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Abstract. In this paper we propose a new cryptanalytic method against
block ciphers, which combines both algebraic and statistical techniques.
More specifically, we show how to use algebraic relations arising from dif-
ferential characteristics to speed up and improve key-recovery differential
attacks against block ciphers in some situations. To illustrate the new
technique, we apply it to reduced round versions of the cipher Present,
an ultra lightweight block cipher proposed at CHES 2007, particularly
suitable for deployment in RFID tags.

1 Introduction

The two most established cryptanalytic methods against block ciphers are linear
cryptanalysis [20] and differential cryptanalysis [2]. These attacks are statistical
in nature, in which the attacker attempts to construct probabilistic patterns
through as many rounds of the cipher as possible, in order to distinguish the
cipher from a random permutation, and ultimately recover the key. Due to their
very nature, these attacks require a very large number of plaintext–ciphertext
pairs, ensuring that (usually) they rapidly become impractical. In fact, most
modern ciphers have been designed with these attacks in mind, and therefore do
not generally have their security affected by them.

A new development in block cipher cryptanalysis are the so-called algebraic
attacks [12, 21, 7]. In contrast to linear and differential cryptanalysis, algebraic
attacks attempt to exploit the algebraic structure of the cipher. In its most
common form, the attacker expresses the encryption transformation as a large
set of multivariate polynomial equations, and subsequently attempts to solve the
system to recover information about the encryption key.

The proposal of algebraic attacks against block ciphers has been the source
of much speculation; while a well-established technique against some stream
ciphers constructions [11], the viability of algebraic attacks against block ciphers
remains the subject to debate. On one hand these attack techniques promise to
allow the cryptanalyst to recover secret key bits given only one or very few
plaintext–ciphertext pairs. This is due to the fact that algebraic attacks do not
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rely on probabilistic properties of the cipher. On the other hand, the runtime of
algebraic attacks against block ciphers is not well understood, and it is currently
not clear whether algebraic attacks can cryptanalyse any proposed block cipher
faster than other more established techniques.

A promising approach however is to combine both statistical and algebraic
techniques in block cipher cryptanalysis. In fact, many proposed algebraic ap-
proaches already involve statistical components. For instance, the equation sys-
tems usually considered for the AES [21, 7], use the inversion equation xy = 1 for
the S-Box. While this equation only holds with probability p = 255/256, it may
well offer some advantages when compared with the correct equation x254 = y
representing the S-Box (which due to its very high degree, is usually consid-
ered impractical). Further recent examples include key bit guesses [9], the use of
SAT-solvers [1] and the Raddum-Semaev algorithm [22] for solving polynomial
equations. In this paper we propose a new attack technique that combines results
from algebraic and differential cryptanalysis.

The paper is structured as follows. First, we briefly describe differential and
algebraic cryptanalysis and give the basic idea of the attack in Section 2. We
then describe the block cipher Present in Section 3 and existing attacks against
a reduced round version of Present (Section 3.2). In Section 4 we describe
the application of our new attack technique against reduced round versions of
Present. We give a brief discussion of the attack and possible extensions in
Section 5.

2 Overview of the New Attack Technique

The two building blocks of our proposed attack are differential and algebraic
cryptanalysis.

2.1 Differential Cryptanalysis

Differential cryptanalysis was first introduced by Eli Biham and Adi Shamir at
Crypto’90 [3], and has since been successfully used to attack a wide range of
block ciphers. In its basic form, the attack can be used to distinguish a n-bit
block cipher from a random permutation as follows: by considering the distri-
bution of output differences for the non-linear components of the cipher (e.g.
the S-Box), the attacker may be able to construct differential characteristics
P

′ ⊕ P ′′
= ∆P → ∆Cr = C

′

r ⊕ C
′′

r for a number of rounds r that are valid with
probability p. If we have p � 2−n, then by querying the cipher with a large
number of plaintext pairs with prescribed difference ∆P , the attacker may be
able to distinguish the cipher by counting the number of pairs with the output
difference predicted by the characteristic.

By modifying the attack, one can use it to recover key information. Instead
of characteristics for the full cipher, the attacker considers characteristics valid
for one (or two) rounds shorter. Again, if such characteristics exist with non-
negligible probability, the attacker can guess some key bits of the last round,



partially decrypt the known ciphertexts, and verify if the result matches the one
predicted by the characteristic. Candidate (last round) keys are counted, and
as random noise is expected for wrong key guesses, eventually a peak may be
observed in the candidate key counters, pointing to the correct round key1.

Note that due to its statistical nature, differential cryptanalysis requires a
very large number of plaintext–ciphertext pairs (for instance, approximately 247

chosen plaintext pairs are required to break DES [4]). Many extensions and
variants of differential cryptanalysis exist, such as Boomerang attack [23] and
truncated and higher-order differentials [19]. The technique is however very well
understood, and most modern ciphers are designed to resist to differential crypt-
analysis. This is often achieved by carefully selecting the cipher’s non-linear op-
erations and diffusion layer (the AES is a prime example of this approach [13]).

2.2 Algebraic Cryptanalysis

Algebraic cryptanalysis against block ciphers is an attack technique that has
recently received a lot of attention, particularly after it was proposed in [12]
against the AES and Serpent block ciphers. In its basic form, the attacker at-
tempts to express the cipher as a set of low degree (often quadratic) equations,
and then solve the resulting system. As these systems are usually very sparse,
overdefined, and structured, it is conjectured that they may be solved much
faster than generic non-linear equation systems. Several algorithms have been
used and/or proposed to solve these systems including the Buchberger algorithm,
XL and variants [10, 26, 12] , J-C Faugère’s F4 and F5 algorithms [14, 15], and the
Raddum-Semaev algorithm [22]. However, these methods have had so far limited
success in targeting modern block ciphers, and to the authors’ best knowledge,
no modern block cipher, with practical relevance, has been successfully attacked
using algebraic cryptanalysis faster than with other techniques.

2.3 Algebraic Techniques in Differential Cryptanalysis

The first idea in extending algebraic cryptanalysis is to use more plaintext–
ciphertext pairs to construct the equation system. Indeed, given two equation
systems F ′ and F ′′ for two plaintext–ciphertext pairs (P ′, C ′) and (P ′′, C ′′)
under same encryption key K, we can simply combine these equation systems
to form a system F = F ′ ∪ F ′′. Note that while F ′ and F ′′ share the key
and key schedule variables, they do not share most of the state variables. Thus
by considering two plaintext–ciphertext pairs the cryptanalyst gathers twice as
many equations, involving however many new variables. Experimental evidence
indicates that this technique may often help solving a system of equations at
least up to a certain number of rounds [16].

The second step is to consider probabilistic relations that may arise from
differential cryptanalysis. This gives rise to the Attack-A described below.
1 In some variants, as described in [4], no candidate key counters are required; see

Section 5 for a brief discussion of this attack.



Attack-A. For the sake of simplicity, we assume the cipher is a SP-Network,
which iterates layers of non-linear transformations (e.g. S-Box operations) and
affine transformations. Now consider a differential characteristic for a number
of rounds ∆ = (δ0, δ1, . . . , δr), where U ′i−1 ⊕ U ′′i−1 = δi−1 → δi = U ′i ⊕ U ′′i is
a one-round difference arising from round i and valid with probability pi. We
can thus assume that the characteristic ∆ is valid with probability p =

∏
pi.

Assuming that r is close to the full number of rounds Nr, then a “folk theorem”
[23] in differential cryptanalysis states that a cipher is broken if p is large enough
such that p� 2−n, where n = min(blocksize, keysize).

Note that each one-round difference gives rise to equations relating the input
and output pairs for active S-Boxes. Indeed, let X ′i,j and X ′′i,j denote the j-th
bit of the input to an S-Box in round i for the systems F ′ and F ′′, respectively.
Similarly, let Y ′i,j and Y ′′i,j denote the corresponding output bits. Then we have
that the expressions

X ′i,j +X ′′i,j = ∆Xi,j → ∆Yi,j = Y ′i,j + Y ′′i,j ,

where ∆Xi,j , ∆Yi,j are known values predicted by the characteristic, are valid
with some non-negligible probability q. Similarly, for non-active S-Boxes (that
is, S-Boxes that are not involved in the characteristic ∆ and therefore have
input/output difference zero), we have the relations

X ′i,j +X ′′i,j = 0 = Y ′i,j + Y ′′i,j

also valid with a non-negligible probability.
Now if we consider the equation system F = F ′ ∪ F ′′, we can combine F

and all such linear relations arising from the characteristic ∆. This gives rise
to an equation system F which holds with probability p. If such a system is
solved for approximately 1/p pairs of plaintext–ciphertext, we expect at least
one non-empty solution, which should yield the encryption key. The benefit of
this approach is the we expect the system F to be easier to solve than the
original system F ′ (or F ′′), because many linear constrains were added without
adding any new variables. However, we do not know a priori how difficult it
will be to solve the system approximately 1/p times; we would need to perform
experiments to learn the exact performance of the attack for specific ciphers.
Yet we are inclined to believe that this approach may offer advantages when
compared to conventional algebraic attacks, especially in situations where high
probability characteristics exist (which may however not be valid for enough
rounds to allow conventional differential attacks to be successful).

Attack-B. When performing differential cryptanalysis the attacker is required
to construct differential characteristics ∆ that are valid for a large number of
rounds r and with non-negligible probability p. By encrypting a large number of
plaintext pairs, the attacker uses right pairs (i.e. pairs of plaintext that satisfy
the characteristic ∆) and their predicted output value to verify key bit guesses.
Block cipher designers protect against differential cryptanalysis by ensuring that



if such differential characteristics exist, then r � Nr, where Nr is the number of
rounds of the full cipher. This ensures that backward key guessing is impractical.

Now, assume that we have a SP-network, a differential characteristic ∆ =
(δ0, δ1, . . . , δr) valid for r rounds with probability p, and (P ′, P ′′) a right pair
for ∆ (so that δ0 = P ′ ⊕ P ′′). For simplicity, let us assume that only the i-
th S-Box is active in round 1, with input X ′i and X ′′i for the plaintext P ′ and
P ′′ respectively, and that there is a key addition immediately before the S-Box
operation, that is

S(P ′i ⊕K0,i) = S(X ′i) = Y ′i and S(P ′′i ⊕K0,i) = S(X ′′i ) = Y ′′i .

The S-Box operation S can usually be described by a (vectorial) Boolean func-
tion, expressing each bit of the output Y ′i as a polynomial function (over F2) on
the input bits of X ′i and K0,i. If (P ′, P ′′) is a right pair, then the polynomial
equations arising from the relation ∆Yi = Y ′i ⊕Y ′′i = S(P ′i⊕K0,i)⊕S(P ′′i ⊕K0,i)
give us a very simple equation system to solve, with only the key variables K0,i

as unknowns (and which does not vanish identically because we are considering
nonzero differences, c.f. Section 5). Consequently, if we had an effective distin-
guisher to determine whether (P ′, P ′′) is a right pair, we could learn some bits
of information about the round keys involved in the first round active S-Boxes.

Experimentally, we found that, for some ciphers and up to a number of
rounds, Attack-A can be used as such a distinguisher. More specifically, we no-
ticed that finding a contradiction (i.e. the Gröbner basis equal to {1}) was much
faster than computing the full solution of the system if the system was consistent
(that is, when we have a right pair). Thus, rather than fully solving the systems
to eventually recover the secret key as suggested in Attack-A, the Attack-B pro-
ceeds by measuring the time t it maximally takes to find that the system is
inconsistent (say, using the Buchberger algorithm) and assume we have a right
pair if this time t elapsed without a contradiction. One needs to be able to ex-
perimentally estimate the time t, but for some ciphers this appears to be an
efficient form of attack.

Attack-C. Experimental evidence with Present (c.f. Section 4) indicates that
Attack-B in fact only relies on the differential δ0 → δr rather than the charac-
teristic ∆ when finding contradictions in the systems. In fact, the runtimes for
finding contradictions for a 17-round version with a 14-round differential char-
acteristic did not differ significantly from the runtimes for the same task with
5-round version and 2-round characteristic. This indicates that the computa-
tional difficulty is mostly determined by the difference Nr − r, the number of
“free” rounds. We thus define a new attack (Attack-C ) for which we remove the
equations for all rounds ≤ r.

This significantly reduces the number of equations and variables, and after
these equations are removed we are left with Nr − r rounds for each plaintext–
ciphertext pair to consider; these are related by the output difference predicted
by the differential. As a result, the algebraic computation is essentially equivalent



to solving a related cipher of 2(Nr − r) rounds (from C ′ to C ′′ via the predicted
difference δr) using an algebraic meet-in-the-middle attack [7].

Again, we attempt to solve the system and wait for a fixed time t to find
a contradiction in the system. If no contradiction is found, we assume that
the differential δ0 → δr holds. In contrast to Attack-B, we cannot be certain
about the output difference of the first round active S-Boxes (as the attack
now distinguishes pairs that satisfy differentials rather than characteristics).
However, the attack can be adapted such that we can still recover first round
key bits. Another option is to attempt to solve the resulting smaller system, to
fully recover the encryption key.

To study the viability of these attacks, in the following sections we describe
experiments with reduced-round versions of the block cipher Present.

3 The Block Cipher PRESENT

Present [5] was proposed by Bogdanov et al. at CHES 2007 as an ultra-
lightweight block cipher, enabling a very compact implementation in hardware,
and therefore particularly suitable for RFIDs and similar devices. There are two
variants of Present: one with 80-bit keys and one with a 128-bit keys, de-
noted as Present-80 and Present-128 respectively. In our experiments, we
consider reduced round variants of both ciphers denoted as Present-Ks-Nr,
where Ks ∈ {80, 128} represents the key size in bits and 1 ≤ Nr ≤ 31 represents
the number of rounds.

Present is a SP-network with a blocksize of 64 bits, and both versions have
31 rounds. Each round of the cipher has three layers of operations: keyAddLayer,
sBoxLayer and pLayer. The operation keyAddLayer is a simple subkey addition
to the current state, while the sBoxLayer operation consists of 16 parallel appli-
cations of a 4-bit S-Box given in Table 1. The operation pLayer is a permutation
of wires given by the rule that the bit at position s · j+ i (0 ≤ j < B, 0 ≤ i < s)
is moved to position B · i+ j, where s = 4 is the S-Box width and B = 16 is the
number of parallel S-Boxes.

Table 1. The S-Box Table

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

In both versions, these three operations are repeated Nr = 31 times. On the
final round, an extra subkey addition is performed. The subkeys are derived from
the user-provided key in the key schedule, which by design decision is also quite
simple and efficient. For the 80-bit variant the user-supplied key is stored in a
key register K and represented as k79k78 . . . k0 . At round i the 64-bit round key
Ki = ki,63ki,62 . . . ki,0 consists of the 64 upmost bits of the current contents of



register K:
Ki = ki,63ki,62 . . . ki,0 = k79k78 . . . k16.

After round key Ki is extracted, the key register k = k79k78 . . . k0 is updated in
the following way:

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

The key schedule for 128-bit keys is quite similar and presented in Appendix II
of [5]. We note that the difference between the 80-bit and 128-bit variants is
only the key schedule. In particular, both variants have the same number of
rounds (i.e. Nr = 31). The cipher designers explicitly describe in [5] the threat
model considered when designing the cipher, and acknowledge that the security
margin may be somewhat tight. Although they do not recommend immediate
deployment of the cipher (especially the 128-bit version), they strongly encourage
the analysis of both versions.

3.1 An Equation System for PRESENT

We give 9 quadratic equations for the Present S-Box:

0 = x1y0 + x0y1 + x1y1 + x0y3 + x1y3 + x0 + x3 + y0 + y2 + 1,
0 = x0y0 + x2y0 + x0y1 + x0y3 + x0 + x1 + x2 + x3 + y0 + y1,

0 = x0y0 + x1y1 + x2y1 + x0y2 + x0 + x1 + x3 + y0 + y1,

0 = x0y1 + x0y2 + x1y2 + x0y3 + x1 + x2 + x3 + y2 + y3,

0 = x0y0 + x0y1 + x1y1 + x0y2 + x2y2 + x0y3 + x2y3 + x0 + x1 + x2 + y1 + 1,
0 = x0y0 + x3y0 + x0y2 + x0y3 + x0 + x1 + y1 + 1,
0 = x1y0 + x0y1 + x1y1 + x3y1 + x0y2 + x2y2 + x1 + x3 + y0 + y1 + y3,

0 = x0y0 + x0y2 + x3y2 + x0y3 + x0 + x2 + y0 + y1 + y3,

0 = x1y0 + x2y2 + x0y3 + x3y3 + x0 + x3 + y0 + y3 + 1.

The degrevlex Gröbner basis for this equation system gives rise to 21 quadratic
equations and one cubic equation and this basis is used for all computations in
this paper. These equations are given in Appendix A.

Each round of Present introduces 2 · 64 new state variables for the input
and output bits of the S-Box and thus we have 128 · Nr state variables for
Present. The 80-bit key schedule has 80 user-provided key variables and 4 new
key variables per round to account for one S-Box in the key schedule per round.
Thus we have

Nv = (128 + 4) ·Nr + 80 = 132 ·Nr + 80



variables. Each round gives rise to 22 ·16 S-Box equations, 64 key addition equa-
tions and 22 key schedule equations. We also have one additional key addition
(64 linear equations) at the end and Nv field equations (i.e. equations of the
form x2

i + xi = 0). Thus we have

Ne = (22 · 16 + 22 + 64)Nr + 64 +Nv = 570 ·Nr + 144

equations. If we use two plaintext–ciphertext pairs, we double the number of
equations and variables for the state variables but not the number of equations
and variables for the key variables2. Thus for Present-80-31 we would have
a system of 8140 variables in 34742 equations if we consider two plaintext–
ciphertext pairs.

3.2 Differential Cryptanalysis of 16 Rounds of PRESENT-80

In the original proposal [5], the designers of Present show that both linear and
differential cryptanalysis are infeasible against the cipher. In [24, 25] M. Wang
provides 24 explicit differential characteristics for 14 rounds of Present. These
are true with probability 2−62 and within the the theoretical bounds provided
by the Present designers. Wang’s attack is reported to require 265 memory
accesses to cryptanalyse 16 rounds of Present-80. We use his characteristics
(see Appendix B for an example of one of these characteristics) to mount our
attack. Furthermore, we also make use of the filter function presented in [24],
which we briefly describe below.

Consider for example the differential characteristic provided in Appendix B.
It ends with the difference δ = 1001 = 9 as input for the two active S-Boxes of
round 15. According to the difference distribution table of the Present S-Box,
the possible output differences are 2, 4, 6, 8, 12 and 14. This means that the
least significant bit is always zero and thus the weight of the output difference
(with the two active S-Box) is at most 6. It then follows from the cipher diffusion
layer that at most six S-Boxes are active in round 16; these S-Boxes are x4, x6,
x8, x10, x12 and x14. Thus we can discard any pair for which the outputs of
round 16 have non-zero difference in the positions arising from the output of
S-Boxes other than the ones listed above. There are thus 10 such S-Boxes, and
we expect to be able to discard 240 pairs using this filter.

Furthermore, it also follows from the cipher diffusion layer that the active
S-Boxes in round 16 (which are at most six, as described above) will have input
difference 1 and thus all possible output differences are 3, 7, 9, 13 (and 0, in case
the S-Box is inactive). Using this filter we can thus discard 16

5

6 = 210.07 pairs
of those considered before. Overall we may discard approximately 250 pairs as
incorrect. We expect to be able to construct a similar filter function for all the
24 differential characteristics presented in [25].

2 If the weight on the difference ∆P is small however, some variables for the first few
rounds may be the same for both systems.



4 Experimental Results

To mount the attacks against reduced-round versions of Present, we gener-
ate systems of equations for pairs of encryptions with prescribed difference as
described in Sections 3.1 and 3.2. Then all computations are performed in the
polynomial ring

F2 [ KNr,0,KNr,1,KNr,2,KNr,3, Y
′
Nr,0, . . . , Y

′
Nr,63, X

′
Nr,0, . . . , X

′
Nr,63,

Y ′′Nr,0, . . . , Y
′′
Nr,63, X

′′
Nr,0, . . . , X

′′
Nr,63, . . . ,K1,0,K1,1,K1,2,K1,3,

Y ′1,0, . . . , Y
′
1,63, X

′
1,0, . . . , X

′
1,63, Y

′′
1,0, . . . , Y

′′
1,63, X

′′
1,0, . . . , X

′′
1,63,

K0, . . . ,K79],

where Xi,j and Yi,j represent the j-th input and output bits, respectively, of the
i-th S-Box application. For the attack we set up the augmented equation system
F as described in Section 2, by adding linear equations for the differentials
predicted by the 14-round characteristic given in the Appendix. For Present
this is equivalent to adding 128 linear equations per round of the form ∆Xi,j =
X ′i,j +X ′′i,j and ∆Yi,j = Y ′i,j +Y ′′i,j where ∆Xi,j and ∆Yi,j are the values predicted
by the characteristic (these are zero for non-active S-Boxes).

To perform the algebraic part of the attack, we use either the Singular
[17] routine groebner with the monomial odering degrevlex or the PolyBoRi
[6] routine groebner basis with the option faugere=True and the monomial
ordering dp asc to compute a Gröbner basis for F . We note the time t this
routine takes to detect a contradiction for a given differential length of r, and
assume we have a pair satisfying the characteristic (or differential, in Attack-C )
if this time t elapsed without a contradiction.

We performed experiments for Attack-B and Attack-C. Runtimes for Attack-
C are given in Table 4 (runtimes for Attack-B are given in Appendix C). The
times were obtained using William Stein’s sage.math.washington.edu com-
puter (1.8Ghz Opteron, 64GB RAM, purchased under National Science Foun-
dation Grant No. 0555776). The attack was implemented in the mathematics
software Sage [18].

If a characteristic ∆ is valid with probability p, then after approximately 1/p
attempts we expect to find a right pair, and can thus set up our smaller systems
for each first round active S-Box. These equation systems are explicitly:

X ′0 = K0 + P ′0, X ′1 = K1 + P ′1, X ′2 = K2 + P ′2, X ′3 = K3 + P ′3,

Y ′0 = X ′0X
′
1X
′
3 +X ′0X

′
2X
′
3 +X ′0 +X ′1X

′
2X
′
3 +X ′1X

′
2 +X ′2 +X ′3 + 1,

Y ′1 = X ′0X
′
1X
′
3 +X ′0X

′
2X
′
3 +X ′0X

′
2 +X ′0X

′
3 +X ′0 +X ′1 +X ′2X

′
3 + 1,

Y ′2 = X ′0X
′
1X
′
3 +X ′0X

′
1 +X ′0X

′
2X
′
3 +X ′0X

′
2 +X ′0 +X ′1X

′
2X
′
3 +X ′2,

Y ′3 = X ′0 +X ′1X
′
2 +X ′1 +X ′3,

X ′′0 = K0 + P ′′0 , X ′′1 = K1 + P ′′1 , X ′′2 = K2 + P ′′2 , X ′′3 = K3 + P ′′3 ,

Y ′′0 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
2X
′′
3 +X ′′0 +X ′′1X

′′
2X
′′
3 +X ′′1X

′′
2 +X ′′2 +X ′′3 + 1,

Y ′′1 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
2X
′′
3 +X ′′0X

′′
2 +X ′′0X

′′
3 +X ′′0 +X ′′1 +X ′′2X

′′
3 + 1,



Y ′′2 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
1 +X ′′0X

′′
2X
′′
3 +X ′′0X

′′
2 +X ′′0X

′′
1X
′′
2X
′′
3 +X ′′2 ,

Y ′′3 = X ′′0 +X ′′1X
′′
2 +X ′′1 +X ′′3 ,

∆Y0 = Y ′0 + Y ′′0 , ∆Y1 = Y ′1 + Y ′′1 , ∆Y2 = Y ′2 + Y ′′2 , ∆Y3 = Y ′3 + Y ′′3 ,

where ∆Yi are the known difference values predicted by the characteristic.
After substitution of P ′i , P

′′
i , ∆Yi and elimination of the variables X ′i, X

′′
i in

the system above, we get an equation system with four equations in the four key
variables. If we compute the reduced Gröbner basis for this system we recover
two relations of the form Ki +Kj(+1) = 0 for two keybits Ki,Kj per S-Box, i.e.
we recover 2 bits of information per first round active S-Box3.

Table 2. Times in seconds for Attack-C

Nr Ks r p #trials Singular #trials PolyBoRi

4 80 4 2−16 10 0.07− 0.09 50 0.05− 0.06
4 80 3 2−12 10 6.69− 6.79 50 0.88− 1.00
4 80 2 2−8 10 28.68− 29.04 50 2.16− 5.07
4 80 1 2−4 10 70.95− 76.08 50 8.10− 18.30

16 80 14 2−62 10 123.82− 132.47 50 2.38− 5.99
16 128 14 2−62 0 N/A 50 2.38− 5.15
16 80 13 2−58 10 301.70− 319.90 50 8.69− 19.36
16 128 13 2−58 0 N/A 50 9.58− 18.64
16 80 12 2−52 0 N/A 5 > 4 hours

17 80 14 2−62 10 318.53− 341.84 50 9.03− 16.93
17 128 14 2−62 0 N/A 50 8.36− 17.53
17 80 13 2−58 0 N/A 5 > 4 hours

4.1 Complexity of the Attacks

To compare with the results of [24], we applied Attack-C against reduced round
versions of Present-80. Using this approach we expect to learn 4 bits of in-
formation about the key for Present-80-16 in (1 ± ε) · 262−50.07 · 6 seconds to
perform the consistency checks using (1 ± ε) · 262 chosen plaintext–ciphertext
pairs, where 6 seconds represents the highest runtime to find a contradiction
we have encountered in our experiments. Even if there are instances that take
slightly longer to check, we assume that this is a safe margin because there are
many shorter runtimes. This time gives a complexity of (1 ± ε) · 262 ciphertext
difference checks and (1± ε) · 211.93 · 6 · 1.8 · 109 ≈ 246 cpu cycles to find a right
pair on the given 1.8 Ghz Opteron CPU. We assume that a single encryption

3 This is as expected, since the probability of the differential used in the first round
S-Box is 2−2; see Lemma 1.



costs at least two cpu cycles per round – one for the S-Box lookup and one for
the key addition – such that a brute force search would require approximately
16 · 2 · 280 ≈ 285 cpu cycles and two plaintext–ciphertext pairs due to the small
blocksize.

In [25], 24 different 14-round differentials were presented, involving the S-
Boxes x0,x1,x2,x12,x13,x14 in the first round, each having either 7 or 15 as
plaintext difference. From these we expect to recover 18 bits4 of key information
by repeating the attack for those S-Box configurations. We can then guess the
remaining 80−18 = 62 bits, and the complete attack has a complexity of 6 · (1±
ε) · 262 filter function applications, 6 · (1± ε) · 246 cpu cycles for the consistency
checks and 262 Present applications to guess the remaining key bits5. The
attack in [24] on the other hand requires 265 memory accesses. While this is a
different metric – memory access – from the one we have to use in this case – cpu
cycles – we can see that our approach has roughly the same time complexity, since
the 262 filter function applications cost at least 262 memory accesses. However,
our attack seems to have a slightly better data complexity because overall six
right pairs are sufficient. When applying the attack against Present-128-16, we
obtain a similar complexity. We note however that for Present-Ks-16, we can
also make use of backward key guessing to recover more key bits. Because we
have distinguished a right pair already we expect the signal to noise ratio to be
quite high and thus expect relatively few wrong suggestions for candidate keys.

Note that we cannot use the filter function for 17 rounds, thus the attack
against Present-80-17 gives a worse performance when compared to exhaustive
key search. However, it may still be applied against Present-128-17. Indeed, we
expect to learn 4 bits of information for Present-128-17 in (1±ε)·262 ·18 seconds
using (1 ± ε) · 262 chosen plaintext–ciphertext pairs. This time is equivalent to
(1±ε)·262·18·1.8·109 ≈ 297 cpu cycles. If this approach is repeated 6 times for the
different active S-Boxes in the Present differentials, we expect to learn 18 bits
of information about the key. We can then guess the remaining 128− 18 = 110
bits and thus have a complexity in the order of 2110 for the attack.

We can also attack Present-128-18 using Attack-C as follows. First note
that the limiting factor for the attack on Present-128-18 is that we run out
of plaintext–ciphertext pairs due to the small blocksize. On the other hand, we
still have not reached the time complexity of 2128 for 128-bit keysizes. One way
to make use of this fact is to again consider the input difference for round 15
and iterate over all possible output differences. As discussed in Section 3.2, the
example differential in Appendix B ends with 9 as input difference for both
active S-Boxes of round 15, and the possible output differences are 2, 4, 6, 8, 12
and 14 (c.f. [24]). Thus we have six possible output differences and two active
S-Boxes in round 15, which result in 36 possible output differences in total.
We expect to learn 4 bits of information about the key for Present-128-18 in

4 We are not able to recover 24 bits because we learn some redundant information.
5 Note that the attack can be improved by managing the plaintext–ciphertext pairs

more intelligently and by using the fact that we can abort a Present trial encryption
if it does not match the known differential.



(1± ε) · 36 · 262 · 18 seconds using (1± ε) · 262 chosen plaintext–ciphertext pairs.
This time is equivalent to (1± ε) · 36 · 262 · 18 · 1.8 · 109 ≈ 2102 cpu cycles. Again,
we can iterate this process six times to learn 18 bits of information about the
key and guess the remaining information with an complexity of approximately
2110.

Note that we were unable to reliably find contradictions if Nr− r ≥ 4 within
4 hours (compared to 18 seconds for three additional rounds).

5 Discussion of the Attack

While the attack has many similarities with conventional differential cryptanaly-
sis, such as the requirement of a high probability differential ∆ valid for r rounds
and the use of filter functions to reduce the workload, there are however some
noteworthy differences. First, Attack-C should require slightly fewer plaintext–
ciphertext pairs for a given differential characteristic to learn information about
the key than conventional differential cryptanalysis, because the attacker does
not need to wait for a peak in the partial key counter. Instead one right pair is
sufficient. Second, the attack recovers more key bits if many S-Boxes are active
in the first round. This follows from our reliance on those S-Boxes to recover key
information. Also note that while a high probability differential characteristic
is required, the attack recovers more bits per S-Box if the differences for the
active S-Box in the first round are of low probability. This is a consequence of
the simple Lemma below:

Lemma 1. Given a differential ∆ with a first round active S-Box with a differ-
ence that is true with probability 2−b, then Attack-B and Attack-C can recover
b bits of information about the key from this S-Box.

Finally, key-recovery differential cryptanalysis is usually considered infeasi-
ble if the differential ∆ is valid for r rounds, and r is much less than the full
number of rounds Nr, since backward key guessing for Nr − r rounds may be-
come impractical. In that case the Attack-C proposed here could possibly still
allow the successful cryptanalysis of the cipher. However, this depends on the
algebraic structure of the cipher, as it may be the case that the time required
for the consistency check is such that the overall complexity remains below the
one required for exhaustive key search.

We note that Attack-C shares many properties with the differential crypt-
analysis of the full 16-round DES [4]. Both attacks are capable of detecting a
right pair without maintaining a candidate key counter array. Also, both attacks
use active S-Boxes of the outer rounds to recover bits of information about the
key once such a right pair is found. In fact, one could argue that Attack-C is a
generalised algebraic representation of the technique presented in [4]. From this
technique Attack-C inherits some interesting properties: first, the attack can be
carried out fully in parallel because no data structures such as a candidate key
array need to be shared between the nodes. Also, we allow the encryption keys
to change during the data collection phase because exactly one right pair is suf-
ficient to learn some key information. However, once we try to learn further key



bits by repeating the attack with different characteristics we require the encryp-
tion key not to change. We note however that while the attack in [4] seems to
be very specific to the target cipher (e.g. DES), Attack-C can in principle be
applied to any block cipher. Another way of looking at Attack-C is to realise
that it is in fact is a quite expensive but exact filter function: We invest more
work in the management of the outer rounds using algebraic techniques.

In the particular case of Present-80-Nr, our attack seems to offer only
marginal advantage when compared with the differential attack presented in [24]:
it should require slightly less data to distinguish a right pair and similar overall
complexity. On the other hand, for Present-128-Nr this attack seems to per-
form better than the one in [24]. As in this case the limiting factor is the data
and not the time complexity of the attack, i.e. we run out of plaintext–ciphertext
pairs before running out of computation time, the attack has more flexibility.
In that situation our attack is able to break two more rounds than the best
published attack against reduced round Present-128.

The use of Gröbner bases techniques to find contradictions in propositional
systems is a well known idea [8]. In the context of cryptanalysis, it is also a
natural idea to try to detect contradictions to attack a cipher. However, in prob-
abilistic approaches used in algebraic attacks, usually key bits are guessed. This
is an intuitive idea because polynomial systems tend to be easier to solve the
more overdefined they are and because the whole system essentially depends on
the key. Thus guessing key bits is a natural choice. However this simplification
seems to bring few benefits to the attacker, and more sophisticated probabilis-
tic approaches have so far been ignored to the authors’ best knowledge. The
method proposed in this paper can thus highlight the advantages of combining
conventional (statistical) cryptanalysis and algebraic cryptanalysis.

Future research might also investigate the use of other well established statis-
tical cryptanalysis techniques in combination with algebraic cryptanalysis such
as linear cryptanalysis (defining a version of Attack-A in this case is straightfor-
ward), higher order and truncated differentials, the boomerang attack or impos-
sible differentials.

We note that this attack may also offer a high degree of flexibility for im-
provements. For example, the development of more efficient algorithms for solv-
ing systems of equations (or good algebraic representation of ciphers that may
result in more efficient solving) would obviously improve the attacks proposed.
For instance, by switching from Singular to PolyBoRi (and reversing the
variable ordering) for Attack-B, we were able to make the consistency check up
to 60 times faster. Another possible set of tools to speed up the consistency
check are SAT-solvers, which have received some cryptanalytic interest recently
[1]. As an illustration, if for instance an attacker could make use of an optimised
method to find contradictions in t� 2128−62 = 266 cpu cycles for Present-128-
20, this would allow the successful cryptanalysis of a version of Present with 6
more rounds than the best known differential, which is considered “a situation
without precedent” by the cipher designers [5]. Unfortunately with the available
computer resources, we are not able to verify whether this is currently feasible.



Finally, as our results depend on experimental data and the set of data we
evaluated is rather small due to the time and memory consuming nature of
our experiments, we make our claims verifiable by providing the source code of
the attack via the first author’s website6. Also, we ran simulations with small
numbers of rounds to verify that the attack indeed behaves as expected. We are
of course aware that it is in general difficult to reason from small scale examples
to bigger instances.

6 Conclusion

We propose a new cryptanalytic technique combining differential cryptanalysis
and algebraic techniques. We show that in some circumstances this technique can
be effectively used to attack block ciphers, and in general may offer some advan-
tages when compared to differential cryptanalysis. As an illustration, we applied
it against reduced versions of Present-80 and Present-128, and showed how it
compared against differential cryptanalysis of the same ciphers. While this paper
has no implications for the security of either Present-80 or Present-128, it
was shown that the proposed techniques can improve upon existing differential
cryptanalytic methods using the same difference characteristics.
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A S-Box Equations for PRESENT

0 = y2x3 + y3x3 + x1x3 + x2x3 + x3,

0 = y0x3 + y3x3 + x1x3 + x2x3 + y0 + y3 + x1 + x2 + x3 + 1,
0 = x1x2 + y3 + x0 + x1 + x3,

0 = x0x2 + y3x3 + x1x3 + x2x3 + y0 + y1 + y3 + x0 + x2 + x3,

0 = y3x2 + y3x3 + x1x3 + y0 + y1 + y3 + x0 + x2 + x3,

0 = y0x2 + y1x2 + y1x3 + y3x3 + y1 + x0 + x1 + x2 + 1,
0 = x0x1 + y3x3 + x1x3 + x2x3 + y1 + y2 + x1 + x2 + x3 + 1,
0 = y3x1 + y3x3 + x2x3 + y1 + y2 + y3 + x0 + x1 + x2 + 1,
0 = y2x1 + y2x2 + y3x3 + x0x3 + x1x3 + y0 + x0 + 1,
0 = y1x1 + y2x2 + y1x3 + x0x3 + x1x3 + y0 + y1 + y2 + y3 + x2 + x3,

0 = y0x1 + y1x2 + y1x3 + x0x3 + x2x3 + y1 + y2 + y3 + x0 + x1 + 1,
0 = y3x0 + y1x2 + y2x2 + y1x3 + y3x3 + x0x3 + x2x3 + y0 + y1 + y2 + x1 + x3,

0 = y2x0 + y1x2 + x0x3 + y0 + y1 + y2 + x1 + x2 + x3,

0 = y1x0 + y1x3 + x0x3 + x1x3 + x2x3 + y0 + y2 + y3 + x0 + x1 + x3 + 1,
0 = y0x0 + y2x2 + y1x3 + x1x3 + y0 + y1 + y3 + x0 + x3,

0 = y2y3 + y1x3 + y3x3 + x0x3 + x2x3 + y0 + y1 + y2 + y3 + x0,

0 = y1y3 + y1x2 + y2x2 + y1x3 + y3x3 + x0x3 + x1x3 + y1 + y3 + 1,
0 = y0y3 + y1x3 + y3x3 + x0x3 + x1x3 + y0 + y2 + x1 + x3 + 1,
0 = y1y2 + y1x3 + x0x3 + x1x3 + y0 + x0 + 1,
0 = y0y2 + y1 + y3 + x3 + 1,
0 = y0y1 + y1x3 + x0x3 + x2x3 + y0 + y1 + y2 + x2 + x3 + 1,
0 = y1x2x3 + y1x2 + y3x3 + x0x3 + x1x3 + x2x3 + y3 + x0 + x1 + x2.



B 14-round Differential Characteristic for PRESENT

Rounds Differences Pr Rounds Difference Pr
I x2 = 7,x14 = 7 1

R1 S x2 = 1,x14 = 1 2−4 R8 S x8 = 9,x10 = 9 2−4

R1 P x0 = 4,x3 = 4 1 R8 P x2 = 5,x14 = 5 1
R2 S x0 = 5,x3 = 5 2−4 R9 S x2 = 1,x14 = 1 2−6

R2 P x0 = 9,x8 = 9 1 R9 P x0 = 4,x3 = 4 1
R3 S x0 = 4,x8 = 4 2−4 R10 S x0 = 5,x3 = 5 2−4

R3 P x8 = 1,x10 = 1 1 R10 P x0 = 9,x8 = 9 1
R4 S x8 = 9,x10 = 9 2−4 R11 S x0 = 4, x8 = 4 2−4

R4 P x2 = 5,x14 = 5 1 R11 P x8 = 1, x10 = 4 1
R5 S x2 = 1,x14 = 1 2−6 R12 S x8 = 9, x10 = 9 2−4

R5 P x0 = 4,x3 = 4 1 R12 P x2 = 5, x14 = 5 1
R6 S x0 = 5,x3 = 5 2−4 R13 S x2 = 1, x14 = 1 2−6

R6 P x0 = 9,x8 = 9 1 R13 P x0 = 4, x3 = 4 1
R7 S x0 = 4,x8 = 4 2−4 R14 S x0 = 5, x3 = 5 2−4

R7 P x8 = 1,x10 = 1 1 R14 P x0 = 9, x8 = 9 1

C Times in seconds for Attack-B

Nr Ks r p #trials Singular #trials PolyBoRi

4 80 4 2−16 20 11.92− 12.16 50 0.72− 0.81
4 80 3 2−12 10 106.55− 118.15 50 6.18− 7.10
4 80 2 2−8 10 119.24− 128.49 50 5.94− 13.30
4 80 1 2−4 10 137.84− 144.37 50 11.83− 33.47

8 80 5 2−22 0 N/A 50 18.45− 63.21

10 80 10 2−44 0 N/A 20 3.24− 3.92
10 80 9 2−40 0 N/A 20 21.43− 26.41
10 80 8 2−34 0 N/A 20 21.73− 38.96
10 80 7 2−30 0 N/A 10 39.27− 241.17
10 80 6 2−26 0 N/A 20 56.30− > 4 hours

16 80 14 2−62 0 N/A 20 43.42− 64.11
16 128 14 2−62 0 N/A 20 45.59− 65.03
16 80 13 2−58 0 N/A 20 80.35− 262.73
16 128 13 2−58 0 N/A 20 81.06− 320.53
16 80 12 2−52 0 N/A 5 > 4 hours
16 128 12 2−52 0 N/A 5 > 4 hours

17 80 14 2−62 10 12, 317.49− 13, 201.99 20 55.51− 221.77
17 128 14 2−62 10 12, 031.97− 13, 631.52 20 94.19− 172.46
17 80 13 2−58 0 N/A 5 > 4 hours
17 128 13 2−58 0 N/A 5 > 4 hours


