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Abstract

In this work, we initiate the study of round complexity of unconditionally secure weak secret
sharing (UWSS) and unconditionally secure verifiable secret sharing (UVSS) 1 in the presence of an
all powerful t-active adversary. Specifically, we show the following for UVSS: (a) 1-round UVSS is
possible iff t = 1 and n > 3 (b) 2-round UVSS is possible if n > 3t (c) 5-round UVSS is possible
if n > 2t. For UWSS we show the following: (a) 1-round UWSS is possible iff n > 3t and (b) 3-
round UWSS is possible if n > 2t. Comparing our results with existing results for trade-off between
fault tolerance and round complexity of perfect (zero error) VSS and WSS [8, 7, 9], we find that
probabilistically relaxing the conditions of VSS/WSS helps to increase fault tolerance significantly.

Keywords: Verifiable Secret Sharing, Error Probability, Information Theoretic Security.

1 Introduction

In this paper, we initiate the study of round complexity of two important secure distributed computation
tasks: unconditionally secure verifiable secret sharing (UVSS) and unconditionally secure weak secret
sharing scheme (UWSS). Roughly speaking, in secret sharing [11], a dealer D wants to share a secret
s among a set of n players, such that no set of t players can reconstruct s while any set of t + 1 or
more players will be able to reconstruct s by pooling their shares. Verifiable secret sharing (VSS) [4]
extends ordinary secret sharing to work against active corruption. It is a stronger notion than standard
secret sharing and provides robustness against t malicious players, possibly including D. In UVSS [10],
each property of VSS holds, but with a negligible error probability. The round complexity of interactive
protocols is one of their most important complexity measure. Consequently, substantial research work
has been done to study the round complexity of various distributed computation tasks, such as Byzantine
agreement, secure message transmission, zero knowledge proofs, multiparty computation (MPC), VSS,
etc. VSS and UVSS are important building blocks in the design of perfectly (zero error) secure MPC
[2, 3] and unconditionally (negligible error) secure MPC [5, 10, 1] respectively. In addition, they also
find application in Byzantine agreement, generating global coin toss, etc. So it is important to study the
round complexity of VSS and UVSS. In [8], the authors have studied the interplay between the round
complexity and fault tolerance of VSS protocols. However, nothing is known in the literature regarding
the trade-off for UVSS protocols. In this paper, we initialize the study of the trade-off between the
round complexity and fault tolerance of UVSS protocols.

∗Work supported by Project No.SE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Computation.
1In the literature, these problems are also called as statistical WSS and statistical VSS [8] respectively.
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1.1 Network Model

We consider the standard secure channel settings, where there are n players P = {P1, P2, . . . , Pn}, who
are pairwise connected by perfectly secure channels and a common broadcast channel is available to
all the players. The broadcast channel allows a player to send some information identically to all the
players. We assume D to be any one of the players from P. Our protocols will also work for an external
dealer where D is an entity outside the set P. We assume the system to be synchronous. The protocol
operates in a sequence of rounds, where in each round, a player performs some local computation,
sends new messages to his neighbors through private channel and broadcasts some information over the
broadcast channel, receives message sent by his neighbor in the previous round and receives message sent
over broadcast channel in previous round, in that order. An adversary At with unbounded computing
power can actively control at most t of the n players (possibly including D) during the protocol. Thus
there exists n − t honest players in the system. Active corruption means that At takes full control of
the player and makes it (mis)behave in an arbitrary manner. The adversary is centralized and adaptive
[5] and is allowed to dynamically corrupt players during protocol execution (and his choice may depend
on the data seen so far). Moreover, the adversary is a rushing adversary, who in a particular round,
first collects all the messages addressed to the corrupted players and exploits this information to decide
on what the corrupted players send during the same round. The error probability is expressed in terms
of an error parameter k. The protocols operate on a finite field F = GF (q), where q = 2k and n is
polynomial in k. Thus, each element of F can be represented by k bits. S denotes the secret which D
wants to share, where S is a sequence of ` ≥ 1 field elements, represented by S = [s1 s2 . . . s`] ∈ F`.
Moreover, we assume ` to be polynomial in k.

1.2 Definitions and Terminologies

Definition 1 (UWSS with Agreement[5, 10]) A (n, t)-UWSS scheme with agreement for sharing
S ∈ F` is a pair of protocols (Sh, Rec) that satisfy the following with error probability 2−k:

1. Termination: If D is honest then all honest players will complete Sh and if the honest players
invoke Rec, then each honest player will complete Rec.

2. Secrecy: If D is honest and no honest player has yet started Rec, then At has no information
about S in information theoretic sense.

3. Once all currently uncorrupted players complete protocol Sh, there exists a value s∗ ∈ F` ∪ {NULL}
such that the following requirements hold

• Correctness: If the dealer is uncorrupted throughout protocols Sh and Rec then s∗ = S and
each honest player will output S at the end of Rec.

• Weak Commitment: If the dealer is corrupted, then all honest players output either s∗ or
‘NULL’ upon completion of protocol Rec.

Definition 2 (UVSS with Agreement [5, 10]) A (n, t)-UVSS scheme with agreement for sharing
S ∈ F` is a pair of protocols (Sh, Rec) that satisfy the termination, secrecy and correctness
property of UWSS and the following stronger commitment property: Once all currently uncorrupted
players complete Sh, there exists an s∗ ∈ F`, such that following holds, with error probability 2−k:

• Strong Commitment: Each honest player outputs s∗ at the end of Rec.

Definition 3 (UVSS without Agreement [6]) UVSS without agreement is slightly weaker than UVSS
with agreement in the sense that the honest players may not agree in their output at the end of protocol
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Rec; i.e., some honest player(s) may output s∗ while some other honest player(s) may output ”NULL”,
where the later may happen with probability at most 2−k.

Similarly we can define UWSS without agreement. VSS [8]/WSS [7] satisfies all the properties of
UVSS/UWSS (with agreement), except that there is no error probability allowed. We now define
information checking protocol (IC), which is an important building block for designing UWSS and
UVSS protocols.

Information Checking (IC) and IC Signatures [5, 10]: IC is an information theoretically secure
method for authenticating data and is used to generate IC signatures. When a player INT ∈ P receives
an IC signature from D ∈ P, then INT can later produce the signature and have the players in P verify
that it is a valid signature. An IC scheme consists of a sequence of three protocols:

1. Distr(D, INT,P, S) is initiated by the dealer D, who hands secret S ∈ F` to intermediary INT .
In addition, D hands some authentication information to INT and verification information to
individual players in P, also called as receivers.

2. AuthVal (D, INT,P, S) is initiated by INT to ensure that in protocol RevealVal, secret S held
by INT will be accepted/will be considered as valid.

3. RevealVal (D, INT,P, S) where INT produces S, along with authentication information and
the individual receivers in P produce verification information. Depending upon the values produced
by INT and the receivers, either S is accepted or rejected.

The authentication information, along with S, which is held by INT at the end of AuthVal is
called D’s IC signature on S, obtained by INT . The IC signature must satisfy the following properties:

1. If D and INT are uncorrupted, then S will be accepted in RevealVal.

2. If INT is uncorrupted, then at the end of AuthVal, INT knows an S, which will be accepted in
RevealVal, except with probability 2−k.

3. If D is uncorrupted, then during RevealVal, with probability at least 1−2−k, every S′ 6= S produced
by a corrupted INT will be rejected.

4. If D and INT are uncorrupted, then at the end of AuthVal, S is information theoretically secure.

Remark 1 Following [8], our main aim in this paper is to study the round complexity of UWSS and
UVSS problems as a stand alone application. There is an alternative definition of UVSS, which is
suitable to use in the context of general unconditionally secure MPC (see [1] for details). However,
such a strong definition is not required when we want to study the round complexity of UVSS as a stand
alone application. We stress that our 5-round UVSS protocol with n = 2t + 1 satisfies this alternative
definition given in [1] and can be applied for unconditionally secure MPC.

Definition 4 (Unconditionally Secure Hashing) Let R = [r1 r2 . . . r`] ∈ F` be a vector and
α ∈ F − {0}. Then we define v = USHash(α; R) as the hash value of R with respect to hash key
α, where v = r1 + r2α + r3α

2 + . . . + r`α
`−1. It is easy to see that two different ` length vector may

have same hash value at a common hash key α with probability at most `−1
|F| , which is at most 2−O(k) in

our context. Moreover, if R is uniformly selected at random from F, such that At does not know R but
knows at most t hash values corresponding to t different hash keys, then (` − t) elements of R will be
information theoretically secure (provided (`− t) > 0).

Round Complexity of VSS and WSS [8, 7, 9]: Any VSS (WSS) protocol consists of two phases:
sharing phase and reconstruction phase. The sharing phase may consist of several rounds. In the

3



reconstruction phase, player Pi produces his entire view vi generated during sharing phase and a recon-
struction function Rec(v1, v2, . . . , vn) is applied to obtain protocol’s output. In [8], round complexity
of any VSS/WSS protocol is defined as the number of rounds in its sharing phase. The reconstruction
phase of any VSS/WSS protocol can be done in a single round [8, 7, 9].

Round Complexity of UVSS, UWSS and IC: As in the case of VSS and WSS, we define the
round complexity of any UVSS/UWSS protocol as the number of rounds in its sharing phase. We
define the round complexity of IC protocol as the number of rounds in Distr and AuthVal protocol.
Unlike VSS/WSS, the reconstruction phase of UVSS/UWSS protocol cannot be done in a single round,
if At is rushing. In [6], it is shown that in any UVSS (also UWSS) protocol (irrespective of the number
of rounds in sharing phase) designed with n = 2t+1, reconstruction cannot be done in a single round if
At is rushing. However, it is also shown that reconstruction can be done in a single round, but in that
case, the resultant UVSS will be an UVSS without agreement (see Definition 3). Moreover, it is also
shown any UVSS/UWSS scheme without agreement can be converted into an UVSS/UWSS scheme
with agreement by adding one extra round in the reconstruction phase. Now by using similar argument
as in [6], we can show that if At is rushing, then it is impossible to design the following, with only
one round in the reconstruction phase: (a) single round (4t, t) UWSS with agreement; (b) single round
(4, 1) UVSS with agreement; (c) two round (4t, t) UVSS with agreement. We do not provide formal
proof due to space constraint. All the UVSS (UWSS) protocols in this paper are designed assuming
At is rushing and satisfies Definition 2 (1). So our protocols have two rounds in their reconstruction
phase and we compare our UVSS/UWSS protocols with the existing VSS/WSS protocols based on the
round complexity of only sharing phase. Note that if At is non-rushing, then the reconstruction phase
of all our UVSS/UWSS protocols can be achieved in a single round. Similarly, if At is rushing, then
the RevealVal of IC protocol will take two rounds, otherwise it can be done in a single round.

Following the approach of [8], in our protocols, we assume that if D is discarded during sharing
phase, then a pre-determined Ŝ ∈ F` will be taken as D’s secret. Also, if Pi expects to receive some
value from Pj and either no value or some syntactically incorrect value arrives from Pj , then Pi replaces
the received value by some fixed default syntactically correct value.

1.3 Existing Literature on Round Complexity of VSS and WSS

The existing tradeoff between round complexity and fault tolerance of VSS and WSS is given in Table 1.
Recently, Katz et.al [9] have studied the design of VSS protocols, with the aim of reducing the number

# Rounds WSS VSS
1 n > 4t [7] t = 1, n > 4; impossible if t > 1 [8]
2 n > 4t [7] n > 4t [8]
3 n > 3t [7] n > 3t [8]; sufficiency shown by inefficient protocol;

efficient protocol given in [7]
4 n > 3t [7] n > 3t [8]

Table 1: Existing tradeoff between round complexity and fault tolerance of VSS and WSS

of rounds in which broadcast is used. Specifically, they designed a three round VSS with n = 3t + 1
(which is the optimum value of n for any VSS [2]), where the broadcast channel is used only in one
round during sharing phase. Using similar techniques, our protocols can be easily modified so that
broadcast channel is used in only one round of sharing phase.
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1.4 Existing Literature on UVSS and UWSS

The notion of UVSS, UWSS and IC were first introduced by Rabin et.al in [10]. In [10], it is shown that
UVSS (UWSS) is possible iff n ≥ 2t + 1. The UVSS, UWSS and IC protocol of [10] were significantly
improved by Cramer et.al [5]. In [6], Cramer et.al have proved the lower bound on the communication
complexity of reconstruction phase of any UVSS protocol (without agreement) designed with n = 2t+1,
as stated in the following theorem:

Theorem 1 ([6]) Let n = 2t+1 and D be honest. Under these settings, in any UVSS protocol without
agreement, with single round of reconstruction, the total number of bits broadcasted during reconstruction
phase is Ω(nH(S) + kn2), where S is the secret and H(S) is its entropy. Moreover the bound is tight.

1.5 Our Contribution and Its Significance

Our contributions in this paper can be summarized as follows:

1. We initiate the study of the trade-off between round complexity and fault tolerance of UVSS and
UWSS protocols. Specifically, for UVSS, we show the following: (a) 1-round UVSS is possible iff
t = 1 and n ≥ 4. Moreover, if t > 1, then no 1-round UVSS is possible irrespective of the value
of n; (b) 2-round UVSS is possible if n > 3t; (c) 5-round UVSS is possible if n > 2t. For UWSS,
we show the following: (a) 1-round UWSS is possible iff n > 3t; (b) 3-round UWSS is possible if
n > 2t. Comparing these results with the results of Table 1, we find that probabilistically relaxing
the conditions of VSS/WSS significantly helps in improving the fault tolerance.

2. In [6], the authors have given a single round honest dealer UVSS scheme without agreement for
n = 2t + 1, with single round of reconstruction, which shares k bits (i.e., ` = 1 element from F)
by broadcasting O(kn2) bits (O(n2) elements from F) during reconstruction phase. Though the
scheme satisfies the lower bound of Theorem 1 for ` = 1, it will not satisfy the lower bound for
general `. However, our single round (3t + 1, t) UWSS protocol can be converted into a single
round honest dealer (2t + 1, t) UVSS without agreement, for any ` ≥ 1, with single round of
reconstruction, whose communication complexity satisfies Theorem 1.

3. In [5], the authors have given a four round IC protocol, which signs an ` = 1 length secret with a
communication overhead (both private and broadcast) of O(n) field elements. So to generate an
IC signature on ` > 1 length secret, the protocol needs to be parallely executed ` times, resulting
in a communication overhead of O(n`k) bits. However, in this paper, we design a 3-round IC
protocol, which signs on ` ≥ 1 length secret by communicating and broadcasting O((` + n)k)
bits. If ` is not constant, then our protocol significantly improves the communication and round
complexity of the IC protocol given in [5].

4. In [5], the authors have given a (2t + 1, t) UVSS protocol, whose sharing phase takes at most
eleven rounds. Moreover, the protocol shares a single length secret; i.e., ` = 1 by communicating
and broadcasting O(n3k) bits. The protocol needs to be executed ` times to share ` length secret,
incurring a communication overhead (both private and broadcast) of O(n3`k) bits. However, by
using our efficient IC protocol, we design a five round UVSS protocol which shares an ` ≥ 1 length
secret by communicating and broadcasting O(n2(` + n)k) bits, thus significantly improving the
communication and round complexity of the UVSS protocol of [5].

5. By using similar techniques from [6], we can modify our five round (2t+1, t) UVSS protocol, such
that its reconstruction phase satisfies Theorem 1. Then by using our modified UVSS protocol, we
can reduce the communication complexity of pre-processing step of the MPC protocol of [6] from
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O(n5k) bits to O(n3k) bits per multiplication. We do not give the details in this paper and hope
to address these issues in our future work.

6. The existing UVSS/UWSS/IC protocol(s) are designed to handle single length secret; i.e., ` = 1.
So in applications, where we need to handle ` > 1 length secret, such as multiparty set intersection
problem (and many other specific MPC problems), these protocols need to be parallely executed
` times, which results in significant communication overhead. However, all our protocols are
designed for a general ` ≥ 1 length secret and can efficiently handle ` > 1 length secret. Our
protocols are much more efficient than ` invocations of the protocol on single field element.

2 Secret Distribution Protocol

We now design a single round protocol Secret Distribution in Table 2 with n ≥ 2t + 1, which allows
D to share S ∈ F`. The protocol is used as a black-box in our UWSS and UVSS protocols.

• D selects a random non-zero polynomial M(x) over F of degree ` + t − 1, such that the lower order ` coefficients of
M(x) are elements of S. D then computes M(1), M(2), . . . , M(` + t).

• D selects `+ t random polynomials f1(x), f2(x), . . . , f`+t(x), each of degree t, such that for 1 ≤ i ≤ `+ t, fi(0) = M(i).
D evaluates each fi(x) at x = 1, 2, . . . , n. Let Fi denotes the vector [f1(i) f2(i) . . . f`+t(i)] and T denotes the n× (`+ t)
matrix, whose ith row is Fi. D also selects n random non-zero hash keys from F, denoted by α1, α2, . . . , αn.

• To Pi, D gives the vector Fi, the hash key αi and the n tuple [v1i v2i . . . vni] where for 1 ≤ j ≤ n, vji = USHash(αi; Fj).

Table 2: Protocol Secret Distribution: Single Round Secret Distribution Protocol

Before proving the properties of protocol Secret Distribution, we first pictorially represent the
values computed by D.

M(x), lower order ` coefficients are elements of S

M(1) M(2) . . . M(j) . . . M(` + t)
f1(x) f2(x) . . . fj(x) . . . f`+t(x)

f1(0) = M(1) f2(0) = M(2) . . . fj(0) = M(j) . . . f`+t(0) = M(` + t)
f1(1) f2(1) . . . fj(1) . . . f`+t(1)
f1(2) f2(2) . . . fj(2) . . . f`+t(2)
. . . . . . . . . . . . . . . . . .

f1(i) f2(i) . . . fj(i) . . . f`+t(i)
. . . . . . . . . . . . . . . . . .

f1(n) f2(n) . . . fj(n) . . . f`+t(n)

F1 = [f1(1) f2(1) f3(1) . . . fj(1) . . . f`+t(1)]
F2 = [f1(2) f2(2) f3(2) . . . fj(2) . . . f`+t(2)]
. . . . . . . . .

Fi = [f1(i) f2(i) f3(i) . . . fj(i) . . . f`+t(i)]
Fn = [f1(n) f2(n) f3(n) . . . fj(n) . . . f`+t(n)]

Now we prove the properties of protocol Secret Distribution.

Lemma 1 In protocol Secret Distribution, any t + 1 players can jointly reconstruct S.
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Proof: The proof follows from the fact that any t + 1 players will know t + 1 points on each fi(x),
from the F vectors given to them. Since each fi(x) is of degree t, the knowledge of t + 1 points is
sufficient to construct each fi(x) and hence each M(i). Now using the M(i)’s, M(x) and hence S can
be reconstructed. 2

Lemma 2 If D is honest then S is information theoretic secure against At.

Proof: If At comes to know about t+1 F vectors, then from Lemma 1, At will know M(x) and hence
S. Without loss of generality, let At controls the first t players. So At knows the vectors F1, F2, . . . , Ft,
t hash keys α1, α2, . . . , αt and t hash values with respect to each Fi, 1 ≤ i ≤ n. The hash values
corresponding to F1, F2, . . . , Ft do not reveal any new information to At and hence can be removed
from his view. However, the hash values corresponding to Ft+1 give t new independent equations on
elements of Ft+1 toAt. So from properties of USHash, At falls short of (`+t)−t = ` points to completely
know Ft+1. Now, the vectors Fj , t + 2 ≤ j ≤ n are linearly dependent on Fj , 1 ≤ j ≤ t + 1. So the hash
values corresponding to Fj , t + 2 ≤ j ≤ n are linear combination of the hash values corresponding to
Fj , 1 ≤ j ≤ t + 1 and hence can be removed from At’s view. We prove this formally. Let us use the
following notations:

• gi(x) is the t − 1 degree polynomial defined by the first t values of fi(x). Since At controls the
first t players, he knows each gi(x) from the vectors F1, F2, . . . , Ft.

• J(x) = (x− 1)× (x− 2) . . . (x− t)

Let Fj(x) =
∑`+t

i=1 fi(j)× xi−1 and ki(x) = fi(x)− gi(x). Then

∀x ∈ {1, 2, . . . , t} : ki(x) = 0 (1)

As ki(x) is a t degree polynomial and {1, 2, . . . , t} are its roots, so we get

ki(x) = ci ∗ (x− 1) ∗ (x− 2) ∗ . . . ∗ (x− t) =⇒ ki(x) = ci × J(x) =⇒ ci =
ki(x)
Ji(x)

(2)

Now
fi(x) = gi(x) + ki(x) =⇒ fi(x) = gi(x) + ci × J(x) (3)

Now At knows t hash values corresponding to Ft+1, which can be expressed as:

∀j ∈ {α1 . . . αt} : Ft+1(j) =
∑`+t

i=1 fi(t + 1) ∗ ji−1

=
∑`+t

i=1(gi(t + 1) + ci ∗ J(t + 1)) ∗ ji−1 From Equation (3)

We now show that t hash values corresponding to Fk, t + 2 ≤ k ≤ n does not give any new information
to At. Consider any k ∈ {t + 2, t + 3, . . . , n} and any j ∈ {α1, α2, . . . , αt}. Now similar to the last
equation, we have

Fk(j) =
`+t∑

i=1

(gi(k) + ci ∗ J(k)) ∗ ji−1 (4)
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Now Fk(j) can be expressed as

Fk(j) =
`+t∑

i=1

gi(k) ∗ ji−1 − J(k)
J(t + 1)

∗
`+t∑

i=1

gi(t + 1) ∗ ji−1

+
J(k)

J(t + 1)
∗

`+t∑

i=1

(gi(t + 1) + ci ∗ J(t + 1)) ∗ ji−1 (5)

=
`+t∑

i=1

gi(k) ∗ ji−1 − J(k)
J(t + 1)

∗
`+t∑

i=1

gi(t + 1) ∗ ji−1

+
J(k)

J(t + 1)
∗ Ft+1(j) (6)

We see that in (6) all the terms are known to At and hence the t hash values corresponding to
Ft+2, Ft+3 . . . , Fn can be computed from the t hash values corresponding to F1, F2, . . . , Ft+1. So, in
sum, the view of At contains t points on each fi(x) (from the first t Fi’s) and t hash values correspond-
ing to Ft+1. Since each fi(x) is of degree t, At falls short of one point (on each fi(x)) to completely
interpolate each fi(x). Since ` elements of Ft+1 are information theoretically secure, so is S. 2

3 Single Round UWSS with n = 3t + 1

We now design a single round (3t + 1, t) UWSS protocol 1-Round-UWSS to share S ∈ F`.

Sharing Phase: D executes protocol Secret Distribution with n = 3t + 1. So Pi obtains the following from
D: vector Fi of length ` + t, the random hash key αi and the n tuple [v1i v2i . . . vni] where for 1 ≤ j ≤ n,
vji = USHash(αi; Fj).

Reconstruction Phase: (a) Round 1: For 1 ≤ i ≤ n, Pi broadcasts the vector F ′i ; (b) Round 2: For
1 ≤ i ≤ n, Pi broadcasts the hash key α′i and the n tuple [v′1i v′2i . . . v′ni].

Local Computation (by each player):

1. Construct a directed graph G called approval graph over the set of n players, such that there exists an arc
(Pk, Pj) (k can be equal to j) in G iff v′jk = USHash(α′k; F ′j), which indicates that Pk approves the vector F ′j
broadcasted by Pj . Since all information are broadcasted, every (honest) player constructs the same graph G.

2. Each player whose in-degree (in G) is at least n − t is included in a set CORE. Next, players in CORE
whose vectors are not approved by at least n − t players in CORE are removed from CORE. This process
continues until no more players can be removed from CORE. Let CORE = P \ CORE.

3. Player Pj ∈ CORE, who has an arc (Pj , Pk) to player Pk ∈ CORE in G is removed from CORE, but not
included in CORE. If the removal of Pj from CORE reduces the in-degree of some other player Pl ∈ CORE
to less than n − t then remove Pl from CORE. This process continues, until no more player can be removed
from CORE.

4. If |CORE| < n− t, then output NULL. Else try to reconstruct the original n× (` + t) matrix T as follows:

(a) If Pj ∈ CORE, then insert F ′j as the jth row of T . Since |CORE| ≥ n− t, T will have at least 2t +1 rows.

(b) Check if each column of T is t-consistent (see Remark 2). If not then output NULL. Else recover
M ′(1), M ′(2), . . . , M ′(` + t) by interpolating the values of each column and recover M ′(x) and compute
S′.

Table 3: Protocol 1-Round-UWSS: A Single Round UWSS Protocol with n = 3t + 1

Remark 2 Let i1, i2, . . . , ik denote the indices of the rows which are filled in matrix T during step 4(b)
of local computation of protocol 1-Round-UWSS. Let f ′j(i1), f

′
j(i2), . . . , f

′
j(ik) denote the values in the
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jth column of the matrix T . Then jth column is said to be t-consistent if there exists a polynomial wj(x)
of degree t such that wj(i1) = f ′j(i1), wj(i2) = f ′j(i2), . . . , wj(ik) = f ′j(ik).

Claim 1 Let D be honest and Pi be an honest player. If some corrupted player Pj broadcasts F ′
j 6= Fj

in reconstruction phase, then any arc like (Pi, Pj) may be present in G with probability at most 2−O(k).

Proof: Let πij be the probability that arc (Pi, Pj) is present in G. Since D and Pi are honest, α′i = αi

and is unknown to At till Round 2 of Reconstruction Phase. Thus Pj broadcasts F ′
j 6= Fj without

knowing αi. So from the properties of USAuth, πij ≤ `+t−1
|F| . Thus total probability that At can find

an honest Pi and a corrupted Pj , such that arc (Pi, Pj) is present in G is at most
∑

i,j πij ≤ n2(`+t−1)
|F| ,

which is at most 2−O(k) in our context. 2

Claim 2 If D is honest, then except with probability at most 2−O(k), an honest Pi is present in CORE

Proof: If D is honest, then Pi will have an incoming arc in G from all the honest players. The only
reason that Pi is removed from CORE is that there exists an arc (Pi, Pj) in G, where Pj(corrupted) ∈
CORE. However, from Claim 1, this can happen with a probability at most 2−O(k). 2

Lemma 3 1-Round-UWSS satisfy correctness property with error probability at most 2−O(k).

Proof: If D is honest, then from Claim 1, with probability at least 1−2−O(k), CORE contains Pj only
if F ′

j = Fj . So each column of T will be t-consistent and hence S′ = S will be reconstructed. However,
if a corrupted Pj who broadcasted F ′

j 6= Fj , is included in CORE, then all the columns of partially
filled matrix T will not be t-consistent and NULL will be output. This happens with probability at
most 2−O(k). 2

Claim 3 If D is corrupted and |CORE| ≥ n − t, then at the end of the sharing phase there was a
unique secret S′ ∈ F` ∪ {NULL} defined by the honest players in CORE.

Proof: If D is corrupted and |CORE| ≥ n − t then it contains at least (n − t) − t ≥ t + 1 honest
players. Now the vector F ′

i possessed by an honest player Pi ∈ CORE is used to fill up the ith row of
T . Now consider the matrix T with only F ′

i ’s corresponding to the honest players inserted in it. There
are two possible cases: (a) The values along each of the ` + t columns are t-consistent: this
implies that the F ′

i ’s corresponding to the honest players in CORE define an unique ` + t − 1 degree
polynomial M ′(x). Then the unique secret S′ defined by the honest players in CORE is the lower
order ` coefficients of M ′(x). (b) The values along at least one of the ` + t columns is not
t-consistent: In this case, the defined secret S′ is NULL. 2

Lemma 4 Protocol 1-Round-UWSS satisfies weak commitment property.

Proof: We have to consider the case when D is corrupted. If |CORE| < n − t then NULL will be
output. So let |CORE| ≥ n− t. From Claim 3, CORE contains a set H of at least t+1 honest players,
who define a unique secret S′ ∈ F`∪{NULL} at the end of sharing phase. Also, any player in CORE
cannot have an outgoing arc to any other player in CORE. But the corrupted players (at most t) in
CORE, along with the players outside CORE (which could be at most t) may define some other secret
S′′ during reconstruction phase. However, in that case, |CORE| ≤ 2t < (n− t). Hence, the corrupted
players cannot change the commitment from S′ to S′′ during reconstruction phase. But they could
behave such that NULL gets reconstructed. So weak commitment on S′ holds. 2

Theorem 2 1-Round-UWSS is an efficient (3t+1, t) UWSS protocol with agreement which privately
communicates and broadcasts O((n` + n2)k) bits.

Proof: Secrecy follows from Lemma 2. Rest follows from the working of the protocol.
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3.1 Improving the Results of [6]

In [6], the authors have given a single round honest dealer UVSS scheme without agreement for n = 2t+1,
with single round of reconstruction, which shares k bits (i.e., ` = 1 element from F) by broadcasting
O(kn2) bits (O(n2) elements from F) during reconstruction phase. Though the scheme satisfies the
lower bound of Theorem 1 for ` = 1, it will not satisfy the lower bound for general `. However, we now
show that 1-Round-UWSS can be converted into a single round honest dealer (2t+1, t) UVSS without
agreement, for any ` ≥ 1, with single round of reconstruction, whose communication complexity satisfies
Theorem 1. Then the protocol is as follows: sharing phase will be same as in 1-Round-UWSS. During
reconstruction phase, player Pj broadcasts only F ′

j . After this, there is no further communication. Now
each player Pi locally verifies the F ′

j ’s by using the private hash key and hash values possessed only by
him. If number of F ′

j ’s which passes verification is at least n− t, then Pi inserts all such F ′
j in his local

copy of T and then performs the same computation as in 4(b) on it. Else, it outputs NULL. Notice that
the rows inserted (locally) in T by two different honest players may be different with very negligible
probability because a corrupted F ′

j can be approved (locally) by an honest player with very negligible
probability. So, the resultant protocol will be an honest dealer UVSS without agreement.

Theorem 3 There exists a 1-round honest dealer (2t + 1, t) UVSS scheme without agreement, which
shares `k bits by broadcasting O((n` + n2)k) bits during reconstruction phase.

Substituting H(S) = `k in Theorem 1, we find that the communication complexity of the reconstruction
phase of our resultant UVSS scheme matches the existing lower bound.

4 Single Round UVSS with n = 4, t = 1

In [8] it is shown that there exists a single round (5, 1) perfect VSS. We now design a single round (4, 1)
UVSS protocol called 1-Round-UVSS, thus showing that probabilistically relaxing the conditions
of VSS helps to increase the fault tolerance. The protocol is designed using the protocol Secret
Distribution given in Section 2 as a black-box and is similar to our single round UWSS.

Let the players be denoted by P1, P2, P3, P4, where P1 is dealer and S is the secret.

Sharing Phase: Same as the sharing phase of protocol 1-Round-UWSS, with n = 4 and t = 1.

Reconstruction Phase: Same as in 1-Round-UWSS, except that D (P1) is not allowed to participate.

Local Computation by players Pi, 2 ≤ i ≤ 4: Construct the approval graph G (as in protocol 1-Round-UWSS)
over P2, P3 and P4, using the information broadcasted by P2, P3 and P4 during reconstruction phase. All the players
who have in-degree at least two in G are included in CORE. Remove all the players from CORE who do not have
an in-coming arc (in G) from at least two players in CORE. Then do the following:

1. If |CORE| = 0, then construct M ′(x) using F ′2 and F ′3, reconstruct S′ and terminate. /* D is corrupted. */

2. If |CORE| = 2, then construct M ′(x) using the F ′i ’s of the players in CORE, reconstruct S′ and terminate.

3. If |CORE| = 3 and each player in CORE has an incoming arc from all the players in CORE, then do the same
computation as in the previous case.

4. If |CORE| = 3, but at least one player in CORE does not have an incoming arc from all the players in CORE,
then construct M ′(x) using F ′2 and F ′3 and reconstruct S′ and terminate.

Table 4: Protocol 1-Round-UVSS: A Single Round UVSS Protocol with n = 4 and t = 1
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The secrecy of 1-Round-UVSS follows from the secrecy of 1-Round-UWSS. We now show that
the protocol satisfies correctness and strong commitment property.

Claim 4 Protocol 1-Round-UVSS satisfies correctness property with very high probability.

Proof: If D is honest, then among the remaining three players at most one can be corrupted. Let P4

be the corrupted player among P2, P3 and P4. Then P2 and P3 will be present in CORE (since P2 (P3)
will have incoming arcs from P2 and P3 in G). From Claim 1, if P4 is also present in CORE, then with
very high probability, it has broadcasted F ′

4 = F4. The proof now follows using similar argument as in
Lemma 3. 2

Claim 5 Protocol 1-Round-UVSS satisfies strong commitment property.

Proof: We have to only consider the case when D (P1) is corrupted. In this case, P2, P3 and P4

are honest and behave correctly in reconstruction phase (recall that D is not allowed to participate
in reconstruction phase). Note that the F ′ vectors corresponding to any two honest players define a
unique secret S′ because here t = 1. Now we divide our argument depending upon the size of CORE.
If |CORE| = 0, then it implies that D has not given consistent values to anybody during sharing
phase. So secret S′ is reconstructed from F ′

2 and F ′
3, implying that S′ is the unique secret defined by

D in the sharing phase and is reconstructed (in reconstruction phase) irrespective of the behavior of
the corrupted player (D). The similar argument holds for the case when |CORE| = 3 and at least
one player in CORE do not have an incoming arc from all the players in CORE. For the case when
|CORE| = 2 or |CORE| = 3, with each player in CORE having an incoming arc from all the players
in CORE, the committed secret is the one defined by the polynomials of the players in CORE. 2

5 Two Round UVSS with n = 3t + 1

We now design a two round (3t + 1, t) UVSS protocol 2-Round-UVSS, given in Table 6, to share
S = s; i.e., ` = 1. For that, we first design a two round (3t + 1, t) UWSS protocol 2-Round-UWSS,
given in Table 5, which is used as a black-box in 2-Round-UVSS. We do not proof the properties of
2-Round-UWSS.

The principle behind our two round UVSS protocol is similar to the three round perfect (where error
probability is 0) VSS protocol proposed in [7]. The secret s is hidden by D in a bivariate polynomial
F (x, y) and each player Pi gets the univariate polynomials F (x, i) and F (i, y). Then every pair of
players compare their common shares by ”binding” them with a random pad and broadcasting them.
In the reconstruction phase the random pads are revealed, allowing the players to compute the shares
and finally reconstruct the secret. To ensure that Pi discloses the same random pads in reconstruction
phase, Pi shares a random field element using 2-Round-UWSS and chooses his random pads as points
on the respective polynomials which are given to the individual players as part of protocol 2-Round-
UWSS. During reconstruction phase, players whose instance of protocol 2-Round-UWSS fails, get
disqualified from the main protocol. On the other hand, players whose instance of single round UWSS
succeeds, disclose their original pads. Note that if D is corrupted, then he can distribute inconsistent
values to the honest players during first round of sharing phase. So when the honest players compare
their common shares during second round of sharing phase, they may find them to be inconsistent.
In the three round perfect VSS protocol of [7], such inconsistencies are resolved by D during third
round of sharing phase, which cannot be done here because sharing phase has now only two rounds.
However, in spite of this, our protocol satisfies the requirement of UVSS. Note that we could not use
1-Round-UWSS as a black-box to design a 2-round UVSS. Before discussing the proofs of protocol
2-Round-UVSS, we first give the following definition.
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Sharing Phase (Two Rounds): Round 1:

• D chooses a random bivariate polynomial F (x, y) over F of degree t in each variable such that F (0, 0) = s. D privately
sends to player Pi the polynomials fi(x) = F (x, i) and gi(y) = F (i, y).

• Player Pi, 1 ≤ i ≤ n, acting as a dealer, starts single round UWSS protocol 1-Round-UWSSPi in order to share a
random value si ∈ F (thus UWSS protocol is executed for ` = 1 secret). Let the vectors distributed (privately) by Pi to
the n players in 1-Round-UWSSPi be denoted by F iW

1 , F iW
2 , . . . , F iW

n , where Pj , 1 ≤ j ≤ n receives F iW
j . Since ` = 1,

F iW
j consists t + 1 elements. Accordingly, let F iW

j (x) denotes the t degree polynomial formed by using the elements of
F iW

j as coefficients (starting from the lower order terms).

Round 2: Player Pi, 1 ≤ i ≤ n broadcasts the following: aij = fi(j) + F iW
j (0) and bij = gi(j) + F jW

i (0).
/* F iW

j (0) denotes constant term of F iW
j (x) received by Pj from Pi in 1-Round-UWSSPi . */

Local Computation (by each player):

• Player Pi and Pj are said to be consistent if aij = bji and bij = aji. Form a consistency graph G over the set of n
players, where there exists an edge between Pi and Pj if they are consistent with each other. Since aij ’s and bij ’s are
public information, same G will be constructed by all (honest) players.

• Construct a set CORESh (= ∅ initially) and add Pi in CORESh if degree of Pi (in G) is at least n − t. Remove Pj

from CORESh if Pj is not consistent with at least n− t players in CORESh. Continue this process till no more players
can be removed. If |CORESh| < n− t then discard D and terminate the protocol.

Reconstruction Phase (Two Rounds): Only the players in CORESh participate.

• For each Pi ∈ CORESh, concurrently run the reconstruction phase of 1-Round-UWSSPi . This will take two rounds.
If reconstruction phase fails (i.e., output is NULL), then remove Pi from CORESh.

• If the reconstruction phase of 1-Round-UWSSPi does not fail, then the vectors and hence the polynomials F iW
j (x), 1 ≤

j ≤ n, distributed by Pi in 1-Round-UWSSPi to the n players are recovered. Now compute fi(j) = aij−F iW
j (0) , 1 ≤

j ≤ n using the values aij , which Pi broadcasted during second round of sharing phase. If there exists a polynomial
fi(x) of degree at most t passing through the fi(j)’s, then include Pi in a set CORERec (= ∅ initially)

• Consider all players from CORERec and use their reconstructed fi(x)’s to construct a bivariate polynomial F ′(x, y).
If F ′(x, y) is of degree t in both x and y, then reconstruct s′ = F ′(0, 0). Else output NULL.

Table 5: Protocol 2-Round-UWSS: A Two Round UWSS with n = 3t + 1

Definition 5 In protocol 2-Round-UVSS, we say that a player Pi is consistent with bivariate polyno-
mial F (x, y) if the polynomials given to Pi during sharing phase, namely fi(x) and gi(y) lie on F (x, y);
i.e., fi(x) = F (x, i) and gi(y) = F (i, y).

Lemma 5 If D is honest then except with probability 2−k, CORERec contains each honest player,
consistent with the bivariate polynomial F (x, y) defined by D. Moreover even if a dishonest player is
present in CORERec, it is consistent with F (x, y).

Proof: If D is honest, then the information received by each honest player during sharing phase will
be consistent with bivariate polynomial F (x, y) and hence they will be pairwise consistent and will be
included in CORESh. From the properties of 2-Round-UWSS, for each honest player Pi, 2-Round-
UWSSPi will succeed with probability at least (1−2−k) and their corresponding recovered polynomials
fi(x) will be t-consistent. So all the honest players (at least 2t + 1) will be in CORERec and will define
F (x, y).

Now consider a dishonest player Pj ∈ CORERec. This implies that Pj is consistent with at least
(n − t) − t ≥ t + 1 honest players in CORERec, who define the bivariate polynomial F (x, y). Also
Pj ∈ CORERec implies that 2-Round-UWSSPj is successful and the recovered fj(x) is t-consistent.
Since Pj is consistent with at least t + 1 honest players in CORERec, who define F (x, y) and since
recovered fj(x) is t-consistent, it follows that recovered fj(x) is consistent with F (x, y). 2
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Sharing Phase (Two Rounds): Round 1:

• D chooses a random bivariate polynomial F (x, y) over F of degree t in each variable such that F (0, 0) = s. D privately
sends to player Pi the polynomials fi(x) = F (x, i) and gi(y) = F (i, y).

• Player Pi, 1 ≤ i ≤ n, acting as a dealer, starts two round UWSS protocol 2-Round-UWSSPi in order to share a
random value si ∈ F by using a bivariate polynomial F iW (x, y) of degree t in both variable, such that F iW (0, 0) = si.
Thus Pj gets the polynomials F iW (x, j) and F iW (j, y) from Pi as a part of UWSS.

Round 2: Player Pi, 1 ≤ i ≤ n broadcasts the following: aij = fi(j) + F iW (0, j) and bij = gi(j) + F jW (0, i). Concur-
rently, Round 2 of Sharing Phase of 2-Round-UWSSPi is executed.

Local Computation (by each player):

• Player Pi and Pj are said to be consistent if aij = bji and bij = aji. Form a consistency graph G over the set of n
players, where there exists an edge between Pi and Pj if they are consistent with each other. Since aij ’s and bij ’s are
public information, same G will be constructed by all (honest) players.

• Construct a set CORESh (= ∅ initially) and add Pi in CORESh if degree of Pi (in G) is at least n − t. Remove Pj

from CORESh if Pj is not consistent with at least n− t players in CORESh. Continue this process till no more players
can be removed. Remove Pi from CORESh if Pi gets disqualified as the dealer in protocol instance 2-Round-UWSSPi .
If |CORESh| < n− t then discard D and terminate the protocol.

• If Pi ∈ CORESh, then let CORESh
iW denote the CORESh corresponding to the instance 2-Round-UWSSPi . For each

Pi ∈ CORESh, check if |CORESh ∩ CORESh
iW | ≥ n − t. If not, then discard Pi from CORESh. If |CORESh| < n − t

then discard D and terminate the protocol.

Reconstruction Phase (Two Rounds): Only the players in CORESh participate.

• Initialize CORERec = CORESh. For each Pi ∈ CORERec, run the reconstruction phase of 2-Round-UWSSPi . This
takes two rounds. If reconstruction phase fails (i.e., output is NULL), then remove Pi from CORERec.

• For each Pi ∈ CORERec, use the values aij broadcasted by him during Round 2 of sharing phase to compute
fi(j) = aij − F W

i (0, j) , 1 ≤ j ≤ n. If there exists a polynomial fi(x) of degree at most t passing through the fi(j)’s,
then keep Pi in CORERec, otherwise discard it from CORERec.

• Consider all players from CORERec and use their reconstructed fi(x)’s to construct a bivariate polynomial F ′(x, y).
If F ′(x, y) is of degree t in both x and y, then reconstruct s′ = F ′(0, 0). Else output a predefined ŝ ∈ F.

Table 6: Protocol 2-Round-UVSS: A Two Round UVSS with n = 3t + 1

Claim 6 If D is dishonest and does not get disqualified during sharing phase, then CORESh contains
at least t + 1 honest players. Moreover, except with probability 2−O(k), each honest player in CORESh

will be present in CORERec.

Proof: If D is dishonest and does not get disqualified during sharing phase then it implies that
CORESh contains at least n− t players, of which (n− t)− t ≥ t + 1 are honest. Now a player Pi gets
removed from CORERec in only two cases: (a) the reconstruction phase of 2-Round-UWSSPi fails or
(2) the reconstruction phase of 2-Round-UWSSPi is successful but the resulting polynomial fi(x) is
of degree larger than t. However, from the properties of single round UWSS, for an honest Pi, the first
event can occur with probability at most 2−k, where as the second event cannot occur at all. Hence,
each honest player present in CORESh will also be present in CORERec with very high probability. 2

Lemma 6 If D is dishonest and does not get disqualified during sharing phase, then except with prob-
ability 2−k, the protocol satisfies strong commitment property.

Proof: From Claim 6, if D is dishonest and does not get disqualified during sharing phase, then except
with probability 2−k, each honest player (at least t + 1) of CORESh will also be present in CORERec.
Now there are three possible cases:
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1. CORESh contains exactly t + 1 honest players: In this case |CORESh| = 2t + 1 and it contains
t corrupted players. It also implies that the honest players in CORESh are consistent with each
other and define a bi-variate polynomial F ′(x, y) of degree at most t in both x and y. Moreover,
the corrupted players in CORESh are also consistent with these t + 1 honest players. From
Claim 6, these t+1 honest players will be present in CORERec. Now if the remaining t corrupted
players in CORESh are also present in CORERec, it implies that these corrupted players are also
consistent with F ′(x, y) (following the argument provided for the second part of Lemma 5). So in
reconstruction phase, s′ = F ′(0, 0) will be reconstructed.

2. CORESh contains more than t+1 honest players, who are all consistent with each other: Similar
to previous case, here also all honest players in CORESh define a unique bi-variate polynomial
F ′(x, y). Also if a corrupted player is present in CORESh, then it implies that it is consistent
with at least (n− t)− t ≥ t+1 honest players in CORESh and hence with F ′(x, y). Now following
the same argument given in the previous case s′ = F ′(0, 0) will be reconstructed.

3. CORESh contains more than t + 1 honest players, but are not consistent with each other: Hence
the fi(x) polynomials of all honest players in CORESh does not define a bivariate polynomial of
degree at most t in both x and y. In this case, D has committed a secret which is a predefined
(standard) value ŝ from F. From Claim 6, each honest player from CORESh will be present
in CORERec, except with probability at most 2−k. Now irrespective of whether the corrupted
players in CORESh are present in CORERec or not, the fi(x) polynomials corresponding to the
honest players in CORERec will not reconstruct a bivariate polynomial of degree at most t in both
x and y. Hence ŝ will be reconstructed and so the strong commitment on ŝ is satisfied. 2

Remark 3 Note that the third case in the proof of Lemma 6 is different from the weak commitment
property of UWSS. In the weak commitment property, there exists a s∗ ∈ F which is defined after the
sharing phase, such that depending upon the behavior of corrupted players during reconstruction phase,
either s∗ or NULL is reconstructed. On the other hand, in the third case of Lemma 6, the shares given
by D to the players in CORESh does not define a unique secret. So it can be viewed as D committing a
fixed ŝ ∈ F. Now irrespective of the behavior of the corrupted players during reconstruction
phase, D’s commitment on ŝ is not violated.

Lemma 7 Protocol 2-Round-UVSS satisfies perfect secrecy.

Proof (sketch): Follows using entropy based argument, used to prove the secrecy of 3 round perfect
VSS protocol of [7]. Informally, the proof follows from the secrecy of 2-Round-UWSS and properties
of bivariate polynomial of degree t. 2

Theorem 4 2-Round-UVSS is an efficient two round (3t+1, t) UVSS protocol which privately com-
municates O(n4k) bits and broadcasts O(n4k) bits.

Proof: Follows from Lemma 7, Lemma 5 and Lemma 6 and working of the protocol. 2

6 Three Round UWSS with n = 2t + 1

We design a three round (2t+1, t) UWSS protocol 3-Round-UWSS, given in Table 7 to share S ∈ F`.

Theorem 5 In protocol 3-Round-UWSS, the following must hold:
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1. D is honest and
(a) If Pi is honest, then Pi ∈ NB and V Sh

i and V Rec
FRi

are same at least at (t + 1) locations.
(b) If Pi ∈ NB is dishonest and broadcast at least one of the polynomial Fi(x) or Ri(x) incorrectly
in reconstruction phase, then V Sh

i and V Rec
FRi

mismatches at least at (t+1) locations with probability
more than (1− 2−O(k)).

2. D is dishonest and if Pi is honest and Pi ∈ NB, then V Sh
i and V Rec

FRi
matches at least at (t + 1)

locations (irrespective of the values at these locations) with probability more than (1− 2−O(k)).

Sharing Phase, Round 1: D executes Secret Distribution to share S, ensuring that each random hash key
αi ∈ F − {0, 1, . . . , n − 1}. Hence Pi gets the vector Fi consisting of ` + t elements. Let Fi(x) be the ` + t − 1
degree polynomial formed by using the elements of Fi as coefficients (in increasing order of power). In addition, Pi

also gets the hash key αi and the n tuple [v1i, v2i, . . . , vni] from D, where for 1 ≤ j ≤ n, vji = USHash(αi; Fj).
Moreover, D also gives another random ` + t− 1 degree polynomial Ri(x) and n tuple [r1i, r2i, . . . , rni] to Pi, where
for 1 ≤ j ≤ n, rji = USHash(αi; Rj). Here Ri is the vector consisting of the coefficients of Ri(x).

Round 2: Player Pi chooses a random di ∈ F \ {0} and broadcasts Bi(x) = diFi(x) + Ri(x), along with di.

Round 3: For 1 ≤ j ≤ n, D checks divij + rij
?
= Bi(αj). If D finds any inconsistency, he broadcasts Fi(x) and hence

the vector Fi. Parallely, player Pj , 1 ≤ j ≤ n broadcasts ”Accept” or ”Reject”, depending upon divij + rij
?
= Bi(αj).

Local Computation (by each player):

1. Divide the set P in two sets. Each player Pi whose Fi(x) is broadcasted by D during third round are included in
a set B. The remaining players are included in another set NB. If |B| > t then discard D and terminate.

2. For each Pi ∈ NB, construct an n length bit vector V Sh
i , where for 1 ≤ j ≤ n, the jth bit is 1, if Pj has broadcasted

”Accept” during Round 3, otherwise 0. V Sh
i is public as it is constructed using broadcasted information. If ∃Pi ∈ NB

such that V Sh
i contains at least t + 1 0’s, then discard D and terminate the protocol.

Reconstruction Phase (a) Round 1: Each Pi ∈ NB broadcasts F ′i (x) (hence F ′i ) and R′i(x); (b) Round 2: Each
Pi ∈ NB broadcasts [v′1i, v

′
2i, . . . , v

′
ni], [r′1i, r

′
2i, . . . , r

′
ni] and α′i.

Local Computation (by each player):

1. For the polynomial F ′i (x) broadcasted by Pi ∈ NB, construct an n length response vector V Rec
Fi(x) where the

jth bit of V Rec
Fi(x) contains 1 if v′ij = USHash(α′j ; F

′
i ), otherwise 0. Similarly, construct the response vector V Rec

Ri(x)

corresponding to Ri(x). Finally compute V Rec
FRi

= V Rec
Fi(x) ⊗ V Rec

Ri(x), where ⊗ denotes bit wise AND.

2. Pi ∈ NB is included in CORERec (= ∅ initially) if V Sh
i matches with V Rec

FRi
at least at t + 1 locations.

3. Set CORE = B ∪ CORERec. If |CORE| < n− t, then output NULL and terminate. Else try to reconstruct the
original n× (` + t) matrix T constructed by D in protocol Secret Distribution during first round, as follows:

• If Pj ∈ NB and included in CORE then insert F ′j as the jth row of T . If Pi ∈ B, then insert Fi broadcasted
by D in third round as ith row of T . Since |CORE| > n − t, at least t + 1 rows will be inserted in T .
Now performs the same computation as done in step 4(b) of local computation during reconstruction phase of
Protocol 1-Round-UWSS.

Table 7: Protocol 3-Round-UWSS: A Three Round UWSS Protocol with n = 2t + 1

Proof: Property 1(a) is easy. For 1(b), let D be honest, Pi be dishonest and Pi ∈ NB. This
implies that D and all the honest players are satisfied by the values broadcasted by Pi during second
round of sharing phase. So V Sh

i will contain 1 at (t + 1) locations corresponding to honest players.
Now if Pi broadcasts incorrect F ′

i (x) 6= Fi(x) during reconstruction phase, then V Rec
Fi(x) may contain 1

at the jth position, corresponding to an honest player Pj , provided vij = USHash(αj ;F ′
i ). However,

since D is honest, the hash key αj and the hash value vij is unknown to Pi at the time of broadcasting
F ′

i (x). So from the properties of USHash, vij = USHash(αj ;F ′
i ) with probability πij ≤ `+t−1

|F|−n . Thus
total probability that adversary can find Pi, Pj such that a corrupted player Pi will be approved by
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an honest player Pj is at most
∑

i,j πij ≤ n2(`+t−1)
|F| ≈ 2−O(k). Similar argument holds if Pi broadcasts

R′
i(x) 6= Ri(x). Thus if Pi broadcasts incorrect F ′

i (x) or R′
i(x), then except with probability at most

2−O(k), V Sh
i and V Rec

FRi
mismatches at (t + 1) locations corresponding to honest players.

For property 2, we say that v ∈ F is αj consistent with a polynomial F (x) over F if F (αj) = v. Here
αj ∈ F. Now consider the case when D is dishonest and Pi ∈ NB is an honest player. We show that
V Sh

i and V Rec
Fi(x) ⊗ V Rec

Ri(x) will match at (t + 1) locations (irrespective of the values at these locations)
corresponding to (t + 1) honest players. For this, consider an honest Pj . Now there are two possible
cases: (a) V Sh

i contains 0 at jth position: Thus divij + rij 6= Bi(αj), implying that either vij is
not αj-consistent with Fi(x) or rij is not αj-consistent with Ri(x) or both. So during reconstruction
phase the jth location in V Rec

Fi(x)⊗V Rec
Ri(x) will also contain 0. (b) V Sh

i contains 1 at jth position: Thus
divij + rij = Bi(αj), implying that either both vij and rij are αj-consistent with Fi(x) and Ri(x) or
both vij and rij are not αj-consistent with Fi(x) and Ri(x). The problem comes in later case, when
both vij and rij are not αj-consistent with Fi(x) and Ri(x) but still jth location in V Sh

i is 1. We claim
that this can happen for an unique di ∈ F − {0} for the pair Fi(x) and Ri(x), which the dishonest D
must guess with probability 1

|F|−1 ≈ 2−O(k) during first round. If there exist another ei ∈ F− {0}, such
that eivij + rij is also αj consistent with eiFi(x) + Ri(x). This implies (di − ei)vij is αj consistent with
(di− ei)Fi(x) or vij is αj consistent with Fi(x) which is a contradiction. Hence if V Sh

i contains 1 at jth

position, then so does V Rec
Fi(x) ⊗ V Rec

Ri(x) with probability ≥ 1− 2−O(k). 2

Lemma 8 If D is not discarded in sharing phase then the probability that an honest player Pi will be
included in CORE is at least 1− 2−O(k).

Proof: Since CORE = B ∪ CORERec, all honest players in B will be included in CORE. We now
show that all honest players in NB are included in CORERec and hence in CORE, with very high
probability. Now Pi ∈ NB is included in CORERec if V Sh

i matches with V Rec
Fi

⊗ V Rec
Ri

atleast at t + 1
locations. From Theorem 5, for an honest Pi, this condition will be satisfied with probability 1 for an
honest D and with probability at least (1− 2−k) for a dishonest D. Hence except with probability 2−k,
an honest Pi ∈ NB will be added in CORERec and hence in CORE. 2

Lemma 9 If D is honest then B will contain all corrupted players and CORERec will contain all
players who disclose correct Fi(x) and Ri(x) (as given by D) in reconstruction phase. Moreover, players
in NB who disclose incorrect Fi(x) or Ri(x) or both during reconstruction phase, will not be included
in CORERec with probability at least (1− 2−k).

Proof: It is easy to see that when D is honest, B contains only corrupted players. Now a player
Pi ∈ NB is included in CORERec if V Sh

i matches with V Rec
Fi(x) ⊗ V Rec

Ri(x) at least at t + 1 locations. Now
according to Theorem 5, when D is honest, this property is always true if Pi is honest, where as it may
hold with probability at most 2−k if Pi is corrupted and broadcasted incorrect Fi(x) or Ri(x) during
reconstruction phase. Hence the lemma. 2

Lemma 10 If D is dishonest, then CORERec can contain dishonest players who discloses incorrect
secrets and their authentication information.

Proof: Follows from Theorem 5. 2

Theorem 6 3-Round-UWSS is an efficient three round (2t + 1, t)-UWSS protocol with agreement
which privately communicates and broadcasts O((n` + n2)k) bits.

Proof: Communication complexity and efficiency is easy to follow. We now prove the properties of
UWSS.
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1. Secrecy: We only need to consider the case when D is honest. Without loss of generality
let At controls the first t players. The proof will be similar to the proof of Lemma 2, where
the secrecy is shown by proving that lower order ` elements of Ft+1 (and hence ` coefficients of
Ft+1(x)) are information theoretically secure. We now prove that same holds here also. From
the properties of USHash, ` coefficients of Rt+1(x) are information theoretically secure. Since
Ft+1(x) and Rt+1(x) are independent of each other and dt+1 is randomly selected, it implies that
Bt+1(x) = dt+1Ft+1(x) + Rt+1(x) has a completely independent distribution from Ft+1(x) and
Rt+1(x). So even the knowledge of Bt+1(x) keeps lower order ` coefficients of Ft+1(x) information
theoretically secure.

2. Correctness: Follows from the fact that if D is honest then with probability at least 1−2−O(k),
all the players in CORERec produces correct information during reconstruction phase.

3. Weak Commitment: If a dishonest D is not discarded during sharing phase, then from Lemma 8,
except with probability 2−O(k), each honest Pi ∈ NB will be present in CORE, along with its
corresponding Fi(x). If Fi(x)’s corresponding to the honest players in CORE does not define a
unique secret s′, then irrespective of the polynomials broadcasted by corrupted players in CORE
during reconstruction phase, NULL will be output. On the other hand, if the Fi(x)’s corresponding
to the honest players in CORE define a unique secret s′, then depending upon the polynomials
broadcasted by the corrupted players in CORE, either s′ or NULL will be output. 2

Comparison with UWSS Protocol of [5]: The first two steps of UVSS protocol of [5], along with
some additional checking constitutes a five round (2t+1, t) UWSS with agreement, which shares an ` = 1
length secret (i.e., single field element) with a communication overhead of O(n3k) bits (both private and
broadcast). So to share ` length secret, the UWSS protocol of [5] will have a communication overhead of
O(n3`k) bits. Comparing this with Theorem 6, we find that our UWSS protocol significantly improves
the round and communication complexity of UWSS protocol of [5].

7 Information Checking Protocol with n = 2t + 1

We now present a three round IC protocol IC, which allows D to sign on secret S ∈ F`.

Lemma 11 If INT is honest and D has not broadcasted F (x) during Round 3, then V Sh and V Rec
FR =

V Rec
F (x)⊗V Rec

R(x) will match at atleast t+1 locations (irrespective of the values at these location) corresponding

to the honest receivers in P, except with probability at most 2−O(k).

Proof: The proof follows using similar argument used to prove property 2 of Theorem 5. 2

Lemma 12 If D is honest, then a corrupted INT will be unable to forge D’s signature on S′ 6= S,
except with an error probability of at most 2−O(k).

Proof: Similar to the proof of property 1(b) of Theorem 5. 2

Lemma 13 If D and INT are uncorrupted, then S is information theoretic secure up to RevealVal.

Proof: Proof follows using similar argument used to prove privacy of 3-Round-UWSS. 2

Theorem 7 Protocol IC is an efficient three round IC scheme, which privately communicates and
broadcasts O((` + n)k) bits.
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IC(D, INT,P, S)

Distr(D, INT,P, S): Round 1: D selects a random ` + t− 1 degree polynomial F (x) over F, whose lower order `
coefficients are elements of S. In addition, D selects another random ` + t− 1 degree polynomial R(x), over F, which
is independent of F (x). D selects n distinct random elements α1, α2, . . . , αn from F−{0, 1, . . . , n− 1}. Let F and R
denote the ` + t length vector consisting of the coefficients of F (x) and R(x) respectively (in the order of increasing
power). D privately gives F (x) and R(x) to INT . To receiver Pi ∈ P, D privately gives αi, vi and ri, where
vi = USHash(αi; F ) and ri = USHash(αi; R). The polynomial R(x) is called authentication information, while
for 1 ≤ i ≤ n, the values αi, vi and ri are called verification information.

AuthVal(D, INT,P, S): Round 2: INT chooses a random d ∈ F \ {0} and broadcasts d, B(x) = dF (x) + R(x).

Round 3: For 1 ≤ j ≤ n, D checks dvj + rj
?
= B(αj). If D finds any inconsistency, he broadcasts F (x). Parallely,

receiver Pi broadcasts ”Accept” or ”Reject”, depending upon whether dvi + ri = B(αi) or not.

Local Computation (by each player): if F (x) is broadcasted in Round 3 then accept the lower order `

coefficients of F (x) as D’s secret and terminate. else construct an n length bit vector V Sh, where the jth, 1 ≤ j ≤ n
bit is 1(0), if Pj ∈ P has broadcasted ”Accept” (”Reject”) during Round 3. The vector V Sh is public, as it is
constructed using broadcasted information. If V Sh does not contain n− t 1’s, then discard D and terminate.

If F (x) is not broadcasted during Round 3, then (F (x), R(x)) is called D’s IC signature on S given to INT .

RevealVal(D, INT,P, S): (a) Round 1: INT broadcasts F (x), R(x); (b) Round 2: Pi broadcasts αi, vi and ri.

Local Computation (by each player): For the polynomial F (x) broadcasted by INT , construct an n length

vector V Rec
F (x) whose jth bit contains 1 if vj = USHash(αj ; F ), else 0. Similarly, construct the vector V Rec

R(x)

corresponding to R(x). Finally compute V Rec
FR = V Rec

F (x) ⊗ V Rec
R(x), where ⊗ denotes bit wise AND. Since broadcasted

information is public, each player (honest) will compute the same vectors V Rec
F (x) and V Rec

R(x) and hence V Rec
FR . If V Rec

FR

and V Sh matches at least at t + 1 locations (irrespective of bit value at these locations), then accept the lower order
` coefficients of F (x) as S. In this case, we say that D’s signature on S is correct. Else reject F (x) broadcasted by
INT and we say that INT has failed to produce D’s signature.

Proof: Communication complexity is easy. The properties of IC now follows from Lemma 11, Lemma
12 and Lemma 13 and working of the protocol. 2

Comparison with the IC Protocol of [5]: In [5], the authors have given a four round IC protocol,
which signs an ` = 1 length secret with a communication overhead (both private and broadcast) of
O(n) field elements. So to generate an IC signature on ` > 1 length secret, the protocol needs to be
parallely executed ` times, resulting in a communication overhead of O(n`k) bits. If ` is not constant,
then clearly our three round IC protocol performs better than the four round IC protocol of [5].

8 Five Round UVSS with n = 2t + 1

We now design a five round (2t+1, t) UVSS protocol to share an ` = 1 length secret s ∈ F. The protocol
is somewhat inspired by the UVSS protocol of [5], which sequentially executes two set of IC protocols.
This is followed by other consistency checks, which take three additional rounds. Since the IC protocol
proposed in [5] takes four rounds, the UVSS protocol of [5] takes at most eleven rounds. The Sharing
Phase of our five round UVSS protocol is presented in Table 8 and Table 9. In the protocol, there are
two set of IC protocols, which are parallely executed. For the sake of clear presentation, the parallel
steps of these two set of executions are separated into two separate columns.

In our protocol, we use the following definition:

Definition 6 Let Pi, Pj ∈ P denote two players, where Pi is given the polynomials fi(x) and gi(y) and
Pj is given the polynomials fj(x) and gj(y). Then Pi and Pj are said to be consistent with each other if
fi(j) = gj(i) and fj(i) = gi(j). A vector (e1, e2, . . . , en) ∈ Fn is t-consistent if there exists a polynomial
w(x) of degree at most t such that for 1 ≤ i ≤ n, w(i) = ei.
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Sharing Phase: Round I
1. D chooses a random bivariate polynomial F (x, y)
of degree t in both variable, where F (0, 0) = s.
For 1 ≤ i ≤ n, D computes fi(x) = F (x, i) and
gi(y) = F (i, y). For 1 ≤ j ≤ n, considering Pi as
INT , D executes Round 1 of IC(D, Pi,P, fi(j)) and
IC(D, Pi,P, gi(j)), to give his IC signature on n shares
of fi(x) and gi(y) to Pi.

2. For each pair (Pi, Pj), player Pi acting as a dealer,
selects a random value rij ∈ F. Treating Pj as INT , Pi

executes Round 1 of IC(Pi, Pj ,P, rij). Here rij will
be used by Pi and Pj to check the equality of fi(j) and
gj(i), which should be common to both of them.

Sharing Phase: Round II

1. In response to Round 1 of IC(D,Pi,P, fi(j)) and
IC(D,Pi,P, gi(j)), Pi acting as INT , executes Round
2 of IC(D, Pi,P, fi(j)) and IC(D, Pi,P, gi(j)), for
1 ≤ j ≤ n. Thus Pi tries to check the validity of
D’s signature on fi(j)’s and gi(j)’s as received during
Round I.

2. In response to Round 1 of IC(Pi, Pj ,P, rij),
player Pj , acting as INT , executes Round 2 of
IC(Pi, Pj ,P, rij) to check the validity of Pi’s signature
on rij , received during Round I.

3. For 1 ≤ i ≤ n, player Pi broadcasts: (a) aij =
fi(j) + rij , (b) bij = gi(j) + rji.

Sharing Phase: Round III

1. If D is not satisfied by the broadcast of Pi (as INT )
in previous round (during the execution of Round 2
of IC(D, Pi,P, fi(j)) and IC(D, Pi,P, gi(j)) for 1 ≤
j ≤ n), then D broadcasts fi(x) = F (x, i) and gi(y) =
F (i, y). This completes D’s actions of Sharing Phase.
If D has not broadcasted fi(x) and gi(y), then Pi has
obtained a valid IC signature of D on the n shares of
fi(x) and gi(y).

2. If Pi is dissatisfied by the broadcast of Pj

in previous round (during execution of Round 2
of IC(Pi, Pj ,P, rij), then Pi broadcasts the signal
Unhappyj

i . We call (Pi, Pj) as an accusing pair.

3. If Pi finds that fi(j)’s or gi(j)’s, 1 ≤ j ≤ n, which are
given to it by D during Round I are not t-consistent,
then Pi broadcasts ComplaintDi signal. We call Pi as
a complaining player.

Sharing Phase: Local computation by each player at the end of Round III:
1. Form two sets DB and DNB . Include Pi in DB if D has broadcasted fi(x) and gi(y) during Round III,
otherwise Pi is included in DNB . If |DB | > t, then discard D and terminate.

2. For every (Pi, Pj) ∈ DB , check if they are consistent (see Definition 6) with respect to the polynomials
corresponding to them, which D has broadcasted during Round III. If not, then discard D and terminate.

3. If Pi ∈ DB , then fi(j)’s and gi(j)’s are known publicly. So terminate and ignore the execution of
IC(D, Pi,P, fi(j)), IC(D, Pi,P, gi(j)), IC(Pi, Pj ,P, rij) and IC(Pj , Pi,P, rji), for 1 ≤ j ≤ n.

Sharing Phase: Round IV
1. If Pi, Pj ∈ DNB and (Pi, Pj) is an accusing pair, then Pi and Pj defends themselves by broadcasting
fi(j), gi(j) and fj(i), gj(i) respectively, along with D’s signature on them.

2. If Pi, Pj ∈ DNB and if aij 6= bji or aji 6= bij (during Round II), then Pi, Pj do the same actions as in the
above step. In this case, we call pair (Pi, Pj) as conflicting pair.

3. If Pi ∈ DNB is a complaining player, then Pi defends himself by broadcasting the values fi(j)’s and
gi(j)’s, 1 ≤ j ≤ n, which it has received from D during Round I, along with D’s signature on these values.

4. Corresponding to each Pi ∈ DB , player Pj ∈ DNB broadcasts gj(i) and fj(i) (which Pj has received
during Round I), along with D’s signature on these values. We call this broadcast as Pi − Pj − B −NB −
Consistency − Checking − Broadcast. This broadcast is done to ensure whether the players in DNB are
consistent with the players in DB . However this does not hamper the secrecy of the protocol.

Sharing Phase: Round V
The receivers in P broadcasts verification information corresponding to the signatures which are produced
during step 1, 2, 3 and 4 of previous round.

Table 8: Sharing phase of five round UVSS with n = 2t + 1 to share a secret value s ∈ F.

Claim 7 If |DB| > t, then D is corrupted.

Proof: Pi is included in DB, if D is not satisfied with the values broadcasted by Pi during the execution
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Local Computation by Each Player at the End of Round V (If D is not discarded)

1. For each accusing or conflicting pair (Pi, Pj), such that Pi, Pj ∈ DNB , do the following:

(a) Check the validity of D’s signature on fi(j), gi(j), fj(i) and gj(i), which Pi and Pj has produced during
Round IV. If D’s signature on fi(j) or gi(j) is found to be invalid, then discard Pi from DNB .
Similarly, if D’s signature on fj(i) or gj(i) is found to be invalid, then discard Pj from DNB .

(b) If both Pi and Pj are not discarded during previous step but either fi(j) 6= gj(i) or fj(i) 6= gi(j), then
discard D and terminate (see claim 9)). Else, publicly accept gi(j) and gj(i) as the jth and ith share
of gi(y) and gj(y) respectively (see Theorem 8).

2. If Pi is not discarded from DNB and is a complaining player, then check if the values fi(j)’s and gi(j)’s,
1 ≤ j ≤ n, produced by Pi during Round IV have got D’s valid signature on them. If not, then discard Pi

from DNB . Else, check if the values fi(j)’s and gi(j)’s, 1 ≤ j ≤ n are t-consistent. If either fi(j)’s or gi(j)’s
are not t-consistent, then discard D and terminate (see Claim 10). Otherwise discard Pi from DNB .

3. If Pj is not discarded from DNB , then corresponding to Pi − Pj − B −NB − Consistency − Checking −
Broadcast, do the following: (a) Check if the values broadcasted by Pj (namely fj(i) and gj(i)) have got D’s
valid signature on them. If not, then discard Pj from DNB ; (b) If signatures are valid, then check whether Pj

is consistent with Pi (w.r.t fi(x) and gi(y) broadcasted by D, during Round III). In case of any inconsistency,
discard D and terminate (see Claim 11). Otherwise, publicly accept gj(i) as the ith share of gj(y).

4. If the size of final DNB is less than t + 1, then discard D and terminate the protocol.

Table 9: Sharing Phase of five round UVSS with n = 2t + 1 to share a secret value s ∈ F Contd . . .

of Round 2 of any of the protocols IC(D,Pi,P, fi(j)) or IC(D,Pi,P, gi(j)), for 1 ≤ j ≤ n. If both
D and Pi are honest, then Pi will be never included in DB. So, if Pi ∈ DB, then either D or Pi is
corrupted. So for an honest D, DB is always less than t + 1. 2

Claim 8 If there exists Pi, Pj ∈ DB who are not consistent with each other with respect to their corre-
sponding f(x) and g(x) polynomials which are broadcasted by D, then D is corrupted.

Proof: Follows from the fact that if D is honest then only corrupted players are included in DB

and D would have broadcasted fi(x) = F (x, i), gi(y) = F (i, y), fj(x) = F (x, j) and gj(y) = F (j, y),
corresponding to Pi, Pj ∈ DB, where F (x, y) is the original bivariate polynomial. 2

Claim 9 Suppose at the end of Round IV of Sharing Phase, there exists a conflicting or accusing
pair (Pi, Pj), such that Pi, Pj ∈ DNB. Moreover the values fi(j), gi(j) and fj(i), gj(i) produced by Pi and
Pj respectively have got D’s valid signature on them. Furthermore, either fi(j) 6= gj(i) or fj(i) 6= gi(j).
Then except with probability at most 2−O(k), D is corrupted.

Proof: If D is honest and (Pi, Pj) is an accusing or conflicting pair, then at least one of the Pi

or Pj is corrupted. Let Pi be corrupted. Then at least one of the values fi(j) or gi(j), produced by
Pi during Round IV will be different from the actual fi(j) or gi(j), which D had given to Pi during
Round I. Let fi(j) be incorrect. However, Pi has to produce D’s IC signature on the incorrect fi(j).
But from the property of IC protocol (see Lemma 12), corrupted Pi cannot forge honest D’s signature
on incorrect fi(j), except with an error probability of at most 2−O(k). Thus, if either fi(j) 6= gj(i) or
fj(i) 6= gi(j) and if D’s signature on these values are valid, then except with error probability of at
most 2−O(k), D is corrupted. 2

Claim 10 If there exists a complaining player Pi ∈ DNB, such that the values fi(j)’s or gi(j)’s,
1 ≤ j ≤ n produced by Pi are not t-consistent and have got valid signature of D on them, then except
with an error probability of at most 2−O(k), D is corrupted.

Proof: If D is honest then an honest Pi can never be a complaining player. However, a corrupted
Pi ∈ DNB can become a complaining player and may produce t-inconsistent fi(j)’s or gi(j)’s (which
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are not given to him by D) and can forge D’s signature on these values. But from Lemma 12, this can
happen with probability at most 2−O(k). 2

Claim 11 Let Pi ∈ DB and Pj ∈ DNB, where D has broadcasted F (x, i) and F (i, y), corresponding to
Pi during Round III. Suppose Pj has broadcasted fj(i) and gj(i) during Round IV in Pi − Pj −B −
NB−Consistency−Checking−Broadcast, such that both fj(i) and gj(i) has got D’s valid signature
on it. Moreover, Pi and Pj are inconsistent with each other, i.e., either F (j, i) 6= gj(i) or F (i, j) 6= fj(i).
Then except with error probability of at most 2−O(k), D is corrupted.

Proof: If D is honest then only corrupted players are included in DB and all the honest players are
present in DNB. So the values broadcasted by an honest Pj ∈ DNB during Pi − Pj − B − NB −
Consistency − Checking − Broadcast, corresponding to Pi ∈ DB will always be consistent with Pi.
However a corrupted Pj ∈ DNB may broadcast either incorrect fj(i) or gj(i) during Pi − Pj − NB −
Consistency−Checking−Broadcast, along with valid D’s signature on them, such that either F (j, i) 6=
gj(i) or F (i, j) 6= fj(i). But, according to the property of IC protocol, a corrupted Pj cannot do so,
except with an error probability of at most 2−O(k). 2

Claim 12 At the end of Sharing Phase, if the size of final DNB < t + 1, then D is corrupted.

Proof: The proof follows from the fact that if D is honest then all the honest players (at least t + 1)
will be present in DNB and no honest player in DNB is removed at the end of Round IV. 2

We now enumerate all possible events under which an honest D can be discarded and show that
none can occur except with an error probability of at most 2−O(k).

Lemma 14 An honest D can be discarded during Sharing Phase only with an error probability of at
most 2−O(k).

Proof: It is easy to see that if D is honest then |DB| ≤ t. More each Pi, Pj ∈ DB will be consistent
with each other. Moreover, the size of final DNB will be at least t + 1. Now an honest D can be
discarded during Sharing Phase, only if one of the following events occur:

1. At the end of Round IV, there exists a conflicting pair or an accusing pair (Pi, Pj), where
Pi, Pj ∈ DNB. Moreover, the values fi(j), gi(j) and fj(i), gj(i), as produced by Pi and Pj respec-
tively, have got D’s valid signature and either (fi(j) 6= gj(i)) or (fj(i) 6= gi(j)): From Claim 9,
this can happen for an honest D with an error probability of at most 2−O(k). Since there can be
O(n2) such pairs, the total error probability is O(n2)2−O(k) ≈ 2−O(k).

2. At the end of Round IV, there exists a complaining player Pi ∈ DNB, such that the values
fi(j)’s or gi(j)’s, 1 ≤ j ≤ n produced by Pi are not t-consistent and have got valid signature of
D on these values: From Claim 10, this can happen for an honest D with an error probability
of at most 2−O(k). Since here can be O(n) such corrupted players, the total error probability is
O(n)2−O(k) ≈ 2−O(k).

3. At the end of Round IV, there exists a pair (Pi, Pj), where Pi ∈ DB and Pj ∈ DNB, such that
the values broadcasted by Pj during Pi−Pj−B−NB−Consistency−Checking−Broadcast are
inconsistent with Pi and have got valid signature of D on them: From Claim 11, this can happen
for an honest D with an error probability of at most 2−O(k). Since there can be O(n2) such pairs,
the total error probability is O(n2)2−O(k) ≈ 2−O(k). 2

Next we enumerate all possible events under which an honest player can be discarded during Sharing
Phase and show that none can occur except with an error probability of at most 2−O(k).
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Lemma 15 An honest player Pj can be discarded during Sharing Phase only with an error probability
of at most 2−O(k).

Proof: If Pj ∈ DB, then Pj cannot be discarded. So, we have to consider the case where Pj ∈ DNB.
From the protocol, player Pj ∈ DNB will be discarded only if one of the following events occur:

1. There exists a conflicting or accusing pair (Pj , Pi), where Pi ∈ DNB, such that D’s signature
on fj(i) or gj(i), as produced by Pj is invalid: If D is honest, then this will never happen because
from the property of IC protocol, an honest Pj will always be able to produce valid signature of
an honest D on fj(i) and gj(i). However, if D is corrupted, then the honest Pj will be able to
produce valid signature of a dishonest D on fj(i) and gj(i) with probability at least 1 − 2−O(k)

(see Lemma 11). But, in the later case, Pj can be discarded, but this happens with an error
probability of at most 2−O(k).

2. Pj is a complaining player, such that D’s signature on at least one of fj(i)’s or gj(i)’s, as
produced by Pj during Round IV fails: Since Pj is an honest as well as a complaining player,
indeed he has received either t-inconsistent fj(i)’s or t-inconsistent gj(i)’s during Round I from
D. So as a proof, Pj broadcasts these inconsistent values, along with D’s signature on them. By
the properties of IC protocol, except with an error probability of at most 2−O(k), D’s signature on
these values are valid and will be accepted. However, with an error probability of at most 2−O(k),
the signature may fail and Pj may be discarded.

3. The values broadcasted by Pj (namely fj(i) and gj(i)) during Pi−Pj −B−NB−Consistency−
Checking −Broadcast corresponding to some Pi ∈ DB has got D’s invalid signature on them: If
D is honest, then this never happens for an honest Pj . However, if D is corrupted, then from the
properties of IC protocol, this can happen with error probability of at most 2−O(k). 2

Let D′NB denotes the set of players in DNB, who are not discarded at the end of Sharing Phase. If
D is not discarded, then the properties given in Theorem 8 are true.

Theorem 8 If D is not discarded during Sharing Phase, then the following holds:

Property 1. Except with an error probability of at most 2−k, no honest player is discarded.

Property 2. All the players in DB are be consistent with each other.

Property 3. There exists at least one honest player in D′NB.

Property 4. Each honest Pi ∈ D′NB have t-consistent fi(j)’s and gi(j)’s, 1 ≤ j ≤ n.

Property 5. All honest players in D′NB are consistent with each other. Moreover, each honest player
in D′NB is consistent with all the players in DB.

Property 6. Corresponding to each conflicting or accusing pair (Pi, Pj), where Pi, Pj ∈ D′NB, the
shares gi(j) and gj(i) are known publicly.

Property 7. Every corrupted player Pi ∈ D′NB commits gi(j) to honest player Pj ∈ D′NB (by agreeing
with fj(i)).

Property 8. Every corrupted player Pi ∈ D′NB commits gi(k) publicly by agreeing with fk(x), where
Pk ∈ DB and fk(x) is broadcasted by D during Round III.
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Proof: The proof follows from the proof of the all the previous claims and working of the protocol. 2

If D is not discarded during Sharing Phase, the protocol proceeds to Reconstruction Phase as
shown in Table 10. Before explaining the Reconstruction Phase, we first list out the values which are
known publicly at the end of Sharing Phase and are going to be directly used during Reconstruction
Phase.

1. The polynomials fi(x) = F (x, i) and gi(y) = F (i, y), corresponding to each Pi ∈ DB.

2. For Pj ∈ D′NB and Pi ∈ DB, the share gj(i) (see step 3(b) during local computation at
the end of Round IV).

3. If Pi, Pj ∈ D′NB, but the pair (Pi, Pj) was either an accusing or conflicting pair during Round
III, then the shares gi(j) and gj(i) (see step 1(b) during local computation at the end of
Round IV).

Reconstruction Phase (Two Rounds): Only the players from the set DB and D′NB
participate, where D′NB

denotes the set of players in DNB who are not discarded during Sharing Phase. Set CORE = D′NB
.

1. Each Pi ∈ CORE broadcasts Pj ’s signature on rji received from Pj during Round I, provided Pj ∈ CORE and
the share gi(j) is not known publicly. In the next round, the receivers in P broadcasts verification information
corresponding to rji. Each player locally verifies the signature. If the signature produced by Pi fails for even one
such rji, then discard Pi from CORE. Else each player locally tries to recover the n shares of gi(y), denoted by
gij , 1 ≤ j ≤ n as follows:

gij = fj(i) if Pj ∈ DB

= gi(j) if Pj ∈ D′NB
and Pi, Pj were involved in either an accusing or conflicting pair

= bij − rji where bij was broadcasted by Pi during Round II

Remove Pi from CORE, if gij ’s are not t-consistent. Otherwise reconstruct gi(y) by interpolating gij ’s.

2. Take the recovered gi(y)’s (from the players of CORE), along with the gi(y)’s corresponding to the players in DB .
Using them, interpolate F H(x, y), reconstruct s′ = F H(0, 0) and terminate.

Table 10: Reconstruction Phase of Five Round UVSS with n = 2t + 1.

We now prove the properties of the five round UVSS protocol.

Lemma 16 The five round UVSS protocol satisfies perfect secrecy.

Proof: We have to only consider the case when D is honest. If D is honest then DB will contain
only corrupted players. So the polynomials corresponding to them which are broadcasted by D gives
no new information to the adversary. The rij ’s exchanged between honest Pi, Pj are completely random
and unknown to the adversary. Correspondingly, the blinded common shares broadcasted by Pi and Pj

will give no information about their common shares to the adversary. The proof now follows from the
properties of a bivariate polynomial of degree t and secrecy of IC protocol (see Lemma 13). 2

Lemma 17 The UVSS protocol satisfies correctness property except with error probability of 2−O(k).

Proof: We have to only consider the case when D is honest. From Lemma 14, the probability that
an honest D might get discarded during sharing phase is at most 2−O(k). When D is honest, all the
honest players (at least t+1) will be present in D′NB (and hence in CORE) and will be consistent with
each other and with the original bivariate polynomial F (x, y). Moreover, only corrupted players will be
present in DB and the f(x), g(x) polynomials corresponding to these players (which are broadcasted by
D during Round III) will be consistent with F (x, y). Now consider a corrupted player Pi ∈ CORE.
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During reconstruction phase, Pi has to produce the signature of each Pj ∈ CORE on the random rji,
which Pi has received from Pj during Round II. Now except with an error probability of at most 2−O(k),
Pi cannot forge an honest Pj ’s signature on incorrect rji. Moreover, from Property 7 of Theorem 8,
Pi has committed gi(j) by agreeing with fj(i). Also, from Property 6 and Property 8 of Theorem 8,
the publicly known shares of gi(y) are consistent with F (x, y). So if during reconstruction phase, the
recovered gij ’s are t-consistent then it implies that except with an error probability of at most 2−O(k),
it is consistent with F (x, y) also. Hence the lemma holds. 2

Lemma 18 The five round UVSS protocol satisfies strong commitment property except with an error
probability of at most 2−k.

Proof: We have to only consider the case when D is dishonest. If D is discarded during sharing
phase, then the lemma holds. On the other hand if D is not discarded, then from Lemma 15, except
with an error probability of 2−k, none of the honest players (at least t + 1) are discarded. Since D is
corrupted, the honest players may be distributed in sets DB and D′NB. However, from Property 5 of
Theorem 8, all honest players, along with the players in DB are consistent with each other and hence
define a unique bivariate polynomial FH(x, y) of degree at most t in both x and y. Moreover, from
the properties given in Theorem 8, each corrupted player (either in DB or in D′NB) is consistent with
all the honest players, who in turn are consistent with FH(x, y). So if a corrupted Pi ∈ D′NB is not
discarded in the reconstruction phase, then the recovered gi(y) will be consistent with FH(x, y). Hence
the strong commitment on s′ = FH(0, 0) is satisfied. 2

Lemma 19 The five round UVSS protocol communicates O(n3k) bits and broadcasts O(n3k) bits.

Proof: In the protocol, D executes 2n2 instances of IC protocol to give its signature on the n shares
of fi(x) and gi(y), 1 ≤ i ≤ n. Similarly, each Pi executes n instances of IC protocol to give its signature
on rij ’s to Pj ’s. So total number of IC protocols executed by the players (as a dealer) is n2. Thus,
the total number of IC protocol executed in the UVSS protocol is 3n2, where in each execution, ` = 1
length secret is signed. The lemma now follows from Theorem 7). 2

Theorem 9 The four round UVSS protocol satisfies the properties of UVSS with an error probability
of at most 2−O(k).

Proof: The proof follows from Lemma 16, Lemma 17 and Lemma 18. 2

8.1 Five Round UVSS to Share ` > 1 Length Secret

We now informally show how to adapt the above protocol to share the secret S = [s1 s2 . . . s`] ∈ F`,
where ` > 1. D generates ` random bivariate polynomials F k(x, y), 1 ≤ k ≤ `, each of degree t in both
x, y, such that F k(0, 0) = sk. Let fk

i (x) = F k(x, i) and gk
i (y) = F k(i, y). D gives its IC signature on

shares of fk
i (x) and gk

i (y) to player Pi. Recall that IC protocol can be used to generate IC signature of
a player on `1 length secret in a single execution. Hence, D can give its IC signature on the shares of
fk

i (x) and gk
i (y) to Pi by executing 2n instance of IC, where in each instance, it signs on an ` length

message. Now each pair of distinct players (Pi, Pj) will have 2` shares in common. Player Pi (Pj), in
order to check the consistency of common shares with Pj (Pi), will give ` random values to Pj (Pi), along
with its IC signature on these values. To generate the signatures, Pi (Pj) will execute a single instance
of IC protocol to sign on ` length message. The protocol now proceeds as in the above protocol. All
the claims, lemmas and theorems of previous protocol will hold here. It is easy to see that 3n2 instances
of IC will be executed, where in each instance, an ` length message (secret) is signed. So, we get the
following theorem:
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Theorem 10 There exists a five round (2t+1, t) UVSS scheme with agreement, which shares an ` ≥ 1
length secret by communicating (both private and broadcast) O(n2(` + n)k) bits.

Comparison with the UVSS Protocol of [5]: In [5], the authors have given a (2t + 1, t) UVSS
protocol, whose sharing phase takes at most eleven rounds. Moreover, the protocol shares a single
length secret; i.e., ` = 1 by communicating and broadcasting O(n3k) bits. The protocol needs to
be executed ` times to share ` length secret, incurring a communication overhead (both private and
broadcast) of O(n3`k) bits. Comparing this with Theorem 10, we find that our UVSS protocol performs
better than the UVSS protocol of [5], both in terms of communication and round complexity.

9 Lower Bound on Single Round UWSS

In this section, we prove that any single round UWSS is possible only if n > 3t.

Theorem 11 There is no single round (n, t)-UWSS protocol when n ≤ 3t.

Proof: By player-partitioning argument [7, 8], Theorem 11 reduced to the following lemma.

Lemma 20 There is no single round (3, 1)-UWSS protocol.

Proof (sketch): Let Π be a (3, 1)-UWSS protocol with players P1, P2, P3, with P1 as dealer (D). The
execution of Π can be viewed as follows: (a) Sharing Phase: D, on input secret s and random input
rD, sends α, β, γ to P1, P2 and P3 respectively and broadcasts bD. Each other player Pi, i ∈ {2, 3}, on
random input ri, sends a message pij to each player Pj and broadcasts bi; (b) Reconstruction Phase:
Every player produces it’s entire view generated in sharing phase.

In Π, the broadcasts done by dealer and individual players have no information about the secret s,
otherwise Π violates the secrecy property of UWSS. The secrecy property also implies that when D is
honest, any one of α, β and γ must not have any information about s. According to the correctness
property of Π, when D is honest, if either P2 or P3 deviates from the protocol during reconstruction
phase, then all the honest players must output s with very high probability.

Let s1 and s2 be two independent secrets and (α1, β1, γ1) and (α2, β2, γ2) be the share corresponding
to s1 and s2 respectively. Consider two execution Eh

1 and Eh
2 of Π, where D is honest. In Eh

1 , secret is
s1 and D distributes α1, β1 and γ1 to P1, P2 and P3 respectively. Assume that in Eh

1 , P2 is corrupted
and further assume that P2 produces β2 in reconstruction phase. So according to correctness property
of Π, each honest player should reconstruct s1 with very high probability.

In Eh
2 , secret is s2 and D distributes α2, β2 and γ2 to P1, P2 and P3 respectively. Assume that in

Eh
2 , P3 is corrupted and further assume that P3 produces γ1 in reconstruction phase. So according to

correctness property of Π, each honest player should reconstruct s2 with very high probability.
Now consider another execution Ec

3 of Π where D is corrupted and distributes α1, β2 and γ1 to P1, P2

and P3 respectively. Now in reconstruction phase if every player behaves honestly, then view of the
honest players in the reconstruction phase of Ec

3 will exactly match with the view of the honest players
in the reconstruction phase of Eh

1 . Since the honest players reconstructs s1 in Eh
1 , they do the same

in Ec
3 also. Now according to the weak commitment property, if in Ec

3, the corrupted player (which
is D = P1) deviates from the protocol and broadcasts α2 during reconstruction phase, then with very
high probability all honest players must reconstruct either s1 or NULL. But notice that now, the view
of the honest players will be identical as in Eh

2 and thus s2 should be reconstructed with very high
probability. This is a contradiction. Hence Π does not exist. Thus there is no single round (3, 1)-UWSS
and hence single round (3t, t) UWSS protocol. 2
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10 Lower Bound on Single Round UVSS

Theorem 12 There is no one round UVSS protocol with (t = 1 and n < 4) or with t > 1.

Proof: From Theorem 11, we know that there is no single round UWSS protocol for n ≤ 3. Since
UVSS has stronger properties than UWSS, the above implication holds for UVSS. Now we prove that
there is no single round UVSS protocol for t > 1 and n ≥ 4. For that, we show that if there exist a single
round (n, 2) UVSS protocol with n ≥ 4, then its error probability Perror must satisfy Perror ≥ 1

n . But
according to the definition of UVSS, Perror should be exponentially small. So this shows a contradiction.
Let Π be a single round (n, 2) UVSS, where P1 is the dealer. According to secrecy property of Π, for
an honest D, the broadcasts done by D during sharing phase is independent of the secret. Since for
an honest D, other players do not know the secret in sharing phase (which has a single round), the
broadcasts done by individual players and the private communications done between any two players
from P − {D} during sharing phase are completely independent of the secret. Hence, we can neglect
all of the above mentioned communications and concentrate on the communications done by D to the
players in P. Since Π is single round UVSS, the values given by D to individual players can be thought
as shares of D’s secret s. Now, let s and s∗ be two secrets where (β1, β2, . . . , βn) and (θ1, θ2, . . . , θn) be
the n shares corresponding to s and s∗, respectively. Let in Π, P1 (= D) and P2 be the two corrupted
players. Now consider three different type of executions of Π. In each execution, the random coin tosses
of all the players are same.

1. In execution type EA
i , 0 ≤ i ≤ n− 2, during sharing phase, D gives the shares corresponding to the

secret s∗ to P2, P3, . . . , P2+i. To the remaining players, D gives the shares corresponding to s. During
reconstruction phase, each player behaves honestly and correctly produces the shares.

2. In execution type EB
i , 0 ≤ i ≤ n− 3, during sharing phase, D gives the shares corresponding to s∗ to

P3, P4, . . . , P3+i. To the remaining players, D gives the shares corresponding to s. During reconstruction
phase, each player behaves honestly and correctly produces the shares.

3. In execution type EC
i , 0 ≤ i ≤ n− 3, the sharing phase is same as in EB

i , but during reconstruction
phase, P2 (corrupted player) produces share corresponding to s∗. This he can do because D is also
corrupted and hence can collude with P2.

For pictorial representation of these three different types of executions see Figure 1. Let P (s,E) be
the probability that secret s is reconstructed during reconstruction phase of an execution E. Notice
that execution EA

i and EB
i are same in the sense that in both the executions, during sharing phase,

D distributes i + 1 shares corresponding to s∗ and n − i − 1 shares corresponding to s and during
reconstruction phase, each player honestly broadcast the shares received during sharing phase. Hence

P (s,EA
i ) = P (s,EB

i ) (7)

Next notice that EB
i and EC

i differs only in the behavior of faulty player (P2) during reconstruction
phase. So according to the strong commitment property of Π, if s can be reconstructed in EB

i with
probability p, then s should also be reconstructed with probability at least (1−Perror)× p in EC

i (from
Baye’s Theorem and neglecting the other terms which are positive). This implies that

P (s,EC
i ) ≥ (1− Perror)× P (s,EB

i ) (8)

Finally in EC
i and EA

i+1, the view of the honest players during reconstruction phase is same. Hence

P (s,EA
i+1) = P (s,EC

i ) (9)

Now by correctness property of Π, P (s, EA
0 ) ≥ 1− Perror (10)
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Disclosure of shares in reconstruction phase is same as the distribution of sharing  phase

Distribution of shares in sharing phase:

Distribution of shares in sharing phase:

........... ...........

Disclosure of shares in reconstruction phase is same as the distribution of sharing  phase

Disclosure of shares in reconstruction phase:

........... ...........

P2 P4 P2+i P3+i P4+i Pn

θ3 θ4 β4+iβ3+iθ2 θ2+i βnβ1

P3P1(D)

P1(D) P2 P3 P4 P2+i P3+i P4+i Pn

β1 θ3 θ4 θ2+i β4+iθ3+i

Distribution of shares in sharing phase is same as the distribution done in sharing phase of EB
i :

P2 P3 P4 P2+i P3+i P4+i Pn

β1 θ2 θ3 θ4 θ3+iθ2+i βnβ4+i

βnβ2

0 ≤ i ≤ n − 3

EC
i ,

0 ≤ i ≤ n − 3

EB
i ,

0 ≤ i ≤ n − 2

EA
i ,

P1(D)

Figure 1: Pictorial Representation of three differerent type of executions EA
i ,EB

i and EC
i

Now From Equation (9) , P (s,EA
1 ) = P (s,EC

0 ) (11)
≥ (1− Perror)× P (s,EB

0 ) by (8)
= (1− Perror)× P (s,EA

0 ) by (7)
≥ (1− Perror)2 by (10)

Hence by induction, P (s, EA
n−2) ≥ (1−Perror)n−1. However, EA

n−2 denotes an execution sequence, where
during sharing phase, D has distributed n− 1 shares corresponding to s∗ and one share corresponding
to s. Moreover, during reconstruction phase, all players honestly broadcast the shares received during
sharing phase. From the correctness and commitment property of Π, we get

P (s∗, EA
n−2) ≥ (1− Perror) (12)

Notice that

1 ≥ P (s,EA
n−2) + P (s∗, EA

n−2)
≥ (1− Perror)n−1 + (1− Perror)
≥ 1− (n− 1)× Perror + 1− Perror

This implies that Perror ≥ 1
n . But this is a contradiction because according to the definition of PVSS,

Perror is exponentially small. Hence Π does not exist. 2
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11 Conclusion and Open Problems

In this work, we have shown that probabilistically relaxing the conditions of VSS and WSS helps to
increases the the fault tolerance significantly. The following are the challenging problems left open
in this paper: (a) Is n > 3t necessary for two round UVSS and two round UWSS? (we have proved
only sufficiency) (b) Is n > 2t is sufficient for four round UVSS? (necessity is obvious from [10]). We
conjecture that it is impossible to design 2-round (3t, t) UVSS and 4-round (2t + 1, t) UVSS protocol.
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