
Proofs of Retrievability:
Theory and Implementation

Kevin D. Bowers, Ari Juels, and Alina Oprea
RSA Laboratories, Bedford, MA

{kbowers, ajuels, aoprea}@rsa.com

Abstract

A proof of retrievability (POR) is a compact proof by a file system (prover) to a client (verifier) that a
target file F is intact, in the sense that the client can fully recover it. As PORs incur lower communication
complexity than transmission of F itself, they are an attractive building block for high-assurance remote
storage systems.

In this paper, we propose a theoretical framework for the design of PORs. Our framework improves
the previously proposed POR constructions of Juels-Kaliski and Shacham-Waters, and also sheds light
on the conceptual limitations of previous theoretical models for PORs. It supports a fully Byzantine
adversarial model, carrying only the restriction—fundamental to all PORs—that the adversary’s error
rate ε be bounded when the client seeks to extract F . Our techniques support efficient protocols across
the full possible range of ε, up to ε non-negligibly close to 1.

We propose a new variant on the Juels-Kaliski protocol and describe a prototype implementation.
We demonstrate practical encoding even for files F whose size exceeds that of client main memory.

1 Introduction

Cloud computing, the trend toward loosely coupled networking of computing resources, is unmooring data
from local storage platforms. Users today regularly access files without knowing—or needing to know—on
what machines or in what geographical locations their files reside. They may even store files on platforms
with unknown owners and operators, particularly in peer-to-peer computing environments.

While cloud computing encompasses the full spectrum of computing resources, in this paper we focus
on archival or backup data, large files subject to infrequent updates. While users may access such files only
sporadically, a demonstrable level of availability may be required contractually or by regulation. Financial
records, for instance, have to be retained for several years to comply with recently enacted regulations.

Juels and Kaliski (JK) recently proposed a notion for archived files that they call a proof of retrievability
(POR). A POR is a protocol in which a server/archive proves to a client that a target file F is intact, in the
sense that the client can retrieve all of F from the server with high probability. In a naı̈ve POR, a client might
simply download F itself and check an accompanying digital signature. JK and related constructions adopt a
challenge-response format that achieves much lower (nearly constant) communication complexity—as little
as tens of bytes per round in practice.

JK offer a formal definition of a POR and describe a set of different POR designs in which a client stores
just a single symmetric key and a counter. Their most practical constructions, though, support only a limited
number of POR challenges. Shacham and Waters (SW) offer an alternative construction based on the idea of
storing homomorphic block integrity values that can be aggregated to reduce the communication complexity
of a proof. Its main advantage is that, due to the underlying block integrity structure, clients can initiate and
verify an unlimited number of challenges.

1

In this paper, we introduce a general conceptual framework for PORs. The resulting design space
encompasses both JK and SW, and leads naturally to variants—and improvements—on both proposals. We
examine in particular a variant of JK that simultaneously achieves lower storage requirements and a higher
level of assurance than JK, with minimal computational overhead. We describe a prototype implementation
of this improved scheme. While SW has strong theoretical advantages over JK, e.g, it can tolerate any
adversarial error rate ε < 1, and can support arbitrarily many POR interactions, we focus on JK in this paper
because of its advantages in a practical setting. Although our framework supports efficient protocols up to
ε < 1 and is applicable to SW, we focus our implementation on a variant of the JK protocol requiring ε < 1

2
and supporting only a bounded number of queries. As we explain, JK’s theoretical restrictions are of limited
impact in practical deployment scenarios. (For example, an adversary with ε > 1

2 would be swiftly detected
by a client’s POR challenges.) As we show in Section 5, JK carries lower resource costs than SW in many
settings of real-world interest.

1.1 Intuition for our framework

In a POR protocol, a file is encoded by a client before being transmitted to a storage provider for archiving.
A POR enables bandwidth-efficient challenge-response protocols to guarantee probabilistically that a file is
available at a remote storage provider. Most PORs proposed to date, and the ones we consider in this paper,
use the technique of “spot-checking” in the challenge-response protocol to detect adversarial behavior. In
each challenge, a subset of file blocks is sampled, and the results of a computation over these blocks is
returned to the client. The returned results are checked using some additional information embedded into
the file at encoding time.

Our POR framework operates in the strongest possible adversarial model: it assumes that the adversary
replies correctly to a fraction of challenges 1 − ε > 0 chosen uniformly at random from the challenge
space (we call such an adversary an ε-adversary). The technique of spot-checking can only detect a large
adversarial corruption rate. For POR protocols to be resilient to small adversarial corruption, an error-
correcting code (called outer code) is used to encode the full file.

By analogy with zero-knowledge proofs, the same interface used for challenge-response interactions
between the client and server is also available for extraction. The client first tries to download F as normal
(checking the integrity of the file against a MAC or digital signature of the file). If this usual process fails,
then the client resorts to a POR-based extraction. The client in this case submits challenges to the server and
reconstructs F from the (partially corrupted) values yielded by the server via respond.

In most previously proposed POR constructions, the function respond returns a single file block or an
XOR of file blocks. Our key insight in this paper is a technique that bases respond itself on an arbitrary
error correcting code. In particular, we consider schemes in which respond computes a codeword on the
blocks in s and returns the uth symbol. We refer to this as the inner code ECCin and to the code ECCout as
the outer code.1

The concatenation or interleaving of two or more error-correcting codes is a classical technique for
creating error-correcting codes with certain properties, e.g., resilience to burst errors. The way we compose
the inner and outer codes in our construction is similar in spirit, but quite different in its application, which
is aimed specially at PORs. The two codes play complementary roles, but operate in distinct ways and at
different protocol layers. Most notably, while the inner code may vary dynamically based according to the
challenge format, the outer code serves in the initial file encoding, and is thus static over the lifetime of a
file.

The inner code ECCin, being computed on the fly by the server over the encoded file F̃ , creates no
storage overhead. On the other hand, it imposes a computational burden on the server when it responds to

1“Inner code” and “outer code” are the standard names for the constituents of a concatenated error-correcting code [21].

2

client challenges: The server must retrieve the blocks in s and apply the code ECCin to them. The outer
code imposes little computational burden for the server, but results in an expansion of the stored file: The
greater the error tolerance of ECCout, the larger |F̃ |/|F |. In designing a practical POR, we seek to strike a
good balance in our selection of ECCout and ECCin.

POR protocols designed in our framework need to specify a maximum bound on the adversarial corrup-
tion rate ε they tolerate. Our POR framework proceeds in two phases. In Phase I, the client performs a series
of challenge-response interactions with the server with the aim of detecting if the adversary is respecting the
ε bound on corruption rate. (Phase I is in principle optional if we assume an adversary with error rate below
ε, but helps guarantee file-retrieval efficiency.) In Phase II, the client extracts the file, assuming that it deals
with an ε-adversary.

Based on the number of verifications they support over the lifetime of the system, we can classify PORs
into two main types:

1. PORs that enable unlimited number of verifications, such as the SW scheme, are usually constructed
by storing additional integrity values for file blocks. SW employs homomorphic integrity values
(essentially MACs) that can be aggregated over multiple blocks, resulting in a bandwidth-efficient
POR. In this case, thanks to the underlying system of MACs, the inner code can simply be an erasure
code and the scheme can tolerate error rates ε non-negligibly close to 1 (albeit at the cost of extraction
polynomial in 1

1−ε). We describe in Section 4 a generalization of SW that fits into our framework and
show how we can improve and simplify the SW construction. Theoretically, such protocols do not
need to employ Phase I to limit ε (since they can extract for ε close to 1). In practice, it is still essential
to bound the adversarial corruption rate using a Phase-I protocol, since this ensures that a file can be
extracted efficiently.

2. PORs that can verify a limited number of queries, such as the JK scheme, usually pre-compute the
responses to a set of challenges and embed them (encrypted) into the file encoding. The verification
capability of these PORs is limited by the number of pre-computed challenges embedded into the file
encoding. These types of POR cannot feasibly check all the responses received during Phase II, and
thus need to employ error-correcting inner codes. In such protocols, we require an upper bound on the
adversarial rate ε less than 1

2 ; the actually tolerable ε depends on the inner and outer code parameters.
For such protocols to fit our framework, we need to assume that the adversary’s corruption rate in
Phase I is also limited by the same ε determined by the extraction capability in Phase II. (The same
assumption is required for SW if we are to guarantee efficient extraction.) Under this assumption,
either an adversary has corruption rate greater than ε, in which case it will be detected in Phase I, or ε
is low enough so that it is possible to extract the file in Phase II.

In Section 4 we present a more efficient version of JK that employs a limited number of verifications
assuming an upper bound on ε given by the error correction rates of the inner and outer codes. Despite such
restrictions, in Section 5 we show its practical advantages over SW, in terms of storage overhead and proof
costs, for particular ranges of ε.

Besides providing a theoretical framework for designing POR protocols and showing improvements to
existing protocols, in this paper we also consider the challenges encountered when designing practical POR
protocols. First, we show how to construct outer codes that can encode large files efficiently, while still
preserving a high minimum distance. We define and construct practical adversarial error-correcting codes
that, intuitively, give no advantage to an adversary in corrupting the encoded file than distributing corruptions
randomly across file blocks. Secondly, as random disk access is expensive, we present techniques to encode
large files incrementally, in only one pass through the file.

3

1.2 Organization

In Section 2, we review existing research related to PORs. We describe our proposed conceptual framework
in Section 3. After presenting the full details of a new variant POR scheme and its security proof in Section 4,
we compare it with the original JK protocol and with the SW scheme in Section 5. Finally, we describe
several challenges we encountered in implementing the new variant and present performance evaluation in
Section 6. The security analysis of the JK construction is in Appendix A, while a discussion on adversarial
error-correcting codes can be found in Appendix B.

2 Related Work

The first proposed POR-like construction of which we are aware is that of Lillibridge et al. [13]. Theirs is
a distributed scheme in which blocks of a file F are dispersed in shares across n servers using an (m,n)-
erasure code. Servers perform spot checks on the integrity of one another’s fragments using message au-
thentication codes (MACs). These MACs also have the effect of allowing reconstruction of F in the face of
data corruption, i.e., turning the erasure code into an error-correcting code. Corrupted blocks are discarded,
and thus treated as erasures. Lillibridge et al. do not offer formal definitions or analysis of their scheme.

Naor and Rothblum [19], extending the memory-checking schemes of Blum et al. [5], describe a the-
oretical model that may be viewed as a generalization of PORs. Their model supposes the publication of
a (potentially corrupted) encoded file F̃ , meaning that the client can directly sample segments of F̃ . In
the NR construction, F̃ includes message authentication codes (MACs) on file blocks: A client can check
the intactness of a file by verifying the correctness of randomly sampled file blocks. As in Lillibridge, an
error-correcting code ensures file recovery in the face of some degree of file corruption. NR, however, do
not naturally model PORs with non-trivial challenge-response protocols, as required for our purposes in this
paper.2 Additionally, NR propose a construction in which the client applies a high minimum-distance error
correcting code across all of F . As we explain below, one of the important challenges in practical schemes
is the negotiation of complicated error-coding strategies; a code across all of F is not necessarily practical.

Juels and Kaliski [12] propose a formal POR protocol definition and accompanying security definitions
which we describe below. As in NR, they propose a scheme in which the client applies an error-correcting
code to file F to obtain the (expanded) file F̃ stored on the server. JK do not store MACs for individual file
blocks. Instead, the client challenges the server by specifying a subset of file blocks si from a predetermined
set S = {si}q

i=1. JK propose two mechanisms for checking the correctness of si. One is to generate the
values and locations of blocks si during file encoding using a pseudorandom function (PRF), so that they are
independent of F . The other appends a collection of q MACs to F̃ to allow checking of subsets of blocks
of F . The JK protocol involves relatively small file expansion, as dictated by the error-correcting code, but
supports only a limited number q of queries.

Ateniese et al. [1] propose a closely related construction called a proof of data possession (PDP). A PDP
demonstrates to a client that a server possesses a file F (in an informal sense), but is weaker than a POR in
that it does not guarantee that the client can retrieve the file. (In the nomenclature of proofs of knowledge,
a PDP does not specify an extractor.) Curtmola et al. [6] describe how to integrate error-correcting codes
with PDPs, and independently propose an adversarial error-correcting code construction similar to ours.

Shacham and Waters [22] propose protocols based on the idea of using homomorphic authenticators
for file blocks, essentially block integrity values that can be efficiently aggregated to reduce bandwidth in
a POR protocol. Due to the use of integrity values for file blocks, their scheme can use a more efficient

2NR may be viewed as implicitly assuming that respond returns raw file blocks. It is possible, if awkward, to model non-trivial
choices of respond in NR via an extended file encoding F̃ ∗ = {respond(F̃ , c)}c∈C for challenge space C.

4

erasure code to encode the file; the block authenticators transform the erasure code into an error-correcting
code. Their scheme supports an unlimited number of verifications.

While the basic POR model supports checking of file retrievability by a single client in possession of a
secret key, a public POR allows any client to verify the retrievability of F without secret keying material.
Ateniese et al. [1] introduce the notion of public verifiability for PDPs. JK describe a straightforward
Merkle-tree construction for public PORs, while SW describe a more efficient, public-key based version
that relies on bilinear maps.

In other related work, Golle, Jarecki, and Miranov [10] propose techniques that enforce a minimum
storage complexity on the server responsible for storing file F . They describe protocols that ensure dedicated
use by a server of storage at least |F | but do not enforce requirements on what data the server actually stores.
Filho and Barreto [7] describe a POR scheme that relies on the knowledge-of-exponent assumption, first set
forth in [3]. While communication efficient, this scheme is impractical, as respond requires computation
of a modular exponentiation with respect to a bit-representation of all of F . Shah et al. [23] consider a
symmetric-key variant of full-file processing to enable external audits of file possession. The scheme only
works for encrypted files, and auditors are required to maintain long-term state.

Dynamic updates File updates in POR/PDP protocols are a particular challenge. There is a strong ten-
sion between the security and efficiency of POR/PDP challenge-response protocols and the communication
efficiency of file updates. Briefly, if an update changes a set A of blocks in the stored presentation of file
F , then the server must “touch” A in computing a response to a challenge to ensure against irretrievable
corruption of F . If A is a small, then “touching” A with high probability imposes high overhead on the
server. In a basic POR, any change to the contents of file F , no matter how small, must propagate through
the (generally substantial) error-correcting and challenge-response data encoded in F̃ .

The lack of error correction and extraction algorithms in basic PDP constructions—and consequent lack
of strong security against arbitrary adversaries—-permit file updates to be performed efficiently, i.e., with
minimal communication overhead. In follow-up work to [1], Ateniese et al. [2] describe efficient tools for
file updates in PDPs. Naor and Rothblum also support updates in their theoretical model.

We concern ourselves in this paper with archival and backup files. Such files are subject to infrequent
change, so we treat them as static. Many systems modify backup or archival files periodically through
incremental updates—often by appending a compendium of file changes. It is possible to treat such a
compendium itself as an independent, static file in a POR system. That is, POR techniques may be applied
to a full backup file by means of challenges against individual pieces: There is no need to reencode the full
backup or archival repository.

That said, PORs do not gracefully handle files undergoing frequent, small updates. The specification of
good batching schemes or other update techniques for PORs in such settings remains an open problem.

3 Our Conceptual Framework

3.1 Preliminaries

Following JK, a file F = F1, F2, . . . , Fm consists of a set of m blocks, each an l-bit symbol. We let L
denote the symbol alphabet {0, 1}l. (As a point of reference, in our implementation we work with 32-byte
blocks, i.e., l = 256.) For brevity, we let P denote the prover (server or archive) and V denote the verifier
(client). To draw on the formalization of JK, π denotes the set of system parameters, while ω denotes local,
persistent client state. η is a file handle, which we drop from our notation where convenient. A POR includes
six functions:
keygen[π] → κ: Generates a secret key κ. (For a public POR, κ may be a public/private key pair.)

5

encode(F ;κ, ω)[π] → (F̃η, η): Generates a file handle η and encodes F as a file F̃η.
challenge(η; κ, ω)[π] → c: Generates a challenge value c for the file η.
respond(c, η) → r: Generates a response r to a challenge c (the only function run by the prover).
verify((c, r, η);κ, ω) → b ∈ {0, 1}: Checks whether r is a valid response to challenge c. It outputs a ‘1’ bit
if verification succeeds, and ‘0’ otherwise.
extract(η; κ, ω)[π] → F : Determines a sequence of challenges that V sends to P sufficient to recover the
file and decodes the resulting responses. If successful, it outputs F .

3.2 Adversarial model

For our purposes in this paper, a challenge for a file F of size |F | consists of a pair c = (s, u), where
s ∈ [1, |F |]v = S specifies a subset of v blocks in F , and u ∈ [1, w] = W is an accompanying nonce. Here
v and w are system parameters that specify the number of blocks included into a challenge, and the nonce
domain size, respectively. We let C denote the full challenge space S ×W .

An adversary A in our model receives an encoding of the file, and needs to answer at most Nmax

challenges over the lifetime of the file. The adversary is determined by a set of partitions (C+
i , C−

i)i=1,Nmax

of C. C+
i is the set of all challenge values (s, u) to which the adversary responds correctly when queried

for the i-th time, while C−
i is the set to which it responds incorrectly at the i-th challenge. The partition

(C+
i , C−

i) is adaptively determined for every i = 1, Nmax.
We let εi

s,u = 1 if (s, u) ∈ C−
i , and εi

s,u = 0 otherwise. We let εi
s =

∑
u∈W εi

s,u/w be the probability
that the adversary responds incorrectly the i-th time to challenges on a subset s of blocks for a random choice

of u. We let εi =
∑

s∈S,u∈W εi
s,u

|C| be the probability that the adversary responds incorrectly the i-th time to a
challenge selected uniformly at random from C, i.e., εi = |C−

i |/|C|. We denote εA = maxi=1,Nmax εi the
maximum fraction of corrupted challenges at each query.

An ε-adversary is one for which εA ≤ ε. Intuitively, an ε-adversary replies correctly to a fraction of at
least 1− εA challenges over the lifetime of the file.

3.3 Our POR framework: Key ideas

It is useful to think of a POR in our framework as a two-phase process:

3.3.1 Phase I: Ensuring an ε-adversary

In the first phase of a POR (depicted in Figure 1), the client performs a series of challenge-response inter-
actions with the server A over file F̃out (i.e., the encoding of F under the outer code ECCout), with the aim
of detecting the condition εA > ε. To challenge the server, the client computes c = challenge(η; κ, ω)[π],
sends c to the server, receives a response r, and then computes verify((c, r, η);κ, ω) to check the response
of the adversary. The client repeats this process qc times, and rejects if any response is incorrect. Otherwise
the client accepts.

Assuming that challenge selects c ∈U C, the probability that an adversary A is accepted but is not an ε-
adversary, i.e., εA > ε, is < λ = (1− ε)qc . The value λ can be made arbitrarily small, with an appropriately
large qc.

The JK protocol checks adversarial responses by precomputing a challenge set {ci}q
i=1 ∈U C and

storing verifying data—sentinels or MACs—in the encoded file for download by the client. The Lillibridge
et al. and NR constructions check adversarial responses by verifying MACs on file blocks. Thus, both
of these constructions also select c ∈U C. The SW scheme omits Phase I, i.e., implicitly assumes an
ε-adversary.

6

Figure 1: Schematic of Phase I in our POR framework: Testing whether εA ≤ ε, i.e., if A is an ε-adversary.

Remark In practice, as envisioned in our implementation, the server may initially be honest, but turn bad
at some point and be replaced by an adversary A. To deal with such a dynamic adversary, the client may
spread out its challenges over time. For example, the client might initiate a challenge every day. If Phase I
is tuned to achieve a particular λ for qc = 50, then, the condition εA > ε will be detected with probability at
least 1− λ within the first 50 days after the server has turned adversarial.

3.3.2 Phase II: Extracting F from an ε-adversary

Assuming an honest server, a client can simply download F—and verify its correctness via an appended
MAC or digital signature. If this fails, the client can download the encoded file F̃η and try to correct it using
the outer error-correcting layer. Failing that, given an ε-adversary, it is possible for the client to retrieve F
via extract, executing a series of challenges and decoding F from the responses. Note that in this phase, the
client may not be able to verify the correctness of the responses it receives (in particular, for protocols with
a bounded number of verifications): In this case, it relies on the ε-bound on A for successful decoding.

In our general framework, there are two levels of error-correction:

• The outer code: This is a (n, k, d2)-error-correcting code ECCout applied to F to compute F̃out, the
error-corrected portion of F output by encode. Usually, for large files, n < m, and to encode a file of
size m we need to resort to a well-known technique, called striping: the file is divided into stripes of
size k blocks each, and each stripe is encoded under ECCout. In the rest of the paper, when we encode
the file with the outer code, we implicitly mean that striping is performed if necessary.

• The inner code: This (w, v, d1)-error-correcting code ECCin represents a second layer of error-
correction in the challenge-response interface for a POR. The function respond(s, u) applies ECCin

to the set s of message blocks specified in a challenge; the value u ∈ W specifies which symbol of
the corresponding codeword should be returned to the client.

In this view, the adversary is a noisy channel with error probability at most ε. We may think of the
adversary as intercepting transmissions from a (correct) oracle for respond to the client. When the client
submits the i-th challenge c = (s, u), the respond oracle computes the correct response r. If εi

s,u = 1, then
A corrupts the response in the channel; otherwise, the adversary leaves r unchanged.

The goal of employing two levels of error correction in the design of our POR framework is to correct the
adversarial error ε. The effect of the inner code is to drive down the adversarial error ε to some error value
ε′ < ε. The outer code then corrects this residual error ε′. Thus, the stronger the inner code, the weaker the

7

Figure 2: Schematic of Phase II in our POR framework: Extracting F from an ε-adversary.

outer code we need to employ. The outer code needs to be an adversarial error-correcting code, as defined
in Appendix B. Intuitively, an adversarial code transforms an ε′ computationally bounded adversary to a
random one, i.e., one in which the adversary has no better chance of corrupting codeword symbols than
choosing at random.

Our PORs are designed to be effective against a maximum adversarial error ε. In the next section, we
will show examples of protocols that tolerate ε values non-negligibly close to 1, as well as protocols that
require an upper bound on ε less than 1

2 . There are two main types of POR protocols that we can construct
in our framework:

1. In protocols that enable an unbounded number of server verifications (e.g., SW), the responses to
challenges in Phase II can be verified. In this case, the inner code can simply be an erasure code and
can therefore tolerate error rates ε non-negligibly close to 1. We describe in Section 4 a generalization
of SW that fits into our framework. Even if, theoretically, such protocols do not need to employ Phase
I to limit ε (since they can extract for ε close to 1), in practical settings obtaining a Phase-I bound on
the adversarial corruption rate is still valuable to ensure efficient extraction.

2. In protocols in which a limited number of responses can be verified, we need to employ an error-
correcting inner code in order to correct arbitrary server responses. In such protocols, we need to
set an upper bound on the adversarial rate less than 1

2 and dependent on both the inner and outer
code parameters. For such protocols to fit our framework, we need to assume that the adversary’s
corruption rate during extraction is also limited by the same ε < 1

2 . Under this assumption, either the
adversary corruption rate is greater than ε, and will be detected with high probability in Phase I, or ε
is low enough so that we can extract F successfully in Phase II.

In Section 4 we present a more efficient version of JK that employs a limited number of verifications
assuming an upper bound on ε given by the error correction rate of the inner code. Despite such
restrictions, we show its practical advantages in storage overhead and proof costs compared to SW for
values of ε within the error-correction capabilities of the inner and outer codes.

Now the full storage and successful extraction process for the client is as follows. We let the superscript
∗ denote a corrupted file:

1. Outer encoding and storage: The client encodes file F under ECCout as F̃out, and stores F̃out with
the server. (Thus F̃out is a component of the full file encoding F̃η, which may include supplementary data
such as MACs.)

8

2. Extraction: If both ordinary downloading of F and error-correction of F̃η fails, the client invokes
extract. In this case, the client submits a series of challenges to the respond oracle, which outputs sym-
bols under the encoding ECCin. Together, these responses make up a file F̃in+out that is encoded under a
composition of ECCout and ECCin.

3. Corruption / noise: The adversary corrupts up to an ε-fraction on average of F̃in+out. The resulting
file is F̃ ∗

in+out.
4. Inner decoding: The client decodes the inner code in F̃ ∗

in+out under ECCin, obtaining file F̃ ∗
out. The

file F̃ ∗
out is a representation of F̃out with ε′-fraction corruption, where ε′ < ε.

5. Outer decoding: The client decodes F̃ ∗
out under ECCout, obtaining the original file F .

3.4 Security definition

By viewing a POR as a two-phase process, we are able to offer a simpler security definition than JK that is
akin to that of SW. We abstract away Phase I, and assume an ε-adversary. Referring then to JK for details of
the experimental setup:

Definition 1 A poly-time POR system PORSYS[π] is a (ε, γ)-valid proof of retrievability (POR) if for every
poly-time ε-adversary A, the probability that extract outputs F is γ. More formally,

γ = pr
[
F = Fη∗

∣∣F ← extractA(δ,·)(“respond”)(η∗; κ, ω)[π]
]
.

Remark Observe that the inner code imposes no storage overhead in our protocol, as it is computed on
the fly by respond. We could in principle use an inner code only, with no outer code. The drawback to this
approach is that the message size of ECCin would have to be very large to guarantee extraction. In the limit,
we could let v = m. In this case, respond would treat the whole file F as a message, and return one symbol
of a codeword over the whole file. In this case, if d1 ≥ 2εm, i.e., the code ECCin is resilient to an ε-fraction
of file corruption, we could dispense with the outer code. But in practice, constructing an error-correcting
code with large message size and large distance would be impractical. So in constructing a POR, we seek to
strike a balance between the resource requirements of the inner code (computation and file-block retrieval)
with the outer code (file expansion).

4 New Variant POR Protocols

4.1 The SW scheme

SW propose two constructions based on the idea of storing homomorphic authenticators for file blocks
together with the file. These are essentially block integrity values that can be efficiently aggregated to reduce
bandwidth in a POR protocol. Since each block can be independently verified with the stored authenticators,
SW could encode the file with a more efficient erasure code. The block authenticators (or MAC values)
effectively turn the erasure code into an error-correcting code.

More specifically, to encode a file F of length |F | in the SW scheme, an erasure code of rate ρ is applied
first. Then the encoded file is divided into n blocks, each consisting of s sectors. A sector is an element of
a prime group Zp, where the size of p is a security parameter λ. Thus, |F | = nsλρ.

For each block 1 ≤ i ≤ n, an authenticator σi is computed and stored with the file. In addition, the
client stores a file tag of size sλ. In a challenge, the client in the SW scheme sends l block indices and l
values in Zp. The server response is one aggregated authenticator of size (s + 1)λ.

The SW construction fits nicely into our framework. SW implicitly assumes an ε-adversary (for some
ε < 1) and thus omits Phase I of our framework. The SW scheme setup, however, allows us easily to

9

include a Phase I stage to bound ε below any desired value. While SW can tolerate essentially any ε < 1,
the ability to bound ε at lower values in a Phase I stage can be quite important in practice. The error value
ε determines the efficiency of file extraction for the client, so ensuring ε bounded well away from 1 can be
vital in practice.

We can generalize the SW construction by replacing their ad-hoc inner erasure code with an erasure
code with linear encoding and decoding time, e.g., Tornado codes [16], on-line codes [17], LT codes [15]
or Raptor codes [24]. In addition to obtaining a more efficient extraction algorithm (reducing the decoding
cost from O(|F |

√
|F |) to O(|F |), for the natural choice of n = s =

√
|F |), this approach can simplify the

security proofs of SW. For instance, the proofs from Section 4.2 in [22] could be easily inferred from the
decoding properties of the above mentioned erasure codes.

4.2 Improvement to JK protocol

We now describe improvements that our new framework brings to the JK protocol, the main focus of the
paper.

As explained above, SW has strong theoretical benefits, e.g., an ability to extract files for essentially
any ε < 1. In practice, though, an adversary with ε > 1

2 would be quickly detected in phase one of our
framework. Consequently, in practice, the higher ε tolerated by SW is of limited benefit. SW also permits
an unbounded number of phase-one queries by the client. JK, however, can support a large number of
phase-one queries in practice. As we explain in Section 5, JK has notable efficiency benefits over SW for
parameter ranges we consider of most practical interest. This is the reason for our focus on JK.

Our main goals in designing the new variant on JK are to tolerate a larger level of errors than in the
original JK scheme, reduce the storage overhead on the server, and employ a more lightweight verification
mechanism in the first phase to ensure that the client is dealing with an ε-adversary. After describing the
details of the new variant, we provide its security analysis in a stronger adversarial model than employed in
the JK protocol. We conclude the section by showing a range of parameters our new variant supports and
their relative tradeoffs.

Building blocks

To specify the algorithms in our protocol, we need several cryptographic primitives, in particular a symmetric-
key authenticated encryption scheme (KGenEnc,Enc, Dec), a family of pseudorandom permutations PRP[n] :
KPRP × {0, 1}n → {0, 1}n and a message-authentication algorithm (KGenMAC, MAC, Ver). We assume
the primitives are secure according to standard security definitions, i.e., the encryption scheme is IND-CPA
secure, the permutation family is pseudorandom and the MAC scheme is unforgeable [8, 9].

Outer layer of error correction

The outer layer of error correction needs to be adversarial in the sense that it transforms a noisy channel into
a random one (see a discussion on adversarial codes in Appendix B). To implement an adversarial code, the
JK’s encode algorithm uses a striped “scrambled” code. The file is divided into stripes and each stripe is
encoded with a standard (n, k, d) Reed-Solomon code. The resulting symbols are permuted with a PRP and
encrypted with secret keys known only to the client.

Our goal is to construct a systematic adversarial error-correcting code, i.e., one in which the message
blocks of F remain unchanged by error-correcting. A systematic code of this kind has considerable practical
benefit. In the ordinary case when the server is honest and extraction is unnecessary, i.e., the vast majority
of the time, the client need not perform any permutation or decryption on the recovered file. To build
a systematic adversarial error-correcting code, we apply code “scrambling” exclusively to parity blocks.

10

However, this does not ensure by itself a random adversarial channel, since the adversary has information
about stripe boundaries. To hide stripe boundaries from the server, we first implicitly apply a pseudorandom
permutation to the file blocks and then divide the permuted file into stripes. Our outer code outputs the file
in order, followed by the “scrambled” parity blocks.

The encode algorithm of our adversarial code SA-ECC takes as input secret keys k1, k2 and k3, and a
message M of size m blocks, and performs the following operations:

- Permute M using PRP[m] with key k1, divide the permuted message into dm
k e stripes of consecutive

k blocks each, and compute error-correcting information for each stripe using code ECCout.
- The output codeword is M followed by permuted and encrypted error-correcting information (the

permutation of parity blocks is done using PRP[m
k (n − k)] with secret key k2 and their encryption

with key k3, respectively).

Remark We emphasize that thanks to our use of systematic encoding of F , we can achieve strong security
in the encoded file by encrypting only the parity blocks. Such limited encryption fully conceals the error-
coding stripes, as the blocks of F itself remain untouched and therefore carry no permutation information.

The decode algorithm of SA-ECC simply reverses the operations of encode.

Precomputing challenge-response pairs

As described in Phase II of our framework, a challenge is a pair (s, u) ∈ S ×W . The response is the u-th
symbol in a codeword over an inner coding instance consisting of file blocks with indices in set s. The client
precomputes a set of randomly generated challenges derived from a seed and appends to the file encrypted
(and authenticated) corresponding responses.

4.2.1 Complete POR protocol

We present here the complete POR protocol. In the keygen algorithm, a master secret key MS is generated,
from which additional keys are derived: a master challenge key kchal, a key kind used to sample codeword
indices of ECCin, a file MAC key kfile

MAC, a master encryption key kenc, a file permutation key kfile
perm, an ECC

permutation key kECC
perm and an ECC encryption key kECC

enc . Let us denote the generator matrix of ECCin by
G = {gij}1≤i≤v,1≤j≤w.

The encode algorithm for our POR protocol is the following:

1. Divide file F into m blocks, each an l-bit symbol, i.e., F = F1 . . . Fm.
2. Apply outer error-correcting layer: Encode F under SA-ECC with secret keys (kfile

perm, kECC
perm, kECC

enc),
resulting in F ′ = F1 . . . FmFm+1 . . . Ft (with t = dmn

k e).
3. Precompute challenge-response pairs: For each challenge j with 1 ≤ j ≤ q:

(a) The client first derives a challenge key kc
j from kchal from which she computes v pseudorandom

block indices i1, . . . , iv ∈ [1, t]. The client derives a random index u ∈ [1, w] from seed kind

and an encryption key ke
j from kenc.

(b) The client computes Mj =
∑v

s=1 Fisgsu and appends Qj = Encke
j
(Mj) to the encoded file.

4. Append a MAC of the whole file MACkfile
MAC

(F) and return the encoded file.

In the challenge algorithm, the client sends to the server j, kc
j and the random index u derived from kind. In

the respond algorithm, the server derives i1, . . . , iv from kc
j , computes Mj =

∑v
s=1 Fisgsu, and returns to

the client Mj and Qj . The verify algorithm returns true if Mj = Decke
j
(Qj).

11

In the extract algorithm, executed when normal file download and error-correction of the encoded file
fail, the client executes two phases, one for each layer of error correction. To decode from the inner layer,
the client submits a sufficient number of challenges and then uses majority decoding. The client obtains on
average α decodings for each file block (for α a parameter in the system chosen so that each file block is
covered with sufficiently large probability), and she decodes to the block that appears in at least a fraction
of 1

2 + δ of decodings (for δ > 0 a parameter of our system). If no such block exist, the client outputs an
erasure for that block, denoted ⊥. For each file block i, the client maintains during the first extraction phase
a set of all decodings obtained with repetitions, denoted Di. After decoding all blocks in the first phase, the
client uses the decoding procedure of the outer error-correcting code in order to correct the possible errors
and erasures introduced in the first phase. The extract algorithm is given below:

1. Recover from the inner error-correction layer

(a) Di = Φ, for all blocks i ∈ [1, t].
(b) Pick a set of challenges C of size NC = α t

v as follows:
(b1) For each j ∈ [1, α t

v] do:
• Generate a seed kc

j (used to generate a sequence of v block indices).
• Add (j, kc

j) to C.
(c) For each challenge (j, kc

j) ∈ C do:
(c1) Execute challenge w times with parameters j, kc

j and u, where u takes all the values between
1 and w and all the other parameters remain constant.

(c2) Apply the decoding procedure of ECCin to recover Fi1 , . . . , Fiv (where i1, . . . , iv are gen-
erated from seed kc

j) and add each Fis to the set Dis , for s ∈ [1, v].
(d) For each block i ∈ [1, t] do:

(d1) If there exists b ∈ Di such that |j:Di[j]=b|
|Di| ≥ 1

2 + δ, output Fi = b.
(d2) Otherwise, output Fi = ⊥.

2. Recover from the outer error-correcting layer: Decode F1 . . . Ft under SA-ECC using secret keys
(kfile

perm, kECC
perm, kECC

enc) and obtain F .
3. Compute the MAC over the whole file and check it against the MAC stored at the end of the file. If

the MAC verifies, output the file, and otherwise output error.

The full security analysis of this construction is given in Appendix A.

4.2.2 Parameterization

In this section, we show different tradeoffs our construction achieves for different parameter choices. We
consider different types of inner codes, in particular a first class of theoretical codes whose existence is
guaranteed by the Varsharmov-Gilbert lower bound, and a second class of practical codes that can be easily
built from concatenation of standard Reed-Solomon codes.

Theoretical codes The following lower bound for the minimum distance of a code (n, k) holds.

Theorem 1 (Varsharmov-Gilbert [21]) It is possible to construct an (n, k) code over an alphabet Σ of size
σ with minimum distance at least d, provided that:

∑d−2
i=0

(
n
i

)
(σ − 1)i ≥ σn−k.

We consider several codes over a byte alphabet that follow the lower bound by varying codeword sizes from
500 to 4000 and code rates from 0.1 to 0.9.

12

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 3: Maximum error rate ε tolerated as a function of outer code distances for both theoretical inner
codes with rate 2/3 and for different practical codes.

Practical codes obtained from concatenation A standard code used in practical applications is the sys-
tematic (255, 223, 32) Reed-Solomon code. From this code we build several codes (k + 32, k, 32), with
32 ≤ k ≤ 223, by padding k with zeros to obtain a message of size 223, encoding the padded message,
and truncating the codeword of size 255 to size k + 32. It is easy to see that the distance given by this code
remains 32. We obtain by this procedure codes (64, 32, 32) and (96, 64, 32).

For our construction, we need inner codes that operate on larger message sizes, on the order of several
thousand bytes. A standard procedure to enlarge the message and codeword sizes is to build concatenated
codes. The concatenation of two codes with parameters (n1, k1, d1) and (n2, k2, d2) is denoted (n1, k1, d1) ·
(n2, k2, d2) and has parameters (n1n2, k1k2, d1d2). A description of the concatenation procedure is outside
the scope of this paper, but we refer the reader for more details to [21]. Several codes obtained through
concatenation are given in Table 1.

Code name Code parameters How obtained
Code 1 (255,223,32) Reed-Solomon code
Code 2 (4096,1024,1024) (64, 32, 32) · (64, 32, 32)
Code 3 (6144,2048,1024) (64, 32, 32) · (96, 64, 32)
Code 4 (9216,4096,1024) (96, 64, 32) · (96, 64, 32)
Code 5 (16320,7136,1024) (64, 32, 32) · (255, 223, 32)

Table 1: Several practical codes.

Error rates tolerated In our new variant, we can tolerate a higher error rate than in the JK scheme, due to
the addition of a new dimension in the design space of POR protocols, namely the inner code. As explained
in our theoretical framework, the inner code reduces the adversarial error ε to a residual ε′ < ε, and the
outer code then corrects the residual error ε′. Since in the new variant ε′ is reduced by at least an order of
magnitude compared to ε, we need a more lightweight outer code than the JK scheme, and, as such, the
outer code storage overhead decreases.

We show in Figure 3 the maximum error rate ε tolerated by different inner codes that follow the
Varsharmov-Gilbert lower bound, as well as by several practical codes. For theoretical codes, we fix the
code rate to a constant (2/3, corresponding to an expansion of 50%), and only vary the codeword size (and,
implicitly, the message size)3. The graphs from Figure 3 plot the tolerated error rates as a function of the

3We also performed tests for theoretical codes with rates varying from 0.1 to 0.9 with a 0.1 increment. It turns out that similar

13

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 4: Number of challenges required in Phase I as a function of outer code distance.

outer code distance, for a file size of 4GB, α = 10, δ = 1
4 and security bound γ = 10−6. Our outer code

is built from the standard (255, 223, 32) Reed-Solomon code, by truncating codewords to size 223 + d to
obtain distance 0 < d ≤ 32.

When the outer code distance drops below a certain threshold (i.e., 20 for the JK scheme, and between
10 and 14 for the new variant), we can no longer obtain a security bound of γ = 1 − 10−6. This shows
that our new variant spans a larger parameter domain, allowing different tradeoffs between the outer code
storage overhead, the error rates tolerated and the number of verifications in Phase I.

The results for theoretical codes show that for a fixed outer code distance (and, implicitly, outer code
storage overhead), higher error rates are tolerated by codes with larger codeword sizes. For practical codes,
the results demonstrate that error rates do not depend only on inner codeword size, but also on inner code
rate and minimum distance. For instance, for an outer code distance greater than 26, inner code 2 tolerates
a higher fraction of errors than inner codes 3-5, even though its codeword size is smaller. For outer code
distances smaller than 22, the amount of errors tolerated by codes 2-5 is close, with a difference of at
most 0.003 between any consecutive codes. Code 1 performs much worse than codes 2-5 due to its small
codeword size of 255 bytes.

Number of challenges required in Phase I Intuitively, as the protocol tolerates a larger amount of error
rates, the number of verifications needed in Phase I of our framework decreases. Figure 4 shows the number
of challenges for both theoretical codes with rate 2/3 and practical codes. For an outer code distance of 32
(and, thus, a file storage overhead of 14.34%), inner code 3 requires only 20 challenge verifications in Phase
I. In contrast, JK needs 400 verifications for the same security level. The number of verifications in Phase
I becomes prohibitive very fast for JK: for an outer code distance of 24, 1596 verifications are necessary.
In contrast, as the outer code storage overhead decreases from 32 to 16 in the new variant, the number of
challenges increases at an almost linear rate. For instance, for an outer code distance of 16, we need to
check 94 challenges with inner code 2, 79 with inner code 3, and 68 with inner code 4. When the outer code
distance drops below 16 in the new variant, the number of challenges exhibits an exponential increase. In
conclusion, using one of the inner codes 2, 3 or 4 in the new variant, we can obtain a 50% reduction in the
outer code storage overhead, at the expense of checking less than 100 challenges in the first phase.

results hold, and, thus, we omit them from the paper.

14

Scheme SW Our POR
Storage overhead nλ + (1

ρ
− 1)|F | zq + (1

ρout
− 1)|F |

on server
Storage cost sλ + κ κ

on client
Size of challenge lλ 8 + κ

Size of response (s + 1)λ z

Parameters |F | = nsλρ, ρl = 2−λ κ = 32 bytes,
z = 32 bytes

Table 2: Storage overhead on server and client, and communication cost for SW and our scheme.

5 Practical Comparison With Previous Schemes

5.1 New Variant JK Protocol vs. Original JK Scheme

The original JK scheme employs only one layer of error-correction. In the challenge phase, the client
downloads a number of sentinel values from the server and verifies their correctness. Thus, the challenge
phase in JK is only used to ensure an ε-adversary, but is not effectively useful to extract file blocks. For
this reason, their scheme is resilient to a smaller fraction of block corruptions than the new variant. Our
extraction success is amplified by using two layers of error correction.

We performed a detailed comparison of the two schemes by using the results from Figures 3 and 4. The
new variant tolerates an error rate ε at least an order of magnitude higher than the original JK scheme for the
same outer code overhead and security bound. This imposes in the JK scheme the verification of a larger
number of challenges in the first phase (e.g., by a factor between 20 and 80 for inner code 3) to achieve an
equivalent error rate. The cost we pay for our efficiency in storage overhead and first phase verification is a
more expensive extract algorithm. However, our hope is that in the normal case, i.e., most of the time, the
user downloads the original file with a valid MAC or can correct the encoded file using ECCout, and does
not need to resort to extract for file recovery.

Moreover, our security analysis for the new variant is performed in a much stronger adversarial model,
since we do not make simplifying assumptions about the adversary’s behavior, except for the bound on ε as
described above. JK includes a strong block isolation assumption, stating that the probabilities file blocks
are returned correctly in a challenge are independent of one another.

5.2 Comparison to Shacham-Waters Scheme

5.2.1 Parameters in Shacham-Waters

In Table 2, we quantify the server storage overhead cost, storage cost on the client, and communication cost
of challenge and response protocols in both SW and our new POR scheme. SW is parameterized by security
parameter λ, the rate of the erasure code ρ , the number of blocks and authenticators n, and the size of a
block s, such that ρl is negligible in λ, e.g., ρl = 2−λ. The JK variant is parameterized by ρout = k

n the rate
of the outer code ECCout, z the size of a symbol in the outer code (e.g., 32 bytes in our implementation),
and κ the size of symmetric keys (e.g., 32 bytes).

5.2.2 Discussion

While we have crafted our scheme to trade off the storage overhead on the server against the number of
challenges needed to ensure an ε-adversary in the first phase, and the extraction complexity, we observe
a different tradeoff in the design of SW: The storage overhead on the server, storage on the client, and

15

communication complexity in challenge and response protocols are traded off by the choice of parameters
n, s and the erasure code expansion rate ρ.

Let us consider a particular parameterization of our scheme in which we set a security level of 10−6, an
outer code with rate 0.9 (and thus an expansion of 10%), and the total number of pre-computed challenges
stored q = 10000. The storage overhead on the server for our scheme is 320KB + 0.1 · |F |. The maximum
adversarial corruption rate ε < 1

2 is a value bounded by our inner and outer error correcting codes (for
instance, for the (4096, 1024, 1024) inner code and the (255, 223, 32) outer code, ε could be as large as 0.1
as shown in Figure 3). We show how we can design SW to match some of the parameters, assuming the
same bound on ε. For SW, a security level of 10−6 translates to λ = 22.

To illustrate the relative costs between SW and our scheme, we consider two points of comparison, one in
which the server storage overhead is set to be identical in both schemes, and another in which communication
complexity is set to be identical. We derive the parameters for a 4GB file.

• For the same storage overhead on the server for the two schemes, we need to set ρ to 0.1 in SW, and
thus l = 169. Additionally, nλ needs to equal 320KB, and we can derive s = 13, 107. In this case,
the size of a challenge in SW is 464 bytes, and the response size is 36KB, as opposed to both these
values being on the order of 40 bytes in our construction. The communication complexity in SW is
increasing with the file size.

• For the same communication complexity in the two schemes, lλ needs to be 40 bytes, and (s + 1)λ
needs to be 32 bytes, which implies l = 14 and s = 10. We can then derive 1

ρ = 2.96, and thus the
storage overhead on the server in SW is about twice the size of the file.

These examples show that for small values of ε SW is more expensive than our scheme with respect to
both storage overhead on server and client and communication complexity. But, of course, it still retains
the advantage that it allows for an unlimited number of verifications, and can provide file extraction for any
ε < 1 (albeit at polynomial cost in 1

1−ε).

6 Implementation

There are several challenges that we have encountered in the process of implementing the new variant.

6.1 Small PRPs

To build adversarial code SA-ECC, we need to construct two pseudorandom permutations: one that permutes
file blocks to generate stripes, and the second that permutes parity blocks. Both are “small” pseudrandom
permutations, i.e., smaller than the size of a typical block cipher. For instance, for a 4GB file divided into
32-byte blocks, we need a permutation with domain size of 227 to permute file blocks.

Black and Rogaway [4] have considered the problem of designing small block ciphers, and proposed
several solutions. For small domains, a practical solution (method 1 in [4]) is to build and store into main
memory a table with random values. Another method applicable to larger domains (method 3 of [4]) is to
use a 3-round Feistel cipher, with the random functions in each round based on a standard block cipher,
such as DES or AES. However, their security bound is quite weak, i.e., the PRP-advantage to generate a
permutation of length 2n is on the order q2

2n , where q is the number of permutation queries asked by the
adversary.

We have found a solution to enhance this security bound in a paper by Patarin [20]. Patarin proves that, if
6 rounds are performed in the Feistel construction, then the indistinguishability advantage of a permutation

16

of size 2n is 5q3

22n . This bound is ideal for our limited adversarial model, in which q = 1 (our adversary does
not have access to a PRP oracle). The method we adopted in our implementation is to use a 6-round Feistel
construction, with the random functions in each round implemented as random tables stored into memory.
We have briefly experimented with the random functions implemented with AES, but this alternative is
several orders of magnitude slower than having the tables stored into main memory.

6.2 Incremental encoding

A naive implementation of our encode protocol based on random access to file blocks for encoding would
be prohibitively expensive (for a seek time of 10ms, it takes 66000s to randomly access a 1GB file, using
32-byte blocks). As solid-state disks become more popular, random access might become comparable to
sequential access. In the meanwhile, for today’s drives, our objective is to implement the encoding algorithm
in only one pass through the file, in an incremental fashion.

If Reed-Solomon codes are used for implementing ECCout, computation of parity blocks involves as-
sociative operations in a Galois field. For an incremental encoding of the file, we could store the parity
blocks into main memory, and update them when we process a file chunk in memory. However, we pay
some performance cost for incremental encoding, since existing Reed-Solomon implementations are highly
optimized if the whole message is available at encoding time. The parity block size depends on both the file
size and the outer code distance, but for a fixed outer code distance, it grows linearly with the file size.

With this method, we could encode incrementally files for which the parity blocks (whose size is a
percentage of the file size) fit into memory. For large files for which parity blocks do not fit into main
memory, there are several encoding alternatives. First, we could still perform a single pass over the file, but
store only a smaller set of parity blocks into memory. As a file block is processed in memory, the parity
blocks that depend on it are swapped in, updated, and then swaped out of memory. Another alternative is to
break a very large file into more manageable sized files, and encode each separately.

Another problem we encountered was how to prepare the challenges in an incremental fashion. To
compute each challenge, v blocks need to be picked at random from the range of all file blocks. A simple
solution, which we have implemented, is to generate in advance all these v block indices for each of the q
challenges, and store them into main memory. We have experimented with an alternative technique in which
we select the number of samples for each chunk from a Binomial distribution, and then sample uniformly
the blocks in each chunk. This technique proved very expensive because of the high cost of sampling from
a Binomial distribution, i.e., it takes about 3s in Java and 9s in Mathematica to generate 1,000 binomials.

As future work, we plan to investigate more efficient techniques for generating a fixed set of random
numbers from a large interval incrementally.

6.3 Performance

We have implemented our new variant with incremental encoding of files in Java 1.6. The Java Virtual
Machine has 1GB of memory available for processing. We report our performance numbers from an Intel
Core 2 processor running at 2.16 GHz. Files were stored on a Hitachi 100 GB Parallel-ATA drive with a
buffer of 8MB and rotational speed of 7200 RPMs. The average latency time for the hard drive is 4.2ms
and the average seek time is 10ms. We use the BSAFE library in Java for implementing the cryptographic
operations.

We show in Figure 5 the total encoding time for files of several sizes, divided into several components:
Read (time to read the file from disk), PRP (time to compute the two PRPs used in SA-ECC), ECC encode
(time to compute error-correcting information for the outer-code), MAC (time to compute a MAC over the
file), Challenges (time to compute q = 1000 challenges with the inner code), and Encrypt-Write (time to
encrypt the error-correcting information and write the parity blocks and the challenges to disk). The results

17

 0

 500

 1000

 1500

 2000

 2500

 3000

1GB 2GB 4GB 6GB 8GB

T
im

e
(in

 s
)

File Size

Encoding micro-benchmarks

Read
PRP
ECC encode
MAC
Challenges
Encrypt-Write

Figure 5: Encoding micro-benchmarks for inner code (4096, 1024, 1024) and outer code (241, 223, 18).

are reported for the (4096, 1024, 1024) inner code and the (241, 223, 18) outer code. We show averages
over 10 runs.

The encoding algorithm achieves a throughput of around 3MB/s, and we observe that encoding time
grows linearly with file size. The outer error-correcting layer is responsible for most of the encoding over-
head (i.e., between 61% and 67% in our tests). The outer code encoding time can be reduced by reducing
the outer code distance, at the expense of checking more challenges in Phase I of our framework. We expect
that an optimized C implementation of Reed-Solomon encoding would reduce this overhead several times.
Among the other components, noticeable overheads are seen in the time to compute a file MAC (around
4.2%), the time to access files from disk (around 11-12%), and the time to encrypt and write to disk the
parity blocks (around 15%). Encryption of party blocks is slow because our decoding algorithm demands
that each parity block is encrypted separately (if CBC encryption is used, for instance, then a corruption in
one parity block will propagate to multiple blocks).

7 Conclusions

We have proposed in this paper a new framework for theoretical design of POR protocols that incorporates
existing POR constructions, and enables design of new protocols with a wide range of parameter tradeoffs.
We showed how the protocols of Juels-Kaliski and Shacham-Waters can be simplified and improved using
the new framework. We designed a new variant of the Juels-Kaliski scheme that achieves lower storage
overhead, tolerates higher error rates, and can be proven secure in a stronger adversarial setting. Finally, we
provided a Java implementation of the encoding algorithm of the new variant, in which files are processed
and encoded incrementally, i.e., as they are read into main memory.

As future work, we think it is worth exploring further optimizations in our implementation to enhance
the encoding throughput. An interesting practical problem is to design different encoding techniques with
a minimal number of disk accesses for very large files, i.e., those for which the parity blocks do not fit into
main memory. On the theoretical side, we leave open the problems of designing efficient POR protocols
that support file updates, as well as publicly verifiable PORs.

18

References
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data possession

at untrusted stores. In Proc. ACM CCS, pages 598–609, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data possession, 2008.
IACR ePrint manuscript 2008/114.

[3] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In
Proc. CRYPTO ‘04, pages 273–289. Springer, 2004. LNCS vol. 3152.

[4] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In Proc. CT-RSA ‘02, pages 114–130. Springer,
2002. LNCS vol. 2271.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories. Algorith-
mica, 12(2/3):225–244, 1994.

[6] R. Curtmola, O. Khan, and R. Burns. Robust remote data checking. In Proc. 4th ACM Workshop on Storage
Security and Survivability (StorageSS), 2008.

[7] D.L.G. Filho and P.S.L.M. Barreto. Demonstrating data possession and uncheatable data transfer, 2006. IACR
eArchive 2006/150. Referenced 2008 at http://eprint.iacr.org/2006/150.pdf.

[8] O. Goldreich. Foundations of cryptography, Volume I: Basic tools. Cambridge University Press, 2001. First
Edition.

[9] O. Goldreich. Foundations of cryptography, Volume II: Basic applications. Cambridge University Press, 2004.
First Edition.

[10] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforcing communication and storage complexity.
In M. Blaze, editor, Proc. Financial Cryptography ‘02, pages 120–135. Springer, 2002. LNCS vol. 2357.

[11] P. Gopalan, R.J. Lipton, and Y.Z. Ding. Error correction against computationally bounded adversaries, April
2004. Manuscript.

[12] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In Proc. ACM CCS, pages 584–597, 2007.

[13] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A cooperative Internet backup scheme. In
Proc. USENIX Annual Technical Conference, General Track 2003, pages 29—41, 2003.

[14] R. J. Lipton. A new approach to information theory. In Proc. 11th Annual Symposium on Theoretical Aspects of
Computer Science, pages 699–708, 2004.

[15] M. Luby. LT codes. In Proc. Symposium on Foundations of Computer Science (FOCS), pages 271–282. IEEE,
2002.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In
Proc. Symposium on Theory of Computation (STOC), page 150159. ACM, 1997.

[17] P. Maymounkov. On-line codes. Technical Report TR2002-833, Computer Science Department at New York
University, November 2002.

[18] S. Micali, C. Peikert, M. Sudan, and D. Wilson. Optimal error correction against computationally bounded noise.
In Proc. TCC, pages 1–16. Springer, 2005. LNCS vol. 3378.

[19] M. Naor and G. N. Rothblum. The complexity of online memory checking. In Proc. 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 573–584, 2005.

[20] J. Patarin. Improved security bounds for pseudorandom permutations. In Proc. ACM CCS, pages 142–150, 1997.

[21] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes. MIT Press, 1972. Second Edition.

[22] H. Shacham and B. Waters. Compact proofs of retrievability. Proc. Asiacrypt 2008.

[23] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan. Auditing to keep online storage services honest, 2007.
Presented at HotOS XI, May 2007.

[24] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 52(6):2551–2567, 2006.

19

A Security Analysis

Theorem 2 characterizes the security properties of the new protocol. We give first a brief overview of the
security analysis, and then present the full proof.

We assume that our adversary is an ε-adversary, i.e., it corrupts a fraction ε of the challenge space, and
ε is smaller than the error correction capability of the inner code. Our goal is to prove that we are able to
extract the file correctly by interacting with such an adversary. Let C be the set of challenges selected in
the extraction algorithm. By our majority decoding procedure in the extraction algorithm, a block is not
correctly recovered when a large majority of the challenges in C containing that block is corrupted. We can
thus build a mapping between corrupted challenges and corrupted blocks and we can use a simple counting
argument to upper bound the fraction of corrupted blocks as a function of ε. We also need to ensure that the
maximum fraction of block corruptions is within the error correction capability of the outer code.

Once we set the maximum block error rate ε′, we bound the probability that the file can not be correctly
extracted (i.e., 1−γ) as the probability that at least one of the d t

ne stripes of F has more than d2
2 corruptions

(and, thus, exceeds the error correction capability of the outer code). In our decoding algorithm, we pick a set
of challenges C of size α t

v . Thus, we have to account in our bound on the (small) probability depending on
α that some blocks are not covered in C (they are treated as erasures in the outer code decoding procedure).

Theorem 2 Assume that the encryption scheme is IND-CPA secure, the family PRP is pseudorandom
and the MAC algorithm is unforgeable. For any 0 < ε ≤ d1

2w , if there exists an ε′ for which 0 <

ε′ < d2
4n − e−α

4 and [1 − (1 − ε′)v](1
2 + δ) = 2εw

d1
, our scheme is a (ε, γ)-secure POR scheme for

γ = 1− d t
nee

d2
2
−2nε′−n

2
e−α

(
d2

4nε′+ne−α

)− d2
2 .

Proof:
We assume in the proof that the cryptographic primitives are ideal, i.e., ciphertexts reveal no information

about plaintexts, the output of a pseudorandom permutation from family PRP is random, and an adversary
is unable to forge a MAC for a new message. Let 0 < ε ≤ d1

2w and assume that the client is dealing with
an ε-adversary. We bound the probability that the file is not correctly extracted, after the client performs the
extract algorithm using a set of challenges C of size NC . We proceed in two steps, following the two phases
of the extract algorithm.

A.1 Decoding using the inner error-correcting code

After the first phase of the extract algorithm, the probability that Di = Φ for a given block i is bounded by(
1 − v

t

)NC=
(
1 − v

t

)α t
v≈ e−α. We call such a block an erasure. We bound below the probability that the

client outputs an incorrect decoding for a given block, assuming that the decoding set for that block is not
empty.

First, we define a corrupted challenge (i1, . . . , iv) in space C to be such that at least d1
2 out of the w

challenges (i1, . . . , iv, u), u ∈ [1, w] are corrupted. A corrupted challenge adds an incorrect decoding to
each set Dis , for s ∈ [1, v] in the extract algorithm. Let us bound the number Tcorr of corrupted challenges.

If we denote by εc =
∑w

u=1 εcu the number of corrupted challenges in space C × [1, w] containing c,
then a challenge c is corrupted in space C if εc > d1

2 . If Tcorr challenges are corrupted in space C, it follows
that at least d1

2 Tcorr challenges are corrupted in space C × [1, w]. Then d1
2 Tcorr ≤

∑
c∈C εc = εwNC , and we

can bound Tcorr as Tcorr ≤ min(NC , 2εwNC
d1

) = 2εwNC
d1

, since ε ≤ d1
2w .

Since we are using majority decoding for extraction, in order to corrupt a block in the first step of
extract, the adversary needs to corrupt at least a fraction 1

2 + δ of all the challenges in space C that contain
that block. The adversary’s goal is to corrupt as many blocks as she could by corrupting few challenges so

20

that it remains undetected by the client. However, since we force the adversary to reply incorrectly to at
most a fraction ε of all challenges, we could give an upper bound on the fraction ε′ of all blocks that the
adversary can corrupt.

Let ε′ be the fraction of blocks corrupted by the adversary. Thus, out of the t file blocks, z = ε′t are
corrupted (or black) and t − z are correct (or white). The adversary’s strategy is to answer incorrectly a
sufficient fraction (i.e., 1

2 + δ) of the challenges that contain at least one black block. Given that in the
extraction algorithm we choose NC challenges uniformly at random from the challenge space, we could
compute the expected number of challenges that need to be corrupted in the extraction algorithm.

Let Xi be an indicator random variable taking value 1 if challenge i has at least one black block, and
value 0, otherwise. Then Pr[Xi = 1] = 1 − (

1 − z
t

)v. If X = (1
2 + δ)

∑NC
i=1 Xi, then X is an upper

bound on the number of corrupted challenges in the extraction algorithm’s first phase. We could compute
E(X) = NC [1− (1− ε′)v](1

2 + δ).
But the expected number of challenges answered incorrectly by the adversary in the extraction algorithm

needs to be smaller than the number of challenges that are corrupted in space C:

NC [1− (1− ε′)v](
1
2

+ δ) = E(X) ≤ Tcorr ≤ 2εwNC
d1

.

It follows that ε′ satisfies [1−(1−ε′)v](1
2 +δ) ≤ 2εw

d1
. In the worst-case, the adversary corrupts the maximum

number of file blocks, thus we consider the maximum ε′ that satisfies the previous inequality, i.e., the one
for which [1− (1− ε′)v](1

2 + δ) = 2εw
d1

. Following the theorem conditions, we assume that there exists such

an ε′ for which, in addition, 0 < ε′ < d2
4n − e−α

4 .

A.2 Decoding using the outer layer code

In the second step, the client is dealing with an adversary that corrupts a fraction ε′ of the file blocks and the
“scrambled” parity blocks of the inner error-correcting code. In addition, a small fraction of blocks are not
covered in the challenge set constructed in the first phase. We treat these blocks as erasures. Our goal is to
bound the probability that the file can not be correctly extracted in the second phase.

F ′ (a codeword in the outer code) consists of the original file F of size m, and the permuted and
encrypted error-correcting information, of size t − m. Assuming a length-preserving encryption scheme
is used for encrypting the error-correcting information, we know that the number of stripes is equal to
d t

ne = dm
k e. Let R be a stripe of n blocks in file F ′. Stripe R consists of k blocks in the original file (the

first m blocks of F ′) and n− k blocks of error-correcting information (the last t−m blocks of F ′).
We bound the probability that stripe R can not be fully extracted. Each block in the stripe is either

an erasure or has been reconstructed in phase one. There is a small probability, bounded by e−α, that a
given block is not included in the challenge set C, and, thus, is an erasure. Let Y1, . . . , Yn be indicator
random variables for block erasures in stripe R. We define Yi = 1 if block i from stripe R is not included
in the challenge set in phase one, and Yi = 0, otherwise, for i ∈ [1, n]. Then, Pr[Yi = 1] ≤ e−α and, if
Y =

∑n
i=1 Yi, E(Y) ≤ ne−α.

We know that the adversary corrupts at most z = ε′t blocks out of the t blocks in file F ′, but we do
not know how the adversary splits the corrupted blocks among the original file (the left side) and the error-
correcting information (the right side). We could, however, upper bound the number of corrupted blocks on
each side with z.

Let Z1, . . . , Zk be indicator random variables for corruptions in stripe R on the left side, and Zk+1, . . . , Zn

indicator random variables for corruptions in stripe R on the right side. We define Zi = 1 if block i from
stripe R is corrupted in phase one, and Zi = 0 otherwise, for i ∈ [1, n]. Since the left and right sides of
the file are permuted with a secret key, we know that the adversary has no better chance than spreading the

21

corruptions in each side independently. Thus, Pr[Zi = 1] ≤ z
m , for i ∈ [1, k] and Pr[Zi = 1] ≤ z

t−m , for
i ∈ [k + 1, n]. Moreover, we could upper bound Zi with independent Bernoulli random variables, whose
sum has mean k z

m + (n− k) z
t−m = 2z

d t
n
e = 2nε′. Denote Z =

∑n
i=1 Zi. Then E(Z) ≤ 2nε′.

Stripe R is corrupted if Y + 2Z exceeds the distance d2 of the outer layer error-correcting code. We
apply Chernoff bounds to bound the probability that stripe R can not be correctly extracted:

Pr
[

Y
2 + Z > d2

2

]
≤ Pr

[
Y
2 + Z > (1 + δ2)(2nε′ + n

2 e−α)
]
< e

d2
2
−2nε′−n

2
e−α

(
d2

4nε′+ne−α

)− d2
2 = B.

for δ2 = d2
4nε′+ne−α − 1 > 0.

Now, the probability that extract is not successful is bounded by the number of stripes in F ′ times the
probability that a given stripe is not extracted successfully, which is bounded by d t

neB. This effectively
proves that our system is an (ε, γ) POR proof for γ = 1− d t

neB.

Remark For a given fraction ε of corrupted challenges, the maximum block error rate ε′ is determined by
the parameters of the inner code, in particular the ratio d1

w . The smaller ε′, the better our security bound (i.e.,
γ is closer to 1). For a fixed ε′, and assuming a fixed codeword size n for the outer code, there are still two
degrees of freedom for our security bound. First, the bound gets better when the distance d2 of the outer
code increases, at the expense of an increased storage overhead for the encoded file. Second, we obtain a
better bound by increasing α, the average number of decodings for each file block, at the expense of a more
expensive decoding algorithm. The reason is that, as α increases, the probability that a certain block is not
selected in challenge set C is reduced, and, thus, the outer code needs to recover from fewer erasures.

B Adversarial Error-Correcting Codes

The use of cryptography to improve the error resilience of error-correcting codes has received somewhat
limited attention in the literature. Lipton [14] first proposed a model of computationally bounded channels
for error-correcting codes. In an unpublished manuscript, Gopalan, Lipton, and Ding [11] proposed the
technique of “code scrambling,” whereby a codeword is permuted and encrypted under a secret key to
reduce a computationally-bounded adversarial noisy channel to a random one. (JK uses essentially this
idea in conjunction with codeword striping.) Stronger results were obtained by Micali, Peikert, Sudan, and
Wilson [18], who proposed a public-key construction in which messages are coupled with digital signatures;
signature verification permits a receiver to pick out correct messages after list decoding. Their construction
can correct an error rate of 1

2 − γ for any constant γ > 0 over binary channels (double the classical bound).
These previous papers have proposed specific constructions and analyzed their error resilience asymp-

totically with respect to the code rate. Our goal in this paper is somewhat different. We are not seeking to
exploit computational assumptions on the channel to achieve better error-resilience bounds. Rather, in im-
plementing our POR construction, our aim is to use cryptography to construct more practical codes within
classical error-correcting bounds. Consequently, we are interested in error-resilience concretely derived
from code parameters. Additionally, unlike previous work, it is useful for us to consider correction of error
rates with non-negligible probability of decoding failure. (We treat probabilities asymptotically with respect
to cryptographic key lengths, though.) We therefore require a new definition.

Recall that in our POR construction, we apply an adversarial error-correcting code exclusively in the
outer code. The inner code uses an ordinary error-correcting code.

B.1 Definition

We define an (n, k)-adversarial error-correcting code AECC as a public key space PK, a private key
space SK, an alphabet Σ, and a triple of functions: (1) a probabilistic function keygen : 1l → K =

22

(sk, pk) ∈ SK×PK; (2)a deterministic function encode : K×Σk → Σn; and (3) a deterministic function
decode : K × Σn → Σk.

A secret-key adversarial code is one in which PK = φ. A public-key adversarial code is one in which
encode gets secret input φ. Letting Γ denote the set of outputs generated by the oracle encode we define the
following experiment:

Experiment ExpA,AECC[l]
K = (sk, pk) ← keygen(1l);
(c, c′) ← Adecode(K,·),encode(K,·)(pk);
if decode(K, c) 6= decode(K, c′) then

output |c− c′|;
else

output ∞;
The adversary may experiment arbitrarily with the oracle decode, but does not have direct access to sk. The
output is the Hamming distance between a pair of codewords (c, c′) selected by A that decode to different
messages. The aim of A in our security definition is to find such a pair of codewords (c, c′) for which |c−c′|
is as small as possible.

Definition 2 AECC is a (β, δ)-bounded adversarial error-correcting code if Pr[ExpA,AECC[l] ≤ βn] − δ
is negligible in l for any adversary A polynomially bounded in l.

Remarks For our POR construction, this definition is slightly stronger than we require. In a POR, the
target codeword c is output by the user / verifier who stores F̃ . That is, it must be output by the oracle
decode, rather than constructed existentially by A.

An interesting problem seems to arise when sk is made public, i.e., when there are no secret keys. Is it
possible for such an “open” adversarial code to correct an error rate ε that exceeds the correctable error rate
for an unbounded channel?

B.2 Constructions

We first prove that code SA-ECC from Section 4.2 is secure according to our definition.

Proposition 1 With the parameters from Theorem 2, code SA-ECC is an (2ε′ + e−α

2 , B) adversarial code.

Proof: Let β = 2ε′ + e−α

2 and assume that the adversary in experiment ExpA,AECC from Definition 2
outputs two codewords c and c′ at distance at most βt. It follows that there is at least one stripe for which
the corresponding codewords in code ECCout are at distance at most βt

d t
n
e = βn. We know that βn < d2

2

from the conditions of the theorem, and this implies that the stripe can not be successfully recovered. But
we have bounded in Theorem 2 the probability of unsuccessful decoding of a given stripe by B. This proves
that the outer layer code is an (2ε′ + e−α

2 , B) adversarial error-correcting code.
Besides the adversarial code proposed here, there are other adversarial code constructions in the litera-

ture. By applying integrity protection to segments of F , it is possible in effect to convert an ordinary erasure
code into an adversarial error-correcting code. Lillibridge et al. [13] and Naor and Rothblum [19] effectively
propose the application of MACs to file blocks. This approach can yield an adversarial error-correcting code
with a reduced rate.

The special innovation underlying the outer code in SW is what might be viewed as a “homomorphic”
MAC scheme, one for which the set of MACs over b blocks is o(b) (at the expense of a somewhat larger
secret key size). This MAC scheme is coupled with an erasure code to achieve an adversarial error-correcting
code. SW also propose a public-key adversarial error-correcting code based on aggregate signatures.

23

