
Universally Composable Adaptive Oblivious Transfer

Abstract

In an oblivious transfer (OT) protocol, a Sender with messages M1, . . . ,MN and a Receiver
with indices σ1, . . . , σk ∈ [1, N] interact in such a way that at the end the Receiver obtains
Mσ1 , . . . ,Mσk

without learning anything about the other messages and the Sender does not
learn anything about σ1, . . . , σk. In an adaptive protocol, the Receiver may obtain Mσi−1 before
deciding on σi. Efficient adaptive OT protocols are interesting both as a building block for secure
multiparty computation and for enabling oblivious searches on medical and patent databases.

Historically, adaptive OT protocols were analyzed with respect to a “half-simulation” defi-
nition which Naor and Pinkas showed to be flawed. In 2007, Camenisch, Neven, and shelat, and
subsequent other works, demonstrated efficient adaptive protocols in the full-simulation model.
These protocols, however, all use standard rewinding techniques in their proofs of security and
thus are not universally composable. Recently, Peikert, Vaikuntanathan and Waters presented
universally composable (UC) non-adaptive OT protocols (for the 1-out-of-2 variant). However,
it is not clear how to preserve UC security while extending these protocols to the adaptive k-out-
of-N setting. Further, any such attempt would seem to require O(N) computation per transfer
for a database of size N . In this work, we present an efficient and UC-secure adaptive k-out-of-N
OT protocol, where after an initial commitment to the database, the cost of each transfer is
constant. Our construction is secure under bilinear assumptions in the standard model.

1 Introduction

Oblivious transfer (OT) was introduced by Rabin [30] and generalized by Even, Goldreich and
Lempel [19] and Brassard, Crépeau and Robert [8]. It is a two-party protocol, where a Sender
with messages M1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N] interact in such a way
that at the end the Receiver obtains Mσ1 , . . . ,Mσk

without learning anything about the other
messages and the Sender does not learn anything about σ1, . . . , σk. Naor and Pinkas were the first
to consider an adaptive setting, OTN

k×1, where the Receiver may obtain Mσi−1 before deciding on
σi [27]. Efficient OT schemes are very important. OT4

1 is a key building block for secure multi-party
computation [33, 20, 24]. OTN

k×1 is a useful and interesting tool in its own right, enabling oblivious
databases for applications such as medical record storage and patent searches [28].

Developing efficient adaptive protocols appears to be a more difficult and involved process than
in the non-adaptive case. Indeed, even finding the right security definition has proven challenging.
Historically, many efficient OT constructions were analyzed under a “half-simulation” definition,
where the Sender and Receiver’s security are described by a combination of simulation and game-
based definitions. Naor and Pinkas [27] showed that schemes analyzed under this definition may
admit practical attacks on the Receiver’s privacy. To address this, Camenisch, Neven and shelat [10]
and subsequently Green and Hohenberger [21] proposed efficient and fully-simulatable OTN

k×1 proto-
cols under bilinear assumptions. Each of these protocols achieve the optimal total communications

This work was supported in part by the NSF under grant CT-0716142.

1

cost of O(N + k) with reasonable constants. Unfortunately, the security proofs for these protocols
employ adversarial rewinding, and thus do not imply security under concurrent execution.

Recently, Lindell [25] showed how to achieve efficient and fully-simulatable non-adaptive OT2
1

under the DDH, Nth residuosity and quadratic residuosity assumptions, as well as the assumption
that homomorphic encryption exists. Simultaneously, Peikert, Vaikuntanathan and Waters [29]
proposed several non-adaptive, but universally composable OT2

1 protocols based on DDH, quadratic
residuosity and lattice-based assumptions. While both of these valuable works add to our collective
knowledge for non-adaptive OT, they do not shed much light on how to achieve efficient adaptive
protocols. Indeed, Lindell points out that the adaptive case is considerably harder [25].

The general framework used in [25, 29] (where the Receiver chooses the encryption keys) seems
inherently at odds with allowing efficient adaptive schemes. Each transfer requires O(N) work for
the Sender, whereas this can be constant in our protocols. Even more alarming, it isn’t clear how
(without killing the efficiency and perhaps the UC security of [29]) a Sender could convince the
Receiver that he is not changing the database values with each request. This problem of ensuring a
consistent database gets even worse when multiple Receivers are considered, as we do in Section 5.

Our Results. In this work, we take a different approach to constructing OT protocols, which allows
them to be simultaneously efficient, adaptive, universally composable and globally consistent. We
summarize what is known about OTN

k×1 protocols in Figure 1. Let us describe some highlights.

1. Universal Composability: The Universal Composability framework [13] allows for the design
of concurrent and composable cryptographic protocols, which are important properties in
any practical deployment of an oblivious database. Canetti and Fischlin showed that OT
cannot be UC-realized without additional trusted setup assumptions such as the existence
of a Common Reference String (CRS) [15]. This is formally referred to as the FCRS-hybrid
model, and is assumed by the constructions of Peikert et al. [29] as well as those in this work.
As in [29], we work in a static corruption model.

2. Efficiency: Our protocol is practical. For a database of N objects, the initialization phase
requires O(N) communication cost, and each transfer phase requires only constant cost, for
reasonable constants. In contrast, simply repeating a OTN

1 scheme (such as [29]) k times
would require O(N) communication cost for each transfer plus the additional work required
for the Sender to convince the Receiver that he isn’t changing the database values dynamically.
Moreover, the message space of our protocol is a group element (so at least 160 bits), whereas
the quadratic residuosity and lattice-based schemes of [29] have one-bit message spaces. We
note, however, that the DDH-based scheme of [29] allows for longer messages.

3. Global Consistency: In our constructions, the sender publishes some form of commitment to
the database at the beginning of the protocol. When joint state is allowed (see Sections 2
and 5), then multiple receivers, all of whom start with the same commitment, can be sure that
whenever their request on index i succeeds, they receive the same message Mi as any other
receiver. In other words, globally consistency ensures that a sender cannot return patent Mi

to Alice and a different patent M ′
i 6= Mi to Bob.

4. Model and Assumptions: It seems undesirable to use random oracles for a primitive as funda-
mental as OT. Thus, we focus on protocols secure in the standard model.1 Our construction

1However, if the random oracle model is of interest, it seems possible to achieve efficient UC-secure OT by adapting

2

Protocol Rounds Communication Assumption

Half Simulation:
NP99 [27] `k log N + 1/2 – Sum Consistent Synthesizers + `-round OT2

1
CT05 [18] O(k) + 1/2 O(N) Decisional DH (in ROM)

Full Simulation:
CNS07 [10] 4k + 1/2 O(N) y-Power Decisional DH + q-Strong DH
CNS07 [10] O(k) + 1/2 O(N) Unique blind signature (in ROM)
GH07 [21] k + 1/2 O(N) Decisional Bilinear DH (in ROM)

UC (FCRS-hybrid):
This work (§4) k + 1/2 O(N) SXDH + DLIN + q-Hidden LRSW

Figure 1: Survey of efficient, adaptive k-out-of-N Oblivious Transfer protocols.

can be implemented under the SXDH [31, 5, 2, 23], Decision Linear [5], and q-Hidden LRSW
assumptions (a non-interactive variant of the standard LRSW assumption [26, 1], for which
we give a generic group proof in Appendix C.)

By using only a q-based computational assumption and simple decisional assumptions, we improve
over the (non-UC) adaptive OT of Camenisch et al. [10], which used the (computational) q-Strong
Diffie-Hellman and introduced a strong (decisional) q-Power Decisional DH requiring that in a
bilinear setting e : G1 ×G2 → GT with prime order q, given (g, gx, gx2

, . . . , gxq
,H) where g ← G1,

x← Zq and H ← GT , the vector (Hx,Hx2
, . . . ,Hxq

) be indistinguishable from a random vector.

Intuition behind the Construction. Oblivious Transfer protocols can be roughly divided into
two categories. Let’s restrict our attention to non-adaptive OTN

1 for the moment. In approach (1),
which is used by [30, 19, 25, 29], the Receiver transmits a collection of specially-formed encryption
keys to the Sender, who encrypts each message and returns the N ciphertexts to the Receiver. The
protocol is secure provided that the encryption keys are formed such that a Receiver is able to
decrypt at most one of the resulting ciphertexts. In approach (2), which is used by [10, 21] and this
work, the Sender encrypts the message collection under keys of her own choosing, and— in some
interactive protocol with the Receiver— helps to decrypt one ciphertext.

While both approaches can be used to implement adaptive OT, the first approach requires that
the Sender generate a new set of ciphertexts at each transfer stage (for each receiver), requiring at
least O(N · k) cost. Even worse, the Sender might be able to maliciously change the database from
one transfer stage to another and to present different versions of the database to different receivers.

The latter approach is better suited for the adaptive case. A single database can be committed
to and then each decryption can be performed in constant computational and communication
cost, for a total O(N + k) cost. This approach is taken by the fully-simulatable protocols of [10],
which both use rewinding in their simulations to (1) simulate proofs and (2) extract knowledge.
An appealing approach to achieving UC secure adaptive OT would be to modify the efficient
standard-model protocol of Camenisch et al. [10] by simply replacing rewinding-based proofs with
the non-interactive proof techniques of Groth and Sahai [23]. Unfortunately, this is non-trivial
for two reasons. First, the Groth-Sahai techniques provide broad support for non-interactive,
witness indistinguishable proofs of algebraic assertions in bilinear groups, but only provide non-
interactive, zero-knowledge proofs for a restricted class of algebraic assertions. Unfortunately, the
proof statements required by [10] fall outside of this class, and it does not seem easy to rectify this
problem. Secondly, the protocol of [10] requires some form of extraction (e.g., extracting the chosen

existing fully-simulatable protocols [10, 21] (although in some cases non-trivial changes must be made to avoid any
adversarial rewinding). We elaborate in the full version of this work.

3

index from the adversarial Receiver or extracting the secret encryption keys from the adversarial
Sender) for proofs containing elements of Zp; unfortunately, Groth-Sahai proofs of knowledge are f -
extractable (but not fully extractable), where only some one-way function of the witness, f(w), can
be extracted (e.g., gw) and not the witness w itself. Dealing with this limitation would necessitate
substantial changes to the CNS protocol.

Instead, our construction starts from scratch. While we follow the “assisted decryption” frame-
work of the CNS protocol, we are able to do so without the need for strong q-based decisional
assumptions. We instead base the security of the ciphertexts in our scheme on the more standard
Decision Linear assumption [5]. Finally, since the Groth-Sahai proofs have not yet been shown
to be either simulation-sound or UC in general, we develop techniques that permit UC simulation
(even in the advanced case where multiple receivers interact with a single sender).

2 Definitions

Notation. By OTN
k (resp., OTN

k×1), we denote a non-adaptive (resp., adaptive) k-out-of-N oblivi-

ous transfer protocol. Let
c
≈ denote computational indistinguishability, as defined in [13].

Adaptive k-out-of-N Oblivious Transfer. OTN
k×1 protocols consist of two phases: Initialization

and Transfer. In the Initialization phase, the Sender commits to the input database M1, . . . ,MN .
Subsequently, the Sender and Receiver engage in up to k Transfers. During the ith Transfer, the
Receiver adaptively selects a message index σi ∈ [1, N] and engages in a protocol such that it
obtains Mσi (or ⊥ if the protocol fails) and nothing else, while the Sender learns nothing about
σi. The simulation-based nature of the security definition we use ensures that protocol failures
must occur independently of the message index σi chosen by the Receiver (capturing the strong
selective-failure blindness property [10].)

Universally Composable Security. Here, as in [29], we work in the standard UC framework with
static corruptions, where all parties are modeled as p.p.t. interactive Turing machines. Security of
protocols is defined by comparing the protocol execution to an ideal process for carrying out the
desired task. More formally, there is an environment Z whose task is to distinguish between two
worlds: ideal and real. In the ideal world, “dummy parties” (some of whom may be corrupted by
the ideal adversary S) interact with an ideal functionality F . In the real world, parties (some of
whom may be corrupted by the real world adversary A) interact with each other according to some
protocol π. We refer to Canetti [13, 14] for a fuller description, as well as a definition of the ideal
world ensemble IDEALF ,S,Z and the real world ensemble EXECπ,A,Z . We use the established notion
of a protocol π securely realizing an ideal functionality F as:

Definition 2.1 Let F be a functionality. A protocol π is said to UC-realize F if for any adversary
A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c
≈ EXECπ,A,Z .

Canetti and Fischlin showed that OT cannot be UC-realized without a trusted setup assump-
tion [15]. Thus, as in [16, 29], we assume the existence of an honestly-generated Common Reference
String (crs), and work in the so-called FCRS-hybrid model. The functionality is parameterized by
a distribution D and a set P of recipients. For our purposes, P will include the OT Sender and

4

Functionality FD,P
CRS

Upon receiving input (sid, crs) from party P , first verify that p ∈ P; else ignore the input. If there
is no value r recorded, then choose and record r ← D. Finally send output (sid, crs, r) to P .

Figure 2: Ideal functionality for the common reference string [14].

Functionality FN×1
OT

FN×1
OT proceeds as follows, parameterized with integers N, ` and running with an oblivious transfer

Sender S, a receiver R and an adversary S.

• Upon receiving a message (sid, sender,m1, . . . ,mN) from S, where each mi ∈ {0, 1}`, store
(m1, . . . ,mN).

• Upon receiving a message (sid, receiver, σ) from R, check if a (sid, sender, . . .) message was
previously received. If no such message was received, send nothing to R. Otherwise, send
(sid, request) to S and receive the tuple (sid, b ∈ {0, 1}) in response. Pass (sid, b) to the
adversary, and: If b = 0, send (sid,⊥) to R. If b = 1, send (sid,mσ) to R.

Figure 3: Functionality for adaptive Oblivious Transfer, based on the OT2
1 definition from [16].

Receiver only. Here the environment learns about the reference string from the adversary, and thus
the simulator can set up a string with “trapdoor information”, etc.

Figure 2 describes the FCRS functionality and Figure 3 describes the FN×1
OT functionality.

We briefly mention that there are techniques for designing and analyzing multiple OT protocols
which use a single reference string; i.e., a multi-session extension. One might worry that if multiple
protocols now share some joint state, then they can no longer be analyzed separately and then
composed later. Fortunately, this is addressed by universal composition with joint state (JUC) [17]
and could be done in our case. A second issue with sharing the reference string is that we make no
guarantee about the security of protocols which use the same reference string in ways other than
those specified by the OT protocol, and here we explicitly assume that the crs is only available to
certain parties. This is at odds with the notion that the crs is a “global” entity, however, there are
strong impossibility results for UC-realizing OT in a setting where the crs is available to everyone
(including the environment) and can no longer be crafted by the simulator. There are models, such
as the augmented CRS functionality FACRS [12], which overcome these impossibility results, but
we do not explore these advanced UC issues with respect to our OT construction in this work.

3 Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the parameters for
a bilinear mapping as γ = (p, G1, G2, GT , e, g ∈ G1, g̃ ∈ G2), where g generates G1 and g̃ generates
G2, the groups G1, G2, GT each have prime order p, and e : G1 ×G2 → GT .

Symmetric External Diffie-Hellman Assumption (SXDH) [31, 5, 2, 23]: Let BMsetup(1κ)→
γ = (p, G1, G2, GT , e, g, g̃). The SXDH assumption states that the Decisional Diffie-Hellman prob-
lem is hard within both G1 and G2.

Groups where SXDH holds is one of the three settings of the Groth-Sahai proof system [23].

5

Decision Linear Assumption (DLIN) [5]: Let BMsetup(1κ) → (p, G1, G2, GT , e, g, g̃). For all
p.p.t. adversaries Adv, the following probability is strictly less than 1/2 + 1/poly(κ):

Pr[h $← G1; a, b, c
$← Zp; f ← gc; f̃ ← g̃c; z0 ← ha+b; z1

$← G1; d← {0, 1} :

Adv(γ, g, g̃, f, f̃ , h, h̃, ga, f b, zd) = d].

The original DLIN assumption of Boneh, Boyen and Shacham [5] is set in symmetric groups; here
we use a weaker asymmetric version.

q-Hidden LRSW Assumption: Let BMsetup(1κ) → γ = (p, G1, G2, GT , e, g, g̃). For all p.p.t.
adversaries Adv, the following probability is strictly less than 1/poly(κ):

Pr[s, t, x1, . . . , xq, y1, . . . , y1
$← Zp; i ∈ [1 . . . q], bi ← gy1 , b̃i ← g̃yi ;S ← g̃s, T ← g̃t;

A← Adv(γ, g, g̃, S, T, {b1, b
s+x1st
1 , bx1

1 , bx1t
1 , gx1 , b̃1}, . . . , {bq, b

s+xqst
q , b

xq
q , b

xqt
q , gxq , b̃q}) :

A = (a1, a2, a3, a4, a5, a6) ∧ x /∈ {x1, . . . , xq} ∧ x ∈ Z∗p ∧ a1 ∈ G1∧
a2 = as+xst

1 ∧ a3 = ax
1 ∧ a4 = axt

1 ∧ a5 = gx ∧ e(a1, g̃) = e(g, a6)].

Related formulations of the above assumption in an oracle-setting, where the xi values are chosen
dynamically by Adv, are the LRSW assumption which was introduced by Lysyanskaya et al. [26]
and the Strong LRSW assumption of Ateniese, Camenisch and de Medeiros [1] We eliminate the
oracle and instead give q random tuples, which are also slightly changed. In Appendix C, we show
that the above assumption admits a proof in Shoup’s generic group model [32].

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [23] permits a variety of efficient non-interactive proofs of the satis-
fiability of one or more pairing product equations. For variables {X}1...m ∈ G1, {Y}1...n ∈ G2 and
constants {A}1...n ∈ G1, {B}1...m ∈ G2, ai,j ∈ Zp, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Yi)
m∏

i=1

e(Xi,Bi)
m∏

i=1

n∏
j=1

e(Xi,Yj)ai,j = tT

Groth and Sahai show how to construct Witness Indistinguishable proof-of-knowledge of a satisfying
witness to such an equation, in prime-order groups where the SXDH or Decision Linear assumptions
hold. The proof system they describe can be composed over multiple equations involving the
same variables. Additionally, they point out that in some special cases, their techniques can be
strengthened to provide Zero Knowledge. Unlike the interactive proofs used in [10, 21], the Groth-
Sahai proofs do not use adversarial rewinding in their security analysis.

Groth-Sahai Commitments [23]. At the core of the Groth-Sahai system is a homomorphic
commitment scheme to elements of G1 or G2.2 The public parameters for the commitment scheme
can be generated in one of two ways. Method (1) leads to a perfectly-binding commitment scheme,
while method (2) leads to a perfectly-hiding scheme. Note that the two parameter distributions
are computationally indistinguishable under the SXDH assumption. When the GS commitment

2As noted in [23, 3] commitment scheme can also be used to commit to elements of Zp, though we use this only
in the context of simulating proofs.

6

parameters are configured according to method (1), they are equivalent to an Elgamal encryption
of a group element, and can be decrypted by a party that knows a trapdoor to the commitment
parameters. When commitments are configured according to method (2), a “simulation” trapdoor
can be used on random commitments to open them to any value gx (or g̃x) for known x.

The Proof System. We now describe the proof system at a high level, adopting some notation
and exposition from [3]. For this description we will conceal many of the underlying details, though
the reader can refer to [23, 3] for a more detailed explanation. The proof system contains the
following (possibly probabilistic) polynomial time algorithms:

GSSetup(γ). On input γ ∈ BMsetup(1κ), outputs a string GS containing parameters for the proof
system. This string embeds binding parameters for the G-S commitment scheme.

GSProve (GS, S, W). On input a statement S describing the equation, and a satisfying witness
W ∈ 〈{X}1...m, {Y}1...n〉, outputs a proof π. To formulate this proof, a commitment Ĉi is
generated for each element in W . The proof embeds openings to the commitments in such
a way that a prover can ascertain that S is verifiably satisfied, and yet the elements of W
remain hidden.

GSVerify(GS, π). Verifies the proof π (using the commitments and opening values) and outputs
Accept if π is valid, Reject otherwise. (For compactness of notation, we will specify that
π embeds the statement S).

Above we describe the proof system in normal operation. Our security proofs additionally use:

GSExtractSetup(γ). Outputs GS (distributed identically to the output of GSSetup(γ)) and an
extraction trapdoor tdext containing a trapdoor for the commitment scheme. This trapdoor
permits an extraction of a valid witness from the commitments embedded within a proof.

GSExtract(GS, tdext, π). Given a proof π and the extraction trapdoor, extracts Xi or Yi from
each commitment Ĉi, and outputs the witness W = 〈{X}1...M ,Y}1...N 〉 that satisfies the
equations.

GSSimulateSetup(γ). Outputs parameters GS′ that are computationally indistinguishable from the
output of GSSetup(γ), as well as a simulation trapdoor tdsim which consists of a simulation
trapdoor for the commitment scheme.

GSSimProve(GS′, tdsim, S). Given simulation parameters GS′ and trapdoor tdsim, outputs a proof
π of statement S that such that GSVerify(GS′, π) = Accept. Note that this algorithm
operates on certain restricted classes of statements (see below).

In the general case, Groth-Sahai proofs provide strong Witness Indistinguishability in groups where
the SXDH assumption holds. However, in the special case where in all equations being simultane-
ously satisfied, the value tT = 1 (or tT can be decomposed in a specific way), then it is also possible
to form proofs that meet a strong definition of composable Zero-Knowledge. We will further discuss
the set of statements for which Zero-Knowledge proofs are possible below, and momentarily refer
to this class as ~SZK . We now discuss the security properties of the proof system:

Correctness. For honestly-generated GS and π, GSVerify(GS, π) will always output Accept.
Extractability (Soundness). For (GS, tdext) ∈ GSExtractSetup(γ) and some π (embedding

a statement S): if GSVerify(GS, π) outputs Accept then with probability 1 the algorithm
GSExtract(GS, td, π) extracts a witness W that satisfies S.

7

Composable Witness Indistinguishability. We first require that the parameters generated
by GSSimulateSetup(γ) be computationally indistinguishable from the parameters generated
by GSSetup(γ). We additionally require that all p.p.t. adversaries A have advantage 0 in the
following game. Hand A the parameters GS′ ← GSSimulateSetup(γ), and allow A to output
(S, W0,W1) where S is a statement and W0,W1 are distinct satisfying witnesses. Select

b
$← {0, 1}, give A the proof π ← GSProve(GS′, S,Wb), and collect its guess b′. A’s advantage

is defined as |Pr[b = b′]− 1/2|.
Composable Zero-Knowledge. We again require that the parameters generated by

GSSimulateSetup(γ) be computationally indistinguishable from the parameters gener-
ated by GSSetup(γ). We additionally require that all p.p.t. adversaries A have advantage
0 in the following game. Generate (GS′, tdsim) ← GSSimulateSetup(γ), and give GS′

to A. Allow A to output (S, w) where S ∈ ~SZK and w is a satisfying witness. Let

π0 ← GSProve(GS′, S, w), π1 ← GSSimProve(GS′, tdsim, S). Select b
$← {0, 1}, give A the

proof πb, and collect its guess b′. A’s advantage is |Pr[b = b′]− 1/2|.

Note that GS proofs can be defined over multiple pairing product equations. In this case, satisfia-
bility implies knowledge of a witness for each statement. In our constructions, we will denote a GS
proof statement using the notation of Camenisch and Stadler [11]. For instance, N IWIGS{(a1, a2) :
e(a1, a2)e(g, h−1) = 1 ∧ e(a2, g2)e(d−1

2 , a3) = 1} represents a non-interactive Witness Indistinguish-
able proof of knowledge, formed under parameters GS, of a witness W = 〈a1, a2〉 that satisfies both
statements. All values not in enclosed within the initial ()’s are assumed to be known to the verifier.
We will alternatively use the notation NIZK to denote a Zero-Knowledge proof.

Statements with Zero-Knowledge Proofs. While Groth and Sahai [23] generally accomplish
Witness-Indistinguishable (WI) proofs, they note that certain classes of pairing-product statements
admit Zero-Knowledge proofs as well. In order to prove a statement in Zero-Knowledge (as per the
definition above), a simulator must be able to produce a simulated proof π without being given
specific knowledge of a witness to the statement. Note that if the simulator can compute a valid
witness by itself, then it is sufficient to simply use a WI proof. For instance, in the special case
where tT = 1 for a pairing product equation, the simulator can always compute a satisfying witness
by selecting each Xi or Yi to be g0 or g̃0 respectively.

Groth and Sahai further observe that more complex statements can be made Zero Knowledge by
applying the simulation trapdoor for the Groth-Sahai commitment scheme. This trapdoor allows
the simulator to open a random commitment to any gx or g̃x (for known x), and can be applied
such that the same commitment is opened differently for each equation within the statement. In
some cases, we may need to re-write a statement in order to construct a ZK proof. For example,
consider the proof N IWIGS{(a) : e(a, d) = e(g, h)} made on variable a and constants d, g, h. By
adding a second variable b we obtain the equivalent NIZK statement:

N IZK{(a, b) : e(a, d)e(b, h−1) = 1 ∧ e(b, g)e(g−1, g) = 1}

Note that the equivalence holds by the property that b = g is the only valid solution to the revised
equation. However, we can simulate the statement by opening the appropriate commitments such
that a = b = g0 in the first equation, while in the second equation b = g. We will use similar
techniques to simulate the Zero-Knowledge proofs in our constructions.

8

3.2 Additional Tools

Modified CL Signatures. Our constructions use a weak variant of the Camenisch-Lysanskyaya
signature scheme [9], altered to operate on messages in G1. Whereas CL signatures rely on the
interactive oracle LRSW assumption to achieve security against adaptive chosen-message attacks, in
the context of our construction we will require only a non-interactive q-Hidden LRSW assumption
to achieve a weaker property (unforgeability given a set of signatures on random messages).

CLKeyGen(γ, g, g̃). On input γ = (p, G1, G2, GT , e, . . .) and generators (g, g̃), select s, t
$← Zp and

set S̃ ← g̃s, T̃ ← g̃t. Output vk = (γ, g, g̃, S̃, T̃), and sk = (vk , s, t).

CLSignsk (m). On input a message m ∈ G1, select w
$← Zp and output the signature sig =

(gw,mw, gwsmwst,mwt, g̃w) ∈ G4
1 ×G2.

CLVerifyvk (sig,m). On input the value m ∈ G1 and sig = (a1, a2, a3, a4, ã5), verify that e(g, ã5) =
e(a1, g̃) ∧ e(m, ã5) = e(a2, g̃) ∧ e(a2, T̃) = e(a4, g̃) ∧ e(a3, g̃) = e(a1a4, S̃).

Note that the verification algorithm can be represented as a set of pairing product equations, and
thus it is possible to prove knowledge of a pair (m, sig) using the GS proof system. To prove

knowledge of m, sig, first select y
$← Zp, compute sig′ = 〈a′1, a′2, a′3, a′4, ã′5〉 = 〈ay

1, a
y
2, a

y
3, a

y
4, ã

y
5〉 and

release the pair a′1, ã
′
5 along with the following witness indistinguishable proof:

π = N IWIGS{
(
m,a′2, a

′
3, a

′
4

)
:

e(m, ã′5)e(a
′
2, g̃

−1) = 1 ∧ e(a′2, T̃)e(a′4, g̃
−1) = 1 ∧ e(a′3, g̃)e(a′−1

4 , S̃) = e(a′1, S̃)}

The verifier checks both the proof and the fact that e(a′1, g̃) = e(g, ã′5).

Selective-message Secure Boneh-Boyen Signatures. Our constructions also make use of a
weak signature scheme built from the Boneh-Boyen selective-ID IBE scheme [4] (§4).

BBKeyGen(γ, g1, g̃1). On input γ = (p, G1, G2, GT , e, . . .) and bases (g1, g̃1), select α, z
$← Zp,

g ← g
1/α
1 , g̃ ← g̃

1/α
1 , g2 ← gz, g̃2 ← g̃z, h

$← G1. Output vk = (γ, g, g̃, g1, g2, h, g̃2), and
sk = (vk , gα

2).

BBSignsk (m). On input a message m ∈ G1, select r
$← Zp and output the signature sig =

((mh)rgα
2 , g̃r, gr) ∈ G2

1 ×G2.
BBVerifyvk (sig,m). On input m ∈ G1 and sig = (s1, s̃2, s3), verify that e(s1, g̃)/e(mh, s̃2) =

e(g1, g̃2) and e(g, s̃2) = e(s3, g̃).

We can prove knowledge of a pair (m, sig) as follows. Select y
$← Zp and set sig′ = (s′1, s̃

′
2, s

′
3) =

(s1(mh)y, s̃2g̃
y, s3g

y). Output s̃′2, s
′
3 and the witness indistinguishable proof:

π = N IWIGS{
(
m, s′1

)
: e(s′1, g̃)e(m, s̃′−1

2) = e(h, s̃′2)e(g1, g̃2)}

The verifier checks the proof and the fact that e(g, s̃′2) = e(s′3, g̃).

Double-Trapdoor BBS Encryption. Our constructions also use a variant of the Boneh-Boyen-
Shacham encryption scheme [5] with a double trapdoor for decryption. Details are in Appendix B.

9

Protocol OTA

OTA is parameterized by the algorithms (OTGenCRS,OTInitialize, OTRequest, OTRespond,
OTComplete).

When S is activated with (sid, sender,M1, . . . ,MN):

1. S queries FCRS with (sid,S,R) and receives (sid, crs). R then queries FCRS with (sid,S,R)
and receives (sid, crs).a

2. S computes (T, sk)← OTInitialize(crs,M1, . . . ,MN), sends (sid, T) to R and stores (sid, T, sk).

When R is activated with (sid, receiver, σ), and R has previously received (sid, T) and (sid, crs):

1. R runs (Q,Qpriv)← OTRequest(crs, T, σ), sends (sid, Q) to S and stores (sid, Qpriv).
2. S gets (sid, Q) from R, runs R← OTRespond(crs, T, sk, Q), and sends (sid, R) to R.
3. R receives (sid, R) from S, and outputs (sid,OTComplete(crs, T, R,Qpriv)).

aFCRS computes computes crs← OTGenCRS(1κ).

Figure 4: A high-level outline of the OTN
k×1 protocol, with details of each algorithm described

in Section 4. We make no explicit mention of the value k, the total transfers permitted by the
Sender, because our protocol does not depend on it. The Sender may choose to stop answering
the Receiver’s queries at any point, in which case OTRespond outputs “reject” and OTComplete
accepts this as the message ⊥.

4 A UC-secure OT Construction

Our adaptive oblivious transfer protocol, OTN
k×1, is described in Figure 4, with each of the algo-

rithms (OTGenCRS, OTInitialize, OTRequest, OTRespond, OTComplete) described below.

OTGenCRS(1κ). Given security parameter κ, generate parameters for a bilinear mapping
γ = (p, G1, G2, GT , e, g, g̃) ← BMsetup(1κ). Compute GSS ← GSSetup(γ) and GSR ←
GSSetup(γ). Choose a, b, c

$← Zp, and set (g1, g2, h, g̃1, g̃2, h̃) ← (ga, gb, gc, g̃a, g̃b, g̃c). Output
crs = (γ, GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). (In the full version, we describe how this common
reference string can be replaced by a common random string.)

OTInitialize(crs,m1, . . . ,mN). This algorithm is executed by the Sender. On input a collection of
N messages and the crs, it outputs a commitment to the database, T , for publication to the
Receiver, as well as a Sender secret key, sk. We treat messages as elements of G1, since there
exist efficient mappings between strings in {0, 1}` and elements in G1 (e.g., [6, 1]).

1. Parse crs to obtain GSS , g1, g2, h, g̃1, g̃2, h̃ and γ.
2. Choose random values x1, x2 ∈ Zp.
3. Set (u1, u2)← (h1/x1 , h1/x2), (ũ1, ũ2)← (h̃1/x1 , h̃1/x2).
4. Set (vk1, sk1)← CLKeyGen(γ, u1, ũ1), (vk2, sk2)← CLKeyGen(γ, u2, ũ2)

and (vk3, sk3)← BBKeyGen(γ, u1, ũ1). Set pk ← (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
5. For j = 1, . . . , N encrypt each message mj as:

(a) Select random r, s, t ∈ Zp.
(b) Compute sig1 ← CLSignsk1

(ur
1), sig2 ← CLSignsk2

(us
2), and sig3 ← BBSignsk3

(ur
1u

s
2).

10

(c) Set Cj ← (ur
1, us

2, gr
1, gs

2, mj · hr+s, sig1, sig2, sig3).
6. Set T ← (pk , C1, . . . , CN) and sk ← (x1, x2). Output (T, sk).

Each ciphertext Cj above can be though of as a signcryption where it is the randomness for
each ciphertext that is signed, rather than the plaintext itself. Each plaintext mj is encrypted
under S’s public key u1, u2, as well as a “key” g1, g2 drawn from crs. This “double-trapdoor”
encryption is necessary for the security proof of the OT scheme.

To verify the format of each ciphertext Cj = (c1, . . . , c5, sig1, sig2, sig3) in T , anyone can
check that CLVerifyvk1

(c1, sig1), CLVerifyvk2
(c2, sig2), and BBVerifyvk3

(c1c2, sig3) each succeed,
and that e(c1, g̃1) = e(c3, ũ1) ∧ e(c2, g̃2) = e(c4, ũ2).

OTRequest(crs, T, σ). This algorithm is executed by a Receiver. On input T generated by the
Sender, along with an item index σ, generates a query Q for transmission to the Sender.

1. Parse T as (pk , C1, . . . , CN), and ensure that it is correctly formed (see above). If T is
not correctly formed, abort the protocol. (This is only necessary on the first transfer.)

2. Parse crs to obtain (GSR, h̃), and parse pk as (u1, u2, ũ1, ũ2, vk1, vk2, vk3). Parse the σth

ciphertext Cσ as (c1, . . . , c5, sig1, sig2, sig3).
3. Select random v1, v2 ∈ Zp and set d1 ← (c1 · uv1

1), d2 ← (c2 · uv2
2), t1 ← hv1 , t2 ← hv2 .

4. Use the Groth-Sahai techniques and reference string GSR to compute a Witness Indis-
tinguishable proof π that the values d1, d2 pertaining to the ciphertext Cσ (which the
Receiver wishes to have the Sender help him open) have the correct structure:

π = N IWIGSR
{(c1, c2, t1, t2, sig1, sig2, sig3) :

e(c1, h̃)e(t1, ũ1) = e(d1, h̃) ∧ e(c2, h̃)e(t2, ũ2) = e(d2, h̃) ∧
CLVerifyvk1

(c1, sig1) = 1 ∧ CLVerifyvk2
(c2, sig2) = 1 ∧ BBVerifyvk3

(c1c2, sig3) = 1}

5. Set request Q← (d1, d2, π), and private state Qpriv ← (Q, σ, v1, v2). Output (Q,Qpriv).

To explain what is happening in the statement of step (4), first observe that the signature
proofs of knowledge ensure that the values c1, c2 and the product (c1c2) each correspond to a
valid signature held by the Receiver. The remaining equations ensure that the values d1, d2

correspond to “blinded” versions of the elements c1, c2. These checks guarantee that the
witness used by the Receiver, and thus the decryption request being made, corresponds to
one of the N ciphertexts published by the Sender.

OTRespond(crs, T, sk, Q). This algorithm is executed by the Sender. If the Sender does not wish
to answer any more requests for the Receiver, then the Sender outputs the message “reject”.
Otherwise, the Sender processes the Receiver’s request Q as:

1. Parse crs to obtain (GSR, g̃, h̃), and parse T as (pk , C1, . . . , CN), and sk as (x1, x2).
2. Parse pk (from T) as (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. Parse Q as (d1, d2, π) and verify proof π using GSR. Abort if verification fails.
4. Set a1 ← dx1

1 , a2 ← dx2
2 , and s← a1 · a2.

11

5. Use the Groth-Sahai techniques and reference string GSS to formulate a zero-knowledge
proof3 that the decryption value s is properly computed:

δ = N IZKGSS
{(a1, a2) : e(a1, ũ1)e(d−1

1 , h̃) = 1

∧ e(a2, ũ2)e(d−1
2 , h̃) = 1 ∧ e(a1a2, h̃)e(s−1, h̃) = 1}

The third equation ensures that s = a1 · a2, while the first two, since the values
(u1, d1, u2, d2, h̃) are known to both parties, ensure that a1 = dx1

1 and a2 = dx2
2 .

6. Output R← (s, δ).

OTComplete(crs, T, R,Qpriv). This algorithm is executed by the Receiver. On input R generated
by the Sender in response to a request Q, along with state Qpriv, outputs a message m or ⊥.
If R is the message “reject”, then the Receiver outputs ⊥. Otherwise, the Receiver does:

1. Parse crs to obtain (GSS , h). Parse T as (pk , C1, . . . , CN), R as (s, δ), and Qpriv as
(Q, σ, v1, v2).

2. Verify proof δ using GSS . If verification fails, output ⊥.
3. Parse Cσ to obtain the first five elements (c1, . . . , c5) and output m = c5/(s ·h−v1 ·h−v2).

4.1 Efficiency Analysis

When the protocol in Figure 4 is implemented using the algorithms described above, we obtain
a (k + 1/2)-round protocol with communications cost O(N + k), where k ≤ N . More concretely,
the crs is comprised of 7 elements in G1 and 7 elements of G2, the Sender’s public key contains
5 elements in G1 and 6 elements in G2. Each of the N ciphertexts in T requires 15 elements in
G1 and 3 elements in G2. Moreover, each item transfer involves transmission of 68 elements of G1

and 38 elements of G2 from Receiver to Sender, and then 20 elements of G1 and 18 elements of G2

from Sender to Receiver. The message space of our OT protocol is elements in G1, which will be
sufficient for transferring a symmetric encryption key to unlock a file of arbitrary size.

4.2 Security Analysis

Theorem 4.1 Instantiated with the above algorithms, OTA securely realizes the functionality FN×1
OT

in the FCRS-hybrid model under the SXDH, DLIN, and q-Hidden LRSW assumptions.

Let us now provide some intuition behind this proof, with the details contained in Appendix A.
When either the Sender or the Receiver is corrupted, we wish to describe a simulator S such
that it can interact with the ideal functionality FN×1

OT (which we’ll denote simply as F) and the
environment Z appropriately; i.e., IDEALF ,S,Z

c
≈ EXECOTA,A,Z .

Simulating the case where only S is corrupted. We first consider the case where the real-
world adversary A corrupts the Sender, and thus S must interact with F as the ideal Sender and
with (an internal copy of) A as a real-world Receiver. Here S does the following:

3We present a simplified version of this proof above. However, to permit simulation, we must add a third vari-
able ã3 = h̃ and re-write the proof as N IZKGSS{(a1, a2, ã3) : e(a1, ũ1)e(d

−1
1 , ã3) = 1 ∧ e(a2, ũ2)e(d

−1
2 , ã3) =

1 ∧ e(a1a2, ã3)e(s
−1, ã3) = 1 ∧ e(u1, ã3) = e(u1, h̃)}. See the full version for details.

12

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G1, G2, GT , e, g ∈ G1, g̃ ∈ G2) ← BMsetup(1κ), GSS ← GSSetup(γ), GSR ← GSSetup(γ),
selecting random elements a1, a2 ∈ Zp, and setting ga1

1 = ga2
2 = h (and a corresponding re-

lationship for g̃1, g̃2, h̃). Set crs = (γ, GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). When the parties query
FCRS , return (sid, crs).

2. Obtain the database commitment T from A. Verify that T is well-formed, abort if not.
Otherwise, use a1, a2 to decrypt each ciphertext Ci = (c1, . . . , c5, . . .) as mi = c5/(ca1

3 ca2
4).

Map each element mi ∈ G1 to a string in {0, 1}` [1]. Send (sid,S,m1, . . . ,mN) to F .
3. Upon receiving (sid, request) from F , return OTRequest(crs, T, 1) to A. This response includes

two random values d1, d2 and a non-interactive witness indistinguishable proof π with respect
to GSR ∈ crs that d1, d2 are “blinded” values corresponding to a ciphertext Cσ. This proof
can be performed honestly and without rewinding.

4. If A issues a “reject” message or responds with anything other than a value in G1 and a valid
NIZK proof, then S tells F to fail the request by sending message (sid, 0). Otherwise, S sends
the message (sid, 1) to F .

The indistinguishability argument here follows from the indistinguishability of the crs (which is
identically distributed to a real crs), the perfect extraction of the messages mi

4, and the Witness
Indistinguishability of the GS proof π issued during each request phase, which guarantees that A
(the corrupt Sender) cannot distinguish a request to decrypt C1 from a request to decrypt any
other valid ciphertext. Thus, S can adequately mimic its response pattern.

Simulating the case where only R is corrupted. Next, we consider the case where the real
world adversary A corrupts the Receiver, and thus S must interact with F as the ideal Receiver
and with (and internal copy of) A as real-world Receiver. This case requires that the q = N for
the q-Hidden LRSW assumption. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G1, G2, GT , e, g ∈ G1, g̃ ∈ G2) ← BMsetup(1κ), (GSS , tdsim) ← GSSimulateSetup(γ)
and (GSR, tdext) ← GSExtractSetup(γ). Select random elements for g1, g2, h, g̃1, g̃2, h̃. Set
crs← (γ, GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). When the parties query FCRS , return (sid, crs).

2. S must commit to a database of messages for A without knowing the messages m1, . . . ,mN .
Thus, S simply commits to random junk messages, and sends the corresponding T to A.

3. When A makes a transfer request, S uses tdext to extract the witness W corresponding to
A’s decryption request from the NIWI proof. (This extraction is done via opening perfectly-
binding commitments which are included in the WI proof and does not require any rewinding.)
This witness includes the first two elements (c1, c2) of the ciphertext that A is requesting to
decrypt, and from these it is possible to determine the index σ′ of the ciphertext that A has
requested to open.

4. S now sends (sid,R, σ′) to F to obtain the real mσ′ message.
5. Finally, S returns a response to A which opens Cσ′ to mσ′ and then uses tdsim to simulate

an NIZK proof that this opening is correct. The NIZK proof here is designed in such a way
that simulation is always possible and no rewinding is necessary.

4Note that a ciphertext that passes the validity check can be represented as C = (ur
1, u

s
2, g

r
1 , gs

2, h
r+sm, . . .) for

some r, s ∈ Zp, and when (g1, g2, h) have the relationship described above, decryption using a1, a2 always produces
m.

13

The indistinguishability argument here follows from the indistinguishability of the crs (from a
real crs), the indistinguishability of the “fake” database T , the ability to extract witnesses from
the NIWI proofs, and the zero-knowledge property of “fake” NIZK proofs. In particular, note
that the N -Hidden LRSW assumption ensures that any decryption request made by the receiver
corresponds to a valid ciphertext from the database T (if A produces a proof π embedding invalid
ciphertext values, we can use A to solve N -Hidden LRSW or the co-CDH problem, which is implied
by N -Hidden LRSW).5 Unlike the protocol of [10] we are able to base the semantic security of the
ciphertexts on a standard decisional assumption (the Decision Linear assumption). This is possible
because the full ciphertext can be constructed using only the DLIN input (see the note on Ciphertext
security below). Notice that S is never both simulating and extracting via the same (subsection of
the) common reference string; indeed, we do not require that the proofs be simulation-sound.

Simulating the case where both S and R are corrupted. In the case where both the Receiver
and Sender are corrupted, S knows the inputs to S and R and can simulate a protocol execution
by generating the real messages exchanged between the two parties.

Simulating the case where neither party is corrupted. When S receives messages of the
form (sid, bi) indicating that transfers have occurred, S generates a simulated transcript between
the honest S and R. In this case, S runs the protocol as specified, using as S’s input the random
database (m̂1, . . . , m̂N), and (for each transfer), R’s input σ′ = 1. If in the ith transfer bi = 0
then S’s responds with an invalid R (the empty string). Else, S returns a valid response as in the
protocol.

Ciphertext security. We briefly elaborate on the security of the ciphertexts in our scheme.
To prove security when Receiver is corrupted, we must show that a ciphertext vector encrypting
random messages is indistinguishable from a vector encrypting the real message database. We
argue that this is the case under the Decision Linear assumption. Let D = (g, g̃, f, f̃ , h, h̃, ga, f b, zd)
be a candidate Decision Linear tuple. We consider a simulation that behaves as follows:

1. Set u1 = g, u2 = f, ũ1 = g̃, ũ2 = f̃ . Select random y1, y2 ∈ Zp, and set g1 = uy1
1 , g2 = uy2

2 (and
similarly for g̃1, g̃2). Fix crs← (γ, GS′S , GS′R, g1, g2, h, g̃1, g̃2, h̃).

2. Generate (vk1, sk1), (vk2, sk2), (vk3, sk3) as in normal operation. Set pk = (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. For i = 1 to N , choose fresh random s, t1, t2 ∈ Zp and set c1 = gasgst1 , c2 = f bsfst2 . Set Ci:

Ci = (c1, c2, c
y1
1 , cy2

2 , zs
dh

s(t1+t2)mj , sig1, sig2, sig3)

where sig1, sig2, sig3 are generated normally using the appropriate secret keys.
4. Set T ← (pk , C1, . . . , CN).
5. The simulation answers requests from the malicious Receiver by extracting from its proof and

simulating correct responses (as described above.)

Note that in the above, if zd = ha+b, then the above simulation perfectly encrypts (m1, . . . ,mN).
However, when zd is a random element of G1, then the ciphertexts correspond to encryptions of
random elements in G1. Now, suppose for the sake of contradiction, that there exists an environment

5Note that we are using both an existentially unforgeable signature scheme, as well as a selective-ID IBE scheme
that has been “retasked” as signature scheme. The latter leads to a signature that is only secure for a polynomial-
sized, fixed message space. In the full version, we show that this limitation is acceptable given that we are signing
the product of other messages which have been signed using the stronger signature scheme. Since there are at most
a polynomial number of such products, the construction is secure.

14

Z who can distinguish case one from case two with non-negligible probability ε. Then, it is easy to
see that we can use Z to decide Decision Linear.

Sampling from a Common Random String. We briefly note that by the same arguments used
above, the Reference String used in our construction can be replaced with a Common Random
String. Note that crs embeds (γ, GSS , GSR, g1, g2, h, g̃1, g̃2, h̃), for GSR, GSS ∈ GSSetup(γ) and
g1, g2, h, g̃1, g̃2, h̃ ∈R G3

1 ×G3
2. Each set of Groth-Sahai commitment parameters embeds a tuple in

G1 (resp. G2). When GSSetup is used, the parameters are generated such that the parameters are a
DDH tuple in the respective group, and when GSSimulateSetup is used, they are uniformly random.
Under SXDH, the latter distribution is indistinguishable from the correct one, and thus we may
sample the components of GSS , GSR uniformly. Since the parameters γ can be sampled from a
random string [22], then all elements of crs can therefore be derived from a uniformly random string
when a source of common randomness is available.

5 On Multiple Receivers

OT is traditionally described as a two-party protocol between a Sender and Receiver. We presented
our main construction in this setting. However, since we are motivated by the application of OT
to database systems, we would also like to support applications where multiple users share a single
database. Naively this can be accomplished by requiring the database to run separate OT protocol
instances with each user. However, this approach can be quite inefficient, and moreover does not
ensure consistency in the database viewed by individual Receivers. Consider a strengthening of the
security definition of FN×1

OT (in Figure 3) to include the additional requirement that all Receivers
“view” the same database, i.e., the database owner cannot selectively alter the messages in the
database when interacting with different receivers – on query σ from any receiver, he must return
a value in {mσ,⊥}. Fortunately, consistency is easy and inexpensive to achieve in our construction
– simply alter FD,P

CRS to return the same values (g1, g2, h) as part of the crs to all receivers and
have the Sender publish one database commitment T to everyone, handling joint state via [17].
Intuitively, this captures consistency because the simulator can set the values (g1, g2, h) and then
trapdoor decrypt all messages in T (see Appendix B). Given the soundness of the GS proofs, all
of the Sender’s responses to any Receiver must be consistent with T , even if the other parts of
their common reference strings are distinct. Note that it is not at all clear how consistency can be
achieved efficiently even in the non-adaptive setting using prior UC results [29], since there each
Receiver provides her own encryption key for the Sender to bundle the messages in.

References

[1] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID tags via insubvertible encryption.
In CCS ’05, pages 92–101. ACM Press, 2005.

[2] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant storage from
keyword searchable encryption. Cryptology ePrint Archive, Report 2005/417, 2005.

[3] Mira Belenkiy, Melissa Chase, Markulf Kolweiss, and Anna Lysyanskaya. Non-interactive anonymous credentials.
In TCC ’08, volume 4948 of LNCS, pages 356–374, 2008.

[4] Dan Boneh and Xavier Boyen. Efficient selective-ID secure Identity-Based Encryption without random oracles.
In EUROCRYPT ’04, volume 3027 of LNCS, pages 223–238, 2004.

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO ’04, volume 3152 of
LNCS, pages 45–55, 2004.

15

[6] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing. In CRYPTO ’01,
volume 2139 of LNCS, pages 213–229, 2001.

[7] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC ’07,
volume 4450 of LNCS, pages 1–15. Springer, 2007.

[8] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of secrets. In CRYPTO ’86,
volume 263 of LNCS, pages 234–238, 1986.

[9] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
CRYPTO ’04, volume 3152 of LNCS, pages 56–72. Springer, 2004.

[10] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer. In EUROCRYPT ’07,
volume 4515 of LNCS, pages 573–590, 2007.

[11] Jan Camenisch and M. Stadler. Efficient group signature schemes for large groups. In CRYPTO ’97, volume
1296 of LNCS, pages 410–424, 1997.

[12] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with pre-existing setup. In TCC
’07, volume 4392 of LNCS, pages 61–85, 2007.

[13] Ran Canetti. Universally Composable Security: A new paradigm for cryptographic protocols. In FOCS ’01,
page 136. IEEE Computer Society, 2001. http://eprint.iacr.org/2000/067.

[14] Ran Canetti. Universally composable security: Towards the bare bones of trust. In Asiacrypt ’07, volume 4833
of LNCS, pages 88–112, 2007.

[15] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO ’01, volume 2139 of LNCS,
pages 19–40. Springer, 2001.

[16] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-
party secure computation. In STOC ’02, pages 494–503. ACM Press, 2002.

[17] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO ’03, volume 2729 of LNCS,
pages 265–281. Springer, 2003.

[18] Cheng-Kang Chu and Wen-Guey Tzeng. Efficient k-out-of-n oblivious transfer schemes with adaptive and non-
adaptive queries. In PKC ’05, volume 3386 of LNCS, pages 172–183, 2005.

[19] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. In CRYPTO
’82, pages 205–210, 1982.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In STOC ’87, pages 218–229, 1987.

[21] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious transfer. In
ASIACRYPT ’07, volume 4833 of LNCS, pages 265–282, 2007.

[22] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In EUROCRYPT
’06, volume 4004 of LNCS, pages 339–358. Springer, 2006.

[23] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT ’08,
volume 4965 of LNCS, pages 415–432. Springer, 2008.

[24] Joe Kilian. Founding cryptography on oblivious transfer. In STOC ’88, pages 20–31, 1988.

[25] Yehuda Lindell. Efficient fully-simulatable oblivious transfer. In CT-RSA ’08 (to appear), 2008. Available at
http://eprint.iacr.org/2008/035.

[26] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In SAC ’99: Proceedings
of the 6th Annual International Workshop on Selected Areas in Cryptography, pages 184–199. Springer, 1999.

[27] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In CRYPTO ’99, volume 1666 of LNCS,
pages 573–590, 1999.

[28] Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Special issue on coding and cryptography Special
issue on coding and cryptography Journal of Complexity, 20(2-3):356–371, 2004.

[29] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious
transfer. In CRYPTO ’08 (to appear), 2008. http://eprint.iacr.org/2007/348.pdf.

[30] Michael Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Computation
Laboratory, Harvard University, 1981.

16

[31] Mike Scott. Authenticated id-based key exchange and remote log-in with simple token and pin number, 2002.
Available at http://eprint.iacr.org/2002/164.

[32] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT ’97, volume 1233
of LNCS, pages 256–266. Springer, 1997.

[33] Andrew Yao. How to generate and exchange secrets. In FOCS ’86, pages 162–167, 1986.

A Proof of Theorem 4.1

Notation: Let νi(·) denote a negligible function where for every polynomial p(·), there exists an
N such that for all integers n > N , it holds that νi(n) < 1/p(n).

Proof. Let A be a static adversary that interacts with parties S,R running protocol OTA param-
eterized with the algorithms of section 4. We construct an adversary S for the ideal functionality
FN×1

OT . S begins by invoking a copy of A and running a simulated interaction with the environment
Z and the parties running the protocol. S proceeds as follows.

Simulating the communication with Z. Every input value that S receives from Z is written
into the adversary A’s input tape. Similarly, every output value written by A on its output tape
is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where only R is corrupted. Let γ ← BMsetup(1κ), then compute
(GS′S , tdsim)← GSSimulateSetup(γ) and (GS′R, tdext)← GSExtractSetup(γ). Generate the remain-
ing elements of crs normally, and set crs ← (γ, GS′S , GS′R, g1, g2, h, g̃1, g̃2, h̃). When the parties
query FCRS , return (sid, crs).

S initiates the communication with A by generating a random message database m̂1, . . . , m̂N
$←

G1, computing T ← OTInitialize(crs, m̂1, . . . , m̂N) and sending (sid, T) to A as if from S. Next,
whenever A outputs (sid, Q), S performs as follows. First, it parses Q as (d1, d2, π) and (if π is valid)
computes GSExtract(crs, tdext, π) to extract a satisfying witness W = (ω1, ω2, ω3, ω4, . . .). Parse T
as (pk , C1, . . . , CN), and for each ciphertext Ci = (c1, c2, . . .) determine whether (ω1, ω2) = (c1, c2).
If no matching ciphertext is found (or multiple ciphertexts match), then S aborts the simulation
and gives no further messages to A.

Otherwise, let σ′ be the index of the matching ciphertext: S sends (sid, receiver, σ′) to FN×1
OT .

When FN×1
OT outputs (sid,mσ′) for mσ′ 6= ⊥, S formulates the response s = (c5ω3ω4)/mσ′ and—

using the simulation trapdoor tdsim— simulates the zero-knowledge proof δ′ indicating that s is
correctly formed according to the statement defined in the OTRespond algorithm (see Lemma A.7
for details on simulating this proof). S then sends R ← (s, δ′) to A as if from S. S repeats this
process for each request received from A.

Simulating the case where only S is corrupted. Our simulation proceeds as follows. Let γ ←
BMsetup(1κ), then compute GSS ← GSSetup(γ) and GSR ← GSSetup(γ). Select g1, g2, h, g̃1, g̃2, h̃
such that gy1

1 = gy2
2 = h (and g̃y1

1 = g̃y2
2 = h̃) for (y1, y2) known to the simulator. Set crs ←

(γ, GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). When the parties query FCRS , return (sid, crs).
S activates A and receives the message (sid, T) that would be A’s first move in a real execution

with R. S verifies that T is correctly-structured, using the public check described in §4. (If T does
not pass this check, S will instruct FN×1

OT to fail on all message requests from R.) Otherwise, S
parses T as (pk , C1, . . . , CN) and for i = 1 to N first parses ciphertext Ci into (c1, c2, c3, c4, c5, . . .),
then computes m′

i ← c5/(cy1
3 cy2

4). S decodes each m′
1, . . . ,m

′
N to a value in {0, 1}` and sends

(sid, sender,m′
1, . . . ,m

′
N) to FN×1

OT .

17

Whenever FN×1
OT outputs (sid) to the dummy S (indicating that R has initiated a transfer

request), S computes (Q,Qpriv) ← OTRequest(crs, T, 1) and hands (sid, Q) to A as if from R.
When S returns (sid, R), S checks whether OTComplete(crs, T, R,Qpriv) = ⊥. If so, then S sets
b← 0, and b← 1 otherwise. S returns (sid, b) to FN×1

OT .

Simulating the case where neither party is corrupted. When S receives k messages of the
form (sid, bi) indicating that transfers have occurred, S generates a simulated transcript between
the honest S and R. In this case, S runs the protocol as specified, using as S’s input the random
database (m̂1, . . . , m̂N), and (for each transfer), R’s input σ = 1. If in the ith transfer bi = 0
then S’s responds with an invalid R (the empty string). Else, S returns a valid response as in the
protocol.

Simulating the case where both parties are corrupted. In this case S knows the inputs to S
and R and can simulate a protocol execution by generating the real messages exchanged between
the two parties.

We now address the environment’s ability to distinguish the ideal execution from the real protocol
execution. This is shown via the following claims.

Claim A.1 When A corrupts only R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the SXDH,

Decision Linear and N -Hidden LRSW assumptions.

Proof. Consider the simulation described above. We will begin with the real-world protocol execu-
tion, where R interacts with an honest S that knows the message database. We will then show via
a series of hybrids that the real execution transcript is computationally indistinguishable from the
simulated transcript. For notational convenience, we define Pr [Game i] as the probability that
environment Z distinguishes the transcript of Game i from that of the real execution. We now
describe the cases:

Game 0. This is the real-world protocol execution, where R interacts with an honest S
running protocol OTA on message database (m1, . . . ,mN). Clearly Pr [Game 0] = 0.

Game 1 (Parameter switching). This execution proceeds as above, except that we com-
pute (GS′S , tdsim) ∈ GSSimulateSetup(γ), (GS′R, tdext) ∈ GSExtractSetup(γ), and substitute
GS′S , GS′R in place of the honestly-generated parameters GSS , GSR (tdsim, tdext are not re-
vealed). When the parties query FCRS , return crs = (γ, GS′S , GS′R, g1, g2, h, g̃1, g̃2, h̃). Note
that if the SXDH assumption holds in G1, G2, then (GS′S , GS′R)

c
≈ (GSS , GSR) (Lemma A.5)

and thus |Pr [Game 1]−Pr [Game 0]| ≤ ν1(κ).

Game 2 (Extracting R’s selections). This execution proceeds as above, except that
for transfer phase i = 1 to k, we compute a candidate for R’s selection σ′i by extracting
from its PoK π. Parse R’s ith request (sid, Qi) to obtain (d1, d2, π) and (provided that π
is valid) run GSExtract(crs, tdext, π) to extract a satisfying witness W = (ω1, ω2, ω3, ω4, . . .).
Parse T as (pk , C1, . . . , CN), and for each ciphertext Ci = (c1, . . . , c9) determine whether
(ω1, ω2) = (c1, c2). Let σ′i be the index of the matching ciphertext. If no matching ciphertext
is found (or multiple ciphertexts match), then output Extract-Fail to Z and send no further
messages to R. By Lemma A.6, this event will occur with negligible probability under the
N -Hidden LRSW assumption; thus |Pr [Game 2]−Pr [Game 1]| ≤ ν2(κ).

18

Game 3 (Simulating S’s responses). This execution proceeds as above, except that we
will formulate each of S’s transfer responses independently of sk. We parse Cσ′i

to obtain
(c1, . . . , c5) and compute s′ = (c5ω3ω4)/mσ′i

. Let S be the statement proved by the Sender dur-
ing the OTRespond algorithm: we compute a simulated PoK δ′ ← GSSimProve(GSS , tdsim, S)
and set R′ ← (s′, δ′). Note that in order to simulate a response during transfer i, it is only
necessary to know the subset of messages, (mσ′1

, . . . ,mσ′i
). By Lemma A.7, the transcript in-

cluding these responses is computationally indistinguishable from the distribution with valid
PoKs. Thus |Pr [Game 3]−Pr [Game 2]| ≤ ν3(κ).

Game 4 (Substituting the ciphertexts). This execution proceeds as above, except
that we replace S’s first message with (sid, T ′) where T ′ ∈ OTInitialize(crs, m̂1, . . . , m̂N) for

m̂1, . . . , m̂N
$← G1. For i = 1 to k, we also modify the ith transfer phase such that S’s

response is (sid, R′
i) for R′

i = (s′, δ′) computed as in Game 3, except that we must now
compute the PoK δ on a possibly invalid statement S. By Lemma A.8, the hardness of
the Decision Linear problem implies that the distribution of messages is indistinguishable
from the real execution, even though s′ may be incorrectly formed with respect to S. Thus
|Pr [Game 4]−Pr [Game 3]| ≤ ν4(κ).

Notice that the distribution produced in Game 4 is identical to that of our simulation. By sum-
mation, we have that Pr [Game 4] ≤ ν5(κ) and thus IDEALFN×1

OT ,S,Z
c
≈ EXECOTA,A,Z under the

N -Hidden LRSW and Decision Linear assumptions.
2

Claim A.2 When A corrupts only S, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the SXDH and

N -Hidden LRSW assumptions.

Proof. Consider the simulation described above. Again we begin with the real-world protocol
execution, where S interacts with an honest R that chooses messages according to an arbitrary
selection strategy Σ. We then show via a series of hybrids that the real execution transcript is
computationally indistinguishable from the simulated transcript.

Game 0. This is the real-world protocol execution, where S interacts with an honest R
running protocol OTA using selection strategy Σ. Clearly Pr [Game 0] = 0.

Game 1 (Parameter generation). This execution proceeds as above, except that we select
elements of crs such that gx

1 = gy
2 = h (and g̃x

1 = g̃y
2 = h̃) for known (x, y). When the parties

query FCRS , return crs = (γ, GSS , GSR, g1, g2, h, g̃1, g2, h). Note that the distribution of crs
is identical to the normal distribution. Thus |Pr [Game 1]−Pr [Game 0]| = 0.

Game 2 (Substituting R’s queries). Next, during transfer i = 1 to k, we modify the
transcript by generating Q′

i ← OTRequest(T, 1) and replacing R’s request with (sid, Q′
i).

Let Q′ = (d′1, d
′
2, π

′). Observe that for any i ∈ [1, N], where Ci = (c1, . . . , c5, . . .), we
can express d′1, d

′
2 as c1u

v′1
1 , c2u

v′2
2 for some v′1, v

′
2. Thus for every Ci there exists a witness

(c1, c2, h
v′1 , hv′2 , sig1, sig2, sig3) that satisfies the pairing product equation Sπ. By the Witness-

Indistinguishability property of the Groth-Sahai proof system, the value Q′
1 is indistinguish-

able from a request formed on a different σj ∈ [1, N]. Thus |Pr [Game 2]−Pr [Game 1]| ≤
ν1(κ).

19

Game 2 has an identical distribution to our simulation, and Pr [Game 2] ≤ ν1(κ). It remains to
show that the in our simulation the distribution of messages obtained by an ideal R interacting with
FN×1

OT are identical to the messages recovered by an honest R running the protocol directly with
S. This implies that for every set of indices (σ1, . . . , σk) the plaintexts (m′

σ1
, . . . ,m′

σk
) obtained by

S— which decrypts the ciphertexts in T with the trapdoor (x, y)— are identical to the messages
recovered by an honest R running the protocol with S.

S’s initial output T embeds pk = (u1, u2, . . .). Let (a, b) be S’s secret key, which is implicitly
defined by ua

1 = ub
2 = h. We observe that if T passes the validity check run by honest R, then each

ciphertext Ci can be expressed as (ur
1, u

s
2, g

r
1, g

s
2,mih

r+s, . . .) for some r, s ∈ Zp and mi ∈ G1. Since
the simulator constructed g1, g2 such that gx

1 = gy
2 = h then it necessarily holds that (pra

1 psb
2) =

(grx
1 gsy

2) = hr+s. Let us consider an honest R that requests index i from S. It selects v1, v2 ∈ Zp and
sets d1 = ur

1u
v1
1 , d2 = us

2u
v2
2 , sending request Q = (d1, d2, π). Let R = (s, δ) be the response from

S. If PoK δ verifies, then (by the soundness property of the proof system) with all but negligible
probability s = da

1d
b
2 and the honest R computes the message as (mih

s+r)/(da
1d

b
2h

−v1h−v2) =
mi. This is identical to the decryption obtained by S using the trapdoor (x, y), which produces
hs+r/(grx

1 gsy
2) = mi . Thus, the distribution of messages given to FN×1

OT by S is indistinguishable
from the distribution of messages obtained by running the protocol directly with S.

2

Claim A.3 When A corrupts neither S nor R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z under the

SXDH, Decision Linear and N -Hidden LRSW assumptions.

We omit a formal proof of this claim, but note that it re-uses techniques identical to those of the
previous claims. Specifically, we replace the Sender’s initial message T with a commitment to a
random database, and show that this random database is indistinguishable from a real database
under the Decision Linear assumption (as in Claim A.1). We then argue that by the Witness-
Indistinguishability property of the Groth-Sahai proof system, the extractions on message index 1
are indistinguishable from extractions on other message indices (as in Claim A.2).

Claim A.4 When A corrupts both S and R, then IDEALFN×1
OT ,S,Z

c
≈ EXECOTA,A,Z .

We omit a formal proof of this claim.

Lemma A.5 Under the SXDH assumption, the parameters generated by GSSetup (and GSExtractSetup)
are computationally indistinguishable from those produced by GSSimulateSetup.

We refer the reader to the work of Groth and Sahai [23] for a proof of this theorem.

Lemma A.6 Under the N -Hidden LRSW and co-CDH6 assumptions, the probability that S outputs
Extract-Fail in Game 3 is negligible.

Proof sketch. Let T = (pk , C1, . . . , CN) be honestly-generated as in Game 3. Consider A’s request
(sid, Qi) at transfer i ∈ [1, k], and parse Qi as (d1, d2, π) where π is a PoK (of the statement described
in the definition of OTRequest) using parameters GS′R. Note that the simulator knows the trapdoor

6Computational co-Diffie-Hellman (CDH) is implied by N -Hidden LRSW; thus, no new assumptions are being
introduced here.

20

tdext corresponding to GS′R, and can therefore extract a satisfying witness W = (ω1, ω2, . . .) ←
GSExtract(GSR, tdext, π) (in the general case, extraction succeeds with probability ≥ 1 − ν(κ) by
the Soundess property of the Groth-Sahai proof system).7 Since extraction fails with at most
negligible probability, then if S outputs Extract-Fail with non-negligible probability, then it
must be that that for j ∈ [1, N] there is either (a) no single ciphertext Cj = (cj,1, . . . , cj,5, . . .) such
that (ω1, ω2) = (cj,1, cj,2), or (b) there are multiple ciphertexts for which the relation holds.

We can easily dispose of case (b): since T is honestly generated, then for each ciphertext
(cj,1, . . . , cj,5, sig1, sig2, sig3), the values cj,1, cj,2 are uniformly distributed in G1. Therefore, the
probability is negligible that any two distinct ciphertexts are identical in the first two elements. This
it remains only to address case (a) where there is no ciphertext Cj such that (cj,1, cj,2) = (ω1, ω2).
This condition can be further divided into two sub-cases:

1. Where for i 6= j there exists some pair of ciphertexts Ci, Cj such that ω1 = ci,1 and ω2 = cj,2.
2. Where there is no pair of ciphertexts such that the above condition holds, i.e., either ω1 or

ω2 is not contained within any ciphertext in T .

We now show that if A outputs a PoK satisfying condition (1) then we can use its response to
solve the co-CDH problem, and if A satisfies condition (2) we can solve N -Hidden LRSW. We now
describe each of the two simulations:

Case 1: co-CDH. We consider the case where A produces (ω1, ω2) = (ci,1, cj,2) for i 6= j, and show
that an A that produces such a query can be used to solve the Computational co-Diffie-Hellman
problem in G1, G2, i.e., given (g, ga, gb, g̃, g̃a, g̃b) for a, b ∈R Zp, solve for gab. The intuition behind
this argument is that the final component sig3 is a signature on the product (c1c2). This signature
is built from the Boneh-Boyen selective-ID IBE scheme from [4] (§4), and a forger of this scheme
can be used to solve the co-CDH problem in asymmetric bilinear groups.8 Our reduction is based
on the one given by Boneh and Boyen, although we reduce to co-CDH. Since the N -Hidden LRSW
assumption implies the hardness of co-CDH, we are not introducing a new assumption.

Given an input (g, ga, gb, g̃, g̃a, g̃b) to the co-CDH problem: select random values u, v, w, y
$← Zp.

Set (u1, u2) ← (ga, gau), (ũ1, ũ2) ← (g̃a, g̃au) and h′ ← (ga)−vgw. Generate (vk1, sk1), (vk2, sk2) as
in the normal scheme, but set vk3 = (γ, g, g̃, ga, gb, h′, g̃b). Set pk ← (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
Randomly select two ciphertext indices i∗, j∗ such that i∗ 6= j∗.

Now for i = 1 to N , choose ri, si, yi uniformly from Zp with the restriction that (ri∗ + usj∗) =
v mod p. Set zi = (ri + usi) mod p. Generate sig1 ← CLSignsk1

(ur
1), sig2 ← CLSignsk2

(us
2), and set

sig3 ←
(
(gb)

−w
zi−v ((ga)zi−vgw)yi , (g̃b)

−1
zi−v g̃yi , (gb)

−1
zi−v gyi

)
. Construct the ith ciphertext as:

Ci =
(
uri

1 , usi
2 , gri

1 , gsi
2 ,mjh

ri+si , sig1, sig2, sig3

)
(Note that the sig3 has the correct distribution. Let ŷi = yi− b/(zi − v), and re-write (g̃b)

−1
zi−v g̃yi =

g̃yi−b/(zi−v) = g̃ŷi (and similarly for the third element). We can then express the first element

(gb)
−w

zi−v ((ga)zi−vgw)yi as (gb)a ((ga)zi−vgw)yi− −b
zi−v = (gab) (gazih′)ŷi = ga

1((ga)ri+usih′)ŷi .)

7In fact, for parameters GS′R ∈ GSExtractSetup(), Groth-Sahai proofs are perfectly extractable [23].
8Note that a selective-ID IBE scheme implies a secure signature scheme only if the message space is polynomial

in κ. Since in this case A succeeds by proving knowledge of a signature on message (ci,1cj,2) for some i 6= j, we have
naturally restricted the total number of valid messages to N2 −N .

21

Now set T ← (pk , C1, . . . , CN) and send T to A. Whenever A submits a request Q = (d1, d2, π)
where π verifies correctly, use the extraction trapdoor to obtain the values (ω1, ω2, ω3, ω4) and the
values s′1, s̃

′
2, s

′
3 corresponding to sig3. Now:

1. If, for some j ∈ [1, N], the pair (ω1, ω2) = (urj

1 , u
sj

2): then output a valid response to A
by selecting s′ = (hrj+sjω3ω4), constructing the proof δ′, and sending R = (s′, δ′) to A.9

Continue the simulation.
2. If (ω1, ω2) = (uri∗

1 , u
sj∗
2), then compute s′1/s′w3 as the solution to the co-CDH problem.

3. In all other cases, abort the simulation.

Observe that in case (2) the soundness of the G-S proof system ensures that for some y′ we can
represent (s′1, s̃

′
2, s

′
3) = ((ga)vh)y′gab, g̃y′ , gy′). By substitution we obtain ((ga)v(ga)−vgw)y′gab, g̃y′ , gy′) =

(gwy′gab, g̃y′ , gy′), and thus s′1/s′w3 = gab. In this case, we can obtain the value gab and output a
correct solution to the co-CDH problem.

Note that the distribution of the messages sent to A is identical to that of the real attack, and
are independent of i∗, j∗ in A’s view. Therefore, if A produces (ω1, ω2) = (ci′,1, cj′,2) for i′ 6= j′

with some non-negligible probability ε, then the approach above solves co-CDH with probability
approximately ε

N2−N
, i.e., the probability that that (i′, j′) = (i∗, j∗).

Case 2: N-Hidden LRSW. In the case where either ω1 or ω2 is not contained within any ci-
phertext in T , then we will construct a solver for the N -Hidden LRSW problem. Our simulation
proceeds as follows: given the N -Hidden LRSW instance (g, g̃, S, T, {b1, b

s+a1st
1 , ba1

1 , ba1t
1 , ga1 , b̃1},

. . . , {bq, b
s+aqst
q , b

aq
q , b

aqt
q , gaq , b̃q}), randomly select s ∈ {1, 2} representing one of the following two

strategies.

Strategy 1. Select a secret key sk = (x1, x2)
$← Z2

p for the OT scheme and select
u1, u2, u1, u2, h, h̃ such that u1 = g, ũ1 = g̃, ux1

1 = ux2
2 = h and ũx1

1 = ũx2
2 = h̃. Select values

(g1, g2, g̃1, g̃2) for crs such that g1 = ut
1 for random t ∈ Zp, and g2 is a random element.

Generate (vk2, sk2), (vk3, sk3) as in the normal scheme, and set vk1 = (γ, g, g̃, S, T). To
compute each ciphertext, set sig1 ← (bj , b

aj

j , b
s+ajst
j , b

ajt
j , b̃j) and compute sig2, sig3 normally.

Select a random yj ∈ Zp and set Cj ← (gaj , u
yj

2 , gajt, g
yj

2 , gajx1hyjmj , sig1, sig2, sig3).
Strategy 2. Similar to the previous strategy, but formulate vk2 and embed gaj in the second
position of Cj .

Observe that since the values a1, . . . , aN from the N -Hidden LRSW instance are uniformly dis-
tributed, then T has the correct distribution. Next, answer A’s queries using the key sk , extracting
a witness W = (ω1, ω2, . . .) from the proof π. Note that from the witness W it is possible to obtain
the full value of sig1. If ever A outputs a PoK π such that for Strategy s ∈ {1, 2} the extracted
witness ωs does not match any cj,s ∈ Cj , then extract the witness values for the proof of signature
s— and output these as 〈a′1, a′2, a′3, a′4, ã′5. Otherwise abort. This tuple represents a valid solution
to the N -Hidden LRSW problem. Since all values are correctly distributed and s is outside of A’s
view, then we select the correct strategy with probability 1/2.

To conclude our sketch, note that we have covered all cases where event Extract-Fail can
occur. Thus if the event occurs with probability non-negligible in κ then we have an algorithm that
solves N -Hidden LRSW or CDH with non-negligible probability.

9Note that we can simulate the proof δ′, but this is not even necessary, since we can construct a valid witness to
the statement.

22

2

Lemma A.7 Replacing S’s honestly-generated responses (as in Game 2) with simulated responses
(as in Game 3) results in a simulation that is computationally indistinguishable from that of Game
2.

Proof sketch. Consider a transcript where each response (sid, R) is replaced with a simulated
response (sid, R′). Let R = (s, δ) be the honestly-generated response, and let R′ = (s′, δ′) be the
simulated response. To complete our argument, we must show that for any given reponse: (1) with
probability at most ν(κ), the value s 6= s′, and (2) the PoK δ

c
≈ δ′. This must hold for all A,Z.

Recall that pk embeds u1, u2 such that ux1
1 = ux2

2 = h for some x1, x2 ∈ Zp. A initiates
the transfer by sending a message (sid, Q) containing the values (d1, d2, π). Using the extraction
algorithm, we obtain a witness W = (ω1, ω2, ω3, ω4, . . .) to the statement Sπ. Note that a correctly-
formed response will have the form s = (dx1

1 dx2
2), and for Cσ′ = (c1, . . . , c5, . . .) a simulated response

has the form s′ = (c5ω3ω4)/mσ′ , which we expand to s′ = (cx1
1 cx2

2 mσ′h
v1hv2)/mσ′ for some (v1, v2).

We omit a detailed expansion, but observe that by the statement Sπ it holds that d1 = c1h
v1/x1

and d2 = c2h
v2/x2 and thus our simulated s′ is identical to the correct response s.

Paraphrasing the composable zero-knowledge property of the Groth-Sahai proof system, when
(GS′S , tdsim) ∈ GSSimulateSetup() we can simulate a PoK δ′ ← GSSimProve(GS′S , Sδ) such that no
adversary can distinguish δ′ from a valid PoK. It is easy to show that we can simulate the statement
Sδ. Recall that the δ is defined as:

δ = N IZKGSS
{(a1, a2, ã3) : e(a1, ũ1)e(d−1

1 , ã3) = 1 ∧
e(a2, ũ2)e(d−1

2 , ã3) = 1 ∧ e(a1a2, ã3)e(s−1, ã3) = 1 ∧ e(u1, ã3) = e(u1, h̃)}

To simulate the proof, we must select commitments to represent a1, a2, ã3, and we then compute
opening values such that each statement is satisfied. Note that using the simulation trapdoor
tdsim we may open the commitment differently in each statement. To simulate a proof δ′, set
a1 = a2 = a3 = h0 and generate commitments to each value. In the first three statements, we open
the third commitment to h0. In the final statement, we use the simulation trapdoor to open the
third commitment to h1. Thus, all statements are satisfied.

2

Lemma A.8 Let m1, . . . ,mN ∈ G1 be any message database, and m̂1, . . . , m̂N ∈R G1 be
a set of random messages. Also let all of S’s responses be computed as in Game 3. Un-
der the Decision Linear assumption, no environment Z will distinguish the transcript where
T = OTInitialize(crs,m1, . . . ,mN) from the transcript where T = OTInitialize(crs, m̂1, . . . , m̂N)
(except with negligible probability).

Proof sketch. Let D = (g, g̃, f, f̃ , h, h̃, ga, f b, zd) be a candidate Decision Linear tuple. Next,
consider a simulation that behaves as follows:

1. Set u1 = g, u2 = f, ũ1 = g̃, ũ2 = f̃ . Select random y1, y2 ∈ Zp, and set g1 = uy1
1 , g2 = uy2

2 (and
similarly for g̃1, g̃2). Fix crs← (γ, GS′S , GS′R, g1, g2, h, g̃1, g̃2, h̃).

23

2. Generate (vk1, sk1), (vk2, sk2), (vk3, sk3) as in normal operation. Set pk = (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. For i = 1 to N , choose fresh random s, t1, t2 ∈ Zp and set c1 = gasgst1 , c2 = f bsfst2 . Set Ci:

Ci = (c1, c2, c
y1
1 , cy2

2 , zs
dh

s(t1+t2)mj , sig1, sig2, sig3)

where sig1, sig2, sig3 are generated normally using the appropriate secret keys.
4. Set T ← (pk , C1, . . . , CN).
5. The simulation proceeds as in Game 3 at answer transfer requests.

Note that in the above, if zd = ha+b, then the above simulation perfectly encrypts (m1, . . . ,mN).
However, when zd is a random element of G1, then the ciphertexts correspond to encryptions of
random elements in G1. Now, suppose for the sake of contradiction, that there exists a Z who can
distinguish case one from case two with non-negligible probability ε. Then, it is easy to see that
we can use Z to decide Decision Linear. 2

2

B Double-Trapdoor BBS Encryption

In Section 4, we make sure of a ciphertext which is based on the prior work of Boneh, Boyen, and
Shacham [5] and has some interesting properties which are necessary for our simulation. In our OT
constructions, we need an encryption scheme with a “double-trapdoor” (so that both the simulator
in charge of the crs and the sender in charge of the pk can extract the messages of the ciphertext.)

Boneh, Boyen and Shacham [5] describe a semantically-secure encryption scheme based on the
Decision Linear (DLIN) assumption. We extend their scheme into a two-key (double-trapdoor)
encryption scheme with a public consistency check. In this system, we can encrypt a message
under two distinct public keys pk1, pk2, such that either of the corresponding secret keys sk1, sk2

will decrypt the ciphertext. For every well-formed ciphertext, it must be the case that decryption
will produce the same message regardless of which secret key is used. To satisfy this requirement,
we also define a publicly-computable check for ciphertext well-formedness (i.e., the check does not
require knowledge of either secret key).

Let BMsetup(1κ)→ γ = (p, G1, G2, GT , e, g, g̃). Define global parameters h, h̃ such that e(g, h̃) =
e(g̃, h), and for i ∈ [1, 2] select sk i ← (xi, yi ∈R Zp) and pk i ← (h1/xi , h1/yi , h̃1/xi , h̃1/yi ∈ G2

1 ×G2
2).

To encrypt a message m ∈ G1 under pk1 = (u1, v1), pk2 = (u2, v2), first select random values
r, s ∈ Zp and output the ciphertext (ur

1, v
s
1, u

r
2, v

s
2, h

r+sm). To decrypt a message (c1, . . . , c5) under
sk1 = (x1, y1), output c5/(cx1

1 ·c
y1
2). To decrypt under sk2 = (x2, y2), output c5/(cx2

3 ·c
y2
4). Note that

the structure of a ciphertext can be verified using the bilinear map, by checking that e(c1, ũ2) =
e(u1, c̃3) ∧ e(c2, ṽ2) = e(v1, c̃4) It is straightforward to show that the scheme above is semantically-
secure under the DLIN assumption.

C Generic Group Proof of Hidden LRSW Assumption

We provide evidence to that the q-Hidden LRSW assumption may be hard. In the generic group
model, elements of the bilinear groups G1, G2, and GT are encoded as unique random strings. Thus,
the adversary cannot directly test any property other than equality. Oracles are assumed to perform
operations between group elements, such as performing the group operations in G1, G2, and GT .

24

The opaque encoding of the elements of G1 is defined as the function ξ1 : Zp → {0, 1}∗, which maps
all a ∈ Zp to the string representation ξ1(a) of ga ∈ G1. Likewise, we have ξ2 : Zp → {0, 1}∗ for
G2 and ξT : Zp → {0, 1}∗ for GT . The adversary Adv communicates with the oracles using the
ξ-representations of the group elements only.

Theorem C.1 (Hidden LRSW is Hard in Generic Groups) Let Adv be an algorithm that
solves the q-Hidden LRSW problem in the generic group model. Let qG be the number of queries
Adv makes to the oracles computing the group action and pairing. If ξ1, ξ2, ξT are chosen at ran-
dom, then the probability ε that Adv(p, ξ1(1), ξ2(1), ξ2(S), ξ2(T), {ξ1(Xi), ξ1(Ai), ξ2(Ai), ξ1(AiXi),
ξ1(AiXiT), ξ1(Ai(S+STXi))}i∈[1,q]) outputs a tuple (ξ1(X), ξ1(A), ξ2(A), ξ1(AX), ξ1(AXT), ξ1(A(S+
STX))) for some A,X where A 6= 0, X 6= 0 and X 6∈ {Xi}, is bounded by

ε ≤ (qG + 6q + 4)2 · 5
p

.

Proof. Consider an algorithm B that interacts with Adv in the following game.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =

0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such that, at step τ in the game, we have
τ1 + τ2 + τT = τ + 4 + 6q. Let the F1,i, F2,i and FT,i be multivariate polynomials in Zp[S, T, Ai, Xi].
The ξ1,i, ξ2,i, and ξT,i are set to unique random strings in {0, 1}∗. We start the Hidden LRSW
game at step τ = 0 with τ1 = 1 + 5q, τ2 = 3 + q, and τT = 0. These correspond to the polynomials
F1,0 = F2,0 = 1, F2,1 = S, F2,2 = T , F1,1 = X1, F1,2 = A1, F2,3 = A1, F1,3 = A1X1, F1,4 = A1X1T
and F1,5 = A1(S + STX1), etc.
B begins the game with Adv by providing it with the random strings ξ1,0, . . . , ξ1,5q, ξ2,0, . . . , ξ2,q+2.

Now, we describe the oracles Adv may query.

Group action: Adv inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i, j < τ1, and a request to
multiply/divide. B sets F1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,u for some u ∈ {0, . . . , τ1 − 1}, then
B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}.
Finally, B returns ξ1,τ1 to Adv, adds (F1,τ1 , ξ1,τ1) to L1, and increments τ1. Group actions for
G2 and GT are handled the same way.

Pairing: Adv inputs two group elements ξ1,i and ξ2,j , where 0 ≤ i < τ1 and 0 ≤ j < τ2. B sets
FT,τT

← F1,i · F2,j . If FT,τT
= FT,u for some u ∈ {0, . . . , τT − 1}, then B sets ξT,τT

= ξT,u;
otherwise, it sets ξT,τT

to a random string in {0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. Finally, B returns
ξT,τT

to Adv, adds (FT,τT
, ξT,τT

) to LT , and increments τT .

We assume SXDH holds in (G1, G2, GT) and therefore no ismorphism oracles exist.
Eventually Adv stops and outputs a tuple of elements (ξ1,a, ξ1,b, ξ2,f , ξ1,c, ξ1,d, ξ1,e), where 0 ≤

a, b, c, d, e < τ1 and 0 ≤ f < τ2.
Analysis of Adv’s Output. We now argue that it is impossible for Adv’s output to always be

correct. Each output polynomial must be some linear combination of polynomials corresponding
to elements available to Adv in the respective groups. Consider the polynomials F1,e and F2,f .

F1,e := e0 + e1,iXi + e2,iAi + e3,iAiXi + e4,iAiXiT + e5,iAi(S + STXi) (1)
F2,f := f0 + f1S + f2T + f3,iAi (2)

25

where aiAi is shorthand for
∑q

i=1 aiAi. For Adv’s answer to be correct, we know their relationship
must be, for some X:

P := F1,e − F2,f (S + STX) ≡ 0 mod p.

By substituting in equations 1 and 2, we get:

P = e0 + e1,iXi + e2,iAi + e3,iAiXi + e4,iAiXiT + e5,iAi(S + STXi)−
f0(S + STX)− f1S(S + STX)− f2T (S + STX)− f3,iAi(S + STX)

Looking at the unique terms of this polynomial, we can immediately see that for P ≡ 0, it must
be the case that for all i:

e0 = 0 , e1,i = 0 , e2,i = 0 , e3,i = 0 , e4,i = 0, f0 = 0 , f1 = 0 , f2 = 0

Thus, we are left with P = e5,iAi(S + STXi)− f3,iAi(S + STX). Since F2,f 6= 0, we know that
f3,i 6= 0 (for at least one i) and thus e5,j 6= 0 (for at least one j). It is easy to see that e5,j cannot be
non-zero for more than one value, since it will not be possible to cancel both corresponding terms.
Thus, the only resolution is for X = Xj , which is a contradiction. We conclude that Adv’s success
depends solely on his luck when the variables are instantiated.

Analysis of B’s Simulation. At this point B chooses random values to instantiate the vari-
ables s, t, xi, ai ∈ Zp. We know that the chance of choosing a random assignment that hits the root
of any given polynomial is bounded from above by the Schwartz-Zippel theorem by the degree of
the polynomial divided by p. The maximum total degree of any polynomial here is 5. Taking all
pairs of polynomials into consideration, we can bound the probability that a collision causes B’s
simulation to fail as ≤

(
qG+6q+4

2

)
5/p ≤ (qG + 6q + 4)25/p. 2

D An Alternate Construction from the Uniform Hidden q-SDH
and q-SDLIN Assumptions

In this section we describe a second adaptive oblivious transfer construction, using an alternative
set of assumptions in the symmetric bilinear map setting. The security of this second scheme is
based on the following hardness assumptions:

Uniform q-Hidden Strong Diffie-Hellman (q-HSDH) [7, 3]: Let BMsetup(1κ)→ (p, G, GT , e, g)
= γ. For all p.p.t. adversaries Adv, the following probability is strictly less than 1/poly(κ):

Pr[h $← G;x, c1, . . . , cq
$← Zp; (A,B, C)← Adv(γ, g, gx, h, (g1/(x+c1), gc1 , hc1) ∈ G3, . . . ,

(g1/(x+cq), gcq , hcq) ∈ G3) : (A,B, C) = (g1/(x+c), gc, hc) ∧ c /∈ {c1, . . . , cq}].

Boyen and Waters did not specify the distribution for sampling the ci values in q-HSDH [7]. Fol-
lowing Belenkiy et al. [3], we explicitly require that they be sampled uniformly from Zp.

q-Strong Decision Linear (q-SDLIN): Let BMsetup(1κ) → (p, G, GT , e, g) = γ. Let u, v, h
be random elements in G and x1, x2, ri, si be random values in Zp, then given the values
(γ, u, v, h, ux1 , ux2 , {uri , vsi , u1/(x1+ri), v1/(x2+si)}i∈[1,q]), no p.p.t. adversary Adv can distinguish
{hri+si}i∈[1,q] from q random values in G with non-negligible advantage.

26

D.1 The Construction

This OTN
k×1 fits within the framework described in Figure 4, but uses an alternative set of algorithms

(OTGenCRS, OTInitialize, OTRequest, OTRespond, OTComplete), which we will now describe:

OTGenCRS(1κ). Given security parameter κ, generate parameters for a bilinear mapping γ =
(p, G, GT , e, g) ← BMsetup(1κ). Compute GSS ← GSSetup(γ) and GSR ← GSSetup(γ).
Choose random values g1, g2, h ∈ G and output crs = (γ, GSS , GSR, g1, g2, h).

OTInitialize(crs,m1, . . . ,mN). This algorithm is executed by the Sender. On input a collection of
N messages and the crs, it outputs a commitment to the database, T , for publication to the
Receiver, together with a Sender secret key, sk. We treat messages as elements of G, since
there exist efficient mappings between strings in {0, 1}` and elements in G (e.g., [6, 1]).

1. Choose random values x1, x2, α1, α2, α3 ∈ Zp.
2. Set (u1, u2)← (h1/x1 , h1/x2), and pk ← (u1, u2, u

α1
1 , uα2

2 , gα3
2).

3. For j = 1, . . . , N encrypt each message mj as:
(a) Select random r, s, t ∈ Zp.

(b) Set Cj ←
(
ur

1, us
2, gr

1, gs
2, mj · hr+s, u

1/(α1+r)
1 , u

1/(α2+s)
2 , gt

2, (ur
1u

s
2h)tgα3

1

)
.

4. Set T ← (pk , C1, . . . , CN) and sk ← (x1, x2). Output (T, sk).

Notice that the value T has a structure that can be publicly verified. Represent pk as
(p1, . . . , p5). Parse each ciphertext Ci as (c1, . . . , c9) and check that the following conditions
hold:

e(p1, c3) = e(c1, g1) , e(p2, c4) = e(c2, g2)
e(c6, p3 · c1) = e(p1, p1) , e(c7, p4 · c2) = e(p2, p2)

, e(g2, c9)/e(c8, c1 · c2 · h) = e(g1, p5).

OTRequest(crs, T, σ). This algorithm is executed by a Receiver. On input T generated by the
Sender, along with an item index σ, generates a query Q for transmission to the Sender.

1. Parse T as (pk , C1, . . . , CN), and ensure that it is correctly formed (see above). If T is
not correctly formed, abort the protocol. This check need be done only once.

2. Parse crs as (γ, GSS , GSR, g1, g2, h), pk as (p1, . . . , p5), and Cσ as (c1, . . . , c9).
3. Select random v1, v2 ∈ Zp and set d1 ← (c1 · pv1

1), d2 ← (c2 · pv2
2), t1 ← hv1 , t2 ← hv2 .

4. Use the Groth-Sahai techniques and reference string GSR to compute the Witness-
Indistinguishable proof of values pertaining to the ciphertext Cσ (which the Receiver
wishes to have the Sender help him open) and blinding values:

π = N IWIGSR
{(c1, c2, c3, c4, c6, c7, c8, c9, t1, t2) :

e(c6, p3 · c1) = e(p1, p1) ∧ e(p1, c3)e(c1, g
−1
1) = 1 ∧

e(c7, p4 · c2) = e(p2, p2) ∧ e(p2, c4)e(c2, g
−1
2) = 1 ∧

e(d1 · c−1
1 , h)e(p−1

1 , t1) = 1 ∧ e(d2 · c−1
2 , h)e(p−1

2 , t2) = 1 ∧
e(g2, c9)e(c8, c1 · c2 · h)−1 = e(g1, p5)}

27

To explain what is happening in this statement, first observe that the second and fourth
equations ensure that (p1, g1, c1, c3) and (p2, g2, c2, c4) are both DDH tuples. Thus, for
some values of r, s ∈ Zp, we have that pr

1 = c1, gr
1 = c3, ps

2 = c2 and gs
2 = c4. Under this

characterization of (c1, c2) and with (p1, . . . , p5) all public, the first and third equations
ensure that c6 = p

1/(α1+r)
1 and c7 = p

1/(α2+s)
2 , where p3 = pα1

1 and p4 = pα2
2 for some

values α1, α2 ∈ Zp. The next two equations guarantee that if we view d1 = pv1+r
1 and

d2 = pv2+s
2 , for some values v1, v2 ∈ Zp, then t1 = hv1 and t2 = hv2 . Finally, the

last equation ensures that if we represent c8 = gt
2 and p5 = gα3

2 for some t, α3, then
c9 = (c1c2h)t · gα3

1 . These checks guarantee that the witness used by the Receiver,
and thus the decryption request being made, corresponds to one of the N ciphertexts
published by the Sender.

5. Set request Q← (d1, d2, π), and private state Qpriv ← (Q, σ, v1, v2). Output (Q,Qpriv).

OTRespond(crs, T, sk, Q). This algorithm is executed by the Sender. If the Sender does not wish
to answer any more requests for the Receiver, then the Sender outputs the message “reject”.
Otherwise, the Sender processes the Receiver’s request Q as:

1. Parse crs as (γ, GSS , GSR, g1, g2, h), T as (pk , C1, . . . , CN), and sk as (x1, x2).
2. Parse pk (from T) as (p1, . . . , p5).
3. Parse Q as (d1, d2, π) and verify proof π using GSR. Abort if verification fails.
4. Set a1 ← dx1

1 , a2 ← dx2
2 , and s← a1 · a2.

5. Use the Groth-Sahai techniques and reference string GSS to formulate a zero-knowledge
proof that the decryption value s is properly computed:

δ = N IZKGSS
{(a1, a2, a3) : e(a1, p1)e(d−1

1 , a3) = 1 ∧ e(a2, p2)e(d−1
2 , a3) = 1 ∧

e(s, a3)e(a1 · a2, h
−1) = 1 ∧ e(g, a3) = e(g, h)}

Observe that the last equation ensures that a3 = h. The third equation ensures that
s = a1 · a2, while the first two, since the values (p1, d1, p2, d2, h) are known to both
parties, ensure that a1 = dx1

1 and a2 = dx2
2 . This guarantees that s is correctly formed.

6. Output R← (s, δ).

OTComplete(crs, T, R,Qpriv). This algorithm is executed by the Receiver. On input R generated
by the Sender in response to a request Q, along with state Qpriv, outputs a message m or ⊥.
If R is the message “reject”, then the Receiver outputs ⊥. Otherwise, the Receiver does:

1. Parse crs as (γ, GSS , GSR, g1, g2, h), T as (pk , C1, . . . , CN), R as (s, δ), and Qpriv as
(Q, σ, v1, v2).

2. Verify proof δ using GSS . If verification fails, output ⊥.
3. Parse Cσ as (c1, c2, c3, c4, c5, . . .) and output m = c5/(s · h−v1 · h−v2).

D.2 Efficiency Analysis

When the protocol in Figure 4 is implemented using the algorithms described above, we obtain a
(k + 1/2)-round protocol with communications cost O(N + k), where k ≤ N . More concretely, the
crs is comprised of 15 elements in G, the Sender’s public key contains 5 elements in G, and each of

28

the N ciphertexts in T requires 9 elements in G. Moreover, each item transfer involves transmission
of 95 elements of G from Receiver to Sender, and then 46 elements of G from Sender to Receiver.

The message space of our OT protocol is elements in G, which will be sufficient for transferring
a symmetric encryption key to unlock a file of arbitrary size.

D.3 Security Analysis

Theorem D.1 Instantiated with the above algorithms, OTA securely realizes the functionality
FN×1

OT in the FCRS-hybrid model under the q-Strong Decision Linear and uniform q-HSDH as-
sumptions.

Let us now provide some intuition behind this proof. When either the Sender or the Receiver is
corrupted, we wish to describe a simulator S such that it can interact with the ideal functionality
FN×1

OT (which we’ll denote simply as F) and the environment Z appropriately; i.e., IDEALF ,S,Z
c
≈

EXECOTA,A,Z .
We begin with the case where the real world adversary A corrupts the Sender, and thus S must

interact with F as the ideal Sender and with (an internal copy of) A as a real-world Receiver. Here
S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G, GT , e, g) ← BMsetup(1κ), GSS ← GSSetup(γ), GSR ← GSSetup(γ), and selecting ran-
dom elements h ∈ G and a1, a2 ∈ Zp. Set crs = (γ, GSS , GSR, ha1 , ha2 , h). When the parties
query FCRS , return (sid, crs).

2. Obtain the database commitment T from A. Verify that T is well-formed, abort if not.
Otherwise, use a1, a2 to decrypt each ciphertext Ci = (c1, . . . , c9) as mi = c5/(c1/a1

3 · c1/a2

4).
Map each element mi ∈ G to a string in {0, 1}` [1]. Send (sid,S,m1, . . . ,mN) to F .

3. Upon receiving (sid, request) from F , choose a random index σ ∈ [1, N] and return
OTRequest(crs, T, σ) to A. This response includes two random values d1, d2 and a non-
interactive witness indistinguishable proof with respect to GSR ∈ crs that d1, d2 correspond
to a ciphertext Cσ. This proof can be performed honestly and without rewinding.

4. If A issues a “reject” message or responds with anything other than a value in G and a valid
NIZK proof, then S tells F to fail the request by sending message (sid, 0). Otherwise, S sends
the message (sid, 1) to F .

The indistinguishability argument here follows from the indistinguishability of the crs (from a
real crs), the perfect extraction of the messages mi, and the WI proof during each request phase,
which guarantees that A (the corrupt Sender) cannot be selectively choosing to fail based on the
Receiver’s choices. Thus, S can adequately mimic its response pattern.

Next, we consider the case where the real world adversary A corrupts the Receiver, and thus S
must interact with F as the ideal Receiver and with (and internal copy of) A as real-world Receiver.
This case requires that the q = N for the uniform q-HSDH assumption. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by running γ =
(p, G, GT , e, g) ← BMsetup(1κ), (GSS , tdsim) ← GSSimulateSetup(γ) and (GSR, tdext) ←
GSExtractSetup(γ). Select random g1, g2, h ∈ G. Set crs ← (γ, GSS , GSR, g1, g2, h). When
the parties query FCRS , return (sid, crs).

2. S must commit to a database of messages for A without knowing the messages m1, . . . ,mN .
Thus, S simply commits to arbitrary junk messages, and sends the corresponding T to A.

29

3. When A makes a transfer request, S uses tdext to extract the witness corresponding to
the index σ from the NIWI proof. (This extraction is done via opening perfectly-binding
commitments which are includes in the WI proof and does not require any rewinding.)

4. S now sends (sid,R, σ) to F to obtain the real mσ message.
5. Now, S returns a response to A which opens Cσ to mσ and then uses tdsim to simulate an

NIZK proof that this opening is correct. The NIZK proof here is designed in such a way that
simulation is always possible and no rewinding is necessary.

The indistinguishability argument here follows from the indistinguishability of the crs (from a
real crs), the indistinguishability of the “fake” database T , the ability to extract witnesses from the
NIWI proofs, and the zero-knowledge property of “fake” NIZK proofs. Notice that S is never both
simulating and extracting via the same (subsection of the) common reference string; indeed, we do
not require that the proofs be simulation-sound.

30

