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Abstract

We study the possibility of constructing encryption schemes secure under messages that are chosen
depending on the key k of the encryption scheme itself. We give the following separation results:

• Let H be the family of poly(n)-wise independent hash-functions. There exists no fully-black-box
reduction from an encryption scheme secure against key-dependent inputs to one-way permutations
(and also to families of trapdoor permutations) if the adversary can obtain encryptions of h(k)
for h ∈ H.

• Let G be the family of polynomial sized circuits. There exists no reduction from an encryption
scheme secure against key-dependent inputs to, seemingly, any cryptographic assumption, if the
adversary can obtain an encryption of g(k) for g ∈ G, as long as the reduction’s proof of security
treats both the adversary and the function g as black box.

Keywords: Key-dependent input security, black-box separation

1 Introduction

An cryptographic primitive is key-dependent input secure, or KDI-secure for short, if it remains secure also
in case where the input depends on the secret key. In the case of encryption schemes, KDI-security means
that the adversary can obtain, in addition to the usual queries, encryptions of h(k), where k is the key of
the scheme and h is chosen by the adversary from some (hopefully large) set H. Ideally, H would be the
set of all functions computable by polynomial sized circuits, but constructions of encryption schemes that
are secure even against much smaller classes for H seem to be very difficult. For example, to the best of
our knowledge there exists no construction of an encryption scheme that is secure w.r.t. the class of XOR
functions hr(k) := k ⊕ r.

In this work we study the possibility of obtaining such an encryption scheme both from one-way functions
and from other hardness assumptions. In particular, we exclude different types of reductions from KDI-secure
encryption scheme to different hardness assumption. Intuitively, a black-box reduction of a primitive P to a
primitive Q is a construction of P out of Q that ignores the internal structure of the implementation of Q
and just uses it as a “subroutine” (i.e., as a black-box). The reduction, following [RTV04a], is fully-black-box
if the proof of security (showing that an adversary that breaks the implementation of P implies an adversary
that breaks the implementation of Q), is also black-box (i.e., the internal structure of the adversary that
breaks the implementation of P is ignored as well). Our first result shows that there is no fully-black-box
reduction from KDI-secure encryption to one-way permutations, even if the KDI-security is only against the
relatively small class of poly(n)-wise independent hash-functions.

When considering reduction from a KDI-secure encryption scheme it is natural to ask whether the proof
of security accesses the query function h in a black-box manner as well. Our second result, however, shows
that under this restriction no hardness assumption implies a KDI-secure encryption scheme.
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1.1 Related Work

KDI security. The development of encryption secure against key-dependent inputs started by the works of
Abadi and Rogaway [AR02]. They studied formal security proofs for cryptographic protocols (as described
by [DY83]), and showed that these imply security by a reduction, as long as no key-cycles exist in the
protocol, i.e., there is a partial order ¹ on the keys exists such that a message depending on k1 would only
be encrypted with k2 if k1 ¹ k2. Since this is a restriction (even though it may be a very natural one), the
community became aware that it would be desirable to create encryption schemes which provide security
even in the existence of such key cycles. Consequently, Black, Rogaway, and Shrimpton [BRS02] define the
(possibly stronger) notion of KDI-security for symmetric encryption schemes, and show how to obtain this
notion in the random-oracle model. In such a scheme, an adversary can obtain encryptions of h(k) under
the key k, where h is given as a circuit to an encryption oracle. Such a scheme implies the security of the
scheme under cycles as well. Independently of [BRS02], a notion of circular security has been defined by
Camenisch and Lysyanskaya [CL01], considering asymmetric encryption schemes as well.

Recently, Halevi and Krawczyk [HK07] generalized the notion of KDI-security to other cryptographic
primitives, such as pseudorandom functions. They also coined the name KDI for this sort of security
(previously, it was named key-dependent message security). Their results in this setting is mainly for the
construction of pseudorandom functions. In addition they showed that a deterministic encryption scheme
cannot be KDI-secure. Independently and concurrently to their work, Hofheinz and Unruh [HU08] provide
private key encryption schemes secure under a limited class of KDI-attacks. The main limitation of their
work is that the scheme only remains secure as long as h(k) is significantly shorter than the key; also, after
every application of the encryption scheme the key is updated. This makes the construction insufficient for
the initial motivation of allowing key cycles in cryptographic protocols.

Black-box impossibility results. Impagliazzo and Rudich [IR89] showed that there are no black-box
reductions of key-agrement protocols to one-way permutations and substantial additional work in this line
followed (c.f. [GKM+00, Rud88, Sim98]). Kim, Simon and Tetali [KST99] initiated a new line of impossibility
results, by providing a lower bound on the efficiency any black-box reduction of universal one-way hash
functions to one-way permutations, substantial additional work in this line followed (c.f. [GGKT05, HHRS07,
HK05, Wee07]).

1.2 Contributions of this Paper

In this paper we give two impossibility results for constructions of KDI-secure private-key encryption
schemes.1 The first one is a black-box separation to one-way permutations (our result generalizes to trapdoor
permutations).

THEOREM 1.1
There exists no fully-black-box reduction from an encryption scheme that is KDI-secure against every poly(n)-wise
independent family of hash functions to one-way permutations.

More exactly, for any candidate black-box construction of an encryption scheme, there exist a polyno-
mial p(n) such that the KDI-security against the family of p(n)-wise independent hash-functions has no
black-box proof of security. As in [GT00, HHRS07], this result can be extended to (enhanced) family of
trapdoor permutations by an easy modification of the proof.

Assume that the query function itself under which the scheme should be KDI-secure is treated by the
proof of security as black-box. Moreover, the proof of security does not forward an access to the query
function to a third party (the reader might refer Remark 1.3, for a proof of security without the latter
property). We call such a reduction strongly-black-box and give the following result.

1Clearly, our results extend to the public-key case.
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THEOREM 1.2 (informal)
There exists no reduction with strongly-black-box proof of security from a KDI encryption scheme to any secure
cryptographic hardness hardness assumption.

More exactly, Theorem 1.2 excludes reductions whose proof of security is black-box and treats the query
function as black-box. The construction of the encryption scheme itself, however, can be arbitrary.

REMARK 1.3
We stress that the above theorem has no conflict with the tautology that KDI-security implies KDI security.
Given a KDI-secure encryption scheme (Enc,Dec), we use the following reduction to construct a KDI-secure
encryption scheme (Enc′,Dec′). We let Enc′ and Dec′ to be equal to Enc and Dec, where in the proof of
security we use an adversary A that breaks the KDI-security of (Enc′, Dec′) for violating the KDI-security
of (Enc, Dec) as follows. On security parameter n, we ask A for its query function h, then forward h to the
KDI oracle to get c = Enc(k, h(k)) and return c back to A. Finally, we return the same answer as A does.
Clearly the above reduction is fully-black-box. The proof of security, however, is not strongly-black-box,
since the handle to h is forwarded to a third party (i.e., the KDI oracle).

Nevertheless, we think that our result shows that it should be very difficult to construct a KDI-secure
encryption scheme, since most natural hardness assumptions do not have a clear place where the strong
black-box property fails.

1.3 Our Technique

In the proof of both our results, we are using the same oracle, Breaker, that helps us to break the KDI-
security of every encryption scheme. Let (Enc,Dec) be some fixed encryption scheme. On input (h, c), where
h is some length doubling function and c is a ciphertext, Breaker considers all possible keys, and returns
the first key k for which Dec(k, c) = h(k), or ⊥ if no such key exists. It is not hard to show that (Enc, Dec)
is not KDI-secure in the presence of Breaker. Therefore, our impossibly results follow if Breaker does not
help to violate the underlying hardness assumption. For this, we need to assume that Breaker is only called
with functions h which are chosen uniformly from the respective set of query functions. We ensure this
by restricting the functions h for which Breaker performs the above computation to one which is randomly
chosen (and then give the adversary access to it). Under this restriction, Breaker does not help breaking
the assumption. Proving this is our main technical contribution (note that Breaker cannot be implemented
efficiently) and we prove it differently in each of our separation results.

One-way permutations. Let π be a random permutation and let (Decπ,Encπ) be a candidate of a KDI-
secure encryption scheme with black-box construction, given π as the one-way permutation. We find a
polynomial p(n) (which depends on (Decπ, Encπ)) and use a family of p(n)-wise independent hash-functions
as query functions. Intuitively, if Breaker helps an algorithm A inverting π, then in such a call the behavior
of Breaker must be very different for a large number of potential preimages of y. We show, however, that
for all but a negligible fraction of the functions h, the behavior of Breaker will be the same for most possible
preimages of y, no matter how the ciphertext is chosen.

Arbitrary assumptions. In this case h is a completely uniform random function chosen by the system.
The idea is that for such h, all calls to Breaker are very likely to be answered with ⊥, as for any fixed k ∈
{0, 1}t, the probability that Dec(k, c) = h(k) is roughly 2−2t. Now, this somewhat naive intuition is actually
false, as it can fail in the following way: A picks a key k′ itself, queries h(k′), encrypt this with k′ itself,
and gives the resulting ciphertext to Breaker. We prove, however, that this is essentially the only way in
which the above intuition fails. Thus, instead of calling Breaker, A can as well check the keys on which h
was previously queried, which can be done efficiently.
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Finally, we show that h itself cannot help in breaking the initial hardness assumption. Hence, if there
is a reduction with strongly-black-box proof of security from a KDI encryption scheme to a given hardness
assumption, the hardness assumption is not secure.

1.4 Paper Organization

We present the notations and formal definitions used in this paper in Section 2. In Section 3 we give
the separation from one-way permutations, and in Section 4 we give the separation from any hardness
assumption. Finally, in Section 5 we consider the question whether the techniques used in this paper are
also useful for proving impossibility result w.r.t. other KDI-secure cryptographic primitives.

2 Preliminaries

2.1 Notation

We denote the concatenation of two strings x and y by x ◦ y. If X is a random variable taking values in a
finite set U , then we write x ← U to indicate that x is selected according to the uniform distribution over
X. We often use probabilities where we choose an oracle π from some uncountable set of oracles at random.
To make these well defined, one has to define the uniform measure on the oracles, which can be done by
mapping an oracle to a real r ∈ [0, 1) (for example by interpreting the truth table of the oracle as binary
representation of r), and then using Lebesgue-measure. One can verify that with this definition indeed all
random variables which occur in this paper are measurable.

2.2 Many-wise Independence

DEFINITION 2.1 (s-wise independent random variables)
Let X1, . . . , Xn be random variables defined over U . X1, . . . , Xn are s-wise independent for some s ∈ N if
every sequence (Xi1 , . . . , Xis) of random variables is uniformly distributed over Us.

DEFINITION 2.2 (s-wise independent hash functions)
Let H be a family of functions mapping {0, 1}` to {0, 1}m, s ∈ N. We say that H is an efficient family of
s-wise independent hash functions (following [CW79]) if the following hold:2

Samplable. H is samplable in time poly(s, `, m).

Efficient. There exists an algorithm that given x ∈ {0, 1}` and a description of h ∈ H outputs h(x) in
time poly(s, `, m).

s-wise independence. If h is chosen at random from H, the 2` random variables h(x), x ∈ {0, 1}` are
s-wise independent.

It is well known ([CW79]) that there exists an efficient family of s-wise independent hash functions from `-
bit strings to m-bit strings for every choice of ` and m whose elements description size is O(s ·max {`,m}).

We use the following upper bound on the probability that many s-wise independent events occur, where
each event has low probability. The usual bounds seem not strong enough in our setting, as they focus on
the range where the probability of a single event is constant (for example, this seems to be the case for the
bound given in [Gol01]). In our case, the probability of a single event decreases as the number of events
increases, and we therefore use a different bound.

2The first two properties, regarding the efficiency of the family, implicitly assume an ensemble of families (one family for
every triple (s, `, m)). For simplify of presentation, we only refer to a single family.
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LEMMA 2.3
For s, V ∈ N let B1, . . . , BV be s-wise independent Bernoulli random variables with Pr[Bi = 1] ≤ 1

V . Assuming

that α > s, then Pr
[∑V

i=1 Bj ≥ α
]

< log(V )
αs−1 .

Proof. The idea of the proof is to find a small family, T , of sets of size s in U = {1, . . . , V }, such that every
set in U of size α has a subset in T . In this case, one can use the union bound on the sets in T (as explained
in the proof). We first find T .

CLAIM 2.4
There exists a family of α log(V )(V

α )s sets of size s such that the following holds. Every set Q ⊆ U of size |Q| = α
has a subset τ ⊆ Q in T .

Proof. Directly with the probabilistic method. Pick α log(V )(V
α )s sets of size s at random. The probability

that a fixed set of size α has none of these sets as a subset is (1− ( α
V )s)α log(V )( V

α )s

< e−α log(V ). Since there
are

(
V
α

)
< V α = eα log(V ) subsets of size α in U , the expected number of uncovered sets is smaller than 1,

which implies that with positive probability we obtain a family as required. ¤

Consider now a family T with |T | = α log(V )(V
α )s of sets of size s, such that every set Q ⊆ U of size α

has a subset in T (as guaranteed by Claim 2.4). If
∑V

i=1 Bj ≥ α, then there exists a set L of size α such
that Bj = 1 for all j ∈ L. This implies that there exists a set τ ∈ T such that Bi = 1 for all i ∈ τ . By the
union bound, the probability that the latter happens for some subset in T is at most

|T |
( 1

V

)s

≤ α log(V )
(V

α

)s( 1
V

)s

=
log(V )
αs−1

.

¤

2.3 Encryption Schemes and KDI-security

We define a (private-key) encryption scheme as a pair of an encryption and a decryption algorithm (Enc, Dec).
On security parameter n, the encryption algorithm Enc gets as input a key of length t(n) and a message
of length m, and outputs a ciphertext of length `(n,m). The decryption algorithm Dec, gets a key and a
ciphertext and outputs the message.3 Informally, an encryption scheme (Enc,Dec) is KDI-secure against a
family of functions H ⊆ {h : {0, 1}t → {0, 1}∗}, if no efficient adversary can distinguish between an oracle
which correctly returns an encryption of h(k), given input h, and one which returns an encryption of the all
zero string of the same length. Note that if H contains functions which map to constants, normal encryption
queries can be obtained as well.

DEFINITION 2.5 (KDI-security)
Given an encryption scheme (Enc,Dec) and a key of length t, let QEnc,k [resp. Q̃Enc,k] be an algorithm that
gets as input a function h : {0, 1}t 7→ {0, 1}m, and returns Enc(k, h(k)) [resp. Enc(k, 0m)] (if the schemes is
randomized, it returns a random encryption). We say that (Enc, Dec) is KDI-secure for a class of functions H,
if

∣∣∣Prk←{0,1}t(n) [AQEnc,k

(1n) = 1]− Prk←{0,1}t(n) [AQ̃Enc,k

(1n) = 1]
∣∣∣ ,

is negligible for every efficient algorithm A that only queries functions in H.
3In some definitions, a private key encryption scheme also includes a key-generation algorithm “Gen”. We omit this since

we are not concerned by polynomial factors, and in this case one can simply take the random coins used by Gen as private key.
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2.4 Hardness Assumptions

For reductions which treat the family H of query-functions as black-box, we are able to prove a very strong
impossibility result. In this case, we show that no cryptographic assumption is sufficient to guarantee the
KDI-security of the scheme. In order to do this, we first define the set of cryptographic assumptions we
consider. We try to be as general as possible here, while keeping the complexity of the definition on a
reasonable level.

DEFINITION 2.6 (cryptographic games)
A cryptographic game is defined random system Γ that, on security parameter n interacts with an attacker
A and may output a special symbol win. In case Γ(1n) outputs this symbol in an interaction with A(1n), we
say that A(1n) ↔ Γ(1n) wins. The game is secure if Pr[A(1n) ↔ Γ(1n) wins] is negligible for all ppt A,
where the probability is over the randomness of A and Γ.

Examples: One might define the security of a one-way function f by the following game. On security
parameter n, the system Γ selects a random x ∈ {0, 1}n and sends y = f(x) to the adversary. Γ outputs win
if A outputs x′ ∈ f−1(y).

To define the DDH hardness assumption one needs a bit more work. On security parameter n, the system
Γ expects first a sequence of at least n ones, we denote the actual number received by α. The system Γ
then sends A a description of an appropriately chosen group 〈g〉 of order Ω(2n) and the generator g, as
well as α randomly chosen triples (gxi , gyi , gzi), where zi = xiyi or a uniform random element, each with
probability 1

2 . The attacker A wins, if the number of instances where he incorrectly predicts whether zi was
chosen independently of xi and yi, is at most α

2 − α2/3.
Clearly, if Γ is secure, the usual DDH hardness assumption holds, since any algorithm that breaks the

DDH assumption can be used for violating the security of Γ.4 The reverse direction is implied by the main
result (i.e., Theorem 1) of [IJK07] as follows. Assume the existence of a polynomial time adversary A
violating the security of Γ. Let ε(n) ∈ 1/ poly(n) be such that A’s winning probability is more than ε(n)
infinitely often and α < 1

ε(n) . Let δ = 1
2 − ε(n), γ = 1

α1/3 and k = α. Under the DDH assumption, [IJK07,
Theorem 1] yields that the probability of A to be wrong on fewer than T = (1−γ)δk = (1− 1

α1/3 )( 1
2−ε(n))α >

α
2 − α

2α1/3 − αε(n) > α
2 − α2/3 of the games is bounded by ε(n) > e−Ω(γ2δ2k), contradicting the existence

of A.

2.5 Black-Box Reductions

A reduction from a primitive P to a primitive Q consists of showing that if there exists an implementation C
of Q, then there exists an implementation MC of P . This is equivalent to showing that for every adversary
that breaks MC , there exists an adversary that breaks C. Such a reduction is semi-black-box if it ignores
the internal structure of Q’s implementation, and it is fully-black-box (using the terminology of [RTV04b])
if it also has black-box proof of security. That is the adversary for breaking Q ignores the internal structure
of both Q’s implementation and of the (alleged) adversary breaking P . The following definition expands the
above general discussion for the case of a fully-black-box reduction of a KDI-secure encryption scheme from
a one-way permutation.

DEFINITION 2.7 (fully-black-box reduction)
A fully-black-box reduction of a KDI-secure encryption scheme from a one-way permutation consists of
polynomial-time oracle-aided algorithms (Enc(·), Dec(·)) and a polynomial-time adversary A

(·)
OWP, such that

the following hold:
4Given an algorithm A that breaks that DDH assumption with advantage 1/p(n), we construct the following attacker A′ for

Γ. As first message A′ sends 1p(n)3 to Γ, and then applies A for each of the triples it gets back from Γ.
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• If f is a permutation, then (Encf , Decf ) is an encryption scheme.

• If AKDI breaks the KDI-security of the encryption scheme, then Af,AKDI
OWP inverts the permutation with

non-negligible probability.

When considering reductions from a KDI secure cryptosystem, it is natural to consider whether the proof
of security accesses the challenging functions also as a black-box. We say that a proof of security from KDI
cryptosystem is strongly-black-box if it treats the challenging functions also as a black-box.

DEFINITION 2.8 (strongly-black-box reduction)
A reduction from a KDI-secure encryption scheme to a cryptographic assumption Γ with strongly-black-box
proof of security, consists of polynomial time oracle algorithms (Enc, Dec) and a polynomial time oracle-aided
adversary A

(·)
Γ such that the following holds:

• (Enc, Dec) is an encryption scheme.

• For any adversary AQ
KDI which breaks the KDI-security of (Enc, Dec), the oracle-aided adversary

A
(AKDI)
Γ violates the security of Γ. Additionally, AΓ treats the challenging functions provided by

AKDI as a black box.

The requirement that AΓ treats the challenging function as black box means that it can only obtain
evaluations of it at arbitrary chosen points. Furthermore, the reduction must work for any challenging
function (not just efficiently computable ones). In particular, the reduction does not provide Γ with a
description of the function.

2.6 Extending KDI-secure Encryption Schemes

The following (straightforward, but technically slightly tedious) proposition allows us to prove our impossi-
bility results for encryption schemes which have the following additional properties:

• Perfect correctnes, i.e., it is always the case that Dec(k, Enc(k, m)) = m

• Deterministic encryption, i.e., the decryption procedure Dec does not use any randomness

• Defined for messages of arbitrary length

• Key length equals the security parameter

The last point poses no problem if the key length is larger than the security parameter by a simple redefinition.
If a scheme uses a very short key (e.g. of length t = O(log2(n))), however, it seems that padding is required,
and in fact we show in the proposition that such padding poses no problem either.

In the following, for a set of boolean functions H ⊆ {h : {0, 1}t → {0, 1}}, we let H∗ ⊆ {h : {0, 1}t →
{0, 1}∗} be the set of concatenations of functions from H. 5 Additionally, for t′ ≤ t we let H|t′ be the set of
functions which are obtained by fixing the last t− t′ bits to arbitrary values.

PROPOSITION 2.9
Fix a set of functions H and let (Enc, Dec) be an encryption scheme with key length t that is KDI-secure
for H|t. Then there exists an encryption scheme (Enc1,Dec1) with key length t1 ≥ t that is KDI-secure for H∗,
uses (Enc, Dec) as a black-box, is always correct, has deterministic decryption algorithm and is defined for
every message length. Moreover, if (Enc, Dec) has a strongly-black-box [resp. black-box] proof of security to a
cryptographic game Γ, then (Enc1, Dec1) has a strongly-black-box [resp. black-box] proof of security to Γ.

5That is, h : {0, 1}t → {0, 1}` ∈ H∗ iff there exists h1, . . . , h` ∈ H such that for every input x it holds that h(x) =
(h1(x) ◦ · · · ◦ h`(x)), where ◦ denotes the concatenation of strings.

7



Proof. We start by handling the correctness and deterministic decryption parts. Let (Enc, Dec) be an
encryption scheme. The scheme (Enc0, Dec0) uses (Enc, Dec) as a subroutine and works as follows: on inputs
(k, m), Enc0 chooses, in addition to rEnc, the random coins needed by Enc, also the random coins to be
used by Dec, rDec. It then checks whether Dec(rDec, k, Enc(rEnc, k, m)) = m. If this holds, then Enc0(k,m)
outputs 0 ◦ Enc(k, m) ◦ rDec, otherwise it outputs 1 ◦m (where ◦ denotes the concatenation of strings). On
ciphertext c = (0 ◦ c ◦ rDec), algorithm Dec0(k, c) outputs Dec(rDec, k, c), where on ciphertext c = (1 ◦m) it
outputs m.

Having the above, we define (Enc1,Dec1) as follows. Given a message to encrypt of arbitrary length,
we partition the message into blocks of the appropriate size (while padding the last block) and encrypt
each of the blocks using Enc0. In the decryption we do the same using Dec0. Additionally, if t1 > t, Enc1

chooses t1−t additional key-bits at random. All in all, (Enc1,Dec1) has a deterministic encryption algorithm
and is always correct.

We construct an adversary A(·) for (Enc,Dec) given an adversary for (Enc1, Dec1) as follows. Let A1 be
an adversary for (Enc1, Dec1). The adversary AA1 first picks t1 − t additional key bits, and then emulates
A1. Every time A1 asks for an encryption of a function h ∈ H∗, AA1 decomposes h into its components
hi ∈ H. If t1 > t it computes the respective functions in H|t, and then obtains each of the encryptions from
the given KDI-encryption oracle of (Enc, Dec). Note that this decomposition can be done in a black-box
manner, by considering for each hi only the relevant part in the output of h. Then, AA1 prefixes each answer
with a 0 (to denote that the decryption is correct), adds uniformly chosen randomness for the decryption,
concatenates the answers and returns the resulting ciphertext to A1. One checks that with high probability
the distribution of the resulting ciphertext is as required. Once A1 gives a prediction, AA1 outputs this
prediction.

Let A
(·)
Γ be the adversary, guaranteed by the black-box proof of security of (Enc, Dec), that violates the

security of Γ given an adversary for (Enc, Dec). It is clear that AA(·)
Γ is a black-box proof of security for

(Enc1, Dec1). Moreover, assuming that (Enc,Dec) has a strongly-black-box proof of security (and that A
(·)
Γ

is the adversary guaranteed by this proof), it is easy to verify that AA(·)
Γ is a strongly-black-box proof of

security for (Enc1, Dec1). ¤

3 One-Way Permutations

In this section we prove Theorem 1.1. Let (Enc(·), Dec(·)) be an encryption scheme with oracle access to a
one-way permutation. By Proposition 2.9, we can assume that the encryption scheme is always correct, has
deterministic decryption algorithm, and is defined on messages of any polynomial length. We use the following
notations. For a security parameter t (which for simplicity and using Proposition 2.9, we assume to be equal
to the key length) let `(t) be the length of an encryption of a message of length 2t. Furthermore, let Ht be
a family of (`(t) + t)-wise independent hash functions from {0, 1}t to {0, 1}2t, with polynomial description
size.6 Let π = {πn : {0, 1}n → {0, 1}n}n∈N be a family of functions. In order to prove Theorem 1.1, we use
oracle access to the following inefficient algorithm Breakerπ.

ALGORITHM 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The algorithm Breakerπ.

Randomness: A uniformly chosen family {ht ∈ Ht}t∈N.

Input: A pair (t, c), where c ∈ {0, 1}`(t) ∪ {?}, ? being a special symbol.

Output: If c = ? return the description of ht. Otherwise, return the smallest k ∈ {0, 1}t such that
Decπ(k, c) = ht(k), or ⊥ if no such k exists.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6Note that a s-wise independent hash-function remains s-wise independent after padding.
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In Section 3.1 we show that Breakerπ does not help inverting a random π. In Section 3.2, we show that
Breakerπ breaks the KDI security of (Enc,Dec) and prove Theorem 1.1.

3.1 Breaker Does not Invert Random Permutations

We prove the following upper bound on the probability that an algorithm with access to Breaker inverts a
random permutation. In the following let µA(n) [resp. µDec(t)] be an upper bound on the total length of all
oracles queries A(y) [resp. Dec] does for y ∈ {0, 1}n [resp. (k, c) ∈ {0, 1}t×{0, 1}`(t)]. We assume without loss
of generality that both upper bounds are monotonically increasing, that µDec(t) ≥ t + `(t), and µA(n) ≥ n.

LEMMA 3.2
Let A be an adversary with oracle access to π and Breaker. For any y ∈ {0, 1}n:

Prπ[A(π,Breaker)(y) = π−1(y)] < 3µA(n)
(
2−µ−1

Dec(n) + µDec(µA(n))22−n
)

,

where µ−1
Dec(n) := min {t ∈ N : µDec(t) ≥ n}.

In particular, if µA and µDec are both polynomials, Lemma 3.2 yields that Prπ[A(π,Breaker)(y) = π−1(y)] is
negligible. A lemma which is roughly equivalent to Lemma 3.2 can be proven with the technique introduced
by Gennaro and Trevisan [GT00], we do this in Appendix A. Here, we will use a different technique that is
more similar to the one used by Simon [Sim98].

The main idea is to study what happens if π is modified slightly by mapping a second, randomly chosen
element to y. We show that such a change will likely go unnoticed by the adversary, and he will not find the
new preimage. After the change, however, both preimages of y are equally likely to be the original one, so the
adversary cannot have found the original one either.7 For a given function π and two strings x∗, y ∈ {0, 1}n,
we define the function π|x∗ 7→y as

π|x∗ 7→y(x) :=

{
y if x = x∗,
π(x) otherwise.

We assume that all calls to Decπ|x∗7→y and Breakerπ|x∗7→y are well defined (if Dec queries both π−1(y)
and x∗ 6= π−1(y) we define its answer arbitrarily).

We now wish to consider the elements x∗ ∈ {0, 1}n for which Breakerπ(t, c) 6= Breakerπ|x∗7→y (t, c). The
set Diffπ(c, h, y) is a (possibly proper) superset of this set.

DEFINITION 3.3 (Diff)
For an oracle function Dec, a function h ∈ Ht, and strings c ∈ {0, 1}`(t) and y ∈ {0, 1}n, we let

Diffπ(c, h, y) :=
{

x∗ ∈ {0, 1}n
∣∣∣ ∃k ∈ {0, 1}t :

(
Decπ(k, c) 6= h(k) = Decπ|x∗7→y (k, c)

)

∨(
Decπ(k, c) = h(k) 6= Decπ|x∗7→y (k, c)

)}
.

Note that for x∗ /∈ Diffπ(c, ht, y) it holds that Breakerπ(t, c) = Breakerπ|x∗7→y (t, c). To see this, let k0 6= ⊥
be the lexicographic smaller output of the two calls. Clearly, k0 must be the output of both calls to Breaker.

The next lemma states that if h is chosen from Ht (recall that this is a set of (`(t) + t)-wise independent
hash-functions from {0, 1}t to {0, 1}2t), then Diffπ(c, h, y) is very likely to be small for all c.

7The main difference between our approach and the one in [Sim98] is that we do not insist on keeping π a permutation. It
turns out that this slackness makes our proof significantly simpler.
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LEMMA 3.4
Let y ∈ {0, 1}n and an oracle π be given. Assuming that µDec(t) < 2t, then

Prh←Ht

[
∃c ∈ {0, 1}`(t) :

∣∣Diffπ(c, h, y)
∣∣ ≥ µDec(t)2

]
< 2−t .

Proof. Fix c for now, and consider for every k ∈ {0, 1}t the set Dc,k of all possible images of Decπ|x∗7→y (k, c),

enumerating over all x∗ ∈ {0, 1}n, i.e., the set Dc,k :=
{

Decπ|x∗7→y (k, c) : x∗ ∈ {0, 1}n
}

. (Note that the

original image Decπ(k, c) is also in this set.) We see that |Dc,k| ≤ µDec(t) + 1 ≤ 2t: in an execution
of Decπ(k, c) at most µDec(t) elements x1, . . . , xµDec(t) elements are queried, and only if x∗ ∈ {x1, . . . , xµDec(t)}
the image can change. By Lemma 2.3, (with V = 2t, s = t+`(t), α = µDec(t), the Bk’s are indicator variables
for the event ht(k) ∈ Dc,k, and as mentioned before we assume µDec(t) ≥ t + `(t)), we get

Prh←Ht

[∣∣∣{k ∈ {0, 1}t : h(k) ∈ Dc,k}
∣∣∣ > µDec(t)

]
<

t

µDec(t)−(t+`(t)−1)
≤ 2−t−`(t) . (1)

Let x∗ ∈ Diffπ(c, h, y), then there exists a k ∈ {0, 1}t such that Decπ(k, c) 6= h(k) = Decπ|x∗7→y (k, c) or
Decπ(k, c) = h(k) 6= Decπ|x∗7→y (k, c), and therefore, h(k) ∈ Dc,k. For each such k, there are at most µDec(t)
values x∗ ∈ {0, 1}n for which Decπ(k, c) 6= Decπ|x∗7→y (k, c), giving a total of µDec(t)2 possible values. Thus,
we get Lemma 3.4 by a union bound on all choices of c ∈ {0, 1}`. ¤

We next show that Lemma 3.4 yields that with high probability an adversary A behaves exactly the same
given the oracle π or π|x∗ 7→y.

DEFINITION 3.5 (trace)
For a given oracle function Dec, the trace tr(π, y, rA) of an adversary A is the sequence of all queries A makes
to Breakerπ and π, and their responses, when it is run on input y and using random-coins rA.

LEMMA 3.6
Let A be an adversary with oracle access to π and Breaker. Then, the following holds for every π and y ∈ {0, 1}n.

Pr[tr(π, y, rA) 6= tr(π|x∗ 7→y, y, rA)] < µA(n)
(
2−µ−1

Dec(n) + µDec(µA(n))22−n
)

,

where the probability is over the choice of x∗, the randomness of A and the choice of the ht done by Breaker.

Proof. Let Xπ be all the queries to π in tr(π, y, rA), clearly |Xπ| ≤ µA(n). Let further XDiff be the union
of the sets Diffπ(c, ht, y) for all calls (c, t) made by A to Breaker. If x∗ /∈ Xπ ∪ XDiff , we have that
tr(π, y, rA) = tr(π|x∗ 7→y, y, rA), since the behavior of Breaker will not change in such a call (cf. the remark
after Definition 3.3). We Also note that for t < µ−1

Dec(n), it holds that x∗ /∈ Diffπ(c, ht, y), as Dec cannot
invoke π on such a long input. Thus, using Lemma 3.4 we have that with probability 1 − µA(n)2−µ−1

Dec(n)

(over the randomness of Breaker)

∀s ∈ {1, . . . , µA(n)} : |Diff(c, ht, y)| ≤ µDec(t)2 ≤ µDec(µA(n))2 (2)

If (2) holds, then |Xπ ∪ XDiff | ≤ µA(n)µDec(µA(n))2. Hence, using union bound yields that the probability
in question is at most µA(n)(2−µ−1

Dec(n) + µDec(µA(n))22−n). ¤

Having the above we can finally prove Lemma 3.2.

Proof. (of Lemma 3.2) For a given value of π and x0, x1 ∈ {0, 1}n, let π|x0↔x1 := π|x0 7→π(x1),x1 7→π(x0). We
assume without loss of generality that A queries π(x) before it returns x. Then, the proof of the lemma
easily follows by the next claim.
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CLAIM 3.7
It holds that

Prπ,x∗←{0,1}n,rA
[tr(π, y, rA) 6= tr(π|x∗↔π−1(y), y, rA)] < p(n) ,

where p(n) := 2µA(n)
(
2−µ−1

Dec(n) + µDec(µA(n))22−n
)
.

Proof. If tr(π, y, rA) and tr(π|x∗↔π−1(y), y, rA) are different, then one of tr(π, y, rA) 6= tr(πx∗ 7→y, y, rA) or
tr(πx∗ 7→y, y, rA) 6= tr(π|x∗↔π−1(y), y, rA) must hold. Since π|x↔π−1(y) is also a permutation, and x∗ is a
uniformly chosen element given π|x∗↔π−1(y) and y, Lemma 3.6 states that both these events have probability
at most p(n)

2 . ¤

The probability that A(π,Breaker) inverts y is at most the probability that the traces tr(π, y, rA) and
tr(π|x∗↔π−1(y), y, rA) are different plus 2−n (to handle the case x∗ = π−1(y)). By the above claim, this is at
most 2−n + p(n), which concludes the proof. ¤

3.2 Obtaining the Impossibility Result

We first show that Breaker helps breaking the KDI-security of encryption schemes; for this purpose pairwise
independent hash-functions are already sufficient.

LEMMA 3.8
Let G be a family of pairwise independent hash-functions from {0, 1}t to {0, 1}2t. For any fixed π it holds that
Prk←{0,1}t,g←G [Breakerπ(n,Encπ(k, g(k)), g) = k] > 1− 1

2t .

Proof. By the pairwise independence of G, once a key k and g(k) is fixed, for k′ 6= k it holds that g(k′) is
uniformly distributed over {0, 1}2t. Thus, the probability that a fixed k′ 6= k is returned by Breaker is 1

22t .
The union bound yields the lemma. ¤

With the above lemma, and the results from Section 3.1 we can now prove Theorem 1.1.

Proof. (of Theorem 1.1) Assume that (Enc, Dec) described above is KDI-secure against any poly(n)-wise
independent hash-function with black-box proof of security, and let A be the algorithm for inverting the one-
way permutation guaranteed by this proof of security. Lemma 3.2 yields that the probability that A inverts
y even given Breaker is at most 3µA(n)(2−µ−1

Dec(n) + µDec(µA(n))22−n), which is negligible since both A and
Dec are efficient. On the other hand, Lemma 3.8 implies that Breaker can be used to win the KDI game
with probability almost one. In particular, there exists a choice of π such that (Enc, Dec) is not KDI-secure
for the family of poly(n)-wise independent hash functions, yet π is not inverted by A. ¤

4 Arbitrary Assumptions

In this section we rule out the existence of reductions with strongly-black-box proof of security from KDI
encryption to a very large class of hardness assumptions, i.e., we prove Theorem 1.2.

Let (Enc, Dec) be an encryption scheme, as in Section 3 we assume without loss of generality that the
encryption scheme is always correct, has deterministic decryption algorithm, and is defined on messages of
any polynomial length. We use the following notations. For a security parameter t (which for simplicity and
using Proposition 2.9, we assume to be equal to the key length) let `(t) be the length of an encryption of a
message of length 2t. We also use the following oracles. Let H =

{
ht : {0, 1}t 7→ {0, 1}2t

}
t∈N be an infinite

sequence of functions. The next algorithm, Breaker, is as in Section 3, but uses slightly different parameters
(e.g., it takes as input a description of a function, for example given as circuit).
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ALGORITHM 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The algorithm Breaker.

Inputs: An index t ∈ N, a description of a function f : {0, 1}t × {0, 1}`(t) 7→ {0, 1}2t and a ciphertext
c ∈ {0, 1}t.

Description: Return the lexicographic smallest k ∈ {0, 1}t with f(k, c) = ht(k), or ⊥ if no such k exists.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Lemma 4.3 we show that there is no KDI-secure cryptosystem in the presence of (Breaker,H), while
in Lemma 4.4 we show that in many settings, having oracle access to Breaker does not yield any significant
additional power. Finally, we use these lemmata to prove Theorem 1.2.

The following adversary uses (Breaker,H) to break the KDI-security of the encryption scheme.8

ALGORITHM 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm ABreaker,H

KDI .

Input: Security parameter t.

Step 1: Call Q(ht) (or Q̃(ht)) to obtain an encryption c of ht(k) (or of 02t).

Step 2: Call Breaker(t,Dec, c) to obtain a candidate key k′ or ⊥.

Step 3: Output 1 iff Breaker did not return ⊥.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LEMMA 4.3
ABreaker,H

KDI breaks the KDI security of the (Enc,Dec) with probability one over the choice of H.

Proof. Algorithm AKDI only gives the wrong answer if the oracle is Q̃ and Breaker does not return ⊥. In
this case, the ciphertext c does not depend on ht, and fixing it and a (correct) key k, the probability over
the choice of ht that Q̃ does not return ⊥ is (using the union bound) at most 2−t. Therefore, using an
averaging argument, the probability that ht is such that something else but ⊥ is returned with probability
higher than 2−t/2 is at most 2−t/2.

Since the ht’s are chosen independently from each other, the probability that there exists m0 ∈ N for
which AKDI does not break the scheme for some t > t0, is zero. We conclude that with probability one over
the choice of h ∈ H, it holds that AKDI breaks the KDI security of (Enc, Dec) infinitely often. ¤

The next lemma shows that in the stand alone settings (unlike in the settings of Lemma 4.3) having
oracle access to Breaker does not yield any significant additional power.

LEMMA 4.4
Let ABreaker,h be an algorithm with oracle access to (Breaker, h), and let tA(n), for security parameter n, be a
polynomial-time computable upper bound on the running-time of ABreaker,h.

Then for every polynomial computable function δ : N 7→ [0, 1], there exists an algorithm Ãh
δ , which has oracle

access only to h, runs in time poly( 1
δ(n) , tA(n)) and uses random-coins of the same length as ABreaker,h such

that the following holds. Conditioned that ABreaker,h
δ and Ãh

δ are using the same random-coins, ABreaker,h(1n) =
Ãh

δ (1n) with probability 1− δ(n) over the choice of h.

8Algorithm AKDI distinguishes whether the oracle is Q or Q̃. One could also show that usually k′ in the algorithm is the
correct key.
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Proof. Algorithm Ã emulates A, using its random-coins as the random-coins of A, while remembering all
query and answer pairs to h. When the emulated A queries Breaker(t, f, c), algorithm Ã distinguishes
between the following two cases:

Case 1: t < log(tA(n)) + log(1/δ(n)). Ã fully emulates Breaker. Namely, Ã evaluates h(k) for all k ∈ {0, 1}t

and returns the first one for which f(k) = h(k). It returns ⊥ if no such k exists.

Case 2: t ≥ log(tA(n)) + log(1/δ(n)). Ã checks all the previous queries to h of length t in lexicographic
order. If for one of those queries it holds that f(k) = h(k), it returns k, otherwise it returns ⊥.

The bound on the running-time of Ã is clear. Note that in the second case, the probability (over the
choice of h) that Ã uses a different value in the simulation from what Breaker would return is at most
2− log(tA(n))−log(1/δ(n)) = δ(n)

tA(n) (in the first case, we always return the correct value). Since there are at

most tA(n) calls to Breaker, the probability that in any of those Ã returns a wrong value is at most δ(n),
which proves the lemma. ¤

We now combine these lemmata to prove Theorem 1.2.

Proof. (of Theorem 1.2) Assume that there exists a strongly-black-box proof of security from (Enc, Dec)
to a cryptographic game Γ and let M (·) be the algorithm for breaking Γ as guaranteed by this proof of
security. Lemma 4.3 yields that ABreaker,h

KDI breaks (Enc, Dec) with probability one over the choice of h. Thus,
MABreaker,h

KDI breaks the security of Γ with probability one over the choice of h. Namely,

Prh
[
PrrA,rΓ [MABreaker,h

KDI ↔ Γ(1n) wins] >
1

ph(n)
for infinitely many n

]
= 1 , (3)

where rA and rΓ denote the random coins of A and Γ, respectively, and ph is some polynomial that may
depend on h. In the following we first remove the dependence of the polynomial ph from h. For this let

ε(n) := Prh,rA,rΓ [MABreaker,h
KDI ↔ Γ(1n) wins] = Eh

[
PrrA,rΓ [MABreaker,h

KDI ↔ Γ(1n) wins]
]

.

We show that ε is non-negligible. Using Markov bound we get for every n ∈ N that

Prh
[
PrrA,rΓ [MABreaker,h

KDI ↔ Γ(1n) wins] < n2ε(n)
]

> 1− 1
n2

,

and therefore9

Prh
[
PrrA,rΓ [MABreaker,h

KDI ↔ Γ(1n) wins] < n2ε(n) for all n > 2
]

> 1−
∞∑

n=2

1
n2

>
1
3

(4)

Combining (3) and (4) we get

Prh
[ 1
ph(n)

< PrrA,rΓ [MABreaker,h
KDI ↔ Γ(1n) wins] < n2ε(n) for infinitely many n

]
>

1
3

, (5)

which implies that there is a polynomial p(n) such that ε(n) > 1
p(n) infinitely often.

We would like now to apply Lemma 4.4 on MABreaker,h
KDI . Recall that Lemma 4.4 was proved only in the

stand alone settings, where in particular no interaction with a random system is considered. Since the proof
of security of (Enc, Dec) is strongly-black-box, however, we have that Γ, through interaction with MABreaker,h

KDI ,
does not access h. Therefore, Γ’s answers are determined by the output behavior of MABreaker,h

KDI and the proof
of Lemma 4.4 goes through also in this setting. Hence, Lemma 4.4 yields, letting δ(n) = 1

2p(n) , the existence

9The σ-additivity of the measure implies that the event in the next probability is measurable.
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an efficient algorithm M̃h with oracle access only to h, such that Prh,rA,rΓ [M̃h ↔ Γ(1n) wins] > 1
2p(n) for

infinitely many n’s.
Our final step is to emulate M̃h, where rather than accessing h we randomly chooses the answer of

each time one is requested (and cache it). The latter emulation breaks the cryptographic assumption with
probability at least 1

2p(n) for infinitely many n’s and since it is also efficient, it implies that Γ is not secure.
¤

5 Applying Our Technique to Other Primitives

It seems tempting to try and use the above Breaker also to show the impossibility of constructing other KDI-
secure primitives. Consider for instance pseudorandom functions or permutations which are supposed to be
secure even if the adversary can obtain its value on a function of its secret key. Halevi and Krawczyk [HK07]
show that a deterministic construction cannot exist, but give a construction in case the permutation has
an additional public parameter (i.e., salt) chosen after the challenging function is fixed. Their construction,
however, compresses (e.g., maps n bits to n/2).

It is indeed possible to generalize our techniques to this case, as long for as the pseudorandom functions
are injective for every key. In this case, Breaker finds a key k such that fk,r(h(k)) = c, where f is the
pseudorandom function and r is the random salt. The reason this method fails if the construction compresses
(as the one given by Halevi and Krawczyk), is that Breaker as defined above does not seem to give useful
information about the key anymore, since it is unlikely that the correct key is the lexicographically smallest.

It seems that we cannot utilize our Breaker also for the general case of length increasing pseudorandom
functions (or equivalently, for the case that we are allowed to make several KDI queries). Consider the
question whether a given pseudorandom function is constant on a negligible fraction of the keys (e.g., on a
single key k it holds that fk,r(·) := 0`). Deciding whether a given function has this property or not might
be infeasible. Yet, using for instance the Breaker of Section 4, we can easily find the right answer: ask the
Breaker on (h, 0`), where h is a random hash function, and answer “Yes” is the Breaker finds some consistent
key. Thus, in this setting our Breaker gives us an extra power that we cannot emulate.

Acknowledgment

We are very grateful to Oded Goldreich, Jonathan Hoch, Gil Segev and Omer Reingold for useful discus-
sion.

References

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas
in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 62–75, 2002.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 93–118, 2001.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, April 1979.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

14



[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM Journal on Computing, 35(1):217–246, 2005.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The
relationship between public key encryption and oblivious transfer. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science, 2000.

[Gol01] Oded Goldreich. Randomized methods in computation - lecture notes. 2001.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS), 2000.

[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in interactive
protocols – A tight lower bound on the round complexity of statistically-hiding commitments. In
Proceedings of the 47th Annual Symposium on Foundations of Computer Science (FOCS), 2007.

[HK05] Omer Horvitz and Jonathan Katz. Bounds on the efficiency of ”black-box” commitment schemes.
In ICALP ’05, pages 128–139, 2005.

[HK07] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In Sabrina De Capitani
di Vimercati and Paul Syverson, editors, 14th ACM conference on Computer and communications
security, pages 466–475, 2007.

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the standard
model. In Nigel Smart, editor, Advances in Cryptology – EUROCRYPT 2008, 2008.

[IJK07] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type direct product
theorems. In Advances in Cryptology – CRYPTO 2007, pages 500–516, 2007.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 44–61, 1989.

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), pages 535–542, 1999.

[RTV04a] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 1–20, 2004.

[RTV04b] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 1–20. Springer, 2004.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-Way Functions. PhD thesis, U.C.
Berkeley, 1988.

[Sim98] Daniel Simon. Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions? In Advances in Cryptology – EUROCRYPT ’98, volume 1403 of Lecture
Notes in Computer Science, pages 334–345. Springer, 1998.

[Wee07] Hoeteck Wee. One-way permutations, interactive hashing and statistically hiding commitments.
In Theory of Cryptography, Fourth Theory of Cryptography Conference, TCC 2007, pages 419–
433, 2007.

15



A Gennaro-Trevisan Style Proof

In this section, we prove a lemma which is analogous to Lemma 3.2 using the technique introduced by
Gennaro and Trevisan [GT00]. For this purpose we use Lemma 3.4. Since the bound holds against non-
uniform algorithms as well, we can assume that A is deterministic.

LEMMA A.1
Fix a deterministic algorithm A with oracle access to π and Breaker, and assume that

Pry←{0,1}n [A(π,Breaker)(y) = π−1(y)] > ε(n) + µA(n) · 2−µ−1
Dec(n) .

Then, π can be described using log((2n − s(n))!) + 2s(n) log
(

e2n

s(n)

)
+ µA(n)2µDec(µA(n)) bits, where s(n) =

ε(n)2n

4µA(n)·µDec(µA(n))2 .

For example, assume that µDec(n) ≤ n5, µA(n) ≤ 2n/30 and ε(n) = 1
µA(n) . Lemma A.1 yields that the

fraction of oracles that A can invert with probability ε(n) + µA(n) · 2−n1/5
< 2ε(n) is at most

(2n − s(n))!
(

e2n

s(n)

)s(n)2µA(n)2µDec(µA(n))

(2n)!
≤

(
e2n

s(n)

)s(n)2µA(n)2µDec(µA(n))

(2n − s(n))s(n)

=
( e2n

s(n) (2n − s(n))︸ ︷︷ ︸
≥2n−1

)s(n)

2µA(n)2µDec(µA(n)) ≤
( 2e

s(n)

)s(n)

2µA(n)2µDec(µA(n)) ≤ 2−2n/2
.

Proof. We assume ε(n) > 2µA(n)2−n, which is without loss of generality, since otherwise the statement is
trivial.

Our description of π consists of the following parts: the description a set S ⊆ {0, 1}n, the description of
the image of S under π (which roughly corresponds to the y’s on which A succeeds in inverting), and the
description of the permutation which π implies if restricted on {0, 1}n \ S, i.e., the elements not in S. Also,
we will save a fixing of Breaker’s random coins (i.e., the choice of the functions hm for m ≤ µA(n)).

The description of S and the image of S both require log
((

2n

|S|
)) ≤ |S| log(e 2n

|S| ) bits. The description of
the permutation requires at most log((2n − |S|)!) bits. To store the functions hm takes µA(n)2µDec(µA(n))
bits, for some appropriate family H. Thus, in total log((2n−|S|)!)+2|S| log(e 2n

|S| )+µA(n)2µDec(µA(n)) bits

are sufficient. In the following we succeed in making S as big as |S| = ε(n)2n

4µA(n)·µDec(µA(n))2 , which implies our
upper bound on the description size of π.

Fix now an oracle π such that Pry←{0,1}n [A(π,Breaker)(y) = π−1(y)] > ε(n) + µA(n)2−µ−1
Dec(n). Let Bad(y)

be the event that A(y) makes a query Breakerπ(t, c), with |Diffπ(c, ht, y)| > µDec(t)2, where ht is the function
chosen by Breaker for length t. By Lemma 3.4 and our assumption about the success probability of A, we
have that Pry←{0,1}n [A(π,Breaker)(y) = π−1(y) ∧ Bad(y)] > ε(n). Since Breaker selects the hash functions it
returns at random, a simple average argument yields that there exists a fixing r of the randomness used by
Breaker to chose the ht such that

∣∣∣I :=
{
y ∈ {0, 1}n : A(y) = π−1(y)

} ∧ Bad(y)
∣∣∣ > ε(n)2n−1. We store this

r as part of the description of π and denote by Breakerr the oracle Breaker with this fixing.

The set S. We use the following, inefficient, algorithm to create S: first, remove the lexicographic smallest
element y∗ from I and add π−1(y∗) to S. Simulate A(π,Breakerr)(y∗), and remove all queries A makes
whose answers are in I from I (without putting them into S). For queries to Breakerπ

r (c, h), consider all
x∗ ∈ Diffπ(c, h, y) and remove their images from I as well (y itself cannot be removed from I, as we already
removed it). Once the simulation is finished, repeat with the next element. Clearly, for every simulation we
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remove at most µA(n) + µA(n) · µDec(µA(n))2 elements from I before moving another element to S, which
ensures |S| ≥ ε(n)2n

4µA(n)·µDec(µA(n))2 .

Reconstruction π. We now show that we can reconstruct π from the given information. For this, we
first reconstruct the oracle outside of S from the given information. Then pick the lexicographic smallest
element y∗ whose preimage is not yet known, and simulate Aπ,Breakerr (y∗). If A calls π(x) for some x whose
image is not known yet, then the image must be y (as otherwise we would have removed the element from I
and stored the value of π(x) explicitly). If A calls Breakerπ

r (c, h), note that if k is returned, all queries
to Decπ(k, c) but the one of π−1(y) (if it occurs) are also known. We try all candidates x∗ (i.e., the elements
whose image we don’t know at this point) for π−1(y∗), and simulate Decπ|x∗→y∗ (k, c), which we can do
unless a query is made whose answer we don’t know, in which case it must be a wrong k or x∗. Now, if one
simulation satisfies Decπ|x∗→y∗ (k, c) = h(k), then k must be the correct answer to this Breakerr call, since
otherwise we would have removed all the queries from I. Therefore, we can simulate A’s run correctly and
obtain the correct π−1(y∗) as output of A. ¤
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