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Abstract

Verifiable Secret Sharing (VSS) is a very important secure distributed computation task
which allows a dealer to share a secret s from a finite field F, among n players, in a way that
would later allow a unique reconstruction of the secret. Essentially, VSS extends secret sharing
to counter active Byzantine corrupted players, who try to fail VSS protocol by deviating from
the protocol. Unconditional VSS (UVSS) attains the same goal of VSS, except with negligible
error probability. An essential building-block for UVSS is unconditionally secure Information
Checking (IC) protocol, which is used to generate unconditional secure IC signature and is of
independent interest. IC signature attains the goal of cryptographic digital signatures, while
providing unconditional (information theoretic with negligible error probability) security. We
focus on the standard secure channel model, where all players have access to secure point-to-
point channels and a common broadcast medium. In this model, it is known that UVSS protocol
can be designed only with n ≥ 2t + 1 players, where t denotes the fault tolerance threshold and
bounds the total number of malicious (Byzantine) players having unbounded computing power.
We propose a new IC protocol, which allows a dealer to sign on ` secrets simultaneously by com-
municating O(`) field elements and broadcasting O(n) field elements in three rounds, provided
` = Ω(n). Hence our IC protocol is communication optimal and perhaps round optimal also.
This can be compared with the previous IC protocols of [5] and [9], which takes four rounds
of communication and signs on a single secret, with a communication overhead of O(n) field
elements and broadcasting O(n) field elements. Using our new IC protocol, we then propose a
four round UVSS protocol, where dealer can share Ω(n) secrets at once by communicating O(n3)
field elements. This can be compared with UVSS protocol of [9] which shares a single secret by
communicating O(n3) fields elements in four rounds. Thus the IC and UVSS protocol presented
in this paper try to simultaneously improve both the communication and round complexity.

Keywords: Verifiable Secret Sharing, Error Probability, Information Theoretic Security.

1 Introduction

In secret sharing [11], a dealer D wants to share a secret s from a finite field F, among a set of
n players, such that no set of t players will be able to reconstruct s from their shares, while any
set of t + 1 or more players will be able to reconstruct s by combining their shares. Verifiable
Secret Sharing (VSS) [4] extends ordinary secret sharing to work against active corruption. It is
a stronger notion than standard secret sharing and provides robustness against t malicious play-
ers, possibly including D, who can be under the control of an active adversary, having unbounded
computing power. In unconditional VSS (UVSS), each property of VSS holds, but with a negligible
error probability [10]. UVSS is essentially a 2-phase protocol, consisting of a Sharing Phase and
Reconstruction Phase. In the Sharing Phase, D distributes s among n players in a way that
no t of them can infer any information on the secret. In the Reconstruction Phase, the players
pool together their shares to reconstruct s. UVSS must satisfy the following with negligible error

∗Work supported by Project no. CSE/O5-6/076/DITX/CPAN on Protocols for Secure Communication and
Computation sponsored by Department of Information Technology, Govt of India.

1



probability: (a) if D is honest, then collusion of t actively corrupted players should not be able
to prevent honest players from correctly reconstructing D’s secret, (b) a collusion of dishonest D
and additional (t− 1) dishonest players cannot change the reconstructed secret, once it is decided
in sharing phase. As in [7], we define the round complexity of UVSS protocol as the number of
communication rounds in its sharing phase. Reconstruction can be done in a single round, wherein
every player reveals its entire view generated during sharing phase. UVSS has wide application
in secure multiparty computation (UMPC) [3, 5, 8, 1, 6]. UVSS has also many stand alone appli-
cations, like Byzantine agreement, generating global random coin, etc. A basic building block for
designing UVSS protocols is information checking protocol (IC), a concept introduced in [10]. It
can be informally described as an unconditionally secure signature scheme for authenticating data
and is a sequence of three sub-protocols, namely Distr, AuthVal and RevealVal protocol (formal
definition is given in Section 2). We define the round complexity of IC protocol as the number of
communication rounds in Distr and AuthVal protocols.

Extant Literature: In secure channel model (point-to-point private channel and a common Broad-
cast channel), perfectly secure (zero error) VSS was studied in [2], where it is proved that perfect
VSS is possible iff n > 3t. The exact round complexity of perfect VSS and tight trade-offs between
the round complexity and fault tolerance threshold was established by Gennaro et. al. [7]. In VSS,
it is possible to obtain better fault tolerance when negligible error probability of 2−k is allowed,
where k is the error/security parameter. In [10], it is shown that unconditionally secure VSS with
negligible probability of error (UVSS) can be realized iff n > 2t. In [10] an IC and UVSS protocol
is proposed. However, these protocols were quiet cumbersome. Later Cramer et. al. [5] proposed
a more efficient UVSS protocol which requires 9 rounds, by using a new 4 round IC protocol.
In [1], the authors have given a protocol, which does not completely satisfy the properties of IC
protocol. Depending on the adversary behavior, the protocol may either terminate successfully,
satisfying the properties of IC, or may terminate unsuccessfully, without satisfying the properties
of IC, but detecting a pair of players where at least one of them is corrupted. In the same paper,
the authors have designed another protocol, which does not completely satisfy the properties of
UVSS. We do not compare our protocols with the protocols of [1]. Recently, the trade-off between
the round complexity and fault tolerance threshold for UVSS is captured in [9]. The authors in
[9] have termed UVSS as PVSS. Among several interesting results, the authors in [9] have given a
four round UVSS protocol with n = 2t + 1. The following table summarizes the communication
complexity and round complexity of known UVSS and IC protocols with n = 2t + 1. In the table,
communication complexity denotes the number of bits communicated privately among the players.

UVSS IC
No. of Shared # Rounds Communication Ref. No. of Signed Rounds Communication Ref.

Secret(s) Complexity (bits) Secret(s) Complexity (bits)

1 9 O((k + log n)n3) [5] 1 4 O((k + log n)n) [5]
1 4 O((k + log n)n3) [9] 1 4 O((k + log n)n) [9]

(n− t) 4 O((k + log n)n3) This paper (n− t) 3 O((k + log n)n) This paper

Our Contribution: We propose a new IC protocol, which allows to simultaneously sign on
(n − t) = Ω(n) secrets, by communicating O((k + log n)n) bits and broadcasting O((k + log n)n)
bits in three rounds. Thus our IC protocol is communication optimal and perhaps round optimal
also. This can be compared with the previous IC protocol of [5] and [9] with same communication
overhead, which takes four rounds and allows to sign only a single secret. Using our new IC protocol,
we then propose a four round UVSS protocol where D can share (n− t) = Ω(n) secrets at once, by
communicating O((k+log n)n3) bits and broadcasting O((k+log n)n3) bits. This can be compared
with four round UVSS protocol of [9] with the same communication complexity, which shares only
a single secret. Thus our IC and UVSS protocol tries to simultaneously improve two important
complexity measures (a) communication complexity and (b) round complexity.
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2 Model and Definitions

We consider the standard secure channel settings where there are n players P = {P1, P2, . . . , Pn},
who are pairwise connected by perfectly secure channels and a common broadcast channel is avail-
able to all the players. The broadcast channel allows a player to send some information identically
to all the players. We assume D to be any one of the players from P. Our protocols will also
work for an external dealer where D is an entity outside the set P. We assume the system to be
synchronous. The adversary model is same as in [5]. The adversary, denoted as At has unbounded
computing power and can actively control at most t of the n players (possibly including D) during
the protocol. Thus there exists at least t + 1 honest players in the system. To actively corrupt a
player means to take full control of the player; i.e. to make the player (mis)behave in an arbitrary
manner. The adversary is centralized and adaptive [5] and is allowed to dynamically corrupt players
during protocol execution (and his choice may depend on the data seen so far). Moreover, the
adversary is a rushing adversary, who in a particular round, first collect all the messages addressed
to the corrupted players and exploit this information to decide on what the corrupted players send
during the same round. A player under the control of At will remain so throughout the protocol.
The error probability in our protocols is expressed in terms of an error parameter k. The protocols
operate in a finite field F = GF (q), where q = max(n, 2k).

UVSS [5, 10]: A (n, t)-UVSS scheme for sharing secret S = [S1 S2 . . . S`] ∈ F`, with ` ≥ 1,
consists of Sharing Phase and Reconstruction Phase and satisfies the following properties,
with a negligible error probability (except secrecy which is perfect) 2−k, even in presence of At:

1. Termination: If D is honest then all honest players will complete sharing phase and if the
honest players invoke reconstruction phase, then each honest player will complete it.

2. Secrecy: If D is honest and no honest player has yet started reconstruction phase, then At

has no information about S in information theoretic sense.

3. Once all currently uncorrupted players complete sharing phase, there exists a S′ ∈ F` which
is fixed, such that the following holds:
Correctness: If D is uncorrupted throughout sharing and reconstruction phase, then S′ is
the shared secret, i.e. S′ = S and each honest players will output S at the end of reconstruc-
tion phase.
Strong Commitment: If D is corrupted then each honest player outputs S′ upon comple-
tion of reconstruction phase.

As in [7], we define the round complexity of UVSS protocol as the number of communication rounds
in sharing phase. Reconstruction phase can always be executed in a single round, where each player
reveals its entire view generated during sharing phase. Using convention of [7], we assume that if
D is discarded in sharing phase, then a pre-defined S∗ ∈ F` will be taken as D’s secret.

Information Checking (IC) and IC Signatures [5, 10]: IC is an information theoretically
secure method for authenticating data and is used to generate IC signatures. The IC signatures
can be used as semi ”digital signatures”. When a player INT ∈ P receives an IC signature from a
dealer D ∈ P, then INT can later produce the signature and have the players in P verify that it
is in fact a valid signature. An IC scheme consists of a sequence of three protocols:

1. Distr(D, INT,P, S) is initiated by the dealer D, who hands secret S = [S1 S2 . . . S`] ∈ F`,
where ` ≥ 1 to intermediary INT . In addition, D hands some authentication information
to INT and verification information to individual players in P, also called as receivers.

2. AuthVal (D, INT,P, S) is initiated by INT to ensure that in protocol RevealVal, secret
S held by INT will be accepted.
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3. RevealVal (D, INT,P, S) is carried out by INT and the receivers in P, where INT pro-
duces S, along with authentication information and the individual receivers in P produce
verification information. Depending upon the values produced by INT and the receivers,
either S is accepted or rejected.

The authentication information, along with S, which is held by INT at the end of AuthVal
is called D’s IC signature on S, obtained by INT . The IC signature must satisfy the following
properties:

1. If D and INT are uncorrupted, then S will be accepted in RevealVal.

2. If INT is uncorrupted, then at the end of AuthVal, INT knows a S, which will be accepted
in RevealVal, except with probability 2−k.

3. If D is uncorrupted, then during RevealVal, with probability at least 1− 2−k, every S′ 6= S
produced by a corrupted INT will be rejected.

4. If D and INT are uncorrupted, then at the end of AuthVal, S is information theoretically
secure from At.

We define the round complexity of an IC scheme as the number of communication rounds in the
Distr and AuthVal protocol. The RevealVal can be executed in a single round.

Remark 1 As in [5], for the ease of exposition, in our protocols we adopt the convention that
whenever a player Pi expects to receive some value from another player Pj in the next step and
either no value or some syntactically incorrect value (such as higher degree polynomial, etc) arrives
from Pj, then Pi replaces the received value by some fixed default syntactically correct value. Thus
we do not treat separately the case when no value or syntactically incorrect value arrives.

Remark 2 Although, the definitions of IC and UVSS demand the error probability to be at most
2−k, our protocols have an error probability of at most 2−k+O(log n). This does not violate the
properties of UVSS and IC. By appropriately increasing the size of F, we can achieve the error
probability of at most 2−k in our protocols, without any modification. In fact, the UVSS protocol of
[5] has an error probability of at most 2−k+O(log n), but it can be made 2−k by setting |F| = poly(n)2k,
instead of |F| = max(n, 2k).

3 Efficient Information Checking Protocol with n = 2t + 1

We now present a three round IC protocol, called IC, which allows D to sign on n−t = Ω(n) secrets
by communicating O(n) field elements and broadcasting O(n) field elements, where n = 2t+1. This
is a significant improvement over the existing four round IC protocol of [5] and [9] (the IC protocol
given in [9] is a slight modification of [5]), with same communication overhead and which allows D
to sign on only one secret. Thus, our IC protocol takes one less round and allows D to sign on more
secrets, without incurring additional communication overhead. Let S = [S1 S2 . . . Sn−t] ∈ Fn−t

denotes the n − t secrets on which D wants to give his IC signature. The protocol IC is given in
Table 1

Lemma 1 If D and INT are honest, then D will not broadcast F (x) during Round 3. Moreover,
V Sh and V Rec

FR will match at atleast t + 1 locations.

Proof: If INT is honest, then it will broadcast correct information during Round 2. So if D is
also honest, then D will not broadcast F (x) during Round 3. It is easy to see that in this case,
V Sh and V Rec

FR will contain 1 at atleast t + 1 locations corresponding to honest receivers. 2

Claim 1 Let INT be honest and Pi ∈ P be an honest receiver. If D does not broadcast F (x)
during Round 3 and if V sh contains 0 at ith position, then V Rec

FR will also contain 0 at ith position.
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IC(D, INT,P, S)

Distr(D, INT,P, S)

Round 1: D selects a random n − 1 degree polynomial F (x) over F, whose lower order n − t coefficients are
S1, S2, . . . , Sn−t. In addition, D selects another random n − 1 degree polynomial R(x), over F, which is
independent of F (x). D selects n distinct random elements α1, α2, . . . , αn from F such that each αi ∈
F−{0, 1, . . . , n−1}. D privately gives F (x) and R(x) to INT . To receiver Pi ∈ P, D privately gives αi, vi

and ri, where vi = F (αi) and ri = R(αi). The polynomial R(x) is called authentication information.
The values αi, vi, ri, 1 ≤ i ≤ n are called verification information.

AuthVal(D, INT,P, S):

Round 2: Player INT chooses a random d ∈ F \ {0} and broadcasts B(x) = dF (x) + R(x), along with d.

Round 3: D and the receivers in P parallely do the following:

• D checks the correctness of the information broadcasted by INT in Round 2. In addition, D also

checks dvj + rj
?
= B(αj), for 1 ≤ j ≤ n. If D finds any inconsistency, he broadcasts F (x).

• Receiver Pi broadcasts ”Accept” or ”Reject”, depending upon whether dvi + ri = B(αi) or not.

Local Computation (by each player):

• If during Round 3, D has broadcasted F (x), then accept the lower order n− t coefficients of F (x) as D’s
secret and terminate the protocol, irrespective of the computation and communication done so far.

• If during Round 3, D has not broadcasted F (x), then construct an n length bit vector, denoted by V Sh,
where the jth, 1 ≤ j ≤ n bit is 1(0), if Pj ∈ P has broadcasted ”Accept” (”Reject”) during Round 3. The
vector V Sh is public, as it is constructed using broadcasted information.

If D has not broadcasted F (x) during Round 3, then we call the pair (F (x), R(x)) as D’s IC signature on the
secret S (which are lower order n− t coefficients of F (x)) given to INT .

RevealVal(D, INT,P, S): INT broadcasts F (x) and R(x). Parallely, Pi ∈ P broadcasts αi, vi and ri.

Local Computation (by each player):

1. For the polynomial F (x) broadcasted by INT , construct an n length vector V Rec
F (x) where the jth bit of V Rec

F (x)

contains 1(0) if F (αj) = vj (F (αj) 6= vj). Similarly, construct the vector V Rec
R(x) corresponding to R(x).

Finally compute V Rec
FR = V Rec

F (x) ⊗ V Rec
R(x), where ⊗ denotes bit wise AND. Since broadcasted information is

public, each player (honest) will compute the same vectors V Rec
F (x) and V Rec

R(x) and hence V Rec
FR .

2. If V Rec
FR and V Sh matches at atleast t+1 locations (irrespective of bit value at these locations), then accept

the lower order n− t coefficients of F (x) as S. In this case, we say that D’s signature on S is correct. Else
reject F (x) broadcasted by INT and we say that INT has failed to produce D’s signature.

Table 1: A Three Round IC Protocol to Sign n− t Secrets where n = 2t + 1

Proof: An honest INT will correctly broadcast B(x) = dF (x) + R(x) with respect to F (x) and
R(x) which it has received from D. Also, since Pi ∈ P is an honest receiver, V sh containing 0 at ith

position implies that B(αi) 6= dvi+ri. This further implies that D has distributed F (x), R(x), αi, vi

and ri in such a way that either F (αi) 6= vi or R(αi) 6= ri or both. So, during RevealVal, when
INT broadcasts F (x), R(x) and Pi broadcasts αi, vi, ri, at least one of the vectors V Rec

F (x), V
Rec
R(x) will

contain 0 at ith position. Hence V Rec
FR will also contain 0 at ith position. 2

Claim 2 Let INT be honest and Pi ∈ P be an honest receiver. If D does not broadcast F (x)
during Round 3 and if V sh contains 1 at ith position, then V Rec

FR = V Rec
F (x)⊗ V Rec

R(x) will also contain
1 at ith location, except with an error probability of at most 2−k.

Proof: An honest INT will correctly broadcast B(x) = dF (x) + R(x) with respect to F (x) and
R(x), received from D. Also since Pi ∈ P is an honest receiver, V sh containing 1 at ith position
implies that B(αi) = dvi + ri. Now this equality holds in the following 2 cases:

1. D has distributed F (x), R(x) to INT and αi, vi, ri to Pi in such a way that F (αi) = vi and
R(αi) = ri: In this case, it is easy to see that during RevealVal, both V Rec

F (x) and V Rec
R(x) will

contain 1 at ith position. So V Rec
FR = V Rec

F (x) ⊗ V Rec
R(x) will also contain 1 at ith position.
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2. D has distributed F (x), R(x) to INT and αi, vi, ri to Pi in such a way that F (αi) 6= vi and
R(αi) 6= ri, but B(αi) = dF (αi) + R(αi) = dvi + ri: We claim that this can happen for
an unique d ∈ F − {0}, which D (in this case, D is dishonest) must guess with probability

1
|F|−1 ≈ 2−k during Round 1. For otherwise, let there exist another e(6= d) ∈ F− {0}, such
that eF (αi) + R(αi) = evi + ri. This implies that (d − e)F (αi) = (d − e)vi, which further
implies that F (αi) = vi, which is a contradiction. So in this case, if D can correctly guess
the unique d (with probability at most 2−k), then during RevealVal, both V Rec

F (x) and V Rec
R(x)

and hence V Rec
FR will contain 0 at ith position. So V Sh and V Rec

FR will mismatch at ith position.
However, this can happen with probability at most 2−k.

It is easy to see that above two are the only two possibilities, where B(αi) will be equal to dvi + ri.
If F (αi) 6= vi but R(αi) = ri, then B(αi) 6= dvi + ri because d 6= 0. Similarly, if F (αi) = vi but
R(αi) 6= ri, then B(αi) 6= dvi + ri). Hence the claim holds. 2

Lemma 2 If INT is honest and D has not broadcasted F (x) during Round 3, then V Sh and
V Rec

FR = V Rec
F (x) ⊗ V Rec

R(x) will match at atleast t + 1 locations (irrespective of the values at these
location) corresponding to the honest receivers in P, except with probability at most 2−k.

Proof: In the worst case, there exists t + 1 honest receivers. Without loss of generality, let
P1, P2, . . . , Pt+1 ∈ P be the t + 1 honest receivers. From Claim 1, if V Sh contains 0 at ith position,
for i ∈ {1, 2, . . . , t + 1}, then V Rec

FR will also contain 0 at ith position and hence they will match.
Similarly, from Claim 2, if V Sh contains 1 at ith position, for i ∈ {1, 2, . . . , t + 1}, then except
with probability at most 2−k, V Rec

FR will also contain 1 at ith position. Thus, except with an error
probability of at most 2−k, V Sh and V Rec

FR will match at first t + 1 positions. 2

Lemma 3 If D is honest, then a corrupted INT will be unable to forge D’s signature on S′ 6= S,
except with an error probability of at most 2−k+O(log n).

Proof: Without loss of generality, let P1, P2, . . . , Pt+1 ∈ P be the t + 1 honest receivers and
Pt+2, Pt+3, . . . , Pn be corrupted receivers. It is clear that if D is honest, then in order to forge D’s
signature on S′ 6= S, a corrupted INT should broadcast F ′(x) 6= F (x) during RevealVal, such
that lower order n − t coefficients of F ′(x) = S′. Now to prevent D from broadcasting F (x) in
Round 3, INT must broadcast B(x) = dF (x) + R(x) (= dF ′(x) + R′(x) possibly). Hence, V Sh

will contain 1 at the first t + 1 locations corresponding to the t + 1 honest receivers.
Now in RevealVal, INT broadcasts F ′(x) 6= F (x). In order that D’s signature on S′ gets

accepted, V Rec
FR should match with V Sh at atleast t + 1 locations. Now V Sh and V Rec

FR can always
match at the last t locations, corresponding to t corrupted receivers. Hence it is required that V Sh

and V Rec
FR also matches at atleast one of the first t + 1 locations. As mentioned above, V Sh will

contain 1 at first t + 1 locations. So, in order that V Sh and V Rec
FR matches at atleast one of the

first t + 1 locations, V Rec
FR should contain 1 at atleast one of the first t + 1 locations. Let this be ith

location, where i ∈ {1, 2, . . . , t + 1}. This implies that INT should broadcast F ′(x) 6= F (x) during
GenRevealVal, such that F ′(αi) = F ′(αi). However, αi is randomly selected from F−{0, 1, . . . , n}
and unknown to INT and At. In addition, αi 6∈ {αt+2, αt+3, . . . , αn}. Since, F (x) and F ′(x) are
both of degree n− 1, they can have same value at atmost n− 1 values of x. So the probability that
INT could correctly guess αk, such that F ′(x) 6= F (x), but F (αi) = F ′(αi) is at most n−1

|F|−n−t ≈ 2−k.
Since i can be any one of the first t+1 = O(n) locations, the total error probability that a corrupted
INT will be able to forge honest D’s signature on S′ 6= S is at most O(n)2−k = 2−k+O(log n) because
O(n) = 2O(log n). 2

Lemma 4 If D and INT are uncorrupted, then adversary At controlling t receivers in P does not
get any information about the secret S before RevealVal.

Proof: During Round 1, At will know t distinct point on the polynomials F (x) and R(x),
implying information theoretic security for the lower order n− t coefficients of both F (x) and R(x).
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During Round 2, At will know d and the polynomial dF (x) + R(x). Since both F (x) and R(x)
are random and independent of each other, it still holds that lower order n− t coefficients of F (x)
are information theoretically secure. Also, if D and INT are honest, then D will never broadcast
F (x) during Round 3. Hence the lemma is true. 2

Theorem 1 Protocol IC is a three round IC scheme and correctly generates IC signatures except
with an error probability of at most 2−k+O(log n).

Proof: The proof follows from Lemma 1, 2, 3, 4 and the working of the protocol. 2

Theorem 2 Protocol IC communicates O(n(log n + k)) bits and broadcasts O(n(log n + k)) bits.

Proof: Follows from the fact that in IC, O(n) field elements are communicated and O(n) field
elements are broadcasted and each field element is represented by log |F| = log n + k bits. 2

4 Efficient Four Round UVSS with n = 2t + 1 Players

We first briefly outline the UVSS protocol proposed in [9] and [5].

UVSS Protocol of Cramer et. al: In [5], Cramer et.al have proposed a nine round UVSS pro-
tocol with n = 2t + 1. The protocol sequentially executes two set of IC protocols. The first set
of IC protocols are executed by D to give its signatures on the shares to individual players. The
second set of IC protocols are executed by individual players, where each individual player acts as
a dealer. This is followed by other consistency checks, which take one additional round. Since the
IC protocol proposed in [5] takes four rounds, the UVSS protocol given in [5] takes at most nine
rounds. The UVSS protocol of [5] shares one secret from F by communicating O((k +log n)n3) bits
and broadcasting O((k + log n)n3) bits, with an error probability of at most 2−k+O(log n).

UVSS Protocol of Arpita et. al: In [9], a four round UVSS protocol with n = 2t+1 is proposed.
The protocol shares one secret from F by communicating O((k + log n)n3) bits and broadcasting
O((k + log n)n3) bits, with error probability of at most 2−k, where |F| = n2(n− 1)2k. The protocol
makes use of a three round UWSS protocol proposed in the same paper, as a black-box, where UWSS
is a weaker version of UVSS. The first set of IC protocols executed by D in the UVSS protocol of [5]
are executed as such. However, the second set of IC protocols, executed by individual players in the
UVSS protocol of [5] is replaced by a set of three round UWSS protocols, executed by individual
players, acting as a dealer. Moreover, D’s actions are parallely executed and overlapped with the
steps of the UWSS protocols, thus reducing the sharing phase to only four rounds.

We now present a four round UVSS protocol with n = 2t + 1 which shares n − t = Ω(n)
secrets by communicating O((k + log n)n3) bits and broadcasting O((k + log n)n3) bits, with error
probability of at most 2−k+O(log n). Thus, our protocol allows to share multiple secrets at the same
time, incurring the same communication complexity as in the existing UVSS protocols of [9, 5]. The
protocol makes use of our new three round IC protocol, which provides us with higher efficiency. We
first explain the protocol to share only one secret value s ∈ F. Later, we explain the modifications
needed to share Ω(n) field elements with same communication overhead.

4.1 Four Round UVSS to Share Single Secret

The protocol is inspired by the principle used in the UVSS protocol of [5]. In our protocol, we use
the following definition:

Definition 1 Let Pi, Pj ∈ P denote two players, where Pi is given the polynomials fi(x) and gi(y)
and Pj is given the polynomials fj(x) and gj(y). Then Pi and Pj are said to be consistent with
each other if fi(j) = gj(i) and fj(i) = gi(j). A vector (e0, e1, . . . , en−1) ∈ Fn is t-consistent if there
exists a polynomial w(x) of degree at most t such that w(i) = ei, for 0 ≤ i ≤ n− 1.
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The Sharing Phase of our four round UVSS protocol is presented in Table 2 and Table 3. In
the protocol, IC protocols are used to sign on only one secret value, instead of n− t secret values.
Suppose Pi wants to give IC signature on a single secret value r to Pj , then Pi constructs an n− t
tuple S, where the first value is r and the remaining values are randomly selected from F. Now Pi

can initiate IC protocol to give signature on S.

Claim 3 If |DB| > t, then D is corrupted.

Proof: Pi is included in DB, if D is not satisfied with the values broadcasted by Pi during
the execution of Round 2 of any of the protocols IC(D,Pi,P, fi(j)) or IC(D,Pi,P, gi(j)), for
1 ≤ j ≤ n. If both D and Pi are honest, then Pi will be never included in DB. So, if Pi ∈ DB,
then either D or Pi is corrupted. So for an honest D, DB is always less than t + 1. 2

Claim 4 If there exists Pi, Pj ∈ DB who are not consistent with each other with respect to their
corresponding f(x) and g(x) polynomials which are broadcasted by D, then D is corrupted.

Proof: Follows from the fact that if D is honest then only corrupted players are included in DB

and D would have broadcasted fi(x) = F (x, i), gi(y) = F (i, y), fj(x) = F (x, j) and gj(y) = F (j, y),
corresponding to Pi, Pj ∈ DB, where F (x, y) is the original bivariate polynomial. 2

Claim 5 Suppose at the end of Round IV of Sharing Phase, there exists a conflicting or
accusing pair (Pi, Pj), such that Pi, Pj ∈ DNB. Moreover the values fi(j), gi(j) and fj(i), gj(i)
produced by Pi and Pj respectively have got D’s valid signature on them. Furthermore, either
fi(j) 6= gj(i) or fj(i) 6= gi(j). Then except with probability at most 2−k+O(log n), D is corrupted.

Proof: If D is honest and (Pi, Pj) is an accusing or conflicting pair, then at least one of the
Pi or Pj is corrupted. Let Pi be corrupted. Then at least one of the values fi(j) or gi(j), produced
by Pi during Round IV will be different from the actual fi(j) or gi(j), which D had given to
Pi during Round I. Let fi(j) be incorrect. However, Pi has to produce D’s IC signature on the
incorrect fi(j). But from the property of IC protocol (see Lemma 3), corrupted Pi cannot forge
honest D’s signature on incorrect fi(j), except with an error probability of at most 2−k+O(log n).
Thus, if either fi(j) 6= gj(i) or fj(i) 6= gi(j) and if D’s signature on these values are valid, then
except with error probability of at most 2−k+O(log n), D is corrupted. 2

Claim 6 If there exists a complaining player Pi ∈ DNB, such that the values fi(j)’s or gi(j)’s,
1 ≤ j ≤ n produced by Pi are not t-consistent and have got valid signature of D on them, then
except with an error probability of at most 2−k+O(log n), D is corrupted.

Proof: If D is honest then an honest Pi can never be a complaining player. However, a
corrupted Pi ∈ DNB can become a complaining player and may produce t-inconsistent fi(j)’s
or gi(j)’s (which are not given to him by D) and can forge D’s signature on these values. But from
Lemma 3, this can happen with probability at most 2−k+O(log n). 2

Claim 7 Let Pi ∈ DB and Pj ∈ DNB, where D has broadcasted F (x, i) and F (i, y), corresponding
to Pi during Round III. Suppose Pj has broadcasted fj(i) and gj(i) during Round IV in Pi−Pj−
B −NB −Consistency −Checking −Broadcast, such that both fj(i) and gj(i) has got D’s valid
signature on it. Moreover, Pi and Pj are inconsistent with each other, i.e., either F (j, i) 6= gj(i)
or F (i, j) 6= fj(i). Then except with error probability of at most 2−k+O(log n), D is corrupted.

Proof: If D is honest then only corrupted players are included in DB and all the honest players
are present in DNB. So the values broadcasted by an honest Pj ∈ DNB during Pi − Pj − B −
NB − Consistency − Checking −Broadcast, corresponding to Pi ∈ DB will always be consistent
with Pi. However a corrupted Pj ∈ DNB may broadcast either incorrect fj(i) or gj(i) during
Pi − Pj − NB − Consistency − Checking − Broadcast, along with valid D’s signature on them,
such that either F (j, i) 6= gj(i) or F (i, j) 6= fj(i). But, according to the property of IC protocol, a
corrupted Pj cannot do so, except with an error probability of at most 2−k+O(log n). 2
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Sharing Phase: Round I

1. D chooses a random bivariate polynomial F (x, y) of
degree t in both variable, such that F (0, 0) = s.
D computes fi(x) = F (x, i) and gi(y) = F (i, y)
for 1 ≤ i ≤ n. Considering player Pi as INT ,
D executes Round 1 of IC(D, Pi,P, fi(j)) and
IC(D, Pi,P, gi(j)), for 1 ≤ j ≤ n, to give his IC
signature on n shares of fi(x) and gi(y) to Pi.

2. For each pair (Pi, Pj), player Pi acting as a
dealer, selects a random value rij ∈ F. Treat-
ing Pj as INT , Pi executes Round 1 of
IC(Pi, Pj ,P, rij). The random value rij will
be used by Pi and Pj to check the equality of
fi(j) and gj(i), which will be common to both
of them.

Sharing Phase: Round II

1. In response to Round 1 of IC(D,Pi,P, fi(j))
and IC(D,Pi,P, gi(j)), Pi acting as INT , ex-
ecutes Round 2 of IC(D, Pi,P, fi(j)) and
IC(D, Pi,P, gi(j)), for 1 ≤ j ≤ n. Thus Pi tries
to check the validity of D’s signature on fi(j)’s
and gi(j)’s as received during Round I.

2. In response to Round 1 of IC(Pi, Pj ,P, rij),
player Pj , acting as INT , executes Round 2
of IC(Pi, Pj ,P, rij) to check the validity of Pi’s
signature on rij , received during Round I.

3. Each player Pi, 1 ≤ i ≤ n broadcasts: (a) aij =
fi(j) + rij , (b) bij = gi(j) + rji.

Sharing Phase: Round III

1. If D is not satisfied by the broadcast of Pi

(as INT ) in previous round (during the exe-
cution of Round 2 of IC(D, Pi,P, fi(j)) and
IC(D, Pi,P, gi(j)) for 1 ≤ j ≤ n), then D
broadcasts fi(x) = F (x, i) and gi(y) = F (i, y).
This completes D’s actions of Sharing Phase.
If D has not broadcasted fi(x) and gi(y), then
Pi has obtained a valid IC signature of D on the
n shares of fi(x) and gi(y).

2. If Pi is not satisfied by the broadcast of Pj (as
INT ) in previous round (during the execution
of Round 2 of IC(Pi, Pj ,P, rij), then Pi broad-
casts the signal Unhappyj

i . We call the pair
(Pi, Pj) as an accusing pair.

3. If Pi finds that the value fi(j)’s or gi(j)’s, 1 ≤ j ≤
n, which are given to it by D during Round
I of IC protocol are not t-consistent, then Pi

broadcasts ComplaintDi signal. In this case, we
call Pi as a complaining player.

Sharing Phase: Local computation by each player at the end of Round III:

1. Form two sets DB and DNB . Include Pi in DB if D has broadcasted fi(x) and gi(y) during Round
III. If |DB | > t, then discard D and terminate (see Claim 3).

2. For every (Pi, Pj) ∈ DB , check whether they are consistent (see Definition 1) with respect to f(x) and
g(y) polynomials corresponding to them, which D has broadcasted during Round III. If not, then
discard D and terminate (see Claim 4).

3. If Pi ∈ DB , then the values fi(j)’s and gi(j)’s are known publicly. So terminate the execution of
protocols IC(D, Pi,P, fi(j)) and IC(D, Pi,P, gi(j)), for 1 ≤ j ≤ n. In addition, also terminate the
execution of the protocols IC(Pi, Pj ,P, rij), for 1 ≤ j ≤ n.

Sharing Phase: Round IV

1. If Pi, Pj ∈ DNB and (Pi, Pj) is an accusing pair, then Pi defends himself by broadcasting fi(j)
and gi(j), along with D’s signature on them. Similarly, Pj defends himself by broadcasting fj(i) and
gj(i), along with D’s signature on them. Parallely, the receivers in P broadcasts the verification
information corresponding to these signatures.

2. If Pi, Pj ∈ DNB and if aij 6= bji or aji 6= bij (during Round II), then Pi, Pj and the receivers in P do
the same actions as in the above step. In this case, we call pair (Pi, Pj) as conflicting pair.

3. If Pi ∈ DNB is a complaining player, then Pi defends himself by broadcasting the values fi(j)’s and
gi(j)’s, 1 ≤ j ≤ n, which it has received from D during Round I, along with D’s signature on these
values. Parallely, the receivers in P broadcasts the verification information corresponding to these
signatures.

4. Corresponding to each Pi ∈ DB , player Pj ∈ DNB broadcasts gj(i) and fj(i) (which Pj has received
during Round I), along with D’s signature on these values. Parallely, the receivers in P broadcasts the
verification information corresponding to these signatures. We call this broadcast as Pi −Pj −B−
NB −Consistency −Checking −Broadcast. This broadcast is done to ensure whether the players in
DNB are consistent with the players in DB . However this does not hamper the secrecy of the protocol.

Table 2: Sharing phase of four round UVSS with n = 2t + 1 to share a secret value s ∈ F.
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Local Computation by Each Player at the End of Round IV (If D is not discarded)

1. For each accusing or conflicting pair (Pi, Pj), such that Pi, Pj ∈ DNB , do the following:

(a) Check the validity of D’s signature on fi(j), gi(j), fj(i) and gj(i), which Pi and Pj has produced
during Round IV. If D’s signature on fi(j) or gi(j) is found to be invalid, then discard Pi from
DNB . Similarly, if D’s signature on fj(i) or gj(i) is found to be invalid, then discard Pj from
DNB .

(b) If both Pi and Pj are not discarded during previous step but either fi(j) 6= gj(i) or fj(i) 6= gi(j),
then discard D and terminate (see claim 5)). Else, publicly accept gi(j) and gj(i) as the jth

and ith share of gi(y) and gj(y) respectively (see Theorem 3).

2. If Pi is not discarded from DNB and is a complaining player, then check if the values fi(j)’s and
gi(j)’s, 1 ≤ j ≤ n, produced by Pi during Round IV have got D’s valid signature on them. If not,
then discard Pi from DNB . Else, check if the values fi(j)’s and gi(j)’s, 1 ≤ j ≤ n are t-consistent. If
either fi(j)’s or gi(j)’s are not t-consistent, then discard D and terminate (see Claim 6). Otherwise
discard Pi from DNB .

3. If Pj is not discarded from DNB , then corresponding to Pi−Pj−B−NB−Consistency−Checking−
Broadcast, do the following:

(a) Check if the values broadcasted by Pj (namely fj(i) and gj(i)) have got D’s valid signature on
them. If not, then discard Pj from DNB .

(b) If D’s signatures are valid, then check whether Pj is consistent with Pi (w.r.t fi(x) and gi(y)
broadcasted by D, corresponding to Pi during Round III). In case of any inconsistency, discard
D and terminate (see Claim 7). Otherwise, publicly accept gj(i) as the ith share of gj(y).

4. If the size of final DNB is less than t + 1, then discard D and terminate the protocol (see Claim 8).

Table 3: Sharing Phase of four round UVSS with n = 2t+1 to share a secret value s ∈ F Contd . . .

Claim 8 At the end of Sharing Phase, if the size of final DNB < t + 1, then D is corrupted.

Proof: The proof follows from the fact that if D is honest then all the honest players (at least
t+1) will be present in DNB and no honest player in DNB is removed at the end of Round IV. 2

We now enumerate all possible events under which an honest D can be discarded and show that
none can occur except with an error probability of at most 2−k+O(log n).

Lemma 5 An honest D can be discarded during Sharing Phase only with an error probability of
at most 2−k+O(log n).

Proof: It is easy to see that if D is honest then |DB| ≤ t. More each Pi, Pj ∈ DB will be consistent
with each other. Moreover, the size of final DNB will be at least t + 1. Now an honest D can be
discarded during Sharing Phase, only if one of the following events occur:

1. At the end of Round IV, there exists a conflicting pair or an accusing pair (Pi, Pj),
where Pi, Pj ∈ DNB. Moreover, the values fi(j), gi(j) and fj(i), gj(i), as produced by Pi and
Pj respectively, have got D’s valid signature and either (fi(j) 6= gj(i)) or (fj(i) 6= gi(j)): From
Claim 5, this can happen for an honest D with an error probability of at most 2−k+O(log n).
Since there can be O(n2) such pairs, the total error probability is O(n2)2−k+O(log n) =
2−k+O(log n).

2. At the end of Round IV, there exists a complaining player Pi ∈ DNB, such that the
values fi(j)’s or gi(j)’s, 1 ≤ j ≤ n produced by Pi are not t-consistent and have got valid
signature of D on these values: From Claim 6, this can happen for an honest D with an error
probability of at most 2−k+O(log n). Since here can be O(n) such corrupted players, the total
error probability is O(n)2−k+O(log n) = 2−k+O(log n).

3. At the end of Round IV, there exists a pair (Pi, Pj), where Pi ∈ DB and Pj ∈ DNB, such that
the values broadcasted by Pj during Pi−Pj−B−NB−Consistency−Checking−Broadcast
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are inconsistent with Pi and have got valid signature of D on them: From Claim 7, this can
happen for an honest D with an error probability of at most 2−k+O(log n). Since there can be
O(n2) such pairs, the total error probability is O(n2)2−k+O(log n) = 2−k+O(log n). 2

Next we enumerate all possible events under which an honest player can be discarded during
Sharing Phase and show that none can occur except with an error probability of at most 2−k.

Lemma 6 An honest player Pj can be discarded during Sharing Phase only with an error prob-
ability of at most 2−k.

Proof: If Pj ∈ DB, then Pj cannot be discarded. So, we have to consider the case where
Pj ∈ DNB. From the protocol, player Pj ∈ DNB will be discarded only if one of the following
events occur:

1. There exists a conflicting or accusing pair (Pj , Pi), where Pi ∈ DNB, such that D’s
signature on fj(i) or gj(i), as produced by Pj is invalid: If D is honest, then this will never
happen because from the property of IC protocol, an honest Pj will always be able to produce
valid signature of an honest D on fj(i) and gj(i) (see Claim 1). However, if D is corrupted,
then the honest Pj will be able to produce valid signature of a dishonest D on fj(i) and gj(i)
with probability at least 1− 2−k (see Lemma 2). But, in the later case, Pj can be discarded,
but this happens with an error probability of at most 2−k.

2. Pj is a complaining player, such that D’s signature on at least one of fj(i)’s or gj(i)’s,
as produced by Pj during Round IV fails: Since Pj is an honest as well as a complaining
player, indeed he has received either t-inconsistent fj(i)’s or t-inconsistent gj(i)’s during
Round I from D. So as a proof, Pj broadcasts these inconsistent values, along with D’s
signature on them. By the properties of IC protocol, except with an error probability of at
most 2−k, D’s signature on these values are valid and will be accepted. However, with an
error probability of at most 2−k, the signature may fail and Pj may be discarded.

3. The values broadcasted by Pj (namely fj(i) and gj(i)) during Pi−Pj−B−NB−Consistency−
Checking−Broadcast corresponding to some Pi ∈ DB has got D’s invalid signature on them:
If D is honest, then this never happens for an honest Pj . However, if D is corrupted, then
from the properties of IC protocol, this can happen with error probability of at most 2−k. 2

Let D′NB denotes the set of players in DNB, who are not discarded at the end of Sharing Phase.
If D is not discarded, then the properties given in Theorem 3 are true.

Theorem 3 If D is not discarded during Sharing Phase, then the following holds:

Property 1. Except with an error probability of at most 2−k, no honest player is discarded.

Property 2. All the players in DB are be consistent with each other.

Property 3. There exists at least one honest player in D′NB.

Property 4. Each honest Pi ∈ D′NB have t-consistent fi(j)’s and gi(j)’s, 1 ≤ j ≤ n.

Property 5. All honest players in D′NB are consistent with each other. Moreover, each honest
player in D′NB is consistent with all the players in DB.

Property 6. Corresponding to each conflicting or accusing pair (Pi, Pj), where Pi, Pj ∈ D′NB,
the shares gi(j) and gj(i) are known publicly.

Property 7. Every corrupted player Pi ∈ D′NB commits gi(j) to honest player Pj ∈ D′NB (by
agreeing with fj(i)).
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Property 8. Every corrupted player Pi ∈ D′NB commits gi(k) publicly by agreeing with fk(x),
where Pk ∈ DB and fk(x) is broadcasted by D during Round III.

Proof: The proof follows from the proof of the all the previous claims and working of the protocol.
For space constraint, we give the proof in APPENDIX. 2

If D is not discarded during Sharing Phase, the protocol proceeds to Reconstruction Phase
as shown in Table 4. Before explaining the Reconstruction Phase, we first list out the values
which are known publicly at the end of Sharing Phase and are going to be directly used during
Reconstruction Phase.

1. The polynomials fi(x) = F (x, i) and gi(y) = F (i, y), corresponding to each Pi ∈ DB.

2. For Pj ∈ D′NB and Pi ∈ DB, the share gj(i) (see step 3(b) during local computation
at the end of Round IV).

3. If Pi, Pj ∈ D′NB, but the pair (Pi, Pj) was either an accusing or conflicting pair during
Round III, then the shares gi(j) and gj(i) (see step 1(b) during local computation at
the end of Round IV).

Reconstruction Phase: Only the players from the set DB and D′NB
participate, where D′NB

denotes the
set of players in DNB who are not discarded during Sharing Phase. Set CORE = D′NB

.

1. Each Pi ∈ CORE broadcasts the random rji, which Pi has received from Pj during Round I, provided
Pj ∈ CORE and the share gi(j) is not known publicly. In addition, Pi also produces Pj ’s signature
on rji. Parallely, the receivers in P broadcasts verification information corresponding to rji. Note
that Pi does this for all such possible Pj ’s. Each player locally verifies the signature. If the signature
produced by Pi fails for even one such rji, then discard Pi from CORE. Else each player locally tries
to recover the n shares of gi(y), denoted by gij , 1 ≤ j ≤ n as follows:

gij = fj(i) if Pj ∈ DB

= gi(j) if Pj ∈ D′NB
and Pi, Pj were involved in either an accusing or conflicting pair

= bij − rji where bij was broadcasted by Pi during Round II

Remove Pi from CORE, if gij ’s are not t-consistent. Otherwise reconstruct gi(y) by interpolating gij ’s.

2. Take the recovered gi(y)’s corresponding to the players in CORE (who are not discarded from CORE),
along with the gi(y)’s corresponding to the players in DB . Using them, interpolate F H(x, y), reconstruct
s′ = F H(0, 0) and terminate (see Lemma 9).

Table 4: Reconstruction Phase of Four Round UVSS with n = 2t + 1.

We now prove the properties of the four round UVSS protocol.

Lemma 7 The four round UVSS protocol satisfies perfect secrecy.

Proof: We have to only consider the case when D is honest. If D is honest then DB will contain
only corrupted players. So the polynomials corresponding to them which are broadcasted by D gives
no new information to the adversary. The rij ’s exchanged between honest Pi, Pj are completely
random and unknown to the adversary. Correspondingly, the blinded common shares broadcasted
by Pi and Pj will give no information about their common shares to the adversary. The proof now
follows from the properties of a bivariate polynomial of degree t and secrecy of IC protocol (see
Lemma 4). 2

Lemma 8 The UVSS protocol satisfies correctness property except with error probability of 2−k+O(log n).

Proof: We have to only consider the case when D is honest. From Lemma 5, the probability
that an honest D might get discarded during sharing phase is at most 2−k+O(log n). When D is
honest, all the honest players (at least t + 1) will be present in D′NB (and hence in CORE) and
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will be consistent with each other and with the original bivariate polynomial F (x, y). Moreover,
only corrupted players will be present in DB and the f(x), g(x) polynomials corresponding to these
players (which are broadcasted by D during Round III) will be consistent with F (x, y). Now
consider a corrupted player Pi ∈ CORE. During reconstruction phase, Pi has to produce the
signature of each Pj ∈ CORE on the random rji, which Pi has received from Pj during Round
II. Now except with an error probability of at most 2−k+O(log n), Pi cannot forge an honest Pj ’s
signature on incorrect rji. Moreover, from Property 7 of Theorem 3, Pi has committed gi(j) by
agreeing with fj(i). Also, from Property 6 and Property 8 of Theorem 3, the publicly known
shares of gi(y) are consistent with F (x, y). So if during reconstruction phase, the recovered gij ’s
are t-consistent then it implies that except with an error probability of at most 2−k+O(log n), it is
consistent with F (x, y) also. Hence the lemma holds. 2

Lemma 9 The four round UVSS protocol satisfies strong commitment property except with an
error probability of at most 2−k.

Proof: We have to only consider the case when D is dishonest. If D is discarded during sharing
phase, then the lemma holds. On the other hand if D is not discarded, then from Lemma 6,
except with an error probability of 2−k, none of the honest players (at least t + 1) are discarded.
Since D is corrupted, the honest players may be distributed in sets DB and D′NB. However, from
Property 5 of Theorem 3, all honest players, along with the players in DB are consistent with each
other and hence define a unique bivariate polynomial FH(x, y) of degree at most t in both x and
y. Moreover, from the properties given in Theorem 3, each corrupted player (either in DB or in
D′NB) is consistent with all the honest players, who in turn are consistent with FH(x, y). So if a
corrupted Pi ∈ D′NB is not discarded in the reconstruction phase, then the recovered gi(y) will be
consistent with FH(x, y). Hence the strong commitment on s′ = FH(0, 0) is satisfied. 2

Lemma 10 The four round UVSS protocol communicates O(n3(log n + k)) bits and broadcasts
O(n3(log n + k)) bits.

Proof: In the protocol, D executes 2n2 instances of IC protocol to give its signature on the n
shares of fi(x) and gi(y), 1 ≤ i ≤ n. Similarly, each Pi executes n instances of IC protocol to give its
signature on rij ’s to Pj ’s. So total number of IC protocols executed by the players (as a dealer) is
n2. Thus, the total number of IC protocol executed in the UVSS protocol is 3n2. As each execution
of IC communicates O(n(log n + k)) bits and broadcasts O(n(log n + k)) bits (see Theorem 2), the
UVSS protocol communicates O(n3(log n + k)) bits and broadcasts O(n3(log n + k)) bits. 2

Theorem 4 The four round UVSS protocol satisfies the properties of UVSS with an error proba-
bility of at most 2−k+O(log n).

Proof: The proof follows from Lemma 7, Lemma 8 and Lemma 9. 2

4.2 Four Round UVSS to Share (n− t) Secrets

Let n = 2t+1. We now show how to adapt our four round UVSS protocol proposed in the previous
section to share n− t = t + 1 secrets at the same time without incurring any extra communication
overhead. Let S = [s1 s2 . . . st+1] ∈ Ft+1 denotes the secret that D wants to share. D generates
t+1 random and independent bivariate polynomials F k(x, y), 1 ≤ k ≤ t+1, each of degree t in both
x, y, such that F k(0, 0) = sk. Let fk

i (x) = F k(x, i) and gk
i (y) = F k(i, y), for 1 ≤ k ≤ t + 1. D gives

its IC signature on n shares of fk
i (x) and gk

i (y) to player Pi. More formally, D give its IC signature
on the shares fk

i (j) and gk
i (j), for 1 ≤ k ≤ t + 1, 1 ≤ j ≤ n to player Pi, 1 ≤ i ≤ n. Recall that IC

protocol can be used to generate IC signature of a player on n− t = t+1 random secret values in a
single execution. Hence, D can give its IC signature on the shares to Pi by parallely executing 2n
instances of IC protocol (D has to give IC signature on 2n(t + 1) shares to Pi). Now each pair of
distinct players (Pi, Pj) will have 2(t + 1) shares in common (in the previous protocol, they have 2
common shares). Player Pi, in order to check the consistency of common shares with Pj , will give
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t + 1 random values to Pj , along with its IC signature on these values. Similarly Pj , in order to
check the consistency of common shares with Pi, will give t +1 random values to Pi, along with its
IC signature on these values. To generate the signatures, Pi (Pj) will execute a single instance of
IC protocol. The rest of the protocol now proceeds as in the UVSS protocol of previous section.
If D is discarded during Sharing Phase, then a set of standard t + 1 values from F will be taken
as D’s secrets. All the claims, lemmas and theorems of previous protocol will hold now also. The
number of IC protocols executed by D is 2n2 (2n executions per player). Similarly, the number
of IC protocols executed by the players (as a dealer) is n2. So the total number of IC protocols
executed is still 3n2 and hence the communication complexity of the protocol is O(n3(log n + k))
bits. So we have the following theorem.

Theorem 5 If n = 2t+1, then there exists a four round UVSS protocol that shares n−t secrets and
satisfies the properties of UVSS, except with an error probability of at most 2−k+O(log n). Moreover,
the protocol communicates O(n3(log n + k)) bits and broadcasts O(n3(log n + k)) bits.

Proof: Follows from the above discussion. 2

5 Conclusion and Open Problems

All the existing unconditional verifiable secret sharing (UVSS) scheme shares only a single secret by
communicating too many bits. In many practical distributed computing tasks there arises a need to
share multiple secrets. In such a situation, the existing UVSS protocols will be very communication
inefficient to use. In this paper, we have proposed a new four round UVSS protocol, which allows
to share n− t secrets simultaneously. Moreover, its communication complexity is same as the most
efficient four round UVSS protocol of [9] which allows to share only a single secret. To design
our UVSS protocol, we have also designed a new three round information checking (IC) protocol,
which allows to simultaneously generate IC signature on multiple secrets. Moreover, it does so by
incurring the same communication complexity as the existing IC protocols of [5, 9] which allows
to generate IC signature on a single secret. We leave the issue of reducing the communication and
round complexity of our protocols as open problem.
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APPENDIX: Proof of Theorem 3

(1) Property 1 follows from Lemma 6. (2) If Property 2 is false, then from Claim 4, D would have
been discarded, which is a contradiction. (3) From Claim 8, if |D′NB| < t + 1, then D would have
been discarded, which is a contradiction. So |D′NB| ≥ t + 1 and it contains at least one honest
player and hence Property 3 is satisfied.

(4) If Pi ∈ D′NB is an honest player and has received either t-inconsistent fi(j)’s or gi(j)’s
during Round I, then from Claim 6, except with an error probability of at most 2−k+O(log n), D
would have been discarded. Since D is not discarded, Property 4 holds.

(5) If there exists two honest players Pi, Pj ∈ D′NB, who are not consistent with each other,
then (Pi, Pj) is a conflicting pair. So from Claim 5, D would have been discarded, which is a
contradiction. So all honest players in D′NB are consistent with each other. Similarly, if an honest
player Pj ∈ D′NB is inconsistent with some player Pi ∈ DB, then the inconsistency would have
been revealed during Pi−Pj−B−NB−Consistency−Checking−Broadcast and from Claim 7, D
would have been discarded, which is a contradiction. Thus each honest player in D′NB is consistent
with all the players in DB. So, Property 5 is true.

(6) If Pi, Pj ∈ D′NB and the pair (Pi, Pj) is either an accusing or conflicting pair, then
during Round IV, they had broadcasted their common shares along with D’s signature on them.
If the signatures would have been invalid, then at least one of Pi or Pj would have been discarded.
On the other hand, if the signatures would have been valid, but the shares are unequal then D
would have been discarded (see Claim 5). Since neither D is discarded, nor Pi, Pj are discarded,
this implies that both Pi, Pj have produced the same common shares, along with valid D’s signature
on them. Hence these shares are known publicly and Property 6 is true.

(7) If Pi, Pj ∈ D′NB, such that Pi is corrupted and Pj is honest and the blinded (XORed)
common shares broadcasted by Pi, Pj during Round II contradict each other, then (Pi, Pj) would
be a conflicting pair. Moreover, while resolving this confliction, either D or at least one of Pi, Pj

would have been discarded. But neither D nor Pi, Pj is discarded. This implies that either the
corrupted Pi ∈ D′NB have broadcasted correct blinded common shares during Round II, that
matches the corresponding blinded common share broadcasted by the honest Pi ∈ D′NB (in which
case (Pi, Pj) is not a conflicting pair) or the common shares produced by Pi, Pj to resolve the
conflicting pair (Pi, Pj) are same (see Property 6). Thus, in any case, corrupted Pi has approved
his commitment on gi(j) to everybody by agreeing with fj(i). So, Property 7 is true.

(8) If Pk ∈ DB, then it implies that D has broadcasted fk(x) = F (x, k) during Round III,
thus publicly committing the shares fk(j), 1 ≤ j ≤ n. Now if a corrupted Pi ∈ D′NB does not
agrees with this fk(x), then the values broadcasted by Pi during Pk−Pi−B−NB−Consistency−
Checking−Broadcast would have revealed the inconsistency between Pi and Pk. Moreover, either
D or Pi would have been discarded while resolving the inconsistency (see Claim 7). Since neither has
happened, it implies that the values broadcasted by Pi during Pk −Pi−B−NB−Consistency−
Checking − Broadcast are consistent with fk(x); i.e., fk(i) = gi(k), which implies that Pi is
approving his commitment on gi(k) = fk(i) = F (i, k) publicly. Hence the last property holds.
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