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Abstract

The selective decommitment problem can be described as follows: assume an adversary re-
ceives a number of commitments and then may request openings of, say, half of them. Do the
unopened commitments remain secure? Although this question arose more than twenty years
ago, no satisfactory answer could be presented so far. We answer the question in several ways:

1. If simulation-based security is desired (i.e., if we demand that the adversary's output can
be simulated by a machine that does not see the unopened commitments), then security is
not achievable via blackbox reductions to standard cryptographic assumptions. However,
we show how to achieve security in this sense with non-blackbox techniques.

2. If only indistinguishability of the unopened commitments from random commitments is
desired, then security is not achievable for perfectly binding commitment schemes, via
blackbox reductions to standard cryptographic assumptions. However, statistically hiding
schemes do achieve security in this sense, using a blackbox reduction.

Our results give an almost complete picture when and how security under selective openings
can be achieved. Applications of our results include:
• Essentially, an encryption scheme must be non-committing in order to achieve provable

security against an adaptive adversary.
• We show the witness indistinguishability and composability of �commit-choose-open� style

interactive proofs in a simple and elegant way.
On the technical side, we develop a technique to show very general impossibility results for
blackbox proofs.

Keywords: cryptography, commitments, zero-knowledge, blackbox separations.

1 Introduction

Consider an adversary A that observes ciphertexts sent among parties in a multi-party cryptographic
protocol. At some point, A may decide, based on the information he already observed, to corrupt,
say, half of the parties. By this, A learns the secret keys of these parties, which allows him to open
some of the observed ciphertexts. The question is: do the unopened ciphertexts remain secure?
Since most encryption schemes actually constitute commitments to the respective messages, we can
rephrase the question as what is known as the selective decommitment problem: assume A receives
a number of commitments and then may request openings of half of them. Do the unopened
commitments remain secure? According to Dwork et al. [13], this question arose already more than
twenty years ago in the context of Byzantine agreement, but it is still relatively poorly understood.
In particular, standard cryptographic techniques (e.g., guessing which commitments are opened,
or hybrid arguments) fail to show that �ordinary� commitment security against a static adversary
guarantees security under selective openings.1 Even worse: no commitment scheme is known to be
secure under selective openings.

1For instance, the probability to correctly guess an n/2-sized subset of n commitments is too small, and a hybrid
argument would require some independence among the commitments, which we cannot assume in general.
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Our work. We answer the selective decommitment problem in several ways. First, we consider
what happens if �security of the unopened commitments� means that we require the existence of
a simulator S, such that S essentially achieves what A does, only without seeing the unopened
commitments in the �rst place. We call a commitment scheme which is secure in this sense simu-
latable under selective openings. We show that no commitment scheme can be proven simulatable
under selective openings using blackbox reductions from standard assumptions. In particular, not
even a statistically hiding commitment scheme can be proven simulatable under selective openings
in a blackbox way. However, we also show how to employ non-blackbox techniques to construct a
commitment scheme which is simulatable under selective openings. This solves an important open
problem from Dwork et al. [13]: our scheme is the �rst commitment scheme provably secure under
selective openings.

We proceed to consider what happens if �security� means that A cannot distinguish the mes-
sages inside the unopened commitments from independent2 messages. We call a commitment scheme
which is secure in this sense indistinguishable under selective openings. We show that no perfectly
binding commitment scheme can be proven indistinguishable under selective openings, via blackbox
reductions from standard assumptions. However, we also show that all statistically hiding commit-
ment schemes are indistinguishable under selective openings. Hence, the existence of a simulator is
a much harder requirement than indistinguishability.

Technically, we derive blackbox impossibility results in the style of Impagliazzo and Rudich [19],
but we can derive stronger claims, similar to Dodis et al. [12]. Concretely, we prove impossibility via
∀∃semi-blackbox proofs from any computational assumption that can be formalized as an oracle X
and a corresponding security property P which the oracle satis�es. For instance, to model one-way
permutations, X could be a truly random permutation and P could be the one-way game in which a
PPT adversary tries to invert a random image. We emphasize that, disturbingly, our impossibility
claim holds even if P models security under selective openings. In that case, however, a reduction
will necessarily be non-blackbox, see Appendix A for a discussion.

Applications. We apply our results to the adaptively secure encryption example mentioned in the
beginning, and to a special class of interactive proof systems. First, we comment that an adaptively
secure encryption scheme must be non-committing, or rely on nonstandard techniques. Namely,
whenever a committing (i.e., ciphertexts commit to messages) encryption scheme is adaptively se-
cure, then it also is, interpreted as a commitment scheme, simulatable under selective openings. Our
impossibility results show that hence, a committing encryption scheme cannot be proven adaptively
secure via blackbox reductions from standard assumptions.

Second, we apply our results to �commit-choose-open� style interactive proof systems. Dwork
et al. [13] prove that if the underlying commitment scheme of such a proof system is simulatable
under selective openings, then the proof system is (weakly) zero-knowledge, even under parallel
composition. Unfortunately, our own secure commitment scheme does not give much insight in
this context.3 However, we show that if the underlying commitment scheme is indistinguishable
under selective openings, then the proof system is witness-indistinguishable (a relaxation of zero-
knowledge), also under parallel composition. Since we show that statistically hiding commitment
schemes are in fact indistinguishable under selective openings, this demonstrates the usefulness of
our de�nition.

Related work. The selective decommitment problem arises in particular in the encryption sit-
uation described above, and hence was recognized and mentioned in a number of works before

2�independent� can of course only mean �independent, conditioned on the already opened messages�
3Our scheme is simulatable under selective openings, but already assumes a concurrently composable zero-

knowledge proof system as a basis. Hence we have gained nothing.
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(e.g., [7, 3, 6, 11, 8]). However, these works solved the problem by using (and, in fact, inventing)
non-committing encryption, which circumvents the underlying commitment problem.

Dwork et al. [13] is, to the best of our knowledge, the only work that explicitly studies the
selective decommitment problem. They prove that a commitment scheme which is simulatable under
selective openings would have interesting applications. In particular, it would imply the parallel
composability of a certain class of zero-knowledge protocols, something very surprising in the light
of the composability limitations of constant-round zero-knowledge protocols (see Goldreich and
Krawczyk [16] or Canetti et al. [9]). They proceed to give positive results for substantially relaxed
selective decommitment problems (essentially, they prove security when standard techniques can
be applied, i.e., when the set of opened commitments can be guessed, or when the messages are
independent). However, they leave open the question whether commitment schemes secure under
(general) selective decommitments exist.

Organization. After �xing some notation in section 2, we present in Section 3 our possibility
and impossibility results for the simulation-based security de�nition of Dwork et al. [13]. We give
an indistinguishability-based security de�nition, along with possibility and impossibility results in
Section 4. In Section 5 and Section 6, we consider applications of our results to encryption and
interactive proof systems. We discuss the role of the computational assumption in our impossibility
results in Appendix A.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes a security parameter. With growing k, attacks
should be become harder, but we also allow schemes to be of complexity which is polynomial in k. A
function f = f(k) is called negligible if it vanishes faster than the inverse of any polynomial. That
is, f is negligible i� ∀c∃k0 ∀k > k0 : |f(k)| < k−c. If f is not negligible, we call f non-negligible.
We say that f is overwhelming i� 1 − f is negligible. We write [n] := {1, . . . , n}. If M = (Mi)i is
an indexed set, then we write MI := (Mi)i∈I .

Commitment schemes. In the spirit of Dwork et al. [13], we focus on noninteractive commitment
schemes, but only to ease presentation. We stress that all our results also hold for interactive
schemes (in which committing and/or opening are interactive processes). We will comment at the
appropriate places on this.

De�nition 2.1 (Commitment scheme). A (noninteractive) commitment scheme (Com,Ver) is
a pair of PPT algorithms, such that the following holds:
Syntax. For any M ∈ {0, 1}k, algorithm Com(M) outputs a pair (com, dec), and Ver(com, dec)

deterministically outputs either a message M ∈ {0, 1}k or rejects with output ⊥.
Correctness. For all M ∈ {0, 1}k and (com, dec)← Com(M), we have Ver(com, dec) = M .

Binding. For an algorithm A, let Advbinding
Com,Ver,A be the probability that A outputs (com, dec1, dec2)

with
Ver(com, dec1) = M1 6= M2 = Ver(com, dec2).

We demand that for any PPT A, Advbinding
Com,Ver,A is negligible in the security parameter.

Hiding. For a pair A = (A1, A2) of algorithms, let

Advhiding
Com,A := Pr

[
Exphiding-0

Com,A = 1
]
− Pr

[
Exphiding-1

Com,A = 1
]
.

Here, Exphiding-b
Com,A proceeds as follows:
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1. run (s,M0,M1)← A1(1k) to obtain two messages M0,M1 ∈ {0, 1}k and a state s,
2. compute (com, dec)← Com(Mb),
3. run b′ ← A2(s, com) to obtain a guess bit b′

4. output b′.
We demand that Advhiding

Com,A is negligible for any PPT A.

Furthermore, if Advhiding
Com,A is negligible for all (not necessarily PPT) A, then (Com,Ver) is statisti-

cally hiding. If Advbinding
Com,Ver,A = 0 for all A, then (Com,Ver) is perfectly binding.

Note that perfectly binding implies that any commitment com can only be opened to at most one
value M . Perfectly binding commitment schemes can be achieved from any one-way permutation
(e.g., Blum [5]). On the other hand, statistically hiding implies that for any M1,M2 ∈ {0, 1}k,
the statistical distance between the respective commitments com1 and com2 is negligible. One-way
functions su�ce to implement statistically hiding commitment schemes (Haitner and Reingold [18]).

Interactive argument systems. We recall some basic de�nitions concerning interactive argument
systems, mostly following Goldreich [15].

De�nition 2.2 (Interactive proof/argument system). An interactive proof system for a lan-
guage L with witness relation R is a pair of PPT machines (P,V) such that the following holds:
(Perfect) completeness. For every family (xk, wk)k∈N such that |xk| = k and R(xk, wk) for all

k, we have that V(xk) always outputs 1 after interacting with P(xk, wk).
Soundness. For every machine P ∗ and every family (xk, zk)k∈N such that |xk| = k and xk 6∈ L

for all k, we have that the probability for V(xk) to output 1 after interacting with P ∗(xk, zk)
is negligible.

If the soundness condition holds for all PPT machines P ∗ (and not necessarily for all unbounded
P ∗), then (P,V) is an interactive argument system.

Most of our results hold both for interactive argument systems and for interactive proof sys-
tems. There is one important exception: jumping ahead, we will prove that we can implement
a certain class of interactive proof systems with statistically binding commitment schemes. This
makes the system witness indistinguishable, yet at the same time, the proof system degrades to an
argument system. Conversely, relaxations to the perfect completeness requirement of De�nition 2.2
are possible and common, but not useful for our purposes. Namely, the upcoming commitment
scheme ZKCom that we construct from a zero-knowledge argument system (P,V) would not satisfy
correctness (in the sense of De�nition 2.1) without perfect completeness of (P,V). We stress that
most known zero-knowledge proof systems satisfy perfect completeness as we demand.

De�nition 2.3 (Concurrent zero-knowledge). Let (P,V) be an interactive proof or argument
system for language L with witness relation R. (P,V) is zero-knowledge under concurrent compo-
sition i� for every polynomial n = n(k) and PPT machine V ∗, there exists a PPT machine S∗ such
that for all sequences (x,w) = (xi,k, wi,k)k∈N,i∈[n] with R(xi,k, wi,k) and |xi,k| = k for all i, k, for all

PPT machines D, and all auxiliary inputs z = (zk)k∈N ∈ ({0, 1}∗)N, we have that

AdvcZK
V ∗,S∗,(x,w),D,z := Pr

[
D(〈P((xi,k, wi,k)i∈[n]), V

∗((xi,k)i∈[n])〉, zk) = 1
]

− Pr
[
D(S∗((xi,k)i∈[n]), zk) = 1

]
is negligible in k. Here 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], zk)〉 denotes the transcript of the interac-
tion between n copies of the prover P (with the respective inputs (xi,k, wi,k) for i = 1, . . . , n) on the
one hand, and V ∗ on the other hand.
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We do not hand (xi,k)i∈[n] to D for simplicity, and without loss of generality. Also, the re-
quirement |xi,k| = k is without loss of generality, since we can always scale the security parameter
of (P,V). Finally, we do not hand zk to V ∗ or S∗, which is also without loss of generality (see,
e.g., Goldreich [15, Discussion after De�nition 4.3.10]). There exist interactive proof systems that
achieve De�nition 2.3 for arbitrary NP-languages if one-way functions exist (e.g., Richardson and
Kilian [25]; see also [20, 9, 1, 14, 2] for similar results in related settings).

We also recall the de�nition of witness indistinguishability from Goldreich [15] (we chose a
slightly di�erent but equivalent formulation):

De�nition 2.4 (Witness indistinguishability). Let (P,V) be an interactive proof or argument
system for language L with witness relation R. (P,V) is witness indistinguishable i� for every PPT
machines V ∗ and D, all sequences x = (xk)k∈N, w0 = (w0

k)k∈N, and w1 = (w1
k)k∈N with |xk| = k

and R(xk, w
0
k) and R(xk, w

1
k), and all auxiliary inputs z = (zk)k∈N ∈ ({0, 1}∗)N, we have that

AdvWI
x,w0,w1,V ∗,D,z := Pr

[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
]

− Pr
[
D(xk, zk, 〈P(xk, w

1
k), V

∗(xk, zk)〉) = 1
]

is negligible in k. Here, 〈P(x,w), V ∗(x)〉 denotes a transcript of the interaction between P and V ∗.

Blackbox reductions. Reingold et al. [24] give an excellent overview and classi�cation of blackbox
reductions. We recall some of their de�nitions which are important for our case. A primitive
P = (FP, RP) is a set FP of functions f : {0, 1}∗ → {0, 1}∗ along with a relation R over pairs
(f,A), where f ∈ FP, and A is a machine. We say that f is an implementation of P i� f ∈ FP.
Furthermore, f is an e�cient implementation of P i� f ∈ FP and f can be computed by a PPT
machine. A machine A P-breaks f ∈ FP i� RP(f,A). A primitive P exists if there is an e�cient
implementation f ∈ FP such that no PPT machine P-breaks f . A primitive P exists relative to an
oracle B i� there exists an implementation f ∈ FP which is computable by a PPT machine with
access to B, such that no PPT machine with access to B P-breaks f .

De�nition 2.5 (Relativizing reduction). There exists a relativizing reduction from a primitive
P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every oracle B, the following holds: if Q exists
relative to B, then so does P.

De�nition 2.6 (∀∃semi-blackbox reduction). There exists a ∀∃semi-blackbox reduction from
a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every implementation f ∈ FQ, there
exists a PPT machine G such that Gf ∈ FP, and the following holds: if there exists a PPT machine
A such that Af P-breaks Gf , then there exists a PPT machine S such that Sf Q-breaks f .

It can be seen that if a relativizing reduction exists, then so does a ∀∃semi-blackbox reduction.
The converse is true when Q �allows embedding,� which essentially means that additional oracles
can be embedded into Q without destroying its functionality (see Reingold et al. [24, De�nition 3.4
and Theorem 3.5] and Simon [26]). Below we will prove impossibility of relativizing reductions
between certain primitives, which also proves impossibility of ∀∃semi-blackbox reductions, since the
corresponding primitives Q allow embedding.

3 A simulation-based de�nition

Consider the following real security game: adversary A gets, say, n commitments, and then may ask
for openings of some of them. The security notion of [13] requires that for any such A, there exists
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a simulator S that can approximate A's output. More concretely, for any relation R, we require
that R(M, outA) holds about as often as R(M, outS), where M = (Mi)i∈[n] are the messages in the
commitments, outA is A's output, and outS is S's output. Formally, we get the following de�nition
(where henceforth, I will denote the set of �allowed� opening sets):

De�nition 3.1 (Simulatable under selective openings/SIM-SO-COM). Let n = n(k) > 0
be polynomially bounded, and let I = (In)n be a family of sets such that each In is a set of subsets
of [n]. A commitment scheme (Com,Ver) is simulatable under selective openings (short SIM-SO-
COM) i� for every PPT n-message distributionM, every PPT relation R, and every PPT adversary
A = (A1, A2), there is a PPT simulator S = (S1, S2), such that Advsim-so

Com,M,A,S,R is negligible. Here

Advsim-so
Com,M,A,S,R := Pr

[
Expsim-so-real

Com,M,A,R = 1
]
− Pr

[
Expsim-so-ideal

M,S,R = 1
]
,

where Expsim-so-real
Com,M,A,R proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,
2. compute (de-)commitments (comi, deci)← Com(Mi) for i ∈ [n],
3. run (s, I)← A1(1k, (comi)i∈[n]) to get state information s and a set I ∈ I,
4. run outA ← A2(s, (deci)i∈I),
5. output 1 i� R(M, outA).

On the other hand, Expsim-so-ideal
M,S,R proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,

2. run (s, I)← S1(1k) to get state information s and a set I ∈ I,
3. run outS ← S2(s, (Mi)i∈I),
4. output 1 i� R(M, outS).

For interactive commitments, the Expsim-so-real
M,A,R experiment concurrently performs n commitment

processes with A in step 3, and |I| decommitment processes in step 4. Note that we opted not to
give auxiliary input to the adversary. Such an auxiliary input is a common tool in cryptographic
de�nitions to ensure some form of composability. Not giving the adversary auxiliary input only
makes our negative results stronger. We stress, however, that our positive results (Theorem 3.10
and Theorem 4.7) hold also for adversaries with auxiliary input.

3.1 Impossibility from blackbox reductions

Formalization of computational assumptions. Our �rst main result states that SIM-SO-
COM security cannot be achieved via blackbox reductions from standard assumptions. We want to
consider such standard assumptions in a general way that allows to make statements even in the
presence of �relativizing� oracles. Thus we make the following de�nition, which is a special case of
the de�nition of a primitive from Reingold et al. [24] (cf. also Section 2).

De�nition 3.2 (Property of an oracle). Let X be an oracle. Then a property P of X is a
(not necessarily PPT) machine P that, after arbitrarily interacting with X and another machine
A, �nally outputs a bit b. For an adversary A (that may interact with X and P), we de�ne A's
advantage against P as

AdvPA := Pr [P outputs b = 1 after an interaction with A]− 1/2.

Now X is said to satisfy property P i� for all PPT adversaries A, we have that AdvPA is negligible.
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In terms of Reingold et al. [24], the corresponding primitive is P = (FQ, RQ), where FP = {X},
and RP(X , A) i� AdvPA is non-negligible. Our de�nition is also similar in spirit to �hard games� as
used by Dodis et al. [12], but more general. We emphasize that P can only interact with X and
A, but not with possible additional oracles. (See Appendix A for further discussion of properties
of oracles, in particular their role in our proofs.) Intuitively, P acts as a challenger in the sense of
a cryptographic security experiment. That is, P tests an adversary A whether A can �break� X in
the intended way. We give an example, where �breaking� means �breaking X 's one-way property�.

Example. If X is a random permutation of {0, 1}k, then the following P models X 's one-way
property: P acts as a challenger that challenges A to invert a randomly chosen X -image. Concretely,
P initially chooses a random Y ∈ {0, 1}k and sends Y to A. Upon receiving a guess X ∈ {0, 1}k
from A, P checks if X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then
P tosses an unbiased coin b′ ∈ {0, 1} and terminates with output b = b′.

We stress that we only gain generality by demanding that Pr [P outputs 1] is close to 1/2 (and
not, say, negligible). In fact, this way indistinguishability-based games (such as, e.g., the indistin-
guishability of ciphertexts of an ideal cipher X ) can be formalized very conveniently. On the other
hand, cryptographic games like the one-way game above can be formulated in this framework as
well, by letting the challenger output b = 1 with probability 1/2 when A fails.

On the role of property P. Our upcoming results state the impossibility of (blackbox) security
reductions, from essentially any computational assumption (i.e., property) P. The obvious ques-
tion is: what if the assumption already is an idealized commitment scheme secure under selective
openings? The short answer is: �then the security proof will not be blackbox.� We give a detailed
explanation of what is going on in Appendix A.

Theorem 3.3 (First main result: impossibility of SIM-SO-COM, most general formula-
tion). Let n = n(k) be arbitrary, and let I = (In)n be arbitrary such that In is a set of subsets of
[n] and |In| is superpolynomial in k.4 Let X be an oracle that satis�es property P. Then there is a
set of oracles relative to which X still satis�es property P, but there exists no commitment scheme
which is simulatable under selective openings.

Proof. First, let RO be a random oracle (i.e., a random function {0, 1}∗ → {0, 1}k). When writing
RO(x1, . . . , x`), we assume that RO's input x1, . . . , x` is encoded in a pre�x-free way, such that all
individual xi can be e�ciently reconstructed from RO's input. Furthermore, let B be the oracle
that proceeds as follows:

1. Upon input (Com,Ver, com), where com = (comi)i∈[n], return a uniformly chosen I ∈ I and
record (Com,Ver, com, I).5

2. Upon input (Com,Ver, com, decI) with decI = (deci)i∈I for a (Com,Ver, com, I) which was
previously recorded, verify using Ver that each deci is a valid opening of the respective comi.
If not, reject with output ⊥. If yes, let Mi denote the message that comi was opened to, and
return the set of all s ∈ {0, 1}k/3 such that Mi = RO(Com,Ver, i, s) for all i ∈ I.

Now �x any commitment scheme (Com∗,Ver∗) (that may use all the described oracles in its
algorithms). Consider the n-message distribution M∗ = {(RO(Com∗,Ver∗, i, s∗))i∈[n]}s∈{0,1}k/3

(i.e.,M∗ chooses s∗ ∈ {0, 1}k/3 uniformly and then sets M∗
i = RO(Com∗,Ver∗, i, s∗) for all i).

Lemma 3.4. There is an adversary A that outputs outA = M∗ with overwhelming probability in
the real SIM-SO-COM experiment Expsim-so-real

Com∗,Ver∗,M,A,R. Here M∗ denotes the full message vector
sampled fromM∗ by the experiment.

4e.g., one could think of n = 2k and In = {I ⊆ [n] | |I| = n/2} here
5Com and Ver denote descriptions of circuits (with access to all oracles) for commitment and veri�cation algorithms.

This has the e�ect that these algorithms will be PPT whenever the entity that uses B is PPT.
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Proof. Let A be the SIM-SO-COM adversary on (Com∗,Ver∗) that relays between its interface to
the SIM-SO-COM experiment and B as follows:

1. Upon receiving com∗ = (com∗
i )i∈[n] from the experiment, send (Com∗,Ver∗, com∗) to B.

2. Upon receiving I∗ ∈ I from B, send I∗ to the SIM-SO-COM experiment.
3. Upon receiving dec∗I∗ = (dec∗i )i∈I∗ from the experiment, send (Com∗,Ver∗com∗, dec∗I∗) to B.
4. Finally, upon receiving a singleton set {s∗} from B, return outA = (RO(Com∗,Ver∗, i, s∗))i∈[n].

If B returns a set of larger size, return outA = ⊥.
(This adversary is straightforwardly split into two PPT parts A1 and A2 as required for the SIM-
SO-COM experiment.) By construction ofM∗ and B, it is clear that outA = M∗ unless B returns
multiple s (which happens only with negligible probability by a counting argument).

Lemma 3.5. Any given PPT simulator S will output outS = M∗ in the ideal SIM-SO-COM
experiment Expsim-so-ideal

M,S,R only with negligible probability.

Proof. Fix a PPT S. We claim that in the ideal SIM-SO-COM experiment, S has a view that
is almost statistically independent of s∗, and hence will output outS = M∗ only with negligible
probability. To show the claim, denote by I∗ the subset that S submits to the SIM-SO-COM
experiment, and by M∗

I∗ the messages that S receives back. Denote by Comj ,Verj , Ij ,M j
Ij the

corresponding values used in S's j-th query to B. We �rst de�ne and bound a number of �bad�
events:
• badcoll occurs i� S submits an opened M j

i to B for which there are two distinct s1, s2 ∈ {0, 1}k/3

with RO(Comj ,Verj , i, s1) = M j
i = RO(Comj ,Verj , i, s2).

• badimg occurs i� S submits an opened M j
i to B for which an s with M j

i = RO(Comj ,Verj , i, s)
exists, but M j

i has not been obtained through an explicit RO-query (by either S or the SIM-
SO-COM experiment).
• badbind occurs i� (Comj ,Verj , Ij ,M j

Ij ) = (Com∗,Ver∗, I∗,M∗
I∗) for some j.

• bad := badcoll ∨ badimg ∨ badbind.
These events occur only with negligible probability: informally, badcoll implies a collision among
2k/3 uniformly distributed k-bit values, which is ruled out by a birthday bound; badimg means
that S guessed an element of a very sparse set; badbind means that S broke (Com∗,Ver∗)'s binding
property. A more detailed proof can be found below.

Now consider the following oracle B′ which is almost identical to B:
1. Upon input (Com,Ver, com), where com = (comi)i∈[n], return a uniformly chosen I ∈ I and

record (Com,Ver, com, I).
2. Upon input (Com,Ver, com, decI) with decI = (deci)i∈I for a (Com,Ver, com, I) which was

previously recorded, verify using Ver that each deci is a valid opening of the respective comi.
If not, reject with output ⊥. If yes, let Mi denote the message that comi was opened to. If
every Mi is the result of an RO(Com,Ver, i, s)-query of S (for the same s ∈ {0, 1}k/3), then
output {s}. Otherwise, output ∅.

By construction, the output of B and B′ can di�er only if
• there are multiple s with Mi = RO(Com,Ver, i, s) for some i ∈ I, or
• for some i ∈ I, Mi is not the result of an explicit RO-query of S, but there exists an s with

Mi = RO(Com,Ver, i, s) for all i ∈ I.
Assume that event bad does not occur. Then ¬badcoll ensures that no multiple s with Mi =
RO(Com,Ver, i, s) exist, and ¬badimg ensures that all Mi have been explicitly queried as Mi =
RO(Com,Ver, i, s) by either S or the SIM-SO-COM experiment. Now since the SIM-SO-COM
experiment makes only queries of the form M∗

i = RO(Com∗,Ver∗, i, s∗), this means that B and
B′ can only di�er if (Com,Ver) = (Com∗,Ver∗), and if MI contains some Mi from M∗

I∗ . On the

8



other hand, ¬badbind implies that then, MI must also contain some Mi′ not contained in M∗
I∗ . By

¬badimg, then Mi′ must have been explicitly queried by S through Mi′ = RO(Comj ,Verj , i′, s∗), for
the same s∗ as chosen by the SIM-SO-COM experiment to generate M∗

i = RO(Com∗,Ver∗, i, s∗).
In other words, assuming ¬bad, in order to detect a di�erence between B and B′, S must already

have guessed the hidden s∗ used in the SIM-SO-COM experiment. In particular, since up to that
point, oracles B and B′ behave identically, and S can simulate B′ internally, S can either extract the
hidden s∗ from the SIM-SO-COM experiment with oracles RO and X alone, or not at all. However,
since we de�ned RO independently and after X , these oracles are independent. Hence, using RO
and X alone, the view of S is independent of s∗ unless S explicitly makes a RO-query involving
s∗. Since s∗ ∈ {0, 1}k/3 is uniformly chosen from a suitably large domain, and bad occurs with
negligible probability, we get that S's view is almost statistically independent of s∗. Hence, S can
produce outS = M∗ only with negligible probability.

It remains to prove that bad occurs only negligibly often.

Lemma 3.6. Event bad occurs only with negligible probability.

Proof. We show that any of the events badcoll, badimg, badbind occurs only with negligible probability
for any �xed i, j. The full claim then can be derived by a union bound over i, j, and the individual
events. So �rst �x i, j, and note that the functions RO(Comj ,Verj , i, ·) and RO(Com′,Ver′, i′, ·) are
independent as soon as Comj 6= Com′ or Verj 6= Ver′ or i 6= i′. Hence, for all of the events,
we can ignore RO- and B-queries with di�erent Com, Ver, or i, and assume that RO′(·) :=
RO(Comj ,Verj , i, ·) is a fresh random oracle.
badcoll: Using a birthday bound, we get

Pr
[
∃s1, s2 ∈ {0, 1}k/3, s1 6= s2 : RO′(s1) = RO′(s2)

]
≤ (2k/3)2

2k
= 2−k/3,

which implies that with large probability, there simply exists no M j
i which could raise badcoll.

badimg: We show that S's chance to output M with M = RO′(s) for some s ∈ {0, 1}k/3, and such
that s has not been queried to RO′-query, is negligible. Now S's access to the B-oracle can
be emulated using an oracle B′ that, upon input M , outputs the set of all s ∈ {0, 1}k/3 with
RO′(s) = M . Without loss of generality, we may further assume that S never queries B′ with
an M which has been obtained through an explicit RO′(s)-query. (Namely, unless badcoll

occurs, which happens only with negligible probability, B′'s answer will then be {s}.) Hence,
whenever S receives an answer 6= ∅ from B′, it has already succeeded in producing an M with
RO′(s) = M for some s, and without querying RO′(s). So without loss of generality, we can
assume that S never queries B′, and hence only produces such an M using access to RO and
RP alone. Clearly, RP does not help S, since RP and RO are independent. But since the set
of all M for which RO′(s) = M for some s ∈ {0, 1}k/3 is sparse in the set of all M ∈ {0, 1}k,
and S can only make a polynomial number of RO-queries, S's success in producing such an
M is negligible.

badbind: Without loss of generality, assume that S sets I∗ after B chooses Ij . (Otherwise, Ij = I∗

occurs only with probability 1/|I|, since Ij is chosen uniformly and then independent of I∗.)
We can also assume that (Comj ,Verj) = (Com∗,Ver∗), since otherwise badbind cannot happen
by de�nition. This means that S �rst commits to B via sending (Comj ,Verj , com), then
receives Ij , and then sends I∗ = Ij to its own experiment to receive M∗

Ij . Finally, to achieve

badbind, S must open comIj to M j
Ij . In particular, there is an i such that S opens comi to a

value M∗
i which S only sees after de�ning comi. This directly breaks the binding property of

(Comj ,Verj) = (Com∗,Ver∗).

9



Taking things together, this shows that Advsim-so
Com∗,M∗,A,S,R is overwhelming for the relation

R(x, y) :⇔ x = y, the described A, and any PPT S. Hence (Com∗,Ver∗) is not SIM-SO-COM
secure. It remains to argue that in the described computational world, X still satis�es property P.

Lemma 3.7. X satis�es P.

Proof. Assume a PPT adversary A on X 's property P. Since X and P do not query B or RO, these
latter two oracles do not help A, in the following sense. Namely, A can break property P without
oracles RO and B, and use internal simulations of these oracles instead. This achieves the same
view for A, X , and P. To see this, note that RO never queries X . Furthermore, B queries X at
most a polynomial number of times (for checking the validity of the decommitments decI according
to Ver). Hence both of these simulations inside A are e�cient in terms of X -queries. In fact, using
lazy sampling techniques for RO, both simulations can be made PPT. (This includes B's inversion
of RO, since we simulate B and RO at the same time.)

So without loss of generality, we can assume that A only uses X -queries when interacting with
P. Since we assumed that P holds in the standard model (i.e., without any auxiliary oracles), P
will hence also hold in presence of B and RO.

This concludes the proof of Theorem 3.3.

The following corollary provides an instantiation of Theorem 3.3 for a number of standard
cryptographic primitives.

Corollary 3.8 (First main result: impossibility of SIM-SO-COM). Let n and I as in
Theorem 3.3. Then no commitment scheme can be proven simulatable under selective openings
via a ∀∃semi-blackbox reduction from one or more of the following primitives: one-way functions,
one-way permutations, trapdoor one-way permutations, IND-CCA secure public key encryption.

The corollary is a special case of Theorem 3.3. For instance, to show Corollary 3.8 for one-
way permutations, one can use the example X and P from above: X is a random permutation of
{0, 1}k, and P models the one-way experiment with X . Clearly, X satis�es P, and so we can apply
Corollary 3.8. This yields impossibility of relativizing proofs for SIM-SO-COM security from one-
way permutations. We get impossibility for ∀∃semi-blackbox reductions since one-way permutations
allow embedding, cf. Simon [26], Reingold et al. [24]. The other cases are similar. Note that while it
is generally not easy to even give a candidate for a cryptographic primitive in the standard model,
it is easy to construct an idealized, say, encryption scheme in oracle form.

Generalizations. First, Corollary 3.8 constitutes merely an example instantiation of the much
more general Theorem 3.3. Also, the proof of Theorem 3.3 generalizes to interactive commitment
schemes in a natural way: in this case, (Com,Ver) denotes (a description of) interactive machines,
and B performs a commitment/decommitment process as speci�ed by (Com,Ver). Similarly, A only
relays messages used during commitment and decommitment between B and the SIM-SO-COM
experiment. The proof also holds for a relaxation of SIM-SO-COM security considered by Dwork
et al. [13, De�nition 7.3], where adversary and simulator approximate a function of the message
vector.
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3.2 Possibility using non-blackbox techniques

Theorem 3.3 shows that SIM-SO-COM security cannot be proven with a blackbox reduction. We
will now investigate non-blackbox techniques to achieve SIM-SO-COM security. As it turns out, for
our purposes a concurrently composable zero-knowledge argument system is a suitable non-blackbox
tool.6

The scheme. We need an arbitrary non-interactive commitment scheme (Com′,Ver′), and an
interactive argument system (P,V) for NP which is zero-knowledge under concurrent composition.
Both assumptions follow from the existence of one-way functions. To ease presentation, we only
describe a bit commitment scheme, which is easily extended (along with the proof) to the multi-bit
case.

Scheme 3.9 (Non-blackbox commitment scheme ZKCom). Let (Com′,Ver′) be a noninter-
active commitment scheme, and let (P,V) be an interactive argument system for NP which is
zero-knowledge under concurrent composition.
• Commitment to bit b:

1. For all j ∈ {0, 1}, committer computes (comj , decj)← Com′(b) and sends (com0, com1)
to receiver.

2. Committer uses (P,V) to prove to receiver that com0 and com1 commit to the same bit.7

• Opening:
1. Committer uniformly chooses j ∈ {0, 1} and sends (j, decj) to receiver.

Security proof. We comment that since ZKCom has an interactive commitment phase, we need
to consider interactive variants of De�nition 2.1 and De�nition 3.1. It is straightforward to prove
that ZKCom is a hiding and binding commitment scheme. More interestingly, we can also show that
ZKCom is even SIM-SO-COM secure:

Theorem 3.10 (Possibility of IND-SO-COM). Fix any n and I as in De�nition 3.1. Then
ZKCom is simulatable under selective openings in the sense of De�nition 3.1.

Proof. Assume arbitrary n, I,M, R, and A = (A1, A2) as in De�nition 3.1. We proceed in games.
Game 0 is the real SIM-SO-COM experiment Expsim-so-real

ZKCom,M,A,R for ZKCom. De�ne the random
variable out0 as the output of the experiment, so that

Pr
[
Expsim-so-real

ZKCom,M,A,R = 1
]

= Pr [out0 = 1] .

In Game 1, we interpret the �rst stage of the experiment as a veri�er V ∗ in the sense of
De�nition 2.3. To this end, we constructively de�ne random variables xi,k, wi,k, zk as follows:

1. sample M = (Mi)i∈[n] ∈ {0, 1}n fromM,
2. uniformly and independently choose n bits j1, . . . , jn,
3. for all i ∈ [n] and j ∈ {0, 1}, compute (comj

i , dec
j
i )← Com′(Mi),

4. de�ne xi,k = (com0
i , com

1
i ), wi,k = (dec0

i , dec
1
i ), and zk = (M, (ji, dec

ji
i )i∈[n]).

Using this notation, the commitment stage of Expsim-so-real
ZKCom,M,A,R can be expressed as an interac-

tion of n concurrent instances of prover P with a suitable veri�er V ∗ as in De�nition 2.3. Con-
cretely, we de�ne a veri�er V ∗ that, on input (xi,k)i∈[n] = (com0

i , com
1
i )i∈[n], internally simulates

6We require concurrent composability since the SIM-SO-COM de�nition considers multiple, concurrent instances
of the commitment scheme.

7Formally, the corresponding language L for (P, V) considers statements x = (com0, com1) and witnesses w =
(dec0, dec1) such that R(x, w) i� Ver(com0, dec0) = Ver(com1, dec1) ∈ {0, 1}.
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Expsim-so-real
ZKCom,M,A,R up to the point where A1 outputs (s, I). The interactive arguments that com0

i and
com1

i commit to the same bit are performed interactively with (n instances of) a prover P that gets
wi,k = (dec0

i , dec
1
i ) as input. Finally, V ∗ outputs outV ∗ = (s, I), so that outV ∗ will be part the

transcript TP,V ∗ = 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], zk)〉.
We outsource the second stage of the attack into a suitable distinguisher D. Concretely, we

de�ne a machine D which, on input zk = (M, (ji, dec
ji
i )i∈[n]) and a transcript TP,V ∗ (which contains

outV ∗ = (s, I)), simulates outA ← A2(s, (ji, dec
ji
i )i∈I) and outputs out1 = R(M, outA).

This setting is merely a reformulation of Expsim-so-real
ZKCom,M,A,R as a concurrent zero-knowledge argu-

ment, so we have that
Pr [out1 = 1] = Pr [out0 = 1] .

In Game 2, we use (P,V)'s concurrent zero-knowledge property. That is, Game 1 already
speci�es a PPT veri�er V ∗ and a PPT distinguisher D, as well as random variables (x,w) and z,
as in De�nition 2.3.8 Hence our assumption on (P,V) guarantees that there exists a PPT simulator
S∗ such that AdvcZK

V ∗,S∗,(x,w),D,z is negligible. We substitute V ∗ (along with all instances of P) from
Game 1 with that simulator S∗ in Game 2. Note that now, the execution of Game 2 does not
require wi,k = (dec0

i , dec
1
i ) anymore, but instead only one decommitment decji

i for each argument
instance. If we let out2 denote D's output (on input zk and outS∗) in this setting, we get that

Pr [out1 = 1]− Pr [out2 = 1] = AdvcZK
V ∗,S∗,(x,w),D,z

is negligible.
In Game 3, we use (Com′,Ver′)'s hiding property. Namely, we now change the generation of

the xi,k = (com0
i , com

1
i ). While we still generate comji

i as a commitment to Mi, we now de�ne

com1−ji
i as a commitment to 1 −Mi, so that com0

i and com1
i are commitments to di�erent bits.

Since dec1−ji
i is never used in Game 2, this does not result in a detectable change in D's output.

Concretely, we have that

Pr [out3 = 1]− Pr [out2 = 1] = Advhiding
Com′,A′

for a suitable adversary A′ on (Com′,Ver′)'s hiding property, so that Pr [out3 = 1]−Pr [out2 = 1] is
negligible.

To constructGame 4, observe that inGame 3, distinguisher D only needs the decommitments
decji

i for i ∈ I from its input zk = (M, (decji
i )i∈[n]). We can exploit this fact as follows. We now

generate the commitments xi,k = (com0
i , com

i
1) and decommitments decji

i , as well as the ji ∈ {0, 1}
slightly di�erently. Concretely, for each message bit Mi, we �rst choose a random bit bi and compute
(com0

i , dec
0
i )← Com′(bi) and (com1

i , dec
1
i )← Com′(1− bi). This modi�cation does not change S∗'s

view. When D requires a decommitment decji
i (for i ∈ I), we de�ne ji = bi ⊕Mi, so that decji

i

opens the �right� message Mi. This does not change the view of S∗ or D, so that we have

Pr [out4 = 1] = Pr [out3 = 1] .

The crucial conceptual di�erence toGame 3 is that now the execution of A2 requires only knowledge
about the message parts (Mi)i∈I selected by S∗ and not the full message vector M .

Game 5 is a reformulation ofGame 4 as an ideal SIM-SO-COM experiment. First, we de�ne a
simulator S = (S1, S2) as follows: S1 prepares bits bi and commitments (comi

0, com
i
1) as inGame 4

and then runs an internal simulation of S∗ on these commitments. Upon obtaining (s, I) from S∗,

8Note that De�nition 2.3 trivially implies security for all distributions on (x, w) and z.
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S1 outputs (s′, I) for s′ = (s, (bi, com
j
i , dec

j
i )i∈I,j∈{0,1}). Upon input s′ and (Mi)i∈I , S2 runs an

internal simulation of A2 on input s and (ji, dec
ji
i )i∈I for ji = bi ⊕Mi as in Game 4. Finally, S2

outputs outS2 = outA2 . By construction, the ideal SIM-SO-COM experiment Expsim-so-ideal
M,S,R with

this S is only a reformulation of Game 4, so that

Pr
[
Expsim-so-ideal

M,S,R = 1
]

= Pr [out4 = 1] .

Putting things together, we get that

Advsim-so
ZKCom,M,A,S,R = Pr

[
Expsim-so-real

ZKCom,M,A,R = 1
]
− Pr

[
Expsim-so-ideal

M,S,R = 1
]

is negligible, which proves the theorem.

Where is the non-blackbox component? Interestingly, the used zero-knowledge argument
system (P,V) itself can well be blackbox zero-knowledge (where blackbox zero-knowledge means
that the simulator S∗ from De�nition 2.3 has only blackbox access to V ∗). The essential fact that
allows us to circumvent our negative result Theorem 3.3 is the way we employ (P,V). Namely,
ZKCom uses (P,V) to prove a statement about two given commitments (com0, com1). This proof
(or, rather, argument) uses an explicit and non-blackbox description of the employed commitment
scheme (Com′,Ver′). It is this argument that cannot even be expressed when (Com′,Ver′) makes
use of, say, a one-way function given in oracle form.

Generalizations. First, ZKCom can be straightforwardly extended to a multi-bit commitment
scheme, e.g., by running several instances of ZKCom in parallel. Second, ZKCom is IND-SO-COM
secure also against adversaries with auxiliary input z: our proof holds literally, where of course we
also require security of (P,V) against veri�ers with auxiliary input.

4 An indistinguishability-based de�nition

Motivated by the impossibility result from the previous section, we relax De�nition 3.1 as follows:

De�nition 4.1 (Indistinguishable under selective openings/IND-SO-COM). Let n =
n(k) > 0 be polynomially bounded, and let I = (In)n be a family of sets such that each In is a set
of subsets of [n]. A commitment scheme (Com,Ver) is indistinguishable under selective openings
(short IND-SO-COM) i� for every PPT n-message distribution M(·), and every PPT adversary
A = (A1, A2), we have that Advind-so

Com,M,A is negligible. Here

Advind-so
Com,M,A := Pr

[
Expind-so-real

Com,M,A = 1
]
− Pr

[
Expind-so-ideal

Com,M,A = 1
]
,

where Expind-so-real
Com,M,A proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,
2. compute (de-)commitments (comi, deci)← Com(Mi) for i ∈ [n],
3. run (s, I)← A1(1k, (comi)i∈[n]) to get state information s and a set I ∈ I,
4. run b← A2(s, (deci)i∈I ,M) to obtain a guess bit b,
5. output b.

On the other hand, Expind-so-ideal
Com,M,A proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,
2. compute (de-)commitments (comi, deci)← Com(Mi) for i ∈ [n],
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3. run (s, I)← A1(1k, (comi)i∈[n]) to get state information s and a set I ∈ I,
4. sample M ′ ←M |MI , i.e., sample a fresh message M ′ fromM with M ′

I = MI ,
5. run b← A2(s, (deci)i∈I ,M

′) to obtain a guess bit b,
6. output b.

As obvious, for interactive commitments, both experiments perform commitment and decom-
mitment processes with A.

On the conditioned distribution M | MI . We stress that, depending on M, it may be
computationally hard to sample M ′ ← M | MI , even if (the unconditioned) M is PPT. This
might seem strange at �rst and inconvenient when applying the de�nition in some larger reduction
proof. However, there simply seems to be no other way to capture indistinguishability, since the
set of opened commitments depends on the commitments themselves. In particular, in general
we cannot predict which commitments the adversary wants opened, and then, say, substitute the
not-to-be-opened commitments with random commitments. What we chose to do instead is to give
the adversary either the full message vector, or an independent message vector which �could be�
the full message vector, given the opened commitments. We believe that this is the canonical way
to capture secrecy of the unopened commitments under selective openings. We should also stress
that it is this de�nition that turns out to be useful in the context of interactive proof systems, see
Section 6.

A relaxation. Alternatively, we could let the adversary predict a predicate π of the whole message
vector, and consider him successful if Pr [b = π(M)] and Pr [b = π(M ′)] for the alternative message
vector M ′ ←M |MI di�er non-negligibly. We stress that our upcoming negative result (as well as
the application in Section 6) also applies to this relaxed notion.

4.1 Impossibility from blackbox reductions

Theorem 4.2 (Second main result: impossibility of perfectly binding IND-SO-COM,
most general formulation). Let n = n(k) = 2k, and let I = (In)n with In = {I ⊆ [n] : |I| = n/2}
be the family of all n/2-sized subsets of [n]. Let X be an oracle that satis�es property P even in
presence of a PSPACE-oracle. We demand that X is computable in PSPACE, at least in polynomially
bounded contexts.9 Then, there exists a set of oracles relative to which X still satis�es P, but no
perfectly binding commitment scheme is indistinguishable under selective openings.

Proof. First, let ε ∈ R be a suitably small positive real number that does not depend on n. (We
will determine δ later.) Let F be the �nite �eld of size 2k. Let C be the oracle that initially chooses
a linear code C over F with length n, dimension D ≥ (1/2 + ε) and minimum distance d ≥ 5ε.
That is, C chooses a full-rank generator matrix G ∈ FD×n such that for any distinct x, y ∈ FD,
the vectors xG and yG di�er in at least d components. We denote with C the induced linear code,
i.e., C = {xG | x ∈ {0, 1}D} ⊆ Fn. For suitably small (but positive) ε and suitably large values
of n, such codes exist due to the Gilbert-Varshamov bound (cf., e.g., MacWilliams and Sloane [21,
Theorem 12 and Problem 45]). We assume such values of n and ε, and we also assume n large
enough such that εn ≥ 1. Upon any input, C replies with C (i.e., with G).

Moreover, let PSPACE be a PSPACE-oracle, and let R be the oracle that, upon input M =
(Mi)i∈[n] ∈ (F ∪ {⊥})n and I ⊆ [n], proceeds as follows. If there exists M̃ = (M̃i)i∈[n] ∈ C and

J ⊇ I with |J | ≥ (1 − 2ε)n such that M̃J = MJ , then return M̃ . (Since C has minimum distance
d ≥ (1 − 5ε)n, there is at most one such M̃ .) If no such M̃ ∈ C exists, return ⊥. Intuitively, R

9This is not a contradiction. An example of such an X is a random oracle or an ideal cipher, using lazy sampling.
It will become clearer how we use the PSPACE requirement in the proof.
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tries to �error-correct� M and �nd a vector M̃ ∈ C which is �close� to M and satis�es M̃I = MI .
Note that R can be perfectly emulated using PSPACE and a description of C alone; we only use
an explicit R to ease presentation.

Finally, let B be the oracle that proceeds as follows:
1. Upon input (Com,Ver, com), where com = (comi)i∈[n], check that (Com,Ver) describes a

perfectly binding, but not necessarily hiding, commitment scheme.10 If not, reject with output
⊥. If yes, return a uniformly chosen I ∈ I and record (Com,Ver, com, I).

2. Upon input (Com,Ver, com, decI) with decI = (deci)i∈I for a (Com,Ver, com, I) which was
previously recorded, verify using Ver that each deci is a valid opening of the respective comi.
If not, reject with output ⊥. If yes, extract the whole message vector M from com (this is
possible uniquely since (Com,Ver) is perfectly binding), and return R(M, I).

We should comment on B's check whether (Com,Ver) is perfectly binding. We want that, for all
possible values of C and states of X , and for all syntactically allowed commitments comi, there is
at most one message Mi to which comi can be opened in the sense of Ver. Note that by assumption
about X , this condition can be checked using PSPACE-oracle PSPACE . (For instance, if X is a
random oracle, then we can let PSPACE iterate over all possible answers to actually made queries;
since there can by only polynomially many such queries in our context, this can be done in PSPACE.
More generally, we can iterate over suitable pre�xes of X 's random tape.) Note that we completely
ignore whether or not (Com,Ver) is hiding.

Lemma 4.3. Let (Com∗,Ver∗) be a perfectly binding commitment scheme (that may use all of
the described oracles in its algorithms). Then (Com∗,Ver∗) is not indistinguishable under selective
openings.

Proof. Consider the n-message distribution M∗ that samples random elements of C. (I.e., M∗

outputs a uniformly sampled M ∈ C ⊆ Fn.) Consider the following adversary A that relays
between the real or ideal IND-SO-COM experiment and oracle B:

1. Upon receiving com∗ = (com∗
i )i∈[n] from the experiment, send (Com∗,Ver∗, com∗) to B.

2. Upon receiving I∗ ∈ I from B, send I∗ to the IND-SO-COM experiment.
3. Upon receiving openings dec∗I∗ = (dec∗i )i∈I∗ and a challenge message M from the experiment,

send (Com∗,Ver∗, com∗, dec∗I∗) to B.
4. Finally, upon receiving M̃ ∈ Fn from B, output outA = 1 i� M = M̃ .

(Again, A is straightforwardly split into parts A1 and A2.)
Now by construction of the IND-SO-COM experiment and B, we have that the message M̃ that

A receives from B will always be identical to the initially sampled message M∗, both in the real
and the ideal IND-SO-COM experiment. Hence, A will always output 1 in the real IND-SO-COM
experiment (since then M = M∗ by de�nition). In the ideal experiment, M will be a random
codeword with MI∗ = M∗

I∗ . However, since code C has dimension D ≥ (1/2 + ε) ≥ |I∗|+ 1, there
are at least |F| = 2k possible such M , and so M = M∗ with probability at most 2−k. Hence
A will output 1 with negligible probability in the ideal IND-SO-COM experiment. We get that
Advind-so

Com∗,M∗,A is overwhelming, which proves the lemma.

Lemma 4.4. X satis�es P.

Proof. For contradiction, suppose that there is a successful (computationally unbounded, but poly-
nomially bounded in the number of oracle queries) adversary A on X 's property P. We �rst argue
that A can do without B. Formally, we build a re�ned A′ from A such that A′ never queries B, but
still achieves that Pr [P outputs 1]− 1/2 is non-negligible.

10see the discussion after the description of B
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Now A′ simulates A and answers A's B-queries on its own, as follows:
1. Upon input (Com,Ver, com) from A, where com = (comi)i∈[n], check that (Com,Ver) describes

a perfectly binding, but not necessarily hiding, commitment scheme.11 If not, reject with
output ⊥. If yes, return a uniformly chosen I ∈ I and record (Com,Ver, com, I).

2. Upon input (Com,Ver, com, decI) with decI = (deci)i∈I for a (Com,Ver, com, I) which was
previously recorded, verify using Ver that each deci is a valid opening of the respective comi.
If not, reject with output ⊥. If yes, apply procedure Rewind described below. If Rewind fails,
return ⊥. If Rewind succeeds, it will return a set R ⊆ [n] of size |R| ≥ (1 − ε)n along with
messages M ′

R such that M ′
R = MR for the unique messages M inside com that would be

extracted by B. In this case, return R(M ′, I), where we set M ′
i := ⊥ for i 6∈ R.

We denote this simulation of B by B′. Before we analyze B′ further, we sketch the Rewind procedure.
Rewind rewinds A back to the state just before receiving I ∈ I from B′, and replaces I with a freshly
sampled I ′ ∈ I, in the hope that A opens MI′ later. We argue below that rewinding a su�cient
(polynomial12) number of times will with high probability allow to extract (Mi)i∈R for R ⊇ I with
|R| ≥ (1− ε)n. In particular, we will prove that the probability for Rewind to fail in any B′-query
is signi�cantly smaller than A's success probability. For that reason, we will henceforth silently
assume that Rewind did not fail. A detailed description and analysis of Rewind can be found in the
next lemma.

First we remark that, given a �xed vector com (that also �xes M), there is at most one MB ∈ C
that B could possibly output, and this MB does not depend on I. Indeed, whenever B outputs some
MB ∈ C, then by de�nition of R, there must be a J ⊂ [n], |J | ≥ (1−2ε)n, such that MB

J = MJ . For

any two possible B-outputs MB,1,MB,2 ∈ C and corresponding subsets J1, J2, we have MB,1
J1∩J2

=
MJ1∩J2 = MB,2

J1∩J2
. Hence MB,1 and MB,2 match in at least |J1 ∩ J2| ≥ (1 − 4ε)n ≥ (1 − 5ε)n + 1

components, which implies MB,1 = MB,2 by de�nition of C. The same argument shows that, given
com, also B′ can only output either ⊥ or MB′

= MB.
We claim that B′ will output what B would have output, except with negligible probability.

Indeed, if B′ outputs MB′ ∈ C, then already MR can be error-corrected (in the sense of R) to a
unique vector M̃ = MB′ ∈ C. Hence also M can be error-corrected to the same M̃ ∈ C, and so B
would have output MB = MB′

.
Conversely, assume that B would have output MB ∈ C (and not ⊥). For contradiction, assume

that B′ outputs ⊥. Since B would have output MB, there exists a subset J ⊇ I of size |J | ≥ (1−2ε)n
with MJ = MB

J . Denote by R ⊇ I the indices for which Rewind extracts MR. Call an index i ∈ [n]
bad i� Mi 6= MB

i . Because we assumed that B′ outputs ⊥, every (1− 2ε)n-sized subset of MR must
contain at least one bad index. Since |R| ≥ (1− ε)n, we get that R contains at least εn bad indices.
Now n grows linearly in k, and so a uniformly chosen subset I ⊆ [n] contains hence a bad index
with overwhelming probability over I. For any such choice of I, B would have output ⊥ and not
MB since MB

I = MI by de�nition of R. So B's probability to output MB must be negligible in the
�rst place. This shows that the claim �whenever B would have output MB ∈ C, then B′ outputs
MB′

= MB� holds with overwhelming probability.
We conclude that the internal simulation B′ behaves like B, except with su�ciently small prob-

ability. Hence A′ breaks property P, but without querying B. Without loss of generality, we can
also assume that A′ never queries R, since R-queries can be e�ciently emulated using PSPACE
(that itself cannot access X ) and a description of code C alone. Hence A′ breaks property P with
only a polynomial number of queries to X and PSPACE . This contradicts our assumption on X

11By assumption, this can be e�ciently done by A′ using PSPACE .
12Although A′ will not necessarily be polynomial-time, we need to keep the number of A′'s oracle queries polynomial,

hence the need to bound the number of rewindings.
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and creates the desired contradiction.

It leaves to give a detailed description and analysis of procedure Rewind.

Lemma 4.5. Procedure Rewind sketched above extracts a subvector MR of the message vector M
with R ⊇ I and |R| ≥ (1− ε)n upon success. The probability that Rewind fails in at least one of A's
B-queries is at most half of the advantage of A against P.

Proof. First, we detail how Rewind works. Generally, since A makes only polynomially many oracle
queries, and we assumed A to be successfully attacking X 's property P, we can assume that there is
a polynomial p such that (a) for in�nitely many values of the security parameter k, A's advantage
against P is at least 1/p(k), and (b) A always makes at most p(k) queries. Assume concretely that
A previously submitted (Com,Ver, com) to B′, such that (Com,Ver) is perfectly binding. Assume
further that A successfully opened comI to MI for a subset I ∈ I uniformly chosen by B′. Let P
denote A's probability (over a uniform choice of I ∈ I) to correctly open comI .

In this situation, procedure Rewind records MI and then rewinds A's state to the point where A
received I ∈ I from B′ (without altering A's random tape). Rewind then substitutes I with a fresh
I ′ uniformly sampled from I. If A later successfully opens MI′ , then Rewind records MI′ . (Note
that there can be no contradiction among the di�erent MI , since any comi can only be opened to
at most one message Mi.) This process is repeated until either
• at least (1− ε)n individual messages Mi have been gathered, or
• it turns out that with overwhelming probability, P ≤ 1/2p(k)2.

In other words, we rewind until either enough messages have been extracted, or it becomes clear
that the event that A opened the �rst MI successfully (which triggered Rewind) was very unlikely
in the �rst place (in which case we can safely abort). We have to show that this process only takes
up a polynomial number of rewindings, to show that Rewind is e�cient.

Now, a Cherno� bound shows that using a polynomial number of rewindings, we can approximate
P su�ciently well. In particular, if, say, P ≤ 1/3p(k)2, then we will detect that P ≤ 1/2p(k)2 with
overwhelming probability, and we can abort. Note that Rewind is only triggered when A opens
the �rst MI . Using a union bound, we can hence conclude that the probability that in any of A's
B-queries, A opens the �rst MI but Rewind then aborts, is at most 1/2p(k), i.e., at most half of A's
overall success probability. That means that aborting does not signi�cantly alter A's success.

It remains to show that, once P > 1/3p2(k), we can, using a polynomial number of rewindings,
indeed extract at least (1 − ε)n messages Mi from A. To this end, let I ′ ⊆ I be the set of I for
which A opens MI . (Note that this de�nition is meaningful, since we �xed A's random tape.) First,
for contradiction, suppose that there is a set B ⊆ [n] with |B| ≥ εn such that for all i ∈ B, we have
Pr [I ∈ I ′ ∧ i ∈ I}] < P/2n, where the probability is over I ∈ I. Then

P − Pr [I ∩B = ∅] = Pr
[
I ∈ I ′

]
− Pr [I ∩B = ∅]

≤ Pr
[
I ∈ I ′ ∧ I ∩B 6= ∅

]
≤

∑
i∈B

Pr
[
I ∈ I ′ ∧ i ∈ I

]
≤ n · P

2n
=

P

2
,

so that Pr [I ∩B = ∅] ≥ P/2 ≥ 1/6p(k)2. So if |B| was a constant of fraction of n as we assumed,
then this probability would be negligible in n = n(k) = 2k. So we have a contradiction to our
assumption on |B|, and hence there can be no such B. Thus there is an (1 − ε)n-sized subset
R ⊆ [n] and all i ∈ R, we have Pr [I ∈ I ′ ∧ i ∈ I] ≥ P/2n ≥ 1/12kp(k)2. Again using a Cherno�
bound shows that a su�cient (polynomial) number of rewinding retrieves Mi for all i ∈ R, except
with negligible probability. Since we started with collecting all MI , we have R ⊇ I.
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Taking everything together proves Theorem 4.2.

Similarly to Corollary 3.8, we get for concrete choices of X and P:

Corollary 4.6 (Second main result: impossibility of perfectly binding IND-SO-COM).
Let n and I as in Theorem 4.2. Then no perfectly binding commitment scheme can be proven sim-
ulatable under selective openings via a ∀∃semi-blackbox reduction from one or more of the following
primitives: one-way functions, one-way permutations, trapdoor one-way permutations, IND-CCA
secure public key encryption.

Generalizations. Again, Corollary 4.6 constitutes merely an example instantiation of the much
more general Theorem 4.2. Also, when considering interactive commitment schemes, the proof
Theorem 4.2 generalizes with the same changes as for the proof of Theorem 3.3. Theorem 4.7
generalizes as well: here, it is only necessary to note that any statistically hiding commitment can
be opened (also interactively) as a commitment to any other message. However, we stress that the
proof for Theorem 4.2 does not apply to �almost-perfectly binding� commitment schemes such as
the one by Naor [22]. (For such schemes, oracle B's check that the supplied commitment scheme is
binding might tell something about X .)

4.2 Statistically hiding schemes are secure

Fortunately, things look di�erent for statistically hiding commitment schemes:

Theorem 4.7 (Possibility of statistically hiding IND-SO-COM). Fix any n and I as in
De�nition 4.1, and let (Com,Ver) be a statistically hiding commitment scheme. Then (Com,Ver) is
indistinguishable under selective openings in the sense of De�nition 4.1.

Proof. Fix an n-message distribution M and a PPT adversary A on the SIM-SO-COM security
of (Com,Ver). We start by considering the Expind-so-real

Com,M,A experiment. We re�ne this experiment
stepwise, in each step preserving A's output distribution.

Our �rst modi�cation of Expind-so-real
Com,M,A is experiment H0, which proceeds as follows (emphasized

steps are di�erent from Expind-so-real
Com,M,A):

1. sample messages M = (Mi)i∈[n] ←M,
2. compute (de-)commitments (comi, deci)← Com(Mi) for i ∈ [n],
3. run (s, I)← A1(1k, (comi)i∈[n]) to get state information s and a set I ∈ I,
4. for every i ∈ I, compute an alternative decommitment dec′i ← AltDec(comi,Mi) (procedure

AltDec is described below),
5. run b← A2(s, (dec′i)i∈I ,M) to obtain a guess bit b,
6. output b.

To describe the (in general ine�cient) procedure AltDec, consider Com(M)'s output distribution
CM = (CM,1, CM,2). Now AltDec(comi,Mi) samples from CMi , conditioned on the event that
CMi,1 = comi. AltDec returns the sampled CMi,2. In other words, AltDec looks, given Mi, comi,
for a corresponding decommitment deci, as could have been output by Com(Mi). If no such deci

exists (i.e., if the probability that Com(Mi) returns comi is 0), then AltDec returns ⊥.
Note that the distributions of deci and dec′i are identical (even given comi,Mi), and hence

Pr
[
Expind-so-real

Com,M,A = 1
]

= Pr [H0 = 1] .

We now de�ne a generalization Hj : Hj runs like H0, except that Hj runs this alternative step 2'
instead of step 2:
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2'. for every i ≤ j, compute (comi, deci)← Com(0k); for i > j, compute (comi, deci)← Com(Mi).
Obviously, for j = 0 we get H0. Note that Hj computes commitments comi which, for i ≤ j, do no
longer depend on Mi. From Hj , we can now construct an adversary A′ on (Com,Ver)'s statistical
hiding property. A′ �rst uniformly picks j ∈ [n], then simulates Hj−1, but constructs comj using

its own experiment Exphiding-b
Com,A′ . Namely, A′ asks for a commitment to either Mj or 0k, and uses the

obtained comj for further simulation in Hj−1. In Exphiding-0
Com,A′ , this means that comj is constructed

as a commitment to Mj , and we obtain experiment Hj−1. On the other hand, in Exphiding-1
Com,A′ , comj

is a commitment to 0k, and we obtain experiment Hj . This way, we get that

Advhiding
Com,A′ =

1
n

 n∑
j=1

Pr [Hj = 1]− Pr [Hj−1 = 1]

 =
1
n

(Pr [Hn = 1]− Pr [H0 = 1])

is negligible, and hence so must be Pr [Hn = 1] − Pr [H0 = 1]. Note that in Hn, the view of the
adversary now only depends on MI ; all commitments are produced as commitments to 0k.

With the same reasoning, we can show that the output of experiment Expind-so-ideal
Com,M,A is negligibly

close to that of the analogously modi�ed experiment H ′
n, where all commitments are generated as

commitments to 0k. Since H ′
n = Hn, we hence obtain that

Advind-so
Com,M,A = Expind-so-real

Com,M,A − Expind-so-ideal
Com,M,A

must be negligible, which proves the theorem.

We stress that the proof of Theorem 4.7 also holds (literally) in case A and/or M gets an
additional auxiliary input zk ∈ {0, 1}∗.

Now statistically hiding (and hence IND-SO-COM secure) commitment schemes can be con-
structed using a blackbox reduction from one-way functions (Haitner and Reingold [18]), but Corol-
lary 3.8 implies that this is not possible for SIM-SO-COM security. This immediately implies that
IND-SO-COM security does not imply SIM-SO-COM security via a blackbox reduction.

5 Application to adaptively secure encryption

Motivation and setting. Taking up the motivation of Damgård [10], we consider the setting of
an adversary A that may corrupt, in an adaptive manner, a subset of a set of parties P1, . . . , Pn.
Assume that for all i, the public encryption key pk i with which party Pi encrypts outgoing messages,
is publicly known. Suppose further that A may corrupt parties based on all public keys and all so
far received ciphertexts. When A corrupts Pi, A learns Pi's internal state and history, in particular
A learns the randomness used for all of that party's encryptions, and its secret key sk i. We assume
the following:

1. The number of parties is n = 2k for the security parameter k,
2. It is allowed for A to choose at some point a subset I ⊆ [n] of size n/2 and to corrupt all these

Pi (i ∈ I).
3. We can interpret the used encryption scheme as a (hiding and binding) commitment scheme

(Com,Ver) in the following sense: Com(M) generates a fresh public key pk and outputs a
commitment com = (pk ,Enc(pk ,M ; r)) and a decommitment dec = (M, r). Here Enc denotes
the encryption algorithm of the encryption scheme, and r denotes the randomness used while
encrypting M . Veri�cation of (com, dec) = (pk ,C ,M, r) checks that Enc(pk ,M ; r) = C .
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Note that the third assumption does not follow from the scheme's correctness. Indeed, correctness
implies that honestly generated (pk ,M) are committing. However, there are schemes for which
it is easy to come up with fake public keys and ciphertexts (i.e., fake commitments) which are
computationally indistinguishable from honestly generated commitments, but can be opened in
arbitrary ways. Prominent examples of such schemes are non-committing encryption schemes [7,
3, 6, 11, 8], which however generally contain an interactive set-up phase and are comparatively
ine�cient.

Application of our impossibility results. Attacks in this setting cannot be easily simulated
in the sense of, e.g., Canetti et al. [7]: such a simulator would in particular be able to simulate
openings (in the sense of Ver, i.e., openings of ciphertexts). Hence, this would imply a simulator
for (Com,Ver) in the sense of SIM-SO-COM security (De�nition 3.1). Now from Corollary 3.8 we
know that the construction and security analysis of such a simulator requires either a very strong
computational assumption, or fundamentally non-blackbox techniques. Even worse: if (Com,Ver) is
perfectly binding13, then Corollary 4.6 shows that not even secrecy in the sense of De�nition 4.114

can be proven in a blackbox way. On top of that, we cannot hope to use our SIM-SO-COM
secure scheme ZKCom to construct an encryption scheme in a non-blackbox way, since ZKCom's
commitment phase is inherently interactive.

We stress that these negative results only apply if encryption really constitutes a (binding)
commitment scheme in the above sense. In fact, e.g., [7] construct a sophisticated non-committing
(i.e., non-binding) encryption scheme and prove simulatability for their scheme. Our results show
that such a non-committing property is to a certain extent necessary.

6 Application to zero-knowledge proof systems

6.1 Application of our �rst positive result.

Dwork et al. [13] considered the applications of SIM-SO-COM secure commitment schemes to zero-
knowledge protocols. In their Theorem 7.6, they show that SIM-SO-COM secure commitments
essentially make the well-known graph 3-coloring protocol G3C of [17] composable in parallel. This
means that our SIM-SO-COM secure scheme ZKCom enables the parallel composability of proto-
col G3C. While this is a remarkable result at �rst glance (in particular given the composability
limitations of constant-round blackbox zero-knowledge protocols [16, 9]), a closer inspection shows
the circularity: ZKCom itself assumes a concurrently composable zero-knowledge system (P,V) as
a basis, and so the parallel composability of G3C is directly inherited from (P,V).

6.2 Application of our second positive result.

A natural question is whether IND-SO-COM security, our relaxation of SIM-SO-COM security,
provides a reasonable fallback in this situation. Now �rst, our results show that even when using
IND-SO-COM secure schemes, we cannot rely on perfectly binding commitment schemes because of
Theorem 4.2. For many interesting interactive proofs (and in particular the graph 3-coloring proof
from [17]), this unfortunately means that the proof system degrades to an argument system. But,
assuming we are willing to pay this price, what do we get from IND-SO-COM security?

13in the presence of non-uniform adversaries, this is already implied by the fact that the scheme is noninteractive
and computationally binding

14in the context of encryption, De�nition 4.1 would translate to a variant of indistinguishability of ciphertexts
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The answer is �essentially witness indistinguishability,� as we will argue in a minute. Intuitively,
any commitment scheme which satis�es (a slight variation of) IND-SO-COM security can be used
to implement �commit-choose-open� style interactive argument systems, such that
• the argument system is witness indistinguishable,
• the security reduction is tight (and in particular does not lose a factor of |I|, where |I| is the
number of possible choices in the second stage), and
• we get composability essentially �for free.�

(More details follow.) Now witness indistinguishable argument systems already enjoy a composition
theorem (see, e.g., Goldreich [15, Lemma 4.6.6]), so at least the last of these claims is not surprising.
However, our point here is that the security notion of IND-SO-COM secure commitments itself is a
�good� and useful notion.

Formal setting. Consider an interactive argument system (P,V) for an NP-language L with
witness relation R. We assume that (P,V) is of the following �commit-choose-open� form, where
the prover P gets as input a statement x ∈ L along with a witness w such that R(x,w), and the
veri�er only gets x.

1. P generates n commitments com = (comi)i∈[n′] and sends them to V,
2. V chooses a subset I ⊆ [n′],
3. P opens the commitments comi for i ∈ I by sending decI = (deci)i∈I to V,
4. V accepts if the openings are valid and if the opened values satisfy some �xed relation speci�ed

by the protocol.
We suppose further that the value of the actually opened messages MI is always statistically indepen-
dent of the used witness w. These are strong assumptions, but at least one of the most important
zero-knowledge interactive proof systems (namely, the mentioned graph 3-coloring protocol G3C
from Goldreich et al. [17]) is of this form.

Connection to IND-SO-COM security. Since the standard de�nition of witness indistinguisha-
bility (see De�nition 2.4) involves an auxiliary input z given to the veri�er/adversary V ∗, we also
consider a variation of De�nition 4.1 that involves auxiliary input. Namely,

De�nition 6.1 (Auxiliary-input-IND-SO-COM). In the situation of De�nition 4.1, we call
(Com,Ver) auxiliary-input-IND-SO-COM i� Advind-so

Com,M,A,z is negligible for all PPT M and A and

all auxiliary inputs z = (zk)k∈N ∈ ({0, 1}∗)N, where both M and A are invoked with additional
auxiliary input zk.

Now we are ready to prove the following connection between witness indistinguishability and
auxiliary-input-IND-SO-COM:

Theorem 6.2 (Auxiliary-input-IND-SO-COM implies witness indistinguishability). As-
sume an interactive argument system (P,V) as above. Then, if the commitment scheme in (P,V)
is auxiliary-input-IND-SO-COM for parameters n = n′ + 1 and all subsets I of [n′] as possible in
(P,V), then (P,V) is witness indistinguishable. The security reduction loses only a factor of 2.

Proof. For contradiction, assume x,w0, w1, V ∗, D, z such that AdvWI
x,w0,w1,V ∗,D,z is non-negligible.

We construct a message distributionM, an adversary A, and a z′ such that

Advind-so
Com,M,A,z =

1
2
AdvWI

x,w0,w1,V ∗,D,z. (1)

First, de�ne z′k = (xk, w
0
k, w

1
k, zk), so that M and A are both invoked with both witnesses and zk.

Then, letM be the following PPT algorithm:
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1. upon input z′k = (xk, w
0
k, w

1
k, zk), toss a coin b ∈ {0, 1},

2. sample messages (Mi)i∈[n′] by running P on input (xk, w
b
k),

3. de�ne Mn′+1 := b,
4. return the (n′ + 1)-message vector (Mi)i∈[n′+1].

Now adversary A proceeds as follows:
1. upon input z′k = (xk, w

0
k, w

1
k, zk) and commitments com = (comi)i∈[n′+1], run V ∗ on input

(xk, zk) and commitments (comi)i∈[n′],
2. when V ∗ chooses a set I ⊆ [n′], relay this set (interpreted as a subset of [n] = [n′ + 1]) to the

IND-SO-COM experiment,
3. upon receiving openings (deci)i∈I and a message vector M∗ = (M∗

i )i∈[n] from the experiment,
run D on input (xk, zk, (com, I, decI)) to receive a guess b′ from D,

4. output b′ ⊕M∗
n′+1.

(As usual, A is straightforwardly split up into (A1, A2) as required by the IND-SO-COM experi-
ment.)

Now in the real IND-SO-COM experiment Expind-so-real
Com,M,A,z, the following happens: if M chose

b = 0, then an interaction of P(xk, w
0
k) and V ∗(xk, zk) is perfectly simulated, so that A (and hence,

since M∗
n′+1 = b = 0, also Expind-so-real

Com,M,A,z) outputs D(xk, zk, 〈P(xk, w
0
k), V

∗(xk, zk)〉). Conversely, if

b = 1, then Expind-so-real
Com,M,A,z outputs 1−D(xk, zk, 〈P(xk, w

1
k), V

∗(xk, zk)〉) because M∗
n′+1 = b = 1 then.

We get that

Pr
[
Expind-so-real

Com,M,A,z = 1
]

=
1
2

(
Pr

[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
]

+ 1− Pr
[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
] )

=
1
2
AdvWI

x,w0,w1,V ∗,D,z +
1
2
.

On the other hand, in the ideal IND-SO-COM experiment, the message M∗
n′+1 that A receives from

the experiment results from a resampling ofM, conditioned on M∗
I = MI . Since we assumed about

(P,V) that MI is independent of the used witness, MI is also independent of b, and hence M∗
n′+1

will be a freshly tossed coin. We get

Pr
[
Expind-so-ideal

Com,M,A,z = 1
]

=
1
2
.

Putting things together proves Equation 1.

Tightness in the reduction and composition. We stress that we only lose a factor of 2 in our
security reduction, which contrasts the loss of a factor of about n′2 in the proof of Goldreich et al.
[17]. Admittedly, their proof works also for perfectly binding commitment schemes (thus achieving
an interactive proof system), which we (almost) cannot hope to satisfy IND-SO-COM security,
according to Theorem 4.2. However, since we can instantiate IND-SO-COM secure schemes for
arbitrary parameters n and I, we can hope to apply Theorem 6.2 even to protocols where |In| is
superpolynomial.15 In particular, our proof shows that we can even map several parallel executions
of a protocol (P,V) to the IND-SO-COM security experiment. This derives a parallel composition
theorem (for this particular class of protocols and witness indistinguishability) at virtually no extra
cost.

15Of course, it is possibly to directly prove, say, witness indistinguishability for the case of superpolynomial |In|
from statistically hiding commitment schemes. However, our point here is to illustrate the usefulness of our de�nition.
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A On the role of property P

The intuitive contradiction. The formulations of Theorem 3.3 and Theorem 4.2 seem intuitively
much too general: essentially they claim impossibility of blackbox proofs from any computational
assumption which is formulated as a property P of an oracle X . Why can't we choose X to be an
ideally secure commitment scheme, and P a property that models precisely what we want to achieve,
e.g., De�nition 4.1 (i.e., IND-SO-COM security)? After all, De�nition 4.1 can be rephrased as a
property P by letting A choose a message distributionM and send this distribution (as a description
of a PPT algorithmM) to P. Then, P could perform the Expind-so-real

Com,M,A or the Expind-so-ideal
Com,M,A experiment

with A, depending on an internal coin toss (the output of P will then depend on A's output and on
that coin toss). This P models De�nition 4.1, in the sense that

Advind-so
Com,M,A = 2AdvPA.

Also, using a truly random permutation as a basis, it is natural to assume that we can construct
an ideal (i.e., as an oracle) perfectly binding commitment scheme X that satis�es P. (Note that al-
though X is perfectly binding, A's view may still be almost statistically independent of the unopened
messages, since the scheme X is given in oracle form.)

Hence, if the assumption essentially is already IND-SO-COM security, we can certainly achieve
IND-SO-COM security (using a trivial reduction), and this seems to contradict Theorem 4.2. So
where is the problem?

Resolving the situation. The problem in the above argument is that P-security (our assumption)
implies IND-SO-COM security (our goal) in a fundamentally non-blackbox way. Namely, the proof
converts an IND-SO-COM adversary A and a message distributionM into a P-adversary A′ that
sends a description ofM to P. This very step makes use of an explicit representation of the message
distributionM, and this is what makes the whole proof non-blackbox. In other words, this way of
achieving IND-SO-COM security cannot be blackbox, and there is no contradiction to our results.

Viewed from a di�erent angle, the essence of our impossibility proofs is: build a very speci�c
message distribution, based on oracles (RO, resp. C), such that another �breaking oracle� B �breaks�
this message distribution if and only if the adversary can prove that it can open commitments. This
step relies on the fact that we can specify message distributions which depend on oracles. Relative
to such oracles, property P still holds (as we prove), but may not re�ect IND-SO-COM security
anymore. Namely, since P itself cannot access additional oracles16, P is also not able to sample a
message space that depends on additional (i.e., on top of X ) oracles. So in our reduction, although
A itself can, both in the IND-SO-COM experiment and when interacting with P, access all oracles,

16simply because the de�nition demands that P must be speci�ed independently of additional oracles, cf. De�ni-
tion 3.2; if we did allow P to access additional oracles, this would break our impossibility proofs
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it will not be able to communicate a message distribution M that depends on additional oracles
(on top of X ) to P. On the other hand, any PPT algorithmM, as formalized in De�nition 4.1, can
access all available oracles.

So for the above modeling of IND-SO-COM security as a property P in the sense of De�nition 3.2,
our impossibility results still hold, but become meaningless (since basically using property P makes
the proof non-blackbox). In a certain sense, this comes from the fact that the modeling of P is
inherently non-blackbox.

What computational assumptions can be formalized as properties in a �blackbox� way?
Fortunately, most standard computational assumptions can be modeled in a blackbox way as a
property P. Besides the mentioned one-way property (and its variants), in particular, e.g., the
IND-CCA security game for encryption schemes can be modeled. Observe that in this game, we
can let the IND-CCA adversary himself sample challenge messages M0, M1 for the IND-CCA
experiment from his favorite distribution; no PPT algorithm has to be transported to the security
game. In fact, the only properties which do not allow for blackbox proofs are those that involve an
explicit transmission of code (i.e., a description of a circuit or a Turing machine). In that sense, the
formulation of Theorem 3.3 and Theorem 4.2 is very general and useful.

(Non-)programmable random oracles. We stress that the blackbox requirement for random
oracles (when used in the role of X ) corresponds to �non-programmable random oracles� (as used
by, e.g., Bellare and Rogaway [4]) as opposed to �programmable random oracles� (as used by, e.g.,
Nielsen [23]). Roughly, a proof in the programmable random oracle model translates an attack
on a cryptographic scheme into an attack on a simulated random oracle (that is, an oracle com-
pletely under control of simulator). Naturally, such a reduction is not blackbox. And indeed, with
programmable random oracles, SIM-SO-COM secure commitment schemes can be built relatively
painless. As an example, [23] proves a simple encryption scheme (which can be interpreted as a
commitment scheme) secure under selective openings.
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