
CRS

Upon receiving input (sid, crs) from party P , first verify that p ∈ P; else ignore the input. If there
is no value r recorded, then choose and record r ← D. Finally send output (sid, crs, r) to P .

Figure 2: Ideal functionality for the common reference string [14].

Functionality FN×1
OT

FN×1
OT proceeds as follows, parameterized with integers N, ` and running with an oblivious transfer

Sender S, a receiver R and an adversary S.

• Upon receiving a message (sid, sender,m1, . . . ,mN ) from S, where each mi ∈ {0, 1}`, store
(m1, . . . ,mN ).

• Upon receiving a message (sid, receiver, σ) from R, check if a (sid, sender, . . . ) message was
previously received. If no such message was received, send nothing to R. Otherwise, send
(sid, request) to S and receive the tuple (sid, b ∈ {0, 1}) in response. Pass (sid, b) to the
adversary, and: If b = 0, send (sid,⊥) to R. If b = 1, send (sid,mσ) to R.

Figure 3: Functionality for adaptive Oblivious Transfer, based on the OT2
1 definition from [16].

protocols now share some joint state, then they can no longer be analyzed separately and then
composed later. Fortunately, this is addressed by universal composition with joint state (JUC) [17]
and could be done in our case. A second issue with sharing the reference string is that we make no
guarantee about the security of protocols which use the same reference string in ways other than
those specified by the OT protocol, and here we explicitly assume that the crs is only available to
certain parties. This is at odds with the notion that the crs is a “global” entity, however, there are
strong impossibility results for UC-realizing OT in a setting where the crs is available to everyone
(including the environment) and can no longer be crafted by the simulator. There are models, such
as the augmented CRS functionality FACRS [12], which overcome these impossibility results, but
we do not explore these advanced UC issues with respect to our OT construction in this work.

3 Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the parameters for
a bilinear mapping as γ = (p, G, GT , e, g ∈ G), where g generates G, the groups G, GT each have
prime order p, and e : G×G→ GT . We consider the following assumptions made in these groups.

Decision Linear Assumption (DLIN) [5]: Let BMsetup(1κ) → (p, G, GT , e, g) = γ. For all
p.p.t. adversaries Adv, the following probability is strictly less than 1/2 + 1/poly(κ):

Pr[f, h
$← G; a, b

$← Zp; z0 ← ha+b; z1
$← G; d← {0, 1} : Adv(γ, g, f, h, ga, f b, zd) = d].

Uniform q-Hidden Strong Diffie-Hellman (q-HSDH) [8, 3]: Let BMsetup(1κ)→ (p, G, GT , e, g)
= γ. For all p.p.t. adversaries Adv, the following probability is strictly less than 1/poly(κ):

Pr[h $← G;x, c1, . . . , cq
$← Zp; (A,B, C)← Adv(γ, g, gx, h, (g1/(x+c1), gc1 , hc1) ∈ G3, . . . ,

(g1/(x+cq), gcq , hcq) ∈ G3) : (A,B, C) = (g1/(x+c), gc, hc) ∧ c /∈ {c1, . . . , cq}].
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Boyen and Waters did not specify the distribution for sampling the ci values in q-HSDH [8].
Following Belenkiy et al. [3], we explicitly require that they be sampled uniformly from Zp.

q-Strong Decision Linear (q-SDLIN): Let BMsetup(1κ) → (p, G, GT , e, g) = γ. Let u, v, h
be random elements in G and x1, x2, ri, si be random values in Zp, then given the values
(γ, u, v, h, ux1 , vx2 , {uri , vsi , u1/(x1+ri), v1/(x2+si)}i∈[1,q]), no p.p.t. adversary Adv can distinguish
{hri+si}i∈[1,q] from q random values in G with non-negligible advantage.

Note that the above assumption implies Decision Linear. The OT scheme of Camenisch et al. [10]
is the only prior efficient, adaptive OT scheme shown to be fully-simulatable in the standard model.
That construction also required both q-based decisional and computational assumptions in its proof
of security. Thus, it would be very interesting to know if Decision Linear implies q-Strong Decision
Linear for q > 1. Further, Decision Linear implies q-Strong Decision Linear for q = 1, but it is
unknown if this implication holds for q > 1.

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [23] permits a variety of efficient non-interactive proofs of the
satisfiability of one or more pairing product equations. For variables Xi ∈ G and constants
Ai ∈ G, ai,j ∈ Zp, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Xi)
m∏

i=1

m∏
j=1

e(Xi,Xj)ai,j = tT

Groth and Sahai show how to construct Witness Indistinguishable proof-of-knowledge of a satisfying
witness to such an equation, in groups where the DLIN assumption holds. The proof system they
describe can be composed over multiple equations involving the same variables. Additionally,
they point out that in some special cases, their techniques can be strengthened to provide Zero
Knowledge. Unlike the interactive proofs used in [10, 21], the Groth-Sahai proofs do not use
adversarial rewinding in their security analysis. Therefore, we are able to use them in our protocol.

Groth-Sahai Commitments [23]. At the core of the Groth-Sahai system is a homomorphic
commitment scheme to elements of G.2 The public parameters for the commitment scheme can
be generated in one of two ways. Method (1) leads to a perfectly-binding commitment scheme,
while method (2) leads to a perfectly-hiding scheme. Note that the two parameter distributions are
computationally indistinguishable under the DLIN assumption.

When the GS commitment parameters are configured according to method (1), they are equiv-
alent to a BBS encryption [5] of an element of G, and can be decrypted by a party that knows a
trapdoor to the commitment parameters. When commitments are configured according to method
(2), a “simulation” trapdoor can be used on random commitments to open them to any value gx

for known x. We refer the reader to Appendix C for details.

The Proof System. We now describe the proof system at a high level, adopting some notation
and exposition from [3]. For this description we will conceal many of the underlying details, though
the reader can refer to [23, 3] for a more detailed explanation. The proof system contains the
following (possibly probabilistic) polynomial time algorithms:

2As noted in [23, 3] commitment scheme can also be used to commit to elements of Zp, though we use this only
in the context of simulating proofs.
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GSSetup(γ). On input γ ∈ BMsetup(1κ), outputs a string GS containing parameters for the proof
system. This string embeds binding parameters for the G-S commitment scheme.

GSProve (GS, S, w). On input a statement S describing the equation, and a satisfying witness
W ∈ 〈{X}1...M 〉, outputs a proof π. To formulate this proof, a commitment C̃i is generated
for each element in W . The proof embeds openings to the commitments in such a way that a
prover can ascertain that S is verifiably satisfied, and yet the elements of W remain hidden.

GSVerify(GS, π). Verifies the proof π (using the commitments and opening values) and outputs
Accept if π is valid, Reject otherwise. (For compactness of notation, we will assume that
π embeds the statement S).

Above we describe the proof system in normal operation. Our security proofs additionally use:

GSExtractSetup(γ). Outputs GS (distributed identically to the output of GSSetup(γ)) and an
extraction trapdoor tdext containing a trapdoor for the commitment scheme. This trapdoor
permits an extraction of a valid witness from the commitments embedded within a proof.

GSExtract(GS, tdext, π). Given a proof π and the extraction trapdoor, extracts Xi from each
commitment C̃i, and outputs the witness W = 〈{X}1...M 〉 that satisfies the equations.

GSSimulateSetup(γ). Outputs GS′ that are computationally indistinguishable from the output of
GSSetup(γ), as well as a simulation trapdoor tdsim which consists of a simulation trapdoor
for the commitment scheme.

GSSimProve(GS′, tdsim, S). Given simulation parameters GS′ and trapdoor tdsim, outputs a proof
π of statement S that such that GSVerify(GS′, π) = Accept. Note that this algorithm
operates on certain restricted classes of statements (see below).

In the general case, Groth-Sahai proofs provide strong Witness Indistinguishability in groups where
the Decision Linear assumption holds. However, in the special case where in all equations being
simultaneously satisfied, the value tT = 1 (or tT can be decomposed in a specific way), then it
is also possible to form proofs that meet a strong definition of composable Zero-Knowledge. We
will further discuss the set of statements for which Zero-Knowledge proofs are possible below, and
momentarily refer to this class as ~SZK . We now discuss the security properties of the proof system:

Correctness. For honestly-generated GS and π, GSVerify(GS, π) will always output Accept.
Extractability (Soundness). For (GS, tdext) ∈ GSExtractSetup(γ) and some π (embedding

a statement S): if GSVerify(GS, π) outputs Accept then with probability 1 the algorithm
GSExtract(GS, td, π) extracts a witness W ∈ 〈{X}1...M 〉 that satisfies S.

Composable Witness-Indistinguishability. We first require that the parameters generated
by GSSimulateSetup(γ) be computationally indistinguishable from the parameters generated
by GSSetup(γ). We additionally require that all p.p.t. adversaries A have advantage 0 in
the following game. Hand A the parameters GS′ ← GSSimulateSetup(γ), and allow A to
output (S, w0, w1) where S is a statement and w0, w1 are distinct satisfying witnesses. Select

b
$← {0, 1}, give A the proof π ← GSProve(GS′, S, wb), and collect its guess b′. A’s advantage

is defined as |Pr[b = b′]− 1/2|.
Composable Zero-Knowledge. We again require that the parameters generated by

GSSimulateSetup(γ) be computationally indistinguishable from the parameters gener-
ated by GSSetup(γ). We additionally require that all p.p.t. adversaries A have advantage
0 in the following game. Generate (GS′, tdsim) ← GSSimulateSetup(γ), and give GS′

7



to A. Allow A to output (S, w) where S ∈ ~SZK and w is a satisfying witness. Let

π0 ← GSProve(GS′, S, w), π1 ← GSSimProve(GS′, tdsim, S). Select b
$← {0, 1}, give A the

proof πb, and collect its guess b′. A’s advantage is |Pr[b = b′]− 1/2|.

Note that GS proofs can be defined over multiple pairing product equations. In this case, sat-
isfiability implies knowledge of a witness for each statement. In our constructions, we will de-
note a GS proof statement using the notation of Camenisch and Stadler [11]. For instance,
N IWIGSS

{(a1, a2) : e(a1, a2)/e(g, h) = 1 ∧ e(a2, g2)/e(d2, a3) = 1} represents a non-interactive
Witness Indistinguishable proof of knowledge, formed under parameters GSS , of a witness W =
〈a1, a2〉 that satisfies both statements. All values not in enclosed in ()’s are assumed to be known
to the verifier. We will alternatively use the notation NIZK to denote Zero-Knowledge proofs.

Statements with Zero-Knowledge Proofs. While Groth and Sahai [23] mainly focus on
Witness-Indistinguishable (WI) proofs, they note that certain classes of pairing-product statements
admit Zero-Knowledge proofs as well. In order to prove a statement in Zero-Knowledge (as per the
definition above), a simulator must be able to produce a simulated proof π without being given
specific knowledge of a witness to the statement. Note that if the simulator can compute a valid
witness by itself, then it is sufficient to simply use a WI proof. For instance, in the special case
where tT = 1 for a pairing product equation, the simulator can always compute a satisfying witness
by selecting each Xi = g0.

Groth and Sahai further observe that more complex statements can be made Zero Knowledge by
applying the simulation trapdoor for the Groth-Sahai commitment scheme. This trapdoor allows
the simulator to open a random commitment to any gx (for known x), and can be applied such
that the same commitment is opened differently for each equation within the statement. In some
cases, we may need to re-write a statement in order to construct a ZK proof. For example, consider
the statement {e(a, d) = e(g, h)} made on variable a and constants d, g, h. By rewriting we obtain:

N IZK{(a, b) : e(a, d)e(b, h−1) = 1 ∧ e(b, g)e(g−1, g) = 1}

Note that the statement above is equivalent to the original, by the property that b = g is the only
valid solution to the second equation. We can simulate the statement by opening the appropriate
commitments such that a = b = g0 in the first equation, while in the second equation b = g. We
will use similar techniques to simulate the Zero-Knowledge proofs in our constructions.

4 The Construction

Our adaptive oblivious transfer protocol, OTN
k×1, is described in Figure 4, with each of the algo-

rithms (OTGenCRS, OTInitialize, OTRequest, OTRespond, OTComplete) described below.

OTGenCRS(1κ). Given security parameter κ, generate parameters for a bilinear mapping γ =
(p, G, GT , e, g) ← BMsetup(1κ). Compute GSS ← GSSetup(γ) and GSR ← GSSetup(γ).
Choose random values g1, g2, h ∈ G and output crs = (γ, GSS , GSR, g1, g2, h).

OTInitialize(crs,m1, . . . ,mN ). This algorithm is executed by the Sender. On input a collection of
N messages and the crs, it outputs a commitment to the database, T , for publication to the
Receiver, together with a Sender secret key, sk. We treat messages as elements of G, since
there exist efficient mappings between strings in {0, 1}` and elements in G (e.g., [6, 1]).
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Protocol OTA

OTA is parameterized by the algorithms (OTInitialize, OTRequest, OTRespond, OTComplete).

When S is activated with (sid, sender,M1, . . . ,MN ):

1. S queries FCRS with (sid,S,R) and receives (sid, crs). R then queries FCRS with (sid,S,R)
and receives (sid, crs).

2. S obtains (T, sk) ← OTInitialize(crs,M1, . . . ,MN ), sends (sid, ssid, T ) to R and stores
(sid, ssid, T, sk).

When R is activated with (sid, receiver, σ), and R has previously received (sid, ssid, T ) and (sid, crs):

1. R runs (Q,Qpriv)← OTRequest(crs, T, σ), sends (sid, ssid, Q) to S and stores (sid, ssid, Qpriv).
2. S gets (sid, ssid, Q) from R, runs R← OTRespond(crs, T, sk, Q), and sends (sid, ssid, R) to R.
3. R receives (sid, ssid, R) from S, and outputs (sid, ssid,OTComplete(crs, T, R,Qpriv)).

Figure 4: A high-level outline of the OTN
k×1 protocol, with details of each algorithm described

in Section 4. We make no explicit mention of the value k, the total transfers permitted by the
Sender, because our protocol does not depend on it. The Sender may choose to stop answering
the Receiver’s queries at any point, in which case OTRespond outputs “reject” and OTComplete
accepts this as the message ⊥.

1. Choose random values x1, x2, α1, α2, α3 ∈ Zp.
2. Set (u1, u2)← (h1/x1 , h1/x2), and pk ← (u1, u2, u

α1
1 , uα2

2 , gα3
2 ).

3. For j = 1, . . . , N encrypt each message mj as:
(a) Select random r, s, t ∈ Zp.

(b) Set Cj ←
(
ur

1, us
2, gr

1, gs
2, mj · hr+s, u

1/(α1+r)
1 , u

1/(α2+s)
2 , gt

2, (ur
1u

s
2h)tgα3

1

)
.

4. Set T ← (pk , C1, . . . , CN ) and sk ← (x1, x2). Output (T, sk).

Notice that the value T has a structure that can be publicly verified. Represent pk as
(p1, . . . , p5). Parse each ciphertext Ci as (c1, . . . , c9) and check that the following conditions
hold:

e(p1, c3) = e(c1, g1) , e(p2, c4) = e(c2, g2)
e(c6, p3 · c1) = e(p1, p1) , e(c7, p4 · c2) = e(p2, p2)

, e(g2, c9)/e(c8, c1 · c2 · h) = e(g1, p5).

OTRequest(crs, T, σ). This algorithm is executed by a Receiver. On input T generated by the
Sender, along with an item index σ, generates a query Q for transmission to the Sender.

1. Parse T as (pk , C1, . . . , CN ), and ensure that it is correctly formed (see above). If T is
not correctly formed, abort the protocol. This check need be done only once.

2. Parse crs as (γ, GSS , GSR, g1, g2, h), pk as (p1, . . . , p5), and Cσ as (c1, . . . , c9).
3. Select random v1, v2 ∈ Zp and set d1 ← (c1 · pv1

1 ), d2 ← (c2 · pv2
2 ), t1 ← hv1 , t2 ← hv2 .
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4. Use the Groth-Sahai techniques and reference string GSR to compute the Witness-
Indistinguishable proof of values pertaining to the ciphertext Cσ (which the Receiver
wishes to have the Sender help him open) and blinding values:

π = N IWIGSR
{(c1, c2, c3, c4, c6, c7, c8, c9, t1, t2) :

e(c6, p3 · c1) = e(p1, p1) ∧ e(p1, c3)e(c1, g
−1
1 ) = 1 ∧

e(c7, p4 · c2) = e(p2, p2) ∧ e(p2, c4)e(c2, g
−1
2 ) = 1 ∧

e(d1 · c−1
1 , h)e(p−1

1 , t1) = 1 ∧ e(d2 · c−1
2 , h)e(p−1

2 , t2) = 1 ∧
e(g2, c9)e(c8, c1 · c2 · h)−1 = e(g1, p5)}

To explain what is happening in this statement, first observe that the second and fourth
equations ensure that (p1, g1, c1, c3) and (p2, g2, c2, c4) are both DDH tuples. Thus, for
some values of r, s ∈ Zp, we have that pr

1 = c1, gr
1 = c3, ps

2 = c2 and gs
2 = c4. Under this

characterization of (c1, c2) and with (p1, . . . , p5) all public, the first and third equations
ensure that c6 = p

1/(α1+r)
1 and c7 = p

1/(α2+s)
2 , where p3 = pα1

1 and p4 = pα2
2 for some

values α1, α2 ∈ Zp. The next two equations guarantee that if we view d1 = pv1+r
1 and

d2 = pv2+s
2 , for some values v1, v2 ∈ Zp, then t1 = hv1 and t2 = hv2 . Finally, the

last equation ensures that if we represent c8 = gt
2 and p5 = gα3

2 for some t, α3, then
c9 = (c1c2h)t · gα3

1 . These checks guarantee that the witness used by the Receiver,
and thus the decryption request being made, corresponds to one of the N ciphertexts
published by the Sender.

5. Set request Q← (d1, d2, π), and private state Qpriv ← (Q, σ, v1, v2). Output (Q,Qpriv).

OTRespond(crs, T, sk, Q). This algorithm is executed by the Sender. If the Sender does not wish
to answer any more requests for the Receiver, then the Sender outputs the message “reject”.
Otherwise, the Sender processes the Receiver’s request Q as:

1. Parse crs as (γ, GSS , GSR, g1, g2, h), T as (pk , C1, . . . , CN ), and sk as (x1, x2).
2. Parse pk (from T ) as (p1, . . . , p5).
3. Parse Q as (d1, d2, π) and verify proof π using GSR. Abort if verification fails.
4. Set a1 ← dx1

1 , a2 ← dx2
2 , and s← a1 · a2.

5. Use the Groth-Sahai techniques and reference string GSS to formulate a zero-knowledge
proof that the decryption value s is properly computed:

δ = N IZKGSS
{(a1, a2, a3) : e(a1, p1)e(d−1

1 , a3) = 1 ∧ e(a2, p2)e(d−1
2 , a3) = 1 ∧

e(s, a3)e(a1 · a2, h
−1) = 1 ∧ e(g, a3) = e(g, h)}

Observe that the last equation ensures that a3 = h. The third equation ensures that
s = a1 · a2, while the first two, since the values (p1, d1, p2, d2, h) are known to both
parties, ensure that a1 = dx1

1 and a2 = dx2
2 . This guarantees that s is correctly formed.

6. Output R← (s, δ).

OTComplete(crs, T, R,Qpriv). This algorithm is executed by the Receiver. On input R generated
by the Sender in response to a request Q, along with state Qpriv, outputs a message m or ⊥.
If R is the message “reject”, then the Receiver outputs ⊥. Otherwise, the Receiver does:
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1. Parse crs as (γ, GSS , GSR, g1, g2, h), T as (pk , C1, . . . , CN ), R as (s, δ), and Qpriv as
(Q, σ, v1, v2).

2. Verify proof δ using GSS . If verification fails, output ⊥.
3. Parse Cσ as (c1, c2, c3, c4, c5, . . . ) and output m = c5/(s · h−v1 · h−v2).

4.1 Efficiency Analysis

When the protocol in Figure 4 is implemented using the algorithms described above, we obtain a
(k + 1/2)-round protocol with communications cost O(N + k), where k ≤ N . More concretely, the
crs is comprised of 15 elements in G, the Sender’s public key contains 5 elements in G, and each of
the N ciphertexts in T requires 9 elements in G. Moreover, each item transfer involves transmission
of 95 elements of G from Receiver to Sender, and then 46 elements of G from Sender to Receiver.

The message space of our OT protocol is elements in G, which will be sufficient for transferring
a symmetric encryption key to unlock a file of arbitrary size.

4.2 Security Analysis

Theorem 4.1 Instantiated with the above algorithms, OTA securely realizes the functionality FN×1
OT

in the FCRS-hybrid model under the q-Strong Decision Linear and uniform q-HSDH assumptions.

Let us now provide some intuition behind this proof, with the details contained in Appendix A.
When either the Sender or the Receiver is corrupted, we wish to describe a simulator S such
that it can interact with the ideal functionality FN×1

OT (which we’ll denote simply as F) and the
environment Z appropriately; i.e., IDEALF ,S,Z

c
≈ EXECOTA,A,Z .

We begin with the case where the real world adversary A corrupts the Sender, and thus S must
interact with F as the ideal Sender and with (an internal copy of) A as a real-world Receiver. Here
S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G, GT , e, g) ← BMsetup(1κ), GSS ← GSSetup(γ), GSR ← GSSetup(γ), and selecting ran-
dom elements h ∈ G and a1, a2 ∈ Zp. Set crs = (γ, GSS , GSR, ha1 , ha2 , h). When the parties
query FCRS , return (sid, crs).

2. Obtain the database commitment T from A. Verify that T is well-formed, abort if not.
Otherwise, use a1, a2 to decrypt each ciphertext Ci = (c1, . . . , c9) as mi = c5/(c1/a1

3 · c1/a2

4 ).
Map each element mi ∈ G to a string in {0, 1}` [1]. Send (sid,S,m1, . . . ,mN ) to F .

3. Upon receiving (sid, request) from F , choose a random index σ ∈ [1, N ] and return
OTRequest(crs, T, σ) to A. This response includes two random values d1, d2 and a non-
interactive witness indistinguishable proof with respect to GSR ∈ crs that d1, d2 correspond
to a ciphertext Cσ. This proof can be performed honestly and without rewinding.

4. If A issues a “reject” message or responds with anything other than a value in G and a valid
NIZK proof, then S tells F to fail the request by sending message (sid, 0). Otherwise, S sends
the message (sid, 1) to F .

The indistinguishability argument here follows from the indistinguishability of the crs (from a
real crs), the perfect extraction of the messages mi, and the WI proof during each request phase,
which guarantees that A (the corrupt Sender) cannot be selectively choosing to fail based on the
Receiver’s choices. Thus, S can adequately mimic its response pattern.
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Next, we consider the case where the real world adversary A corrupts the Receiver, and thus S
must interact with F as the ideal Receiver and with (and internal copy of) A as real-world Receiver.
This case requires that the q = N for the uniform q-HSDH assumption. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G, GT , e, g) ← BMsetup(1κ), (GSS , tdsim) ← GSSimulateSetup(γ) and (GSR, tdext) ←
GSExtractSetup(γ). Select random g1, g2, h ∈ G. Set crs ← (γ, GSS , GSR, g1, g2, h). When
the parties query FCRS , return (sid, crs).

2. S must commit to a database of messages for A without knowing the messages m1, . . . ,mN .
Thus, S simply commits to arbitrary junk messages, and sends the corresponding T to A.

3. When A makes a transfer request, S uses tdext to extract the witness corresponding to
the index σ from the NIWI proof. (This extraction is done via opening perfectly-binding
commitments which are includes in the WI proof and does not require any rewinding.)

4. S now sends (sid,R, σ) to F to obtain the real mσ message.
5. Now, S returns a response to A which opens Cσ to mσ and then uses tdsim to simulate an

NIZK proof that this opening is correct. The NIZK proof here is designed in such a way that
simulation is always possible and no rewinding is necessary.

The indistinguishability argument here follows from the indistinguishability of the crs (from a
real crs), the indistinguishability of the “fake” database T , the ability to extract witnesses from the
NIWI proofs, and the zero-knowledge property of “fake” NIZK proofs. Notice that S is never both
simulating and extracting via the same (subsection of the) common reference string; indeed, we do
not require that the proofs be simulation-sound.

Sampling from a Common Random String. We briefly note that by the same arguments used
above, the Reference String used in our construction can be replaced with a Common Random
String. Note that crs embeds (γ, GSS , GSR, g1, g2, h), for GSR, GSS ∈ GSSetup(γ) and g1, g2, h ∈R

G. Per Appendix C, each set of Groth-Sahai commitment parameters embeds a tuple of the
form (g, ga, gb, gas, gbz, gw) ∈ G6, for a, b, s, z ∈R Zp. When GSSetup is used, the parameters are
generated such that w = s + z. When GSSimulateSetup is used, w is uniformly distributed in Zp.
Under DLIN, the latter distribution is indistinguishable from the correct one, and thus we may
sample the components of GSS , GSR uniformly from G. Since the parameters γ can be sampled
from a random string [22], then all elements of crs can therefore be derived from a uniformly random
string when a source of common randomness is available.

5 On Multiple Receivers

OT is traditionally described as a two-party protocol between a Sender and Receiver. We presented
our main construction in this setting. However, since we are motivated by the application of OT
to database systems, we would also like to support applications where multiple users share a single
database. Naively this can be accomplished by requiring the database to run separate OT protocol
instances with each user. However, this approach can be quite inefficient, and moreover does not
ensure consistency in the database viewed by individual Receivers. Consider a strengthening of the
security definition of FN×1

OT (in Figure 3) to include the additional requirement that all Receivers
“view” the same database, i.e., the database owner cannot selectively alter the messages in the
database when interacting with different receivers – on query σ from any receiver, he must return
a value in {mσ,⊥}. Fortunately, consistency is easy and inexpensive to achieve in our construction
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– simply alter FD,P
CRS to return the same values (g1, g2, h) as part of the crs to all receivers and

have the Sender publish one database commitment T to everyone, handling joint state via [17].
Intuitively, this captures consistency because the simulator can set the values (g1, g2, h) and then
trapdoor decrypt all messages in T (see Appendix B). Given the soundness of the GS proofs, all
of the Sender’s responses to any Receiver must be consistent with T , even if the other parts of
their common reference strings are distinct. Note that it is not at all clear how consistency can be
achieved efficiently even in the non-adaptive setting using prior UC results [28], since there each
Receiver provides her own encryption key for the Sender to bundle the messages in.
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A Proof of Theorem 4.1

Notation: Let ν(·) denote a negligible function where for every polynomial p(·), there exists an N
such that for all integers n > N , it holds that ν(n) < 1/p(n).

Proof. Let A be a static adversary that interacts with parties S,R running protocol OTA. We
construct an adversary S for the ideal functionality FN×1

OT . S begins by invoking a copy of A and
running a simulated interaction with the environment Z and the parties running the protocol. S
proceeds as follows.

Simulating the communication with Z. Every input value that S receives from Z is written
into the adversary A’s input tape. Similarly, every output value written by A on its output tape
is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where only R is corrupted. Let γ ← BMsetup(1κ), then compute
(GS′S , tdsim) ← GSSimulateSetup(γ) and (GS′R, tdext) ← GSExtractSetup(γ). Select g1, g2, h ∈R G.
Set crs← (γ, GS′S , GS′R, g1, g2, h). When the parties query FCRS , return (sid, crs).

S initiates the communication with A by generating a random message database m̂1, . . . , m̂N
$←

G, computing T ← OTInitialize(crs, m̂1, . . . , m̂N ) and sending (sid, T ) to A as if from S. Next,
whenever A outputs (sid, Q), S performs as follows. First, it parses Q as (d1, d2, π) and (if π is
valid) computes GSExtract(crs, tdext, π) to extract a satisfying witness (ω1, . . . , ω10). Parse T as
(pk , C1, . . . , CN ), and for each ciphertext Ci = (c1, . . . , c9) determine whether (ω1, ω2) = (c1, c2). If
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no matching ciphertext is found (or multiple ciphertexts match), then S aborts the simulation and
gives no further messages to A.

Otherwise, let σ′ be the index of the matching ciphertext: S sends (sid, receiver, σ′) to FN×1
OT .

When FN×1
OT outputs (sid,mσ′) for mσ′ 6= ⊥, S formulates the response s = (c5ω9ω10)/mσ′ and—

using the simulation trapdoor tdsim— simulates the zero-knowledge proof δ′ indicating that s is
correctly formed according to the statement defined in the OTRespond algorithm (see Lemma A.7
for details on simulating this proof). S then sends R ← (s, δ′) to A as if from S. S repeats this
process for each request received from A.

Simulating the case where only S is corrupted. Our simulation proceeds as follows. Let
γ ← BMsetup(1κ), then compute GSS ← GSSetup(γ) and GSR ← GSSetup(γ). Select g1, g2, h ∈R G
such that gy1

1 = gy2
2 = h for (y1, y2) known to the simulator. Set crs ← (γ, GSS , GSR, g1, g2, h).

When the parties query FCRS , return (sid, crs).
S activates A and receives the message (sid, T ) that would be A’s first move in a real execution

with R. S verifies that T is correctly-structured, using the public check described in §4. (If T
does not pass this check, S will instruct FN×1

OT to fail on all message requests from R.) Otherwise,
S parses T as (pk , C1, . . . , CN ) and for i = 1 to N first parses ciphertext Ci into (c1, . . . , c9),
then computes m′

i ← c5/(cy1
3 cy2

4 ). S decodes each m′
1, . . . ,m

′
N to a value in {0, 1}` and sends

(sid, sender,m′
1, . . . ,m

′
N ) to FN×1

OT .
Whenever FN×1

OT outputs (sid) to the dummy S (indicating that R has initiated a transfer
request), S computes (Q,Qpriv) ← OTRequest(crs, T, 1) and hands (sid, Q) to A as if from R.
When S returns (sid, R), S checks whether OTComplete(crs, T, R,Qpriv) = ⊥. If so, then S sets
b← 0, and b← 1 otherwise. S returns (sid, b) to FN×1

OT .

Simulating the case where neither party is corrupted. When S receives k messages of the
form (sid, bi) indicating that transfers have occurred, S generates a simulated transcript between
the honest S and R. In this case, S runs the protocol as specified, using as S’s input the random
database (m̂1, . . . , m̂N ), and (for each transfer), R’s input σ = 1. If in the ith transfer bi = 0
then S’s responds with an invalid R (the empty string). Else, S returns a valid response as in the
protocol.

Simulating the case where both parties are corrupted. In this case S knows the inputs to S
and R and can simulate a protocol execution by generating the real messages exchanged between
the two parties.

We now address the environment’s ability to distinguish the ideal execution from the real protocol
execution. This is shown via the following claims.

Claim A.1 When A corrupts only R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the N -Strong

DLIN and N -HSDH assumptions.

Proof. Consider the simulation described above. We will begin with the real-world protocol execu-
tion, where R interacts with an honest S that knows the message database. We will then show via
a series of hybrids that the real execution transcript is computationally indistinguishable from the
simulated transcript. For notational convenience, we define Pr [Game i ] as the probability that
environment Z distinguishes the transcript of Game i from that of the real execution. We now
describe the cases:
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Game 0. This is the real-world protocol execution, where R interacts with an honest S
running protocol OTA on message database (m1, . . . ,mN ). Clearly Pr [Game 0 ] = 0.

Game 1 (Parameter switching). This execution proceeds as above, except that we com-
pute (GS′S , tdsim) ∈ GSSimulateSetup(γ), (GS′R, tdext) ∈ GSExtractSetup(γ), and substitute
GS′S , GS′R in place of the honestly-generated parameters GSS , GSR (tdsim, tdext are not re-
vealed). When the parties query FCRS , return crs = (γ, GS′S , GS′R, g1, g2, h). Note that if
the DLIN assumption holds in G, then (GS′S , GS′R)

c
≈ (GSS , GSR) (Lemma A.5) and thus

|Pr [Game 1 ]−Pr [Game 0 ]| ≤ ν(κ).

Game 2 (Extracting R’s selections). This execution proceeds as above, except that
for transfer phase i = 1 to k, we compute a candidate for R’s selection σ′i by extracting
from its PoK π. Parse R’s ith request (sid, Qi) to obtain (d1, d2, π) and (provided that π
is valid) run GSExtract(crs, tdext, π) to extract a satisfying witness (ω1, . . . , ω10). Parse T
as (pk , C1, . . . , CN ), and for each ciphertext Ci = (c1, . . . , c9) determine whether (ω1, ω2) =
(c1, c2). Let σ′i be the index of the matching ciphertext. If no matching ciphertext is found (or
multiple ciphertexts match), then output Extract-Fail to Z and send no further messages
to R. By Lemma A.6, this event will occur with negligible probability under the DLIN and
N -HSDH assumptions; therefore |Pr [Game 2 ]−Pr [Game 1 ]| ≤ ν(κ).

Game 3 (Simulating S’s responses). This execution proceeds as above, except that we
will formulate each of S’s transfer responses independently of sk. In the previous hybrid we
extracted from each of R’s requests to obtain a witness (ω1, . . . , ω10) and identified a candidate
σ′i for R’s selection. We parse Cσ′i

as (c1, . . . , c9) and compute s′ = (c5ω9ω10)/mσ′i
. Let S be

the statement proved by the Sender during the OTRespond algorithm: we compute a simulated
PoK δ′ ← GSSimProve(GSS , tdsim, S) and set R′ ← (s′, δ′). Note that in order to simulate a
response during transfer i, it is only necessary to know the subset of messages, (mσ′1

, . . . ,mσ′i
).

By Lemma A.7, the transcript including these responses is computationally indistinguishable
from the distribution with valid PoKs. Thus |Pr [Game 3 ]−Pr [Game 2 ]| ≤ ν(κ).

Game 4 (Substituting the ciphertexts). This execution proceeds as above, except
that we replace S’s first message with (sid, T ′) where T ′ ∈ OTInitialize(crs, m̂1, . . . , m̂N ) for

m̂1, . . . , m̂N
$← G. For i = 1 to k, we also modify the ith transfer phase such that S’s response

is (sid, R′
i) for R′

i = (s′, δ′) computed as in Game 3, except that we must now compute the
PoK δ on a possibly invalid statement S. By Lemma A.8, the hardness of N -Strong DLIN im-
plies that the distribution of messages is indistinguishable from the real execution, even though
s′ may be incorrectly formed with respect to S. Thus |Pr [Game 4 ]−Pr [Game 3 ]| ≤ ν(κ).

Notice that the distribution produced in Game 4 is identical to that of our simulation. By sum-
mation, we have that Pr [Game 4 ] ≤ ν(κ) and thus IDEALFN×1

OT ,S,Z
c
≈ EXECOTA,A,Z under the

N -HSDH and N -Strong DLIN assumptions.
2

Claim A.2 When A corrupts only S, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the DLIN as-

sumption.
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Proof. Consider the simulation described above. Again we begin with the real-world protocol
execution, where S interacts with an honest R that chooses messages according to an arbitrary
selection strategy Σ. We then show via a series of hybrids that the real execution transcript is
computationally indistinguishable from the simulated transcript.

Game 0. This is the real-world protocol execution, where S interacts with an honest R
running protocol OTA using selection strategy Σ. Clearly Pr [Game 0 ] = 0.

Game 1 (Parameter generation). This execution proceeds as above, except that we
select g1, g2, h such that gx

1 = gy
2 = h for known (x, y). When the parties query FCRS , return

crs = (γ, GSS , GSR, g1, g2, h). Note that the distribution of g1, g2, h is identical to the normal
distribution. Thus |Pr [Game 1 ]−Pr [Game 0 ]| = 0.

Game 2 (Substituting R’s queries). Next, during transfer i = 1 to k, we mod-
ify the transcript by generating Q′

i ← OTRequest(T, 1) and replacing R’s request with
(sid, Q′

i). Let Q′ = (d′1, d
′
2, π

′). Observe that for any i ∈ [1, N ], where Ci = (c1, . . . , c9),
we can express d′1, d

′
2 as c1p

v′1
1 , c2p

v′2
2 for some v′1, v

′
2. Thus for every Ci there exists

a witness (c1, c2, c3, c4, c6, c7, c8, c9, h
v′1 , hv′2) that satisfies the pairing product equation

Sπ. By the Witness-Indistinguishability property of the Groth-Sahai proof system, the
value Q′

1 is indistinguishable from a request formed on a different σj ∈ [1, N ]. Thus
|Pr [Game 2 ]−Pr [Game 1 ]| ≤ ν(κ).

Game 2 has an identical distribution to our simulation, and by summation Pr [Game 2 ] ≤ ν(κ).
It remains to show that the in our simulation the distribution of messages obtained by an ideal R
interacting with FN×1

OT are identical to the messages recovered by an honest R running the protocol
directly with S. This implies that for every set of indices (σ1, . . . , σk) the plaintexts (m′

σ1
, . . . ,m′

σk
)

obtained by S— which decrypts the ciphertexts in T with the trapdoor (x, y)— are identical to
the messages recovered by an honest R running the protocol with S.

S’s initial output T embeds pk = (p1, . . . , p5). Let (a, b) be S’s secret key, which is implicitly
defined by pa

1 = pb
2 = h. We observe that if T passes the validity check run by honest R, then each

ciphertext Ci can be expressed as (pr
1, p

s
2, g

r
1, g

s
2,mih

r+s, . . . ) for some r, s ∈ Zp and mi ∈ G. Since
the simulator constructed g1, g2 such that gx

1 = gy
2 = h then it necessarily holds that (pra

1 psb
2 ) =

(grx
1 gsy

2 ) = hr+s. Let us consider an honest R that requests index i from S. It selects v1, v2 ∈ Zp

and sets d1 = pr
1p

v1
1 , d2 = ps

2p
v2
2 , sending request Q = (d1, d2, π). Let R = (s, δ) be the response from

S. If PoK δ verifies, then (by the soundness property of the proof system) with all but negligible
probability s = da

1d
b
2 and the honest R computes the message as (mih

s+r)/(da
1d

b
2h

−v1h−v2) =
mi. This is identical to the decryption obtained by S using the trapdoor (x, y), which produces
hs+r/(grx

1 gsy
2 ) = mi . Thus, the distribution of messages given to FN×1

OT by S is indistinguishable
from the distribution of messages obtained by running the protocol directly with S.

2

Claim A.3 When A corrupts neither S nor R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the

DLIN and N -Strong DLIN assumptions.

We omit a formal proof of this claim, but note that it re-uses techniques identical to those of the
previous claims. Specifically, we replace the Sender’s initial message T with a commitment to a
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random database, and show that this random database is indistinguishable from a real database
under the N -Strong DLIN assumption (as in Claim A.1). We then argue that by the Witness-
Indistinguishability property of the Groth-Sahai proof system, the extractions on message index 1
are indistinguishable from extractions on other message indices (as in Claim A.2).

Claim A.4 When A corrupts both S and R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z .

We omit a formal proof of this claim.

Lemma A.5 Under the DLIN assumption, the parameters generated by GSSetup (and GSExtractSetup)
are computationally indistinguishable from those produced by GSSimulateSetup.

We omit a proof of this lemma, and refer the reader to the work of Groth and Sahai [23]. Briefly,
in the DLIN instantiation, the normal parameters embed a tuple of the form (g, ga, gb, gaz, gbs, gw).
The normal (and extraction) parameters have w = z+s, while the simulation parameters have w ∈R

Zp. If DLIN holds in G, then the two types of parameter are computationally indistinguishable.

Lemma A.6 Under the N -HSDH and CDH3 assumptions, the probability that S outputs
Extract-Fail in Game 3 is negligible.

Proof sketch. Let T = (pk , C1, . . . , CN ) be honestly-generated as in Game 3. Consider A’s request
(sid, Qi) at transfer i ∈ [1, k], and parse Qi as (d1, d2, π) where π is a PoK (of the statement
described in the definition of OTRequest) using parameters GS′R. Note that the simulator knows
the trapdoor tdext corresponding to GS′R, and can therefore extract a satisfying witness W =
(ω1, . . . , ω10)← GSExtract(GSR, tdext, π) (in the general case, extraction succeeds with probability
≥ 1−ν(κ) by the Soundess property of the Groth-Sahai proof system).4 Since extraction fails with
at most negligible probability, then if S outputs Extract-Fail with non-negligible probability,
then it must be that that for j ∈ [1, N ] there is either (a) no single ciphertext Cj = (cj,1, . . . , cj,9)
such that (ω1, ω2) = (cj,1, cj,2), or (b) there are multiple ciphertexts for which the relation holds.

We can easily dispose of case (b): since T is honestly generated, then for each ciphertext
(cj,1, . . . , cj,9), the values cj,1, cj,2 are uniformly distributed in G. Therefore, the probability is
negligible that any two distinct ciphertexts are identical in the first two elements. This it remains
only to address case (a) where there is no ciphertext Cj such that (cj,1, cj,2) = (ω1, ω2). This
condition can be further divided into two sub-cases:

1. Where for i 6= j there exists some pair of ciphertexts Ci, Cj such that ω1 = ci,1 and ω2 = cj,2.
2. Where there is no pair of ciphertexts such that the above condition holds, i.e., either ω1 or

ω2 is not contained within any ciphertext in T .

We now show that if A outputs a PoK satisfying condition (1) then we can use its response to
solve the CDH problem, and if A satisfies condition (2) we can solve N -HSDH. We now describe
each of the two simulations:

Case 1: CDH. We consider the case where A produces (ω1, ω2) = (ci,1, cj,2) for i 6= j, and show
that an A that produces such a query can be used to solve the Computational Diffie-Hellman

3Computational Diffie-Hellman (CDH) is implied by DLIN ; thus, no new assumptions are being introduced here.
4In fact, for parameters GS′R ∈ GSExtractSetup(), Groth-Sahai proofs are perfectly extractable [23].
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problem in G, i.e., given (g, ga, gb) for a, b ∈R Zp, solve for gab. The intuition behind this argument
is that the final two elements c8, c9 of each ciphertext represent a signature on the product (c1c2).
This signature is built from the Boneh-Boyen selective-ID IBE scheme from [4] (§4), and a forger
of this scheme can be used to solve the CDH problem.5 Our reduction is based on the one given by
Boneh and Boyen, although we reduce to CDH. Since the DLIN assumption implies the hardness
of CDH, we are not introducing a new assumption.

Given an input (g, ga, gb) to the CDH problem, select t, u, v, w, x1, x2, y
$← Zp, and set g1 ← gb,

g2 ← g, h← (ga)−vgw. Set crs← (g1, g2, h), and pk ← ((ga)t, (ga)u, (ga)tx1 , (ga)ux2 , ga). Randomly
select two ciphertext indices i∗, j∗ such that i∗ 6= j∗.

Now for i = 1 to N , choose ri, si, yi uniformly from Zp with the restriction that (tri∗ + usj∗) =
v mod p. Set zi = (tri + usi) mod p, and construct the ith ciphertext as:

Ci =
(
(ga)tri , (ga)usi , gri

1 , gsi
2 ,mjh

ri+si , (ga)
t

x1+ri , (ga)
u

x2+si , (gb)
−1

zi−v gyi , (gb)
−w

zi−v ((ga)zi−vgw)yi

)
(Note that the last two elements have the correct distribution. Let ỹi = yi−b/(zi − v), and re-write

(gb)
−1

zi−v gyi = gyi−b/(zi−v) = gỹi . We can then express the final element (gb)
−w

zi−v ((ga)zi−vgw)yi as

(gb)a ((ga)zi−vgw)yi− −b
zi−v = (gab) (gazih)ỹi = ga

1((ga)tri+usih)ỹi .)

Now set T ← (pk , C1, . . . , CN ) and send T to A. Whenever A submits a request Q = (d1, d2, π)
where π verifies correctly, extract (ω1, . . . , ω10) from π. Now:

1. If, for some j ∈ [1, N ], the pair (ω1, ω2) = ((ga)trj , (ga)usj ): then output a valid response to
A by selecting s′ = (hrj+sjω9ω10), constructing the proof δ′, and sending R = (s′, δ′) to A.6

Continue the simulation.
2. If (ω1, ω2) = ((ga)tri∗ , (ga)usj∗ ), then output ω8/ωw

7 as the solution to the CDH problem.
3. In all other cases, abort the simulation.

Observe that in case (2) the soundness of the G-S proof system ensures that for some y′ we can
represent (ω7, ω8) = (gy′ , ((ga)vh)y′gab). By substitution we obtain (gy′ , ((ga)v(ga)−vgw)y′gab) =
(gy′ , gwy′gab), and thus ω8/ωw

7 = gab. In this case, we can obtain the value gab and output a correct
solution to the CDH problem.

Note that the distribution of the messages sent to A is identical to that of the real attack, and
are independent of i∗, j∗ in A’s view. Therefore, if A produces (ω1, ω2) = (ci′,1, cj′,2) for i′ 6= j′

with some non-negligible probability ε, then the approach above solves CDH with probability
approximately ε

N2−N
, i.e., the probability that that (i′, j′) = (i∗, j∗).

Case 2: N-HSDH. In the case where either ω1 or ω2 is not contained within any ciphertext in T ,
then we will construct a solver for the N -HSDH problem. Our simulation proceeds as follows: given
the N -HSDH instance (g, gx, ĥ, {gt1 , ĥt1 , g

1
x+t1 }, . . . , {gtN , ĥtN , g

1
x+tN }), randomly select s ∈ {1, 2}

representing one of the following two strategies. (We will use boldfaced type to indicate elements
drawn from the HSDH instance.)

5Note that a selective-ID IBE scheme implies a secure signature scheme only if the message space is polynomial
in κ. Since in this case A succeeds by proving knowledge of a signature on message (ci,1cj,2) for some i 6= j, we have
naturally restricted the total number of messages to N2 −N .

6Note that we can simulate the proof δ′, but this is not even necessary, since (hrj ω9, h
sj ω10, h) is a valid witness

to the statement.
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Strategy 1. Select a, b, c
$← Zp and set h ← ga, g1 ← ĥ and g2 ← ĥc. Embed (g1, g2, h)

into crs. Select p1, p2 such that p1 = g, p2 = h1/b. Thus sk = (a, b). Select y, α
$← Zp and

set p3 = gx, p4 = py
2, p5 = gα

2 . To compute each ciphertext Cj , select sj , zi ∈ Zp and compute

Cj =
(
gtj , p

sj

2 , ĥtj , g
sj

2 ,gtjahsjmj ,g
1

x+tj , p
1

y+sj

2 , g
zj

2 , (gtjp
sj

2 h)zjgα
1

)
.

Strategy 2. Select a, b, c
$← Zp and set h ← ga, g1 ← ĥc and g2 ← ĥ. Embed (g1, g2, h)

into crs. Select p1, p2 such that p1 = h1/b, p2 = g. Thus sk = (b, a). Select y, α
$← Zp and

set p3 = py
1, p4 = gx, p5 = gα

2 . To compute each ciphertext Cj , select sj , zj ∈ Zp and compute

Cj =
(

p
sj

1 ,gtj , g
sj

1 , ĥtj , hsjgtjamj , p
1

y+sj

1 ,g
1

x+tj , g
zj

2 , (psj

1 gtjh)zjgα
1

)
.

In both cases, set pk = (p1, . . . , p5) and T = (pk , C1, . . . , CN ). Observe that since t1, . . . , tN are
uniformly distributed, then T has the correct distribution. Answer A’s queries using the key sk .
If ever A outputs a PoK π such that for Strategy s ∈ {1, 2} the extracted witness ωs does not
match any cj,s ∈ Cj , then output (ωs, ωs+2, ωs+4) which— by the soundness property of the proof
system— can be expressed as (gt′ , ĥt′ , g1/(x+t′)) for some t′ /∈ {t1, . . . , tN}. Otherwise abort. This
tuple represents a valid solution to the HSDH problem. Since all values are correctly distributed
and s is outside of A’s view, then we select the correct strategy with probability 1/2.

To conclude our sketch, note that we have covered all cases where event Extract-Fail can
occur. Thus if the event occurs with probability non-negligible in κ then we have an algorithm that
solves N -HSDH or CDH with non-negligible probability.

2

Lemma A.7 Replacing S’s honestly-generated responses (as in Game 2) with simulated responses
(as in Game 3) results in a simulation that is computationally indistinguishable from that of Game
2.

Proof sketch. Consider a transcript where each response (sid, R) is replaced with a simulated
response (sid, R′). Let R = (s, δ) be the honestly-generated response, and let R′ = (s′, δ′) be the
simulated response. To complete our argument, we must show that for any given reponse: (1) with
probability at most ν(κ), the value s 6= s′, and (2) the PoK δ

c
≈ δ′. This must hold for all A,Z.

Recall that pk embeds px1
1 = px2

2 = h for some x1, x2 ∈ Zp. A initiates the transfer by sending
a message (sid, Q) containing the values (d1, d2, π). Using the extraction algorithm, we obtain a
witness W = (ω1, . . . , ω10) to the statement Sπ. Note that a correctly-formed response will have the
form s = (dx1

1 dx2
2 ), and for Cσ′ = (c1, . . . , c9) a simulated response has the form s′ = (c5ω9ω10)/mσ′ ,

which we expand to s′ = (cx1
1 cx2

2 mσ′h
v1hv2)/mσ′ for some (v1, v2). We omit a detailed expansion,

but observe that by the statement Sπ it holds that d1 = c1h
v1/x1 and d2 = c2h

v2/x2 and thus our
simulated s′ is identical to the correct response s.

Paraphrasing the composable zero-knowledge property of the Groth-Sahai proof system, when
(GS′S , tdsim) ∈ GSSimulateSetup() we can simulate a PoK δ′ ← GSSimProve(GS′S , Sδ) such that
no adversary can distinguish δ′ from a valid PoK. It remains to show that we can simulate on
statement Sδ. Recall that the δ is defined as:
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δ = N IZKGSS
{(a1, a2, a3) :

e(a1, p1)/e(d1, a3) = 1 ∧ e(a2, p2)/e(d2, a3) = 1 ∧
e(s, a3)/e(a1 · a2, h) = 1 ∧ e(g, a3)/e(g, h) = 1}

To simulate the proof, we must select commitments c̃1, c̃2, c̃3 to represent a1, a2, a3, and we then
compute opening values such that each statement is satisfied. Note that using the simulation
trapdoor tdsim we may open the commitment differently in each statement. To simulate a proof
δ′, set a1 = a2 = a3 = h0 and generate commitments to each value. In the first three statements,
we open c̃1, c̃2, c̃3 correctly to h0. In the final statement, we use the simulation trapdoor to open
the commitment c̃3 to h1. Thus, all statements are satisfied.

2

Lemma A.8 Let m1, . . . ,mN ∈ G be any message database, and m̂1, . . . , m̂N ∈R G be a set
of random messages. Also let all of S’s responses be computed as in Game 3. Under the N -
Strong Decision Linear assumption, no environment Z will distinguish the transcript where T =
OTInitialize(crs,m1, . . . ,mN ) from the transcript where T = OTInitialize(crs, m̂1, . . . , m̂N ) (except
with negligible probability).

Proof sketch. Let D = (û, v̂, ĥ, ûx1 , v̂x2 , {uri , vsi , u1/(x1+ri), v1/(x2+si), Qi}i∈[1,N ]) be a candidate
Strong Decision Linear tuple. Next, consider a simulation which behaves as follows:

1. Select random z1, z2 ∈ Zp, set g1 = ûz1 , g2 = v̂z2 , h = ĥ and fix crs← (γ, GS′S , GS′R, g1, g2, h).
2. Set pk = (p1, . . . , p5) as: p1 ← û, p2 ← v̂, p3 ← ûx1 , p4 ← v̂x2 , p4 ← gx3

2 , for random x3 ∈ Zp.
3. For i = 1 to N , choose a fresh random t ∈ Zp and set the ciphertext value as:

Ci = (ûri , v̂si , ûriz1 , v̂siz2 , Qi ·Xi, û
1/(x1+ri), v̂1/(x2+si), gt

2, (û
ri v̂sih)tgx3

1 ),

where the Xi values are either all from (m1, . . . ,mN ) or all from (m̂1, . . . , m̂N ).
4. Set T ← (pk , C1, . . . , CN ).
5. The simulation proceeds as in Game 3 at answer transfer requests.

Let us call the case where all Xi = mi case one (as in Game 3) and likewise when Xi = m̂i

case two (as in Game 4). Now, suppose for the sake of contradiction, that there exists a Z who
can distinguish case one from case two with non-negligible probability ε. Then, we can use Z to
decide Strong Decision Linear. In the above, if Qi = hri+si for each i, then the above simulation
perfectly encrypts (m1, . . . ,mN ). However, when the Qi values are random elements of G, then the
corresponding encrypted messages are random elements in G. 2

2

B Double-Trapdoor BBS Encryption

In Section 4, we make sure of a ciphertext which is based on the prior work of Boneh, Boyen, and
Shacham [5] and has some interesting properties, which may be useful elsewhere.
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Boneh, Boyen and Shacham [5] describe a semantically-secure encryption scheme based on the
Decision Linear (DLIN) assumption. We extend their scheme into a two-key (double-trapdoor)
encryption scheme with a public consistency check. In this system, we can encrypt a message
under two distinct public keys pk1, pk2, such that either of the corresponding secret keys sk1, sk2

will decrypt the ciphertext. For every well-formed ciphertext, it must be the case that decryption
will produce the same message regardless of which secret key is used. To complete our list of
requirements, we also define a publicly-computable check for ciphertext well-formedness (i.e., the
check does not require knowledge of either secret key).

Define a global parameter h ∈ G, and let each public key be the random pair u, v ∈ G,
with the secret key x, y ∈ Zp such that ux = vy = h. To encrypt a message m ∈ G under
pk1 = (u1, v1), pk2 = (u2, v2), first select random values r, s ∈ Zp and output the ciphertext
(ur

1, u
r
2, v

s
1, v

s
2, h

r+s ·m). To decrypt a message (c1, . . . , c5) under sk1 = (x1, y1), output c5/(cx1
1 ·c

y1
3 ).

To decrypt under sk2 = (x2, y2), output c5/(cx2
2 ·c

y2
4 ). Note that the structure of a ciphertext can be

verified using the bilinear map, by checking that (u1, c1, u2, c2) and (v1, c3, v2, c4) are DDH tuples.
It is fairly straightforward to show that this extension is also semantically-secure under the

DLIN assumption.

C Groth/Sahai Commitments in the DLIN setting

This appendix provides a brief description of the Groth-Sahai commitment scheme. For a more de-
tailed explanation covering the entire proof system, the reader should refer to the original work [23],
or to the summary of [3] from which we draw notation. Groth-Sahai commitments can be instan-
tiated in three settings: asymmetric bilinear groups where the SXDH assumption holds [30, 5, 2],
composite-order groups where the subgroup decision assumption holds [7], and symmetric groups
where DLIN holds [5]. This explanation will be restricted to the DLIN instantiation, since that is
the instantiation used in this work.

Groth-Sahai proofs are based on a homomorphic commitment scheme that can be instantiated in
one of two modes. In the first approach, which leads to a perfectly-binding scheme, the commitment
parameters embed a DLIN tuple of the form (ga, gb, g, gas, gbz, gw) for random a, b, s, z and w = s+z.
In the second approach, which leads to a perfectly-hiding scheme, the value w is selected uniformly
at random from Zp. Note that the two distributions are computationally indistinguishable under
the DLIN assumption.

To commit to a value m ∈ G, select random x1, x2, x3 ∈ Zp and compute (c̃1, c̃2, c̃3) =
(gax1gasx3 , gbx2gbzx3 ,mgx1+x2gwx3). Note that for w = s + z this is equivalent to a BBS encryp-
tion of m. Opening the commitment involves revealing (m;x1, x2, x3). Additionally, in this case
a simulator that knows the extraction trapdoor information (a, b) can decrypt any commitment
to reveal the committed value m. In the second instantiation, where w is uniformly distributed
in Zp, the commitment perfectly hides m. However, note that a simulator with knowledge of the
trapdoor (a, b, s, z) can select h ∈ G and generate a random commitment (hα1 , hα2 , hα3). Then
for any y ∈ Zp the simulator can solve for the opening (hy;x′1, x

′
2, x

′
3) by solving the equations

α1 = ax′1 +asx′3, c2 = bx′2 + bzx′3 and c3 = y +x′1 +x′2 +(s+ z)x′3. Note that the Groth-Sahai com-
mitment scheme retains the (multiplicatively) homomorphic properties of BBS encryption. Let c̃i

be a commitment to message m1, c̃2 to message m2. Then c̃1·c̃2 (defined as entry-wise multiplication
of the elements of c̃1, c̃2) is a commitment to m1m2.
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