
Proofs of Retrievability: Theory and Implementation

Kevin D. Bowers
RSA Laboratories
Bedford, MA, USA
kbowers@rsa.com

Ari Juels
RSA Laboratories
Bedford, MA, USA

ajuels@rsa.com

Alina Oprea
RSA Laboratories
Bedford, MA, USA

aoprea@rsa.com

ABSTRACT
A proof of retrievability(POR) is a compact proof by a file system
(prover) to a client (verifier) that a target fileF is intact, in the sense
that the client can fully recover it. As PORs incur lower commu-
nication costs than transmission ofF itself, they are an attractive
building block for high-assurance remote storage systems.

In this paper, we propose a theoretical framework for the design
of PORs. This framework leads to improvements in the previously
proposed POR constructions of Juels-Kaliski and Shacham-Waters,
and also sheds light on the conceptual limitations of previous theo-
retical models for PORs.

We propose a new variant on the Juels-Kaliski protocol with sig-
nificantly improved efficiency and describe a prototype implemen-
tation. We demonstrate practical encoding even for filesF whose
size exceeds that of client main memory.

Key words: storage systems, storage security, proofs of retriev-
ability, proofs of knowledge

1. INTRODUCTION
Cloud computing, the trend toward loosely coupled networking

of computing resources, is unmooring data from local storage plat-
forms. Users today regularly access files without knowing—or
needing to know—on what machines or in what geographical lo-
cations their files reside. They may even store files on platforms
with unknown owners and operators, particularly in peer-to-peer
computing environments.

While cloud computing encompasses the full spectrum of com-
puting resources, in this paper we focus onarchiveddata, large
files subject to infrequent updates. While users may access such
files only sporadically, a demonstrable level of availability may be
required contractually or by regulation. For example, Sarbanes-
Oxley Rule 2-06(a) requires auditors to retain records for a period
of seven years. More generally, backup files, while rarely accessed,
are of critical importance to all classes of users.

Juels and Kaliski (JK) recently proposed a notion for archived
files that they call aproof of retrievability(POR). A POR is a pro-
tocol in which a server/archive proves to a client that a target file
F is intact, in the sense that the client can retrieve all ofF from
the server with high probability. In a naïve POR, a client might
simply downloadF itself and check an accompanying digital sig-
nature. JK and related constructions adopt a challenge-response
format that achieves much lower (nearly constant) communication
complexity—as little as tens of bytes per round in practice.

JK offer a formal definition of a POR and describe a set of dif-
ferent POR designs in which a client stores just a single symmet-
ric key and a counter. Their most practical constructions, though,
support only a limited number of POR challenges. Shacham and
Waters (SW) offer an alternative, bandwidth-efficient construction
in which a client stores (or downloads) a tag for the file, as well

as some integrity values, but can initiate an unlimited number of
challenges. In their construction, the size of the tag multiplied by
the size of the integrity values is linear in the file size.

In this paper, we introduce a general conceptual framework for
PORs. The resulting design space encompasses both JK and SW,
and leads naturally to variants—and improvements—on both pro-
posals. We propose a variant of JK that simultaneously achieves
lower storage requirements and a higher level of assurance than
JK, with minimal computational overhead. We describe a proto-
type implementation of this improved scheme.

Intuition for our scheme.
The PORs we consider operate in essentially the following way:

The client applies an error-correcting codeECCout to the target file
F to obtain an encoded (expanded) filẽF , which it stores with the
server. The codeECCout has the effect of renderingF recover-
able even if up to someε-fraction of F̃ is corrupted, whereε is a
parameter dependent on the choice ofECCout.

To rule out high file-corruption rates and thus ensure thatF is
retrievable, the client randomly samplesF̃ . It does so by challeng-
ing the server. The client specifies a subsets of blocks in F̃ plus
a nonceu (whose purpose we discuss below). The server applies
a functionrespond to s and returns the resultrespond(s, u). With
enoughchallenge rounds, the client obtains the following two-sided
guarantee:

1. If the server corrupts more than anε-fraction ofF̃ , andF is
therefore unretrievable, the client will detect this condition
with high probability;

2. If the server corrupts less than (or exactly) anε-fraction of
F̃ , the client is able to retrieveF in its entirety via decoding
underECCout.

By analogy with zero-knowledge proofs, the same interface used
for challenge-response interactions between the client and server is
also available forextraction. The client first tries to downloadF as
normal (checking the integrity of the file against a MAC or digital
signature). If this usual process fails, then the client resorts to a
POR-based extraction. The client in this case submits challenges to
the server and reconstructsF from the (partially corrupted) values
yielded by server viarespond.

In most previously proposed POR constructions, the function
respond returns a single file block or an XOR of file blocks. Our
key insight in this paper is thatrespond may itself apply anarbi-
trary error correcting code. In particular, we consider schemes in
whichrespond computes a codeword on the blocks ins and returns
the uth symbol. We refer to this as theinner codeECCin and to
the codeECCout as theouter code.1

1An “inner code” and “outer code” are the constituents of acon-
catenatederror-correcting code. The composition ofECCin and

1

Theinner codeECCin, being computed on the fly by the server
over F̃ , creates no storage overhead. On the other hand, it imposes
a computational burden on the server when it responds to client
challenges: The server must retrieve the blocks ins and apply the
codeECCin to them. The outer code imposes little computational
burden for the server, but results in an expansion of the stored file:
The greater the error tolerance ofECCout, the larger|F̃ |/|F |. In
designing a practical POR, we seek to strike a good balance in our
selection ofECCout andECCin.

As we show, with an appropriate choice ofECCin, we are able
simultaneously to reduce the file expansion in JK and the number
of challenges required to ensure a high probability of successful
file recovery, that is, to tolerate a higher adversarial error rateε.
We achieve all of this in a stronger adversarial model (eliminating
the “block isolation” assumption of JK). Similarly, although they
do not view it as such, we show that SW implicitly incorporate an
erasure codeECCin in their scheme. We describehow to generalize
and simplify the SW construction using our framework.

Organization
In section 2, we review existing research related to PORs. We de-
scribe our proposed conceptual framework in section 3. After pre-
senting the full details of a new variant POR scheme and its secu-
rity proof in Section 4, we compare it with the original JK proto-
col in Section 5. In Section 5 we also describe several directions
in which the SW construction can be improved using our frame-
work. Finally, we describe several challenges we encountered in
implementing the new variant and present performance evaluation
in Section 6, and conclude in section 7. In the paper appendix, we
describe and prove results regarding “adversarial error-correcting
codes,” a technical construction employed in our POR protocols.

2. RELATED WORK
The first proposed POR-like construction of which we are aware

is that of Lillibridge et al. [13]. Theirs is a distributed scheme in
which blocks of a fileF are dispersed in shares acrossn servers
using an(m,n)-erasure code. Servers perform spot checks on the
integrity of one another’s fragments using message authentication
codes (MACs). These MACs also have the effect of allowing re-
construction ofF in the face of data corruption, i.e., turning the
erasure code into an error-correcting code. Corrupted blocks are
discarded, and thus treated as erasures. Lillibridge et al. do not
offer formal definitions or analysis of their scheme.

Extending the memory-checking schemes of Blum et al. [5],
Naor and Rothblum [19] describe a theoretical model that may
be viewed as a generalization of PORs. Their model supposes
the publication of a (potentially corrupted) encoded fileF̃ , mean-
ing that the client can directly sample segments ofF̃ . In the NR
construction,F̃ effectively includes message authentication codes
(MACs) on file segments: A client can check the intactness of a
file by verifying the correctness of randomly sampled file blocks.
As in Lillibridge, an error-correcting code ensures file recovery in
the face of some degree of file corruption. NR, however, do not
naturally model PORs with non-trivial challenge-response and ex-
traction protocols, as required for our purposes in this paper.2 Ad-
ditionally, NR propose a construction in which the client applies

ECCout in our scheme is similar in flavor to a concatenatedcode or
a product code [21], although not precisely identical with either.
2NR may be viewed as implicitly assuming thatrespond returns
raw file blocks. It is possible, if awkward, to model non-trivial
choices ofrespond in NR via an extended file encoding̃F ∗ =

{respond(F̃ , c)}c∈C for challenge spaceC.

a high minimum-distance error correcting code across all ofF .
As we explain below, one of the important challenges in practical
schemes is the negotiation of complicated error-coding strategies;
a code across all ofF is not necessarily practical.

Juels and Kaliski [11] propose a formal POR protocol definition
and accompanying security definitions which we describe below.
As in NR, they propose a scheme in which the client applies an
error-correcting code to fileF to obtain the (expanded) filẽF stored
on the server. JK do not store MACs for individual file blocks. In-
stead, the client challenges the server by specifying a subset of file
blockssi from a predetermined setS = {si}qi=1. JK propose two
mechanisms for checking the correctness ofsi. One is to generate
the value and location of each blocksi during file encoding using
a pseudorandom function (PRF). Heresi is a so-called “sentinel”
block whose value is independent of the data blocks inF . The
other mechanism appends a collection ofq MACs to F̃ to allow
checking of subsets of blocks ofF . The JK protocol involves rela-
tively small file expansion, as dictated by the error-correcting code,
but supports only a limited numberq of queries. JK also consider
various practical problems associated with error-coding.

Ateniese et al. [1] propose a closely related construction called
a proof of data possession(PDP). A PDP demonstrates to a client
that a server possessesa fileF (in an informal sense), but is weaker
than a POR in that it does not guarantee that the client can retrieve
the file. (In the nomenclature of proofs of knowledge, a PDP does
not specify anextractor.) Additionally, Ateniese et al. do not ex-
plore the problems around practical integration of their protocol
with error-correcting codes, and consequently construct their pro-
tocols with the aim of guaranteeing that a server possesses a large
fraction ofF , but not necessarilyF in its entirety.

Shacham and Waters [23] propose a protocol in which blocks
of F have associated integrity values. To challenge the server, the
client specifies a subset of file blocks. The server returns a digest
of the associated integrity values (computed via an algebraic ho-
momorphism), which the client can verify. Block integrity values
serve effectively as message authentication codes. Although SW
do not state so explicitly, they employ much the same mechanism
as Lillibridge et al.: They encodeF using an erasure code, which,
thanks to the underlying system of MACs, they are able to turn
into an error-correcting code. The SW construction embraces a
somewhat different design space than JK, and one that is difficult
to compare directly—e.g., SW’s client key size is rather larger than
JK’s for natural parameterizations, but JK supports only a limited
number of challenge queries.

In other related work, Golle, Jarecki, and Miranov [9] propose
techniques that enforce a minimum storage complexity on the server
responsible for storing fileF . They describe protocols that ensure
dedicated use by a server of storage at least|F | but do not enforce
requirements on what data the server actually stores. Filho and
Barreto [6] describe a POR scheme that relies on the knowledge-
of-exponent assumption, first set forth in [3]. While communi-
cation efficient, this scheme is impractical, asrespond requires
computation of a modular exponentiation with respect to a bit-
representation of all ofF . Shah et al. [24] consider a symmetric-
key variant of full-file processing to enable external audits of file
possession. The scheme only works for encrypted files, and audi-
tors are required to maintain long-term state.

While the basic POR model supports checking of file retriev-
ability by a single client in possessionof a secret key, apublicPOR
allowsany clientto verify the retrievability ofF without secret key-
ing material. JK describe a straightforward Merkle-tree construc-
tion for public PORs, while SW describe a more efficient, public-
key based version that relies on bilinear maps.

2

Anotherchallenge in POR construction is that of file updates. In
follow-up work to [1], Ateniese, di Pietro, Mancini, and Tsudik [2]
describe tools for file updates in PDPs. The lack of error correction
and extraction algorithms in basic PDP constructions permit such
updates to be performed efficiently, i.e., with minimal communica-
tion overhead. Naor and Rothblum support updates in their theo-
retical model for PORs. In practice, though, updates inany POR
scheme entail high communication complexity. This is becauseany
change to the contents of fileF , no matter how small, must propa-
gate through error-correcting and challenge-responsedata encoded
in F̃ . The specification of good batching schemes or other update
techniques for PORs remains an open problem.

3. OUR CONCEPTUAL FRAMEWORK

3.1 Preliminaries
Following JK, a fileF = F1, F2, . . . , Fm consists of a set of

|F | = m blocks, each anl-bit symbol. We letL denote the symbol
alphabet{0, 1}l. (As a point of reference, in our implementation
we work with 32-byte blocks, i.e.,l = 256. The block size may,
but need not, correspond with any parameters of the underlying
storage medium.) For brevity, we letP denote the prover (server
or archive) andV denote the verifier (client). To draw on the for-
malization of JK,π denotes the set of system parameters, whileω
denotes local, persistent client state.η is a file handle, which we
drop from our notation where convenient.

A POR comprises six functions:

keygen[π] → κ: The functionkeygen generates a secret keyκ.
(For a public POR,κ may be a public/private key pair.)

encode(F ;κ,ω)[π] → (F̃η, η): The functionencode generates a
file handleη and encodesF as a fileF̃η.

challenge(η; κ,ω)[π] → c: The functionchallenge generates a
challenge valuec for the fileη.

respond(c, η) → r. The functionrespond–the only one run by the
prover—generates a responser to a challengec.

verify((c, r, η); κ,ω) → b ∈ {0, 1}. The functionverify checks
whetherr is a valid response to challengec. It outputs a ‘1’ bit if
verification succeeds, and ‘0’ otherwise.

extract(η; κ,ω)[π] → F : The functionextract determines a se-
quence of challenges thatV sends toP sufficient to recover the file
and decodes the resulting responses. If successful, it outputsF ;
otherwise, it outputs⊥.

3.2 Adversarial model
For our purposes in this paper, a challenge for a fileF of size|F |

consists of a pairc = (s,u), wheres ∈ [1, |F |]v = S specifies a
subset ofv blocks inF , andu ∈ [1, w] = W is an accompanying
nonce. Herev andw are system parameters that specify the num-
ber of blocks included in a challenge and the nonce domain size,
respectively. We letC denote the full challenge spaceS ×W .

We model an adversaryA deterministically as a partition(C+,
C−) of C. C+ is the set of all challenge values(s, u) to which
the adversary responds correctly, whileC− is the set to which it
responds incorrectly. As in previous work, we also assume that the
adversary is static or memoryless, i.e., thatC+ does not change
over time. The reason for this assumption is twofold. First, if
C+ can change, then no meaningful POR is possible:A can re-
spond correctly when challenged, but stop responding when the
client submits the large number of queries required to extractF .
Second, ifA can be rewound, it is effectively memoryless. Given
a server image from, e.g., a backup tape, rewinding is often achiev-

ablein practice.
We letεAs,u = 1 if (s, u) ∈ C+, andεAs,u = 0 otherwise.3 We

let εAs =
∑

u∈W εAs,u/w be the probability that the adversary re-
sponds correctly to challenges on a subsets of blocks for a random

choice ofu. We letεA =
∑

s∈S,u∈W εAs,u

|C| be the probability that the
adversary responds incorrectly to a challenge selected uniformly at
random fromC, i.e.,εA = |C−|/|C|.

An ε-adversary is one for whichεA ≤ ε.

3.3 Our POR framework: Key ideas
We conceptualize a POR in our framework in two phases:

Phase I: Ensuring anε-adversary.
In the first phaseof a POR, the client performs a series of challenge-

response interactions with the serverA over file F̃out (i.e., the en-
coding of F under the outer codeECCout), with the aim of de-
tecting the conditionεA > ε. This condition implies thatF is
irretrievable.

To challenge the server, the client computesc = challenge(η;κ, ω)[π],
sendsc to the server, receives a responser, and then computes
verify((c, r, η);κ, ω) to check the response of the adversary. The
client repeats this processρ times, and rejects if any response is
incorrect. Otherwise the client accepts.

Assuming thatchallenge selectsc ∈U C, i.e., uniformly at ran-
dom, the probability that an adversaryA is accepted but isnot an
ε-adversary, i.e.,εA > ε, is < λ = (1 − ε)ρ. The valueλ can be
made arbitrarily small, with an appropriately largeρ.

The JK protocol checks adversarial responsesby precomputing a
challenge set{ci}qi=1 ∈U C and storing verifying data—sentinels
or MACs—in F̃ for download by the client. The Lillibridge et
al. and NR constructions check adversarial responses by verifying
MACs on file blocks. Thus both of these constructions also select
c ∈U C.

SW omits Phase I, i.e., implicitly assumes anε-adversary.

Remark.
In practice, of course, a server may initially be honest, but turn

bad at some point and be supplanted by an adversaryA. To deal
with such a dynamic adversary, the client may spread out its chal-
lenges over time. For example, the client might initiate a challenge
every day. If Phase I is tuned to achieve a particularλ for q = 50,
then, the conditionεA > ε will be detected with probability at least
1− λ within 50 days of the server turning adversarial.

Phase II: ExtractingF from anε-adversary.
Assuming an honest server, a client can simply downloadF and

verify its correctness via an appended MAC or digital signature.
Failing that, given anε-adversary, it is possible for the client to re-
trieveF via extract, executing a series of challenges and decoding
F from the responses. Note that in this phase, the client may not be
able to verify the correctness of the responses it receives: It relies
on theε-bound onA for successful decoding.4

3It is, of course, possible to model the adversary probabilistically
by associating a probabilityε′As,u ∈ [0, 1] with (s, u), as in JK. Such
a probabilistic adversary can be easily modeled as a deterministic
one by lettingεs,u = 1 iff ε′As,u ≥ 1/2+ δ for some constantδ, and
εAs,u = 0 otherwise. Ifε′As,u > 1/2 + δ, then it is possible to extract
a correct response fromA with overwhelming probability by per-
forming majority decoding on a number of queries polynomial in
1/δ. Thus, we can efficiently convert a probabilistic adversary into
a deterministic one with negligible error.
4There is an intermediate possibility for extraction. A client can

3

Figure 1: Schematic of Phase I in our POR framework: Testing whetherεA ≤ ε, i.e., ifA is an ε-adversary.

In our general framework, there aretwo levels of error-correction:

• The outer code: This is a(n, k, d2) error-correcting code
ECCout applied toF to computeF̃out, the error-corrected
portion ofF output byencode. For efficient error-correcting
codes and large files, it is usually the case thatk � m.
Thus to encode a file of sizem we need to resort to a well-
known technique calledstriping: The file is partitioned into
stripes of sizek blocks each, and each stripe is encoded un-
der ECCout. In the rest of the paper, when we encode the
file with the outer code, we mean implicitly that striping is
performed if necessary.

• Theinner code: This(w, v, d1) error-correcting codeECCin

representsa second layer of error-correction in the challenge-
response interface for a POR. The functionrespond(s,u)
appliesECCin to the sets of message blocks specified in
a challenge; the valueu ∈ W specifies which symbol of the
corresponding codeword should be returned to the client.

In this view, the adversary is a noisy channel with error probability
at mostε. When the client submits a challengec = (s,u), the
respond oracle computes the correct responser. If εAs,u = 1, then
A corrupts the response in the channel; otherwise, the adversary
leavesr unchanged.

The effect of the inner code is to drive down the adversarial er-
ror ε to some error valueε′ < ε. The outer code then corrects this
residual errorε′. Thus, the stronger the inner code, the weaker the
outer code we need to employ. For the sake of efficiency, the outer
code may be anadversarial error-correcting code, as defined in
Appendix B. Intuitively, an adversarial code uses encryption and
permutation to transform a computationally boundedε′-adversary
into a random one, i.e., into an adversary that can target its code-
word corruptions no better than at random.

Now the full storage and successful extraction process for the
client is as follows. We let the superscript∗ denote a corrupted file:

1. Outer encoding and storage:The client encodes fileF un-
derECCout asF̃out, and stores̃Fout with the server.F̃out is
a component of the full file encoding̃F , which may include
supplementary data such as MACs.

2. Extraction: If both ordinary downloading ofF and error-
correction ofFη fails, the client invokesextract. In this
case, the client submits a series of challenges to therespond
oracle, which outputs symbols under the encodingECCin.

try to downloadF̃out and perform error-correction using the outer
code only. This approach will work provided that the fraction of
corrupted blocks is at mostε′, as defined below. Thus full extrac-
tion is not necessary, for example, when an honest server acciden-
tally corrupts a few blocks.

Together, these responses make up a fileF̃in+out that is en-
coded under a composition ofECCout andECCin.

3. Corruption / noise: The adversarycorrupts up to anε-fraction
on average of̃Fin+out. The resulting file isF̃ ∗

in+out.
4. Inner decoding: The client decodes the inner code iñF ∗

in+out

underECCin, obtaining fileF̃ ∗
out. W.h.p., this fileF̃ ∗

out is
a representation of̃Fout with ε′-fraction corruption, where
ε′ < ε. In other words, inner decoding drives down the ef-
fective file-corruption rate.

5. Outer decoding: The client decodes̃F ∗
out underECCout,

obtaining the original fileF .

3.4 Security definition
By viewing a POR as a two-phase process, we are able to offer

a security definition that is akin to that of SW and simpler than
that of JK. We abstract away Phase I, and assume anε-adversary.
Referring then to JK for details of the experimental setup:

DEFINITION 1. A poly-time POR systemPORSYS[π] is a(ε, γ)-
valid proof of retrievability (POR)if for everypoly-timeε-adversary
A, the probability thatextract outputsF is γ. More formally,

γ = pr
[
F = Fη∗

∣∣F ← extractA(δ,·)(“respond”)(η∗;κ,ω)[π]
]
.

Remark.
Observe that the inner code imposes no storage overhead in our

protocol, as it is computed on the fly byrespond. We could in prin-
ciple use an inner code only, with no outer code. The drawback to
this approach is that the message size ofECCin would have to be
very large to guarantee extraction. In the limit, we could letv = m.
In this case,respond would treat the whole fileF as a message, and
return one symbol of a codeword over the whole file. Ifd1 ≥ 2εm,
i.e., the codeECCin is resilient to anε-fraction of file corruption,
we could then dispense with the outer code. In practice, construct-
ing an error-correcting code with such a large message size and
large distance would be impractical. In constructing a POR, we
seek a balance between the resource requirements of the inner code
(computation and file-block retrieval) and those of the outer code
(file expansion).

4. NEW VARIANT POR PROTOCOL
We describe in this section a new variant of the Juels-Kaliski

POR protocol that follows the Phase I / Phase II framework given
in the previous section. Our main goals in designing the new vari-
ant are to tolerate a larger level of errors than in the original JK
scheme, reduce the storage overhead on the server, and employ a
more lightweight verification mechanism in the first phase to en-
sure that the client is dealing with anε-adversary. After describing

4

Figure 2: Schematic of Phase II in our POR framework: Extracting F from an ε-adversary.

the details of the new variant, we provide its security analysis in a
stronger adversarial model than employed in the JK protocol. We
conclude the section by showing a range of parameters our new
variant supports and their relative tradeoffs.

4.1 Details of the Protocol

Building blocks.
To specify the algorithms in our protocol, we need several cryp-

tographic primitives, in particular a symmetric-key encryption scheme
(KGenEnc,Enc,Dec), a family of pseudorandom permutations
PRP[n] : KPRP×{0, 1}n → {0, 1}n and a message-authentication
algorithm(KGenMAC,MAC,Ver). We assume the primitives are
secure according to standard security definitions, i.e., the encryp-
tion scheme is IND-CPA secure, the permutation family is pseudo-
random and the MAC scheme is unforgeable [7, 8].

Preparing challenges.
As described in Phase II of our framework, a challenge is a pair

(s, u), such that the response is theu-th symbol in a codeword over
an inner coding instance consisting of file blocks from sets. The
client stores ciphertexts of some pseudorandomly chosen sets of
these challenges and corresponding responses.

Outer layer of error correction.
JK encode algorithm, which has only an outer code, uses an ad-

versarial code. JK use a striped “scrambled” code in which the
file is divided into stripes, each stripe is encoded with a standard
(n, k, d) Reed-Solomon code and a pseudorandom permutation is
applied to the resulting symbols, followed by encryption of per-
muted file blocks. The permutation and encryption secret keys are
known only to the client.

In this paper, we propose and employ asystematicadversarial
error-correcting code, i.e., one in which the message blocks ofF
remain unchanged by error-correcting.5 A systematic code of this
kind has considerable practical benefit. In the ordinary case when
the server is honest and extraction is unnecessary, i.e., the vast ma-
jority of the time, the client need not perform any permutation or
decryption on the recovered file. To build a systematic adversarial
error-correcting code, we apply code “scrambling”exclusively to
parity blocks. Scrambling alone does not ensure a random adver-
sarial channel, as a plaintext file reveals stripe boundary informa-
tion to an adversary. To hide stripe boundaries from an adversary,
i.e., to scrambleF , we partition the file into stripes by implicit ap-
plication of a pseudorandom permutation. (We do not explicitly

5In [12], such a code is briefly described, but not analyzed.

permute the file.) Our outer code outputs the fileF untouched, fol-
lowed by the “scrambled” parity blocks. To hide stripe boundaries,
the parity blocks are then encrypted.

More formally, our adversarial error-correcting codeSA-ECC
takes as input secret keysk1, k2 andk3, and a messageM of size
m blocks. It encodes via the following operations:

1. PermuteM usingPRP[m] with keyk1, divide the permuted
message intodm

k
e stripes of consecutivek blocks each, and

compute error-correcting information for each stripe using
codeECCout.

2. The output codeword isM followed by permuted and en-
crypted error-correcting information. (The permutation of
parity blocks is accomplished byPRP[m

k
(n − k)] with se-

cret keyk2; encryption takes place under keyk3.)

To decode,SA-ECC reverses the order of the above operations.

Complete POR protocol.
We present here the complete POR protocol. In thekeygen algo-

rithm, a master secret keyMS is generated, from which additional
keys are derived: a master challenge keykchal, a keykind used to
sample codeword indices ofECCin, a file MAC keykfile

MAC, a master
encryption keykenc, a file permutation keykfile

perm, an ECC permuta-
tion keykECC

perm and an ECC encryption keykECC
enc . Let us denote the

generator matrix ofECCin by G = {gij}1≤i≤v,1≤j≤w .
Theencode algorithm for our POR protocol is as follows:

1. Append a MAC of the whole fileMACkfile
MAC

(F).
2. Divide fileF into m blocks, each anl-bit symbol, i.e.,F =

F1 . . . Fm.
3. Apply outer error-correcting layer: EncodeF underSA-ECC

with secret keys(kfile
perm, kECC

perm, kECC
enc), resulting inF ′ = F1 . . .

FmFm+1 . . . Ft (with t = dmn
k e).

4. Use inner error-correcting to computechallenge-responseval-
ues: For each challengej with 1 ≤ j ≤ q:

(a) The client first derives a challenge keykc
j from kchal

from which she computesv pseudorandom block in-
dicesi1, . . . , iv ∈ [1, t]. The client derives a random
indexu ∈ [1, w] from seedkind and an encryption key
ke

j from kenc.
(b) The client computesMj =

∑v
s=1 Fisgsu and appends

Qj = Encke
j
(Mj) to the encoded file.

5. The encoded filẽF is output.

In thechallenge algorithm, the client sends to the serverj, kc
j and

the random indexu derived fromkind. In therespond algorithm, the

5

server derivesi1, . . . , iv from kc
j , computesMj =

∑v
s=1 Fisgsu,

and returns to the clientMj andQj . Theverify algorithm returns
true if Mj = Decke

j
(Qj).

In the extract algorithm, executed when normal file download
and error-correction of encoded file fail, the client executes two
phases,one for each layer of error correction. To decode from the
inner layer, the client submits a sufficient number of challengesand
then uses majority decoding. The client obtains on averageα de-
codings for each file block (forα a parameter in the system chosen
so that each file block is covered with sufficiently large probabil-
ity), and she decodes to the block that appears in at least a fraction
of 1

2 + δ of decodings (forδ > 0 a parameter of our system). If no
such block exists, the client outputs an erasure for that block, de-
noted⊥. For each file blocki, the client maintains during the first
extraction phase a set of all decodings obtained with repetitions,
denotedDi. After decoding all blocks in the first phase, the client
uses the decoding procedure of the outer error-correcting code in
order to correct the possible errors and erasures introduced in the
first phase. Formally, theextract algorithm is as follows:

1. Recover from the inner error-correction layer

(a) Di = Φ, for all blocksi ∈ [1, t].
(b) Pick a set of challengesC of sizeNC = α t

v
as follows:

(b1) For eachj ∈ [1, α t
v] do:

• Generate a seedkc
j (used to generate a sequence

of v block indices).
• Add (j, kc

j) to C.
(c) For each challenge(j, kc

j) ∈ C do:

(c1) Executechallenge w times with parametersj, kc
j

andu, whereu takes all the values between1 and
w and all the other parameters remain constant.

(c2) Apply the decodingprocedureofECCin to recover
Fi1 , . . . , Fiv (wherei1, . . . , iv are generated from
seedkc

j) and add eachFis to the setDis, for s ∈
[1, v].

(d) For each blocki ∈ [1, t] do:

(d1) If there existsb ∈ Di such that|j:Di[j]=b|
|Di| ≥ 1

2+δ,
outputFi = b.

(d2) Otherwise, outputFi = ⊥.

2. Recover from the outer error-correcting layer: DecodeF1 . . . Ft

underSA-ECC using secret keys(kfile
perm, kECC

perm, kECC
enc) and ob-

tainF .
3. Compute the MAC over the whole file and check it against

the MAC stored with the file. If the MAC verifies, output the
file, and otherwise output⊥.

4.2 Security analysis
Theorem 1 characterizes the security properties of the new pro-

tocol. We give here a brief overview of the security analysis, and
defer the full proof to Appendix A.

We assume that our adversary is anε-adversary, i.e., it corrupts
a fractionε of the challenge space, andε is smaller than the error
correction capability of the inner code. By our majority decoding
procedure, a block is not correctly recovered when a large majority
of the challenges inC containing that block is corrupted. We can
thus build a mapping between corrupted challenges and corrupted
blocks and we can use a simple counting argument to upper bound
the fraction of corrupted blocks as a function ofε. We also need
to ensure that the maximum fraction of block corruptions is within
the error correction capability of the outer code.

Once we set the maximum block error rateε′, we bound the prob-
ability that the file can not be correctly extracted (i.e.,1− γ) as the

probability that at least one of thed t
ne stripes ofF has more than

d2
2

corruptions(and, thus, exceeds the error correction capability of
the outer code). In our decoding algorithm, we pick a set of chal-
lengesC of sizeα t

v
. Thus, we have to account in our bound on the

(small) probability depending onα that some blocks are not cov-
ered inC (they are treated as erasures in the outer code decoding
procedure).

THEOREM 1. Assume that the encryption scheme is IND-CPA
secure, the familyPRP is pseudorandom and the MAC algorithm
is unforgeable. For any0 < ε ≤ d1

2w
, if there exists anε′ for

which 0 < ε′ < d2
4n
− e−α

4
and [1 − (1 − ε′)v](1

2
+ δ) =

2εw
d1

, our scheme is a(ε, γ)-secure POR scheme forγ = 1 −

d t
nee

d2
2 −2nε′− n

2 e−α
(

d2
4nε′+ne−α

)− d2
2

.

Remark.
For a given fractionε of corrupted challenge, the maximum block

error rateε′ is determined by the parameters of the inner code, in
particular the ratiod1

w
. The smallerε′, the better our security bound

(i.e., γ is closer to 1). For a fixedε′, and assuming a fixed code-
word sizen for the outer code, there are still two degrees of free-
dom for our security bound. First, the bound gets better when the
distanced2 of the outer code increases, at the expense of an in-
creased storage overhead for the encoded file. Second, we obtain
a better bound by increasingα, the average number of decodings
for each file block, at the expense of a more expensive decoding
algorithm. The reason is that, asα increases, the probability that
a certain block is not selected in challenge setC is reduced, and,
thus, the outer code needs to recover from fewer erasures.

4.3 Parameterization
We now explore design tradeoffs achieved by our construction

for some example parameter choices. We consider two different
classes of inner codes. The first is a class of “theoretical” codes
whose existence is guaranteed by the Varsharmov-Gilbert lower
bound; these may not be realizable in a computationally efficient
sense, but provide a bound on the ideal coding properties of our
construction. The second is a class of practical codes easily con-
structed by concatenation of standard Reed-Solomon codes.

Theoretical codes.
The Varsharmov-Gilbert lower bound on the realizable minimum

distance of a code(n, k) is given by the following theorem.

THEOREM 2. (Varsharmov-Gilbert [21]) It is possible to con-
struct an(n, k) code over an alphabetΣ of sizeσ with minimum
distance at leastd, provided that:

∑d−2
i=0

(
n
i

)
(σ− i)i ≥ σn−k .

We consider several codes over a byte alphabet that follow this
lower bound. These codes emerge from varying codeword sizes
from 500 to 4000 and code rates from 0.1 to 0.9.

Practical codes obtained from concatenation.
A standard code used in practical applications is the systematic

(255, 223, 32) Reed-Solomon code. From this code we build sev-
eral codes(k + 32, k, 32), with 32 ≤ k ≤ 223, by padding ak-
symbol message with zeros to obtain a message of size 223, encod-
ing the padded message, and truncating the codeword of size 255
to sizek + 32. It is easy to see that the distance given by this code
remains 32. By this procedure, we can obtain codes(64, 32, 32)
and(96, 64, 32).

6

For our construction, we need inner codes that operate on larger
message sizes, on the order of several thousand bytes. A stan-
dard procedure to enlarge the message and codeword sizes is to
build concatenatedcodes. The concatenation of two codes with
parameters(n1, k1, d1) and(n2, k2, d2) is denoted(n1, k1, d1) ·
(n2, k2, d2) and has parameters(n1n2, k1k2, d1d2). A description
of the concatenation procedure is outside the scope of this paper,
but we refer the reader for more details to [21]. Several codes ob-
tained through concatenation of RSS codes are given in Table 1.

Code name Code parameters How obtained
Code 1 (255,223,32) Reed-Solomon code
Code 2 (4096,1024,1024) (64, 32, 32) · (64, 32, 32)
Code 3 (6144,2048,1024) (64, 32, 32) · (96, 64, 32)
Code 4 (9216,4096,1024) (96, 64, 32) · (96, 64, 32)
Code 5 (16320,7136,1024) (64, 32, 32) · (255, 223, 32)

Table 1: Several practical codes.

Error rates tolerated.
In our new variant, we can tolerate a higher error rate than in the

JK scheme, due to the addition of a new dimension in the design
space of POR protocols, namely the inner code. As explained in
our theoretical framework, the inner code reduces the adversarial
error ε to a residualε′ < ε, and the outer code then corrects the
residual errorε′. Under the practical parameterizations we propose
for our new variant POR,ε′ is reduced by at least an order of mag-
nitude compared toε. Thus we can appeal to a more lightweight
outer code than the JK scheme, resulting in lower outer-code stor-
age overhead.

We show in Figure 3 the maximum error rateε tolerated by dif-
ferent inner codes that follow the Varsharmov-Gilbert lower bound,
as well as by several practical codes. For theoretical codes, we fix
the code rate to a constant (2/3, corresponding to an expansion of
50%), and only vary the codeword size (and, implicitly, the mes-
sage size).6 The graphs in Figure 3 plot the tolerated error rates as a
function of the outer code distance, for a file size of 4GB,α = 10,
δ = 1

4
and security boundγ = 10−6. Our outer code is built

from the standard(255, 223, 32) Reed-Solomon code, by truncat-
ing codewords to size223 + d to obtain distance0 < d ≤ 32.

When the outer code distance drops below a certain threshold
(i.e., 20 for the JK scheme, and between 10 and 14 for the new
variant), we can no longer obtain a security bound ofγ = 1 −
10−6. This shows that our new variant spans a larger parameter
domain, allowing different tradeoffs between the outer code storage
overhead, the error rates tolerated and the number of verifications
in Phase I.

The results for theoretical codes show that for a fixed outer code
distance (and, implicitly, outer code storage overhead), higher er-
ror rates are tolerated by codes with larger codeword sizes. For
practical codes, the results demonstrate that error rates do not de-
pend only on inner codeword size, but also on inner code rate and
minimum distance. For instance, for an outer code distance greater
than 26, inner code 2 tolerates a higher fraction of errors than inner
codes 3-5, even though its codeword size is smaller. For outer code
distances smaller than 22, the amount of errors tolerated by codes
2-5 is close, with a difference of at most 0.003 between any con-

6We also performed tests for theoretical codes with rates varying
from 0.1 to 0.9 with a 0.1 increment. It turns out that similar results
hold, and, thus, we omit them from the paper.

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 3: Maximum error rate ε toleratedas a function of outer
code distances for both theoretical inner codeswith rate 2/3 and
for different practical codes.

secutive codes. Code 1 performs much worse than codes 2-5 due
to its small codeword size of 255 bytes.

Number of challenges required in Phase I.
Intuitively, as the tolerable adversarial error rateε guaranteed by

our error-correcting codes rises, the number of challenges needed
in Phase I of our framework decreases. The looser the boundε
required on the adversary, the fewer the challenge-response rounds
needed to ensure the desired bound.

Figure 4 shows the number of challenges imposed on Phase I for
both theoretical codes with rate 2/3 and for practical codes. For
an outer code distance of 32 (and, thus, a file storage overhead of
14.34%), inner code 3 requires only 20 challenge verifications in
Phase I. In contrast, JK needs 400 verifications for the same secu-
rity level. The number of verifications in Phase I quickly becomes
prohibitive for JK: for an outer code distance of 24, 1596 verifica-
tions are necessary. In contrast, as the outer code storage overhead
decreases from 32 to 16 in the new variant, the number of chal-
lenges increases at an almost linear rate. For instance, for an outer
code distance of 16, we need to check 94 challenges with inner
code 2, 79 with inner code 3, and 68 with inner code 4. When the
outer code distance drops below 16 in the new variant, the number
of challengesexhibits an exponential increase. In conclusion, using
one of the inner codes 2, 3 or 4 in the new variant, we can obtain
a 50% reduction in the outer code storage overhead relative to JK,
while checking fewer than 100 challenges in Phase I.

7

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 4: Number of challenges required in Phase I as a func-
tion of outer codedistance, for both theoretical inner codes with
rate 2/3 and for different practical codes.

5. DISCUSSION ON PREVIOUS SCHEMES

5.1 Comparison of New Variant Protocol to
Original Juels-Kaliski Scheme

The original JK scheme employs only one outer layer of error-
correction. In thechallenge phase, the client downloads a num-
ber of sentinel values from the server and verifies their correctness.
The sentinel values are derived from a pseudorandom seed, so that
the client can easily compute the correct values by storing only a
small amount of information. Therefore, thechallenge phase in the
JK scheme is only used to ensure anε-adversary, but is not effec-
tively useful to extract file blocks. For this reason, their scheme
is resilient to a smaller fraction of block corruptions than the new
variant. Our extraction success is amplified by using two layers of
error correction.

We performed a detailed comparison of the two schemes by us-
ing the results from Figures 3 and 4. The new varianttolerates an
error rate ε at least an order of magnitude higher than the original
JK scheme for the same outer code overhead and security bound.
This imposes in the JK scheme the verification of a larger number
of challenges in the first phase (e.g., by a factor between 20 and
80 for inner code 3) to achieve an equivalent error rate. The cost
we pay for our efficiency in storage overhead and first phase verifi-
cation is a more expensiveextract algorithm. Our hope, however,
is that in the normal case, i.e., most of the time, the user down-
loads the original file with a valid MAC or can correct the encoded

file usingECCout, and does not need to resort toextract for file
recovery.

Moreover,our security analysis for the new variant is performed
in a much stronger adversarial model than JK, since we do not
make simplifying assumptions about the adversary’s behavior, ex-
cept for the fact that it is memoryless. JK makes in addition the
strongblock isolation assumption, which stipulates that the prob-
abilities file blocks are returned correctly in a challenge are inde-
pendent of one another. Our adversary, in contrast, may corrupt
each challenge individually, a model supporting inherent correla-
tions among the corruption of file blocks.

5.2 Improvements to Shacham-Waters
Scheme

In the SW scheme, the file is divided inton blocks, each of size
s sectors. At encoding time, an integrity valueσi is stored for each
block 1 ≤ i ≤ n. A file tag of sizes is also constructed and needs
to be either stored locally by the client, or downloaded from the
server at each challenge. In a challenge, the client sends indices for
a subset of blocks and receives a digest of the block values. Due to
a homomorphic MAC construction, the block integrity values can
be combined into a single digest value, which effectively reduces
the challenge bandwidth in the SW protocol.

The construction implicitly assumes anε-adversary (in which
case the client could perform an unlimited number of challenges),
and, thus, omits phase one in our framework. However, the scheme
setup allows us easily to extend it to include the first phase. Sim-
ilarly to our scheme, we could append encrypted integrity values,
each computedover a subset of file blocks. To ensure anε-adversary,
the client could then verify several of the appended values.

Since the scheme essentially employs a MAC for each block, the
blocks whose MAC does not verify can be treated as erasures, and,
thus, the scheme could use an erasure code in the outer layer instead
of a more expensive error-correcting code.

Using our conceptual framework, we could generalize and sim-
plify the SW scheme in several respects.

1. To extract the file, the construction implicitly uses an inner
erasure code manually crafted by SW. The decoding cost of
this erasure code isO(n2s+n3), with ns = |F |. SW allows
different parameterizations to tradeoff the tag size versus the
size of integrity values. In order to obtain a linear decoding
cost, we need to setn = 1 ands = |F |, meaning that the
whole file is processed as a single block and the tag size be-
comes linear in|F |. This parameterization, though, is not
acceptable in practice, as it defeats the purpose of a POR
protocol. For a more natural choice ofn = s =

√
|F |, the

decoding cost of SW becomesO(|F |
√
|F |).

We could generalize the SW construction by replacing this
ad-hoc erasure code with an erasure code with linear en-
coding and decoding time, e.g., Tornado codes [16], on-line
codes [17], LT codes [15] and Raptor codes [25]. In addition
to obtaining a more efficient extraction algorithm (reducing
the decoding cost fromO(|F |

√
|F |) to O(|F |), for the nat-

ural choice ofn = s =
√
|F |), this would benefit in sim-

plifying the security proofs of SW. For example, the proofs
from Section 4.2 in [23] could be easily inferred from the
decoding properties of the above mentioned erasure codes.

2. The SW construction in the public-key setting is computa-
tionally expensive, as the number of exponentiations (per-
formed in a large group) to check a challenge over a subset
of blocks is proportional to the sector sizes. One solution to
reduce the computational overhead for verifying challenges

8

is to replace their extraction based on an inner erasure code
and MAC verification with an error-correcting code, simi-
larly to our construction. Their homomorphic MACs could
still be used in the outer layer with an outer erasure code.
This idea would make the public-key construction feasible in
a practical implementation.

Compared with our new variant, in the SW scheme there are
different tradeoffs between parameters. Since the SW paper does
not contain a detailed discussionabout parameter choices, it is quite
difficult to exactly compare the tradeoffs in the two schemes.

6. IMPLEMENTATION
In this section, we describe several challenges we encountered in

implementing our proposed POR.

Small PRPs.
To build adversarial codeSA-ECC, we need to construct two

pseudorandom permutations: One that permutes file blocks to gen-
erate stripes, and the second that permutes parity blocks. Both are
“small” pseudrandom permutations, i.e., smaller than the size of a
typical block cipher. For instance, for a 4GB file divided into 32-
byte blocks, we need a permutation with domain size of227, the
equivalent of a cipher with a 27-bit block size.

Black and Rogaway [4] have considered the problem of design-
ing small block ciphers, and proposed several solutions. For small
domains, a practical solution (method 1 in [4]) is to build and store
into main memory a table with random values.

Another method applicable to larger domains (method 3 of [4])
is to use a 3-round Feistel cipher, with the random functions in each
round based on a standard block cipher, such as DES or AES. How-
ever, their security bound is quite weak, i.e., the PRP-advantage to

generate a permutation of length2n is on the orderq
2

2n , whereq is
the number of permutation queries asked by the adversary.

Patarin [20] offers a construction with a stronger bound. He
proves that if 6 rounds are performed in the Feistel construction,
then the indistinguishability advantage of a permutation of size2n

is 5q3

22n . This bound is ideal for our limited adversarial model, in
which q = 1 (our adversary does not have access to a PRP oracle).
The method we adopted in our implementation is to use a 6-round
Feistel construction, with the random functions in each round im-
plemented as random tables stored into memory. We have briefly
experimented with the random functions implemented with AES,
but this alternative is several order of magnitude slower than hav-
ing the tables stored in main memory.

Incremental encoding.
Our implementation supports encoding of files whose size may

considerably exceed that of client main memory. (This is not un-
common for large archival files.) In such cases, random accesses to
file blocks as prescribed in the basic JK algorithm are impractical.
Most of F will reside on disk, and random accesses to disk blocks
are slow. For example, a Hitachi 100 GB Parallel-ATA drive used
in our experiments has an average seek time of 10ms. Random ac-
cess to every block of a 1GB file with 32-byte blocks on this hard
drive would require some 66,000s, over eighteen hours.

For this reason, our implementation involves new techniques for
POR encoding that avoid the need for random accesses and instead
encode theF in one pass. One-pass processing poses a partic-
ular challenge in computation of the outer error-correcting code.
The adversarial codeSA-ECC constructs stripes as random blocks
drawn from all ofF . Naïve, sequential error encoding of stripes
would therefore require random accesses acrossF .

The approach we have adopted isincrementalcomputation of
codewords over the component stripes ofF . We loadF into main
memory in a sequenceof consecutivesegmentsF (1), F (2), . . . , F (z)

and process each segment individually in turn. In doing so, we ac-
cumulate partial computations of parity blocks for all stripes inF .
For example, suppose that the messageM =< M1,M2, . . . ,Mk >
representing a given stripe acrossF is to be mapped inton-symbol
parity-block vectorPB using linear error-correcting codeECC. A
given segmentF (j) of F , when loaded into main memory, will
generally include only a subset of symbols inM . We may express
this subset as ak-symbol vectorM (j) in which each blockMi

absent fromF (j) is represented by a 0. Observe thatECC(M) =∑
j ECC(M (j)) (for vector addition over the underlying field). Thus

we can accumulate partial parity-block computations over file seg-
ments. That is, we initializePB = 0. On loading file segment
F (j), we perform the updatePB+ = ECC(M (j)). After the last
segmentF (z) is processed, the vectorPB will contain the correct
parity blocks forM .

A similar challenge arises in the precomputationof ourq challenge-
response pairs. The set of blockss in a challengec = (s, u) is
drawn uniformly (pseudorandomly) from the blocks ofF . To avoid
random accesses to file blocks, we have implemented the brute-
force approach of precomputing and storing in main memory all
v indices of the blocks ins. We then compute the corresponding
responser incrementally across file segments.7

Performance.
We have implemented our new variant with incremental encod-

ing of files in Java 1.6. The Java Virtual Machine has 1GB of mem-
ory available for processing. We report our performance numbers
from a Dell Latitude D620 running a 2.16 GHz Intel Core 2 proces-
sor. Files were stored on a Hitachi 100 GB Parallel-ATA drive with
a buffer of 8MB and rotational speed of 7200 RPMs. The average
latency time for the hard drive is 4.2ms and the average seek time is
10ms. We use the RSA BSAFE Java library for the cryptographic
operations.

We show in Figure 5 the total encoding time for files of sev-
eral sizes, divided into several components: Read (the time to read
the file from disk), PRP (the time to compute the two PRPs used in
SA-ECC), ECC encode(the time to compute error-correcting infor-
mation for the outer-code), MAC (the time to compute a MAC over
the whole file), Challenges (the time to computeq = 1000 chal-
lenges with the inner code), and Encrypt-Write (the time to encrypt
the error-correcting information and write the parity blocks and
challenges to disk). Results are reported for a(4096, 1024, 1024)
inner code and(241, 223, 18) outer code. For these parameters, the
largest file size that can be encoded incrementally is about 12GB.
(This bound is dictated by main-memory storage requirements for
the incremental computations.) We show averages over 10 runs.

The encoding algorithm achieves a throughput of around 3MB/s,
and the encoding time grows roughly linearly with file size. The
outer error-correcting layer is responsible for most of the encod-
ing overhead (i.e., between 61% and 67% in our tests). The outer
code encoding time can be reduced by reducing the outer code dis-

7We have also investigated an incremental technique for sampling
v challenge blocks uniformly acrossF . Let v be the number of
blocks not yet sampled upon loading of the file segmentF (j). We
determine the number of challenge blocks in a given file segment
F (j) via pseudorandom sampling from the binomial distribution
B(v, p), wherep = 1/(zj + 1), and then select these blocks uni-
formly (pseudorandomly) fromF (j). Sampling from a binomial
distribution is itself computationally intensive, however, requiring
about 3ms in Java and 9ms in Mathematica in our experiments.

9

 0

 500

 1000

 1500

 2000

 2500

 3000

1GB 2GB 4GB 6GB 8GB

T
im

e
(in

 s
)

File Size

Encoding micro-benchmarks

Read
PRP
ECC encode
MAC
Challenges
Encrypt-Write

Figure 5: Encoding micro-benchmarks for (4096, 1024, 1024)
inner code and(241, 223, 18) outer code.

tance, at the expense of checking more challenges in Phase I of
our framework. We expect that an optimized C implementation of
Reed-Solomon encoding, rather than Java, would reduce this over-
head by about a factor of three. Parallelization across processors
would lead to further improvement—roughly a doubling of perfor-
mance on the Intel Core 2. Other noticeable overheads are seen in
the time to compute a file MAC (around 4.2%), the time to access
files from disk (around 11-12%), and the time to encrypt and write
to disk the parity blocks (around 15%). Encryption of party blocks
is slow because our construction requires a blockwise cipher mode.
A chained mode like CBC would cause errors to propagate across
the file, frustrating the error-correction process. Thus we make use
of 256-bit AES encryption in ECB mode, deriving a fresh key for
each block via a PRF on a master key XORed with the block in-
dex. (In our next version of the prototype, we plan to implement a
standard tweakable block cipher such as XEX-AES [22].)

7. CONCLUSION
We have proposed a new architectural framework for POR pro-

tocols that encompasses existing protocols, but also extends into
an improved design space. We showed how the protocols of Juels-
Kaliski and Shacham-Waters can be simplified and improved using
the new framework. We designed a new variant of the Juels-Kaliski
scheme that achieves lower storage overhead, tolerates higher error
rates, and can be proven secure in a stronger adversarial setting.
Finally, we provided a Java implementation of the encoding algo-
rithm of the new variant in which files exceeding main memory size
are loaded from disk, processed, and encoded incrementally.

In future work, we plan to explore further implementation op-
timizations. We believe that there is ample room to improve the
resource-dominant outer coding step. The problem of precomput-
ing challenge/response values efficiently is also an important one,
as is that of finding more efficient adversarial codes, perhaps based
in previous literature on MACs plus erasure codes. On the theo-
retical side, there remain the open problems of designing efficient
POR protocols with file updates and publicly verifiable PORs.

8. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song. Provable data possession at
untrusted stores. InACM CCS, pages 598–609, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik.
Scalable and efficient provable data possession, 2008. IACR
ePrint manuscript 2008/114.

[3] M. Bellare and A. Palacio. The knowledge-of-exponent
assumptions and 3-round zero-knowledge protocols. In
CRYPTO ‘04, pages 273–289. Springer, 2004. LNCS vol.
3152.

[4] J. Black and P. Rogaway. Ciphers with arbitrary finite
domains. InCT-RSA ‘02, pages 114–130. Springer, 2002.
LNCS vol. 2271.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories.Algorithmica,
12(2/3):225–244, 1994.

[6] D.L.G. Filho and P.S.L.M. Barreto. Demonstrating data
possession and uncheatable data transfer, 2006. IACR
eArchive 2006/150. Referenced 2008 at
http://eprint.iacr.org/2006/150.pdf.

[7] O. Goldreich.Foundations of cryptography, Volume I: Basic
tools. Cambridge University Press, 2001. First Edition.

[8] O. Goldreich.Foundations of cryptography, Volume II: Basic
applications. Cambridge University Press, 2004. First
Edition.

[9] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives
enforcing communication and storage complexity. In
M. Blaze, editor,Financial Cryptography ‘02, pages
120–135. Springer, 2002. LNCS vol. 2357.

[10] P. Gopalan, R.J. Lipton, and Y.Z. Ding. Error correction
against computationally bounded adversaries, April 2004.
Manuscript.

[11] A. Juels and B. Kaliski. PORs: Proofs of retrievability for
large files. InACM CCS, pages 584–597, 2007.

[12] A. Juels and B. Kaliski. PORs: Proofs of retrievability for
large files, 2008. ACM CCS slide presentation. Referenced
2008 at http://www.rsa.com/rsalabs/node.asp?id=3357.

[13] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative Internet backup scheme. InUSENIX
Annual Technical Conference, General Track 2003, pages
29–41, 2003.

[14] R. J. Lipton. A new approach to information theory. In11th
Annual Symposium on Theoretical Aspects of Computer
Science, pages 699–708, 2004.

[15] M. Luby. LT codes. InFOCS, pages 271–282. IEEE, 2002.
[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,

and V. Stemann. Practical loss-resilient codes. InSTOC,
pages 150–159. ACM, 1997.

[17] P. Maymounkov. On-line codes. Technical Report
TR2002-833, Computer Science Department at New York
University, November 2002.

[18] S. Micali, C. Peikert, M. Sudan, and D. Wilson. Optimal
error correction against computationally bounded noise. In
TCC, pages 1–16. Springer, 2005. LNCS vol. 3378.

[19] M. Naor and G. N. Rothblum. The complexity of online
memory checking. InFOCS, pages 573–584, 2005.

[20] J. Patarin. Improved security bounds for pseudorandom
permutations. InACM CCS, pages 142–150, 1997.

[21] W. W. Peterson and Jr. E. J. Weldon.Error-Correcting
Codes. MIT Press, 1972. Second Edition.

[22] P. Rogaway. Efficient instantiations of tweakable
blockciphers and refinements to modes OCB and PMAC. In
P.J. Lee, editor,ASIACRYPT ‘04, pages 16–31. Springer,
2004. LNCS vol. 3329.

10

[23] H. Shacham and B. Waters. Compact proofs of retrievability,
2008. IACR ePrint manuscript 2008/073.

[24] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest, 2007.
Presented at HotOS XI, May 2007.

[25] A. Shokrollahi. Raptor codes.IEEE Transactions on
Information Theory, 52(6):2551–2567, 2006.

APPENDIX

A. SECURITY PROOF
In this appendix, we present the proof of Theorem 1. For sim-

plification, we assume that the cryptographic primitives are ideal,
i.e., ciphertexts reveal no information about plaintexts, the output
of a pseudorandom permutation from familyPRP is random, and
an adversary is unable to forge a MAC for a new message. Let
0 < ε ≤ d1

2w and assume that the client is dealing with anε-
adversary. We bound the probability that the file is not correctly
extracted, after the client performs theextract algorithm using a
set of challengesC of sizeNC. We proceed in two steps, following
the two phases of theextract algorithm.

Decoding using the inner error-correcting code.
After the first phase ofextract the probability thatDi = Φ for a

given blocki is bounded by
(
1− v

t

)NC =
(
1− v

t

)α t
v≈ e−α. We

call such a block anerasure. We bound below the probability that
the client outputs an incorrect decoding for a given block, assuming
that the decoding set for that block is not empty.

First, we define acorrupted challenge(i1, . . . , ir) in spaceC to
be such that at leastd1

2
out of thew challenges(i1, . . . , ir , u), u ∈

[1, w] are corrupted. A corrupted challenge adds an incorrect de-
coding to each setDis , for s ∈ [1, r] in theextract algorithm. Let
us bound the number of such corrupted challenges, denotedTcorr.

If we denote byεc =
∑w

u=1 εcu the number of corrupted chal-
lenges in spaceC × [1, w] containingc, then a challengec is cor-
rupted in spaceC if εc > d1

2 . If Tcorr challenges are corrupted in
spaceC, it follows that at leastd1

2
challenges are corrupted in space

C × [1, w]. Then

d1

2
Tcorr ≤

∑

c∈C

εc = εwNC,

andTcorr ≤ min(NC, 2εwNC
d1

) = 2εwNC
d1

, sinceε ≤ d1
2w

.
Since we use majority decoding for extraction, to corrupt a block

in the first step ofextract, the adversary must corrupt at least a
fraction 1

2 + δ of all challenges in spaceC that contain that block.
The adversary’s goal is to corrupt as many blocks as she can while
corrupting few enough challenges to go undetected by the client.
However, since we force the adversary to reply incorrectly to at
most a fractionε of all challenges, we can give an upper bound on
the fractionε′ of all file blocks that the adversary can corrupt.

Let ε′ be the fraction of blocks corrupted by the adversary. Thus,
out of thet file blocks,z = ε′t are corrupted (or black) andt − z
are correct (or white). The adversary’s strategy is to answer incor-
rectly a sufficient fraction (i.e.,1

2
+ δ) of the challenges that con-

tain at least one black block. Given that in the extraction algorithm
we chooseNC challenges uniformly at random from the challenge
space, we can compute the expectednumber of challenges that need
to be corrupted in the extraction algorithm.

Let Xi be an indicator random variable taking value 1 if chal-
lengei has at least one black block, and value 0, otherwise. Then
Pr[Xi = 1] = 1 −

(
1 − z

t

)r
. If X = (1

2
+ δ)

∑NC
i=1 Xi, then

X is an upper bound on the number of corrupted challenges in

the extraction algorithm’s first phase. We can computeE(X) =
NC[1− (1− ε′)v](1

2
+ δ).

But the expected number of challenges answered incorrectly by
the adversary in the extraction algorithm needs to be smaller than
the number of challenges that are corrupted in spaceC:

NC[1− (1− ε′)v](
1

2
+ δ) = E(X) ≤ Tcorr ≤

2εwNC

d1
.

It follows that ε′ satisfies[1 − (1 − ε′)v](1
2 + δ) ≤ 2εw

d1
. In the

worst-case, the adversary corrupts the maximum number of file
blocks, thus we consider the maximumε′ that satisfies the previous
inequality, i.e., the one for which[1 − (1 − ε′)v](1

2
+ δ) = 2εw

d1
.

Following the theorem conditions, we assume that there exists such
anε′ for which, in addition,0 < ε′ < d2

4n
− e−α

4
.

Decoding using the outer layer code.
In the second phase, the client confronts an adversary that cor-

rupts a fractionε′ of the file blocks and the “scrambled” parity
blocks of the inner error-correcting code. In addition, a (tiny) frac-
tion of blocks are not covered in the challenge set constructed in
the first phase. We treat these blocks as erasures. Our goal now is
to bound the probability that the file cannot be correctly extracted
in the second phase.

F ′ (a codeword in the outer code) consists of the original fileF
of sizem, and the permuted and encrypted error-correcting infor-
mation, of sizet − m. Assuming a length-preserving encryption
scheme is used for encrypting the error-correcting information, we
know that the number of stripes is equal tod t

n e = dm
k e. Let R

be a stripe ofn blocks in file F ′. StripeR consists ofk blocks
in the original file (the firstm blocks ofF ′) andn − k blocks of
error-correcting information (the lastt−m blocks ofF ′).

We bound the probability that stripeR can not be fully extracted.
Each block in the stripe is either an erasure or has been recon-
structed in phase one. There is a small probability, bounded by
e−α, that a given block is not included in the challenge setC,
and, thus, is an erasure. LetY1, . . . , Yn be indicator random vari-
ables for block erasures in stripeR. We defineYi = 1 if block i
from stripeR is not included in the challenge set in phase one, and
Yi = 0, otherwise, fori ∈ [1, n]. Then,Pr[Yi = 1] ≤ e−α and, if
Y =

∑n
i=1 Yi, E(Y) ≤ ne−α.

We know that the adversary corrupts at mostz = ε′t of the t
blocks in fileF ′, but we do not know how the adversary splits the
corrupted blocks between the original file (theleft side) and the
error-correcting information (theright side). We can, though, upper
bound the number of corrupted blocks on each side withz.

Let Z1, . . . , Zk be indicator random variables for corruptions
in stripeR on the left side, andZk+1, . . . , Zn indicator random
variables for corruptions in stripeR on the right side. We define
Zi = 1 if block i from stripeR is corrupted in phase one, and
Zi = 0 otherwise, fori ∈ [1, n]. Since the left and right sides
of the file are permuted with a secret key, we know that the adver-
sary has no better chance than spreading the corruptions in each
side independently. Thus,Pr[Zi = 1] ≤ z

m
, for i ∈ [1, k] and

Pr[Zi = 1] ≤ z
t−m , for i ∈ [k + 1, n]. Moreover, we can up-

per boundZi with independent Bernoulli random variables, whose
sum has meank z

m
+ (n − k) z

t−m
= 2z

d t
n e = 2nε′. Denote

Z =
∑n

i=1 Zi. ThenE(Z) ≤ 2nε′.
StripeR is corrupted ifY + 2Z exceeds the distanced2 of the

outer layer error-correcting code. We apply Chernoff bounds to
bound the probability that stripeR can not be correctly extracted:

Pr
[Y

2
+ Z >

d2

2

]
≤ Pr

[Y

2
+ Z > (1 + δ2)(2nε′ +

n

2
e−α)

]

11

< e
d2
2 −2nε′− n

2 e−α
(d2

4nε′ + ne−α

)− d2
2

= B,

for δ2 = d2
4nε′+ne−α − 1 > 0.

Now, the probability thatextract is not successful is bounded
by the number of stripes inF ′ times the probability that a given
stripe is not extracted successfully, which is bounded byd t

n
eB.

This effectively proves that our system is an(ε, γ) POR proof for
γ = 1− d t

n eB.

B. ADVERSARIAL ERROR-CORRECTING
CODES

The use of cryptography to improve resilience in error-correcting
codes has seen limited attention in the literature. Lipton [14] first
proposed a model of computationally bounded channels for error-
correcting codes. In an unpublished manuscript, Gopalan, Lip-
ton, and Ding [10] proposed the technique of “code scrambling,”
whereby a codeword is permuted and encrypted under a secret key
to reduce a computationally-boundedadversarial noisy channel to a
random one. (JK usesessentially this idea, with codewordstriping.)
Stronger results were obtained by Micali, Peikert, Sudan, and Wil-
son [18], who proposed a public-key construction in which mes-
sages digitally signed; signature verification permits a receiver to
pick out correct messages after list decoding. Their construction
can correct an error rate of1/2 − γ for any constantγ > 0 over
binary channels (double the classical bound).

These previous papers have proposed specific constructions and
analyzed their error resilience asymptotically with respect to the
code rate. Our goal in this paper is different. We do not look to
computational assumptions on the channel to achieve better error-
correcting bounds than would otherwise be possible. Rather, we
use cryptography to construct morepractical codes within classi-
cal error-correcting bounds. Thus we are interested in bounds con-
cretely derived from code parameters. Also, unlike previous work,
we consider error-correction with a non-negligible probability of
decoding failure. (We treat probabilities asymptotically in crypto-
graphic key lengths, though.) Thus we require a new definition.

Recall that in our POR construction, we apply an adversarial
error-correcting code exclusively in the outer code. The inner code
uses an ordinary error-correcting code.

Definition.
We define an(n, k)-adversarial error-correcting codeAECC as

a public key spacePK, a private key spaceSK, an alphabetΣ,
and a triple of functions:
• A probabilistic functionkeygen : 1l → K = (sk, pk) ∈

SK × PK;
• a deterministic functionencode : K × Σk → Σn;
• and a deterministic functiondecode : K ×Σn → Σk.

A secret-keyadversarial code is one in whichPK = φ. A public-
keyadversarial code is one in whichencode gets secret inputφ.

Letting Γ denote the set of outputs generated by the oracleen-
code, we define the following experiment:

ExperimentExpA,AECC[l]

K = (sk, pk)← keygen(1l);
(c, c′)← Adecode(K,·),encode(K,·)(pk);
if decode(K,c) 6= decode(K,c′) then output|c− c′|

else output∞

In this experiment, the adversary may experiment arbitrarily with

theoracledecode, but does not have direct access tosk. The out-
put is the Hamming distance between a pair of codewords(c, c′)
selected byA that decode to different messages.
The aim of the adversary in our security definition now is to find
such a pair of codewords(c, c′) with minimized|c− c′|.

DEFINITION 2. AECC is a (β, δ)-boundedadversarial error-
correcting code ifPr[ExpA,AECC[l] ≤ βn] − δ is negligible inl
for any adversaryA polynomially bounded inl.

Remarks.

• Against a computationally unbounded adversary, of course,
an adversarial error-correcting code is no stronger than its un-
derlying error-correcting code, i.e., permutation and encryp-
tion do not create greater resiliency.

• For our POR construction, this definition is slightly stronger
than we require. In a POR, the target codewordc is output by
the user / verifier who stores̃F . That is, it must be output by
the oracledecode, rather than constructed existentially byA.

• An interesting problem seems to arise whensk is made pub-
lic, i.e., when there are no secret keys. Is it possible for such
an “open” adversarial code to correct an error rateε that ex-
ceeds the correctable error rate for an unbounded channel?

Constructions.
We first prove that codeSA-ECC described in Section 4.1 is se-

cure according to our definition.

PROPOSITION 1. With the parameters from Theorem 1, code

SA-ECC is an(2ε′ + e−α

2
, B) adversarial code.

Proof: Let β = 2ε′ + e−α

2
and assume that the adversary in ex-

perimentExpA,AECC from Definition 2 outputs two codewordsc
andc′ at distance at mostβt. It follows that there is at least one
stripe for which the corresponding codewords in codeECCout are
at distance at mostβt

d t
n e = βn. We know thatβn < d2

2
from the

conditions of the theorem, and this implies that the stripe can not
be successfully recovered. But we have bounded in Theorem 1 the
probability of unsuccessful decoding of a given stripe byB. This
proves that the outer layer code is an(2ε′ + e−α

2
, B) adversarial

error-correcting code.

Besides the adversarial codeSA-ECC proposed here, there are
other adversarial code constructions in the literature. By applying
integrity protection to segments ofF , it is possible in effect to con-
vert an ordinary erasure code into an adversarial error-correcting
code. Lillibridge et al. [13] and Naor and Rothblum [19] effectively
propose the application of MACs to file blocks. This approach can
yield an adversarial error-correcting code with a reduced rate.

The special innovation underlying the outer code in SW is what
might be viewed as a “homomorphic” MAC scheme, one for which
the set of MACs overb blocks iso(b) (at the expense of a some-
what larger secret key size). This MAC scheme is coupled with an
erasure code to achieve an adversarial error-correcting code. SW
also propose a public-key adversarial error-correcting code based
on aggregate signatures.

12

