
Algebraic Techniques in Differential
Cryptanalysis

Martin Albrecht? and Carlos Cid

Information Security Group,
Royal Holloway, University of London

Egham, Surrey TW20 0EX, United Kingdom
{M.R.Albrecht,carlos.cid}@rhul.ac.uk

Abstract. In this paper we propose a new cryptanalytic method against
block ciphers, which combines both algebraic and statistical techniques.
More specifically, we show how to use algebraic relations arising from dif-
ferential characteristics to speed up and improve key-recovery differential
attacks against block ciphers. To illustrate the new technique, we apply
algebraic techniques to mount differential attacks against Present-128
reduced to 17, 18 and 19 rounds.

1 Introduction

The two most established cryptanalytic methods against block ciphers are linear
cryptanalysis [22] and differential cryptanalysis [3]. These attacks are statistical
in nature, in which the attacker attempts to construct probabilistic patterns
through as many rounds of the cipher as possible, in order to distinguish the
cipher from a random permutation, and ultimately recover the key. Due to their
very nature, these attacks require a very large number of plaintext–ciphertext
pairs, ensuring that (usually) they rapidly become impractical. In fact, most
modern ciphers have been designed with these attacks in mind, and therefore do
not generally have their security affected by them.

A new development in block cipher cryptanalysis are the so-called algebraic
attacks [14, 23, 9]. In contrast to linear and differential cryptanalysis, algebraic
attacks attempt to exploit the algebraic structure of the cipher. In its most
common form, the attacker expresses the encryption transformation as a large
set of multivariate polynomial equations, and subsequently attempts to solve the
system to recover information about the encryption key.

The proposal of algebraic attacks against block ciphers has been the source
of much speculation; while a well-established technique against some stream
ciphers constructions [13], the viability of algebraic attacks against block ciphers
remains subject to debate. On one hand these attack techniques promise to allow
the cryptanalyst to recover secret key bits given only one or very few plaintext–
ciphertext pairs. On the other hand, the runtime of algebraic attacks against

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.



block ciphers is not well understood, and it is so far not clear whether algebraic
attacks can break any proposed block cipher faster than other techniques.

A promising approach however is to combine both statistical and algebraic
techniques in block cipher cryptanalysis. In fact, many proposed algebraic ap-
proaches already involve statistical components. For instance, the equation sys-
tems usually considered for the AES [23, 9], use the inversion equation xy = 1 for
the S-Box. While this equation only holds with probability p = 255/256, it may
well offer some advantages when compared with the correct equation x254 = y
representing the S-Box (which due to its very high degree, is usually considered
impractical). Further recent examples include key bit guesses [11], the use of
SAT-solvers [1] and the Raddum-Semaev algorithm [24] for solving polynomial
equations. In this paper we propose a new attack technique that combines results
from algebraic and differential cryptanalysis.

The paper is structured as follows. First, we briefly describe differential and
algebraic cryptanalysis and give the basic idea of the attack in Section 2. We
then describe the block cipher Present in Section 3 and existing attacks against
a reduced round version of Present (Section 3.1). In Section 4 we describe
the application of our new attack technique against reduced round versions of
Present. We give a brief discussion of the attack and possible extensions in
Section 5.

2 Overview of the New Attack Technique

Since our approach combines differential and algebraic cryptanalysis, we briefly
describe both techniques below.

2.1 Differential Cryptanalysis

Differential cryptanalysis was first introduced by Eli Biham and Adi Shamir
at Crypto’90 [4], and has since been successfully used to attack a wide range
of block ciphers. In its basic form, the attack can be used to distinguish a
n-bit block cipher from a random permutation. By considering the distribu-
tion of output differences for the non-linear components of the cipher (e.g.
the S-Box), the attacker may be able to construct differential characteristics
P

′ ⊕ P ′′
= ∆P → ∆CN = C

′

N ⊕ C
′′

N for a number of rounds N that are valid
with probability p. If p� 2−n, then by querying the cipher with a large number
of plaintext pairs with prescribed difference ∆P , the attacker may be able to
distinguish the cipher by counting the number of pairs with the output difference
predicted by the characteristic. A pair for which the characteristic holds is called
a right pair.

By modifying the attack, one can use it to recover key information. Instead of
characteristics for the full N -round cipher, the attacker considers characteristics
valid for r rounds only (r = N − R, with R > 0). If such characteristics exist
with non-negligible probability the attacker can guess some key bits of the last
rounds, partially decrypt the known ciphertexts, and verify if the result matches



the one predicted by the characteristic. Candidate (last round) keys are counted,
and as random noise is expected for wrong key guesses, eventually a peak may
be observed in the candidate key counters, pointing to the correct round key1.

Note that due to its statistical nature, differential cryptanalysis requires a
very large number of plaintext–ciphertext pairs (for instance, approximately 247

chosen plaintext pairs are required to break DES [5]). Many extensions and
variants of differential cryptanalysis exist, such as the Boomerang attack [26]
and truncated and higher-order differentials [21]. The technique is however very
well understood, and most modern ciphers are designed to resist to differential
cryptanalysis. This is often achieved by carefully selecting the cipher’s non-linear
operations and diffusion layer to make sure that if such differential characteristics
exist, then r � N which ensures that backward key guessing is impractical. The
AES is a prime example of this approach [15].

2.2 Algebraic Cryptanalysis

Algebraic cryptanalysis against block ciphers is an attack technique that has re-
cently received much attention, particularly after it was proposed in [14] against
the AES and Serpent block ciphers. In its basic form, the attacker attempts to
express the cipher as a set of low degree (often quadratic) equations, and then
solve the resulting system. As these systems are usually very sparse, overde-
fined, and structured, it is conjectured that they may be solved much faster than
generic non-linear equation systems. Several algorithms have been used and/or
proposed to solve these systems including the Buchberger algorithm, XL and
variants [12, 29, 14] , the F4 and F5 algorithm [17, 18], and the Raddum-Semaev
algorithm [24]. Another approach is to convert these equations to Boolean ex-
pressions in Conjunctive Normal Form (CNF) and use off-the-shelf SAT-solvers
[2]. However, these methods have had so far limited success in targeting modern
block ciphers, and no public modern block cipher, with practical relevance, has
been successfully attacked using algebraic cryptanalysis faster than with other
techniques.

2.3 Algebraic Techniques in Differential Cryptanalysis

The first idea in extending algebraic cryptanalysis is to use more plaintext–
ciphertext pairs to construct the equation system. Given two equation systems F ′

and F ′′ for two plaintext–ciphertext pairs (P ′, C ′) and (P ′′, C ′′) under the same
encryption key K, we can combine these equation systems to form a system F =
F ′∪F ′′. Note that while F ′ and F ′′ share the key and key schedule variables, they
do not share most of the state variables. Thus the cryptanalyst gathers almost
twice as many equations, involving however many new variables. Experimental
evidence indicates that this technique may often help in solving a system of
equations at least up to a certain number of rounds [19]. The second step is

1 In some variants, as described in [5], no candidate key counters are required; see
Section 5 for a brief discussion of this attack.



to consider probabilistic relations that may arise from differential cryptanalysis,
giving rise to what we call Attack-A.

Attack-A. For the sake of simplicity, we assume the cipher is an Substitution-
Permutation-Network (SP-network), which iterates layers of non-linear trans-
formations (e.g. S-Box operations) and affine transformations. Now consider a
differential characteristic ∆ = (δ0, δ1, . . . , δr) for a number of rounds, where
δi−1 → δi is a one-round difference arising from round i and valid with prob-
ability pi. If we assume statistical independence of one-round differences, the
characteristic ∆ is valid with probability p =

∏
pi. Each one-round difference

gives rise to equations relating the input and output pairs for active S-Boxes.
Let X ′i,j and X ′′i,j denote the j-th bit of the input to the S-Box layer in round
i for the systems F ′ and F ′′, respectively. Similarly, let Y ′i,j and Y ′′i,j denote the
corresponding output bits. Then we have that the expressions

X ′i,j +X ′′i,j = ∆Xi,j → ∆Yi,j = Y ′i,j + Y ′′i,j ,

where ∆Xi,j , ∆Yi,j are known values predicted by the characteristic, are valid
with some non-negligible probability q for bits of active S-Boxes. Similarly, for
non-active S-Boxes (that are not involved in the characteristic ∆ and therefore
have input/output difference zero), we have the relations

X ′i,j +X ′′i,j = 0 = Y ′i,j + Y ′′i,j

also valid with a non-negligible probability.
If we consider the equation system F = F ′ ∪ F ′′, we can combine F and

all such linear relations arising from the characteristic ∆. This gives rise to
an equation system F which holds with probability p. If we attempt to solve
such a system for approximately 1/p pairs of plaintext–ciphertext, we expect
at least one non-empty solution, which should yield the encryption key. For a
full algebraic key recover we expect the system F to be easier to solve than the
original system F ′ (or F ′′), because many linear constrains were added without
adding any new variables. However, we do not know a priori how difficult it will
be to solve the system approximately 1/p times. This system F may be used
however to recover some key information, leading to an attack we call Attack-B.

Attack-B. Now, assume that we have an SP-network, a differential character-
istic ∆ = (δ0, δ1, . . . , δr) valid for r rounds with probability p, and (P ′, P ′′) a
right pair for ∆ (so that δ0 = P ′ ⊕ P ′′ and δr holds for the output of round r).
For simplicity, let us assume that only one S-Box is active in round 1, with input
X ′1,j and X ′′1,j (restricted to this S-Box) for the plaintext P ′ and P ′′ respectively,
and that there is a key addition immediately before the S-Box operation, that is

S(P ′j ⊕K0,j) = S(X ′1,j) = Y ′1,j and S(P ′′j ⊕K0,j) = S(X ′′1,j) = Y ′′1,j .

The S-Box operation S can be described by a (vectorial) Boolean function, ex-
pressing each bit of the output Y ′1,j as a polynomial function (over F2) on the



input bits of X ′1,j and K0,j . If (P ′, P ′′) is a right pair, then the polynomial equa-
tions arising from the relation ∆Y1,j = Y ′1,j⊕Y ′′1,j = S(P ′j⊕K0,j)⊕S(P ′′j ⊕K0,j)
give us a very simple equation system to solve, with only the key variables K0,j

as unknowns (and which do not vanish identically because we are considering
nonzero differences, cf. Section 5). Consequently, if we had an effective distin-
guisher to determine whether (P ′, P ′′) is a right pair, we could learn some bits
of information about the round keys involved in the first round active S-Boxes.

Experimentally, we found that, for some ciphers and up to a number of
rounds, Attack-A can be used as such a distinguisher. More specifically, we no-
ticed that finding a contradiction (i.e. the Gröbner basis equal to {1}) was much
faster than computing the full solution of the system if the system was consistent
(that is, when we have a right pair). Thus, rather than fully solving the systems
to eventually recover the secret key as suggested in Attack-A, the Attack-B pro-
ceeds by measuring the time t it maximally takes to find that the system is
inconsistent2, and assume we have a right pair if this time t elapsed without a
contradiction. One needs to be able to experimentally estimate the time t, but
for some ciphers this appears to be an efficient form of attack.

An alternative form of Attack-B is to recover key bits from the last round.
Assume that the time t passed for a pair (P ′,P ′′), i.e. that we probably found a
right pair. Now, if we guess and fix some subkey bits in the last rounds, we can
check whether the time t still passes without a contradiction. If this happens, we
assume that we guessed correctly. However, for this approach to work we need
to guess enough subkey bits to detect a contradiction quickly. An obvious choice
is to guess all subkey bits involved in the last round, which effectively removes
one round from the system.

Attack-C. Experimental evidence with Present (cf. Section 4) indicates that
Attack-B in fact only relies on the differential δ0 → δr rather than the charac-
teristic ∆ when finding contradictions in the systems. The runtimes for finding
contradictions for N = 17 and differential characteristic of length r = 14 did not
differ significantly from the runtimes for the same task with N = 4 and r = 1
(cf. Appendix C). This indicates that the computational difficulty is mostly de-
termined by the difference R = N − r, the number of “free” rounds. We thus
define a new attack (Attack-C ) where we remove the equations for rounds ≤ r.

This significantly reduces the number of equations and variables. After these
equations are removed we are left with R rounds for each plaintext–ciphertext
pair to consider; these are related by the output difference predicted by the
differential. As a result, the algebraic computation is essentially equivalent to
solving a related cipher of 2R − 1 rounds (from C ′ to C ′′ via the predicted
difference δr) using an algebraic meet-in-the-middle attack [9]. This “cipher”
has a symmetric key schedule and only 2R− 1 rounds rather than 2R since the
S-Box applications after the difference δr are directly connected and lack a key
addition and diffusion layer application between them. Thus we can consider
2 Other features of the calculation — like the size of the intermediate matrices created

by F4 — may also be used instead of the time t.



these two S-Box applications as one S-Box application of S-Boxes Si defined
by the known difference δr: Si(xi,...,i+s) = S(S−1(xi,...,i+s) + δr,(i,...,i+s)) for
i ∈ {0, s, . . . , n} and s the size of the S-Box.

Again, we attempt to solve the system and wait for a fixed time t to find
a contradiction in the system. If no contradiction is found, we assume that the
differential δ0 → δr holds. Note that we cannot be certain about the output
difference of the first round active S-Boxes (as the attack distinguishes pairs
that satisfy differentials rather than characteristics). However, the attack can
be adapted such that we can still recover key bits, for instance by considering
multiple right pairs. A second option is to attempt to solve the resulting smaller
system, to recover the encryption key. Alternatively, we can execute the guess-
and-verify step described above.

To study the viability of these attacks, we describe experiments with reduced-
round versions of the block cipher Present.

3 The Block Cipher PRESENT

Present [6] was proposed by Bogdanov et al. at CHES 2007 as an ultra-
lightweight block cipher, enabling a very compact implementation in hardware,
and therefore particularly suitable for RFIDs and similar devices. There are two
variants of Present: one with 80-bit keys and one with a 128-bit keys, de-
noted as Present-80 and Present-128 respectively. In our experiments, we
consider reduced round variants of both ciphers denoted as Present-Ks-N ,
where Ks ∈ {80, 128} represents the key size in bits and 1 ≤ N ≤ 31 represents
the number of rounds.

Present is an SP-network with a blocksize of 64 bits and both versions have
31 rounds. Each round of the cipher has three layers of operations: keyAddLayer,
sBoxLayer and pLayer. The operation keyAddLayer is a simple subkey addi-
tion to the current state, while the sBoxLayer operation consists of 16 parallel
applications of a 4-bit S-Box. The operation pLayer is a permutation of wires.

In both versions, these three operations are repeated N = 31 times. On the
final round, an extra subkey addition is performed. The subkeys are derived from
the user-provided key in the key schedule, which by design is also quite simple
and efficient involving a cyclic right shift, one ore two 4-bit S-Box applications
(depending on the key size) and the addition of a round constant. We note that
the difference between the 80-bit and 128-bit variants is only the key schedule.
In particular, both variants have the same number of rounds (i.e. N = 31). The
cipher designers explicitly describe in [6] the threat model considered when de-
signing the cipher, and acknowledge that the security margin may be somewhat
tight. Although they do not recommend immediate deployment of the cipher
(especially the 128-bit version), they strongly encourage the analysis of both
versions.



3.1 Differential Cryptanalysis of 16 Rounds of PRESENT

In the original proposal [6], the designers of Present show that both linear
and differential cryptanalysis are infeasible against the cipher. In [27, 28] M.
Wang provides 24 explicit differential characteristics for 14 rounds. These hold
with probability 2−62 and are within the theoretical bounds provided by the
Present designers. Wang’s attack is reported to require 264 memory accesses
to cryptanalyse 16 rounds of Present-80. We use his characteristics (see Ap-
pendix B for an example of one of these characteristics) to mount our attack.
Furthermore, we also make use of the filter function presented in [27], which we
briefly describe below.

Consider for example the differential characteristic provided in Appendix B.
It ends with the difference δ = 1001 = 9 as input for the two active S-Boxes of
round 15. According to the difference distribution table of the Present S-Box,
the possible output differences are 2, 4, 6, 8, C and E. This means that the least
significant bit is always zero and the weight of the output difference (with the
two active S-Box) is at most 6. It then follows from pLayer that at most six S-
Boxes are active in round 16. Thus we can discard any pair for which the outputs
of round 16 have non-zero difference in the positions arising from the output of
S-Boxes other than the active ones. There are ten inactive 4-bit S-Boxes, and
we expect a pair to pass this test with probability 2−40.

Furthermore, it also follows from pLayer that the active S-Boxes in round 16
(which are at most six, as described above) will have input difference 1 and thus
all possible output differences are 3, 7, 9, D (and 0, in case the S-Box is inactive).
Thus we can discard any pair not satisfying these output differences for these S-
Boxes. We expect a pair to pass this test with probability 16

5

−6 = 2−10.07. Overall
we expect pairs to path both tests with probability 2−50.07. We expect to be
able to construct a similar filter function for all the 24 differential characteristics
presented in [28].

4 Experimental Results

To mount the attacks, we generate systems of equations F as in Section 2 for pairs
of encryptions with prescribed difference as described in Section 3.1, by adding
linear equations for the differentials predicted by the 14-round characteristic
given in the Appendix. For Present this is equivalent to adding 128 linear
equations per round of the form ∆Xi,j = X ′i,j + X ′′i,j and ∆Yi,j = Y ′i,j + Y ′′i,j
where ∆Xi,j and ∆Yi,j are the values predicted by the characteristic (these are
zero for non-active S-Boxes).

To perform the algebraic part of the attack, we use either Gröbner basis al-
gorithms or a SAT-solver: the Singular 3-0-4-4 [20] routine groebner with the
monomial odering degrevlex, the PolyBoRi 0.5rc6 [8] routine groebner basis
with the option faugere=True and the monomial ordering dp asc, or Min-
iSat 2.0 beta [16]. We note the maximal time t these routines take to detect
a contradiction for a given differential length of r, and assume we have a pair



satisfying the characteristic (or differential, in Attack-C ) if this time t elapsed
without a contradiction.

We performed experiments for Attack-B and Attack-C. Runtimes for Attack-
B and Attack-C are given in Appendix C and D respectively. We note that
Attack-C requires about 1GB of RAM to be carried out. The times were obtained
on a 1.8Ghz Opteron with 64GB RAM. The attack was implemented in the
mathematics software Sage [25].

If a characteristic ∆ is valid with probability p, then after approximately 1/p
attempts we expect to find a right pair and can thus set up our smaller systems
for each first round active S-Box. These equations are given in Appendix A.
After substitution of P ′i , P

′′
i , ∆Yi and elimination of the variables X ′i, X

′′
i in the

system in Appendix A, we get an equation system with four equations in the
four key variables. If we compute the reduced Gröbner basis for this system we
recover two relations of the form Ki + Kj(+1) = 0 for two key bits Ki,Kj per
S-Box, i.e. we recover 2 bits of information per first round active S-Box3.

Alternatively, we can recover key bits from the last rounds using the guess-
and-verify step described above.

4.1 PRESENT-80-16

To compare with the results of [27], we can apply Attack-C against reduced
round versions of Present-80. Using this approach we expect to learn 4 bits
of information about the key for Present-80-16 in about 262−50.07 · 6 seconds
to perform the consistency checks using about 262 chosen plaintext–ciphertext
pairs, where 6 seconds represents the highest runtime to find a contradiction we
have encountered in our experiments when using PolyBoRi. Even if there are
instances that take slightly longer to check, we assume that this is a safe margin
because there are many shorter runtimes. This time gives a complexity of about
262 ciphertext difference checks and about 211.93 · 6 · 1.8 · 109 ≈ 246 CPU cycles
to find a right pair on the given 1.8 Ghz Opteron CPU. We assume that a single
encryption costs at least two CPU cycles per round – one for the S-Box lookup
and one for the key addition – such that a brute force search would require
approximately 16 · 2 · 280 = 285 CPU cycles and two plaintext–ciphertext pairs
due to the small blocksize.

In [28], 24 different 14-round differentials were presented, involving the 0th,
1st, 2nd, 12th, 13th and 14th S-Boxes in the first round, each having either
7 or 15 as plaintext difference restricted to one active S-Box. From these we
expect to recover 18 bits4 of key information by repeating the attack for those
S-Box configurations. We can then guess the remaining 80 − 18 = 62 bits, and
the complete attack has a complexity of about 6 ·262 filter function applications,
about 6·246 CPU cycles for the consistency checks and 262 Present applications

3 This is as expected, since the probability of the differential used in the first round
S-Box is 2−2; see Lemma 1.

4 We are not able to recover 24 bits because we learn some redundant information.



to guess the remaining key bits5. (Alternatively, we may add the 18 learned linear
key bit equations to any equation system for the related cipher and attempt to
solve this system.) The attack in [27] on the other hand requires 264 memory
accesses. While this is a different metric — memory access — from the one we
have to use in this case — CPU cycles — we can see that our approach has
roughly the same time complexity, since the 262 filter function applications cost
at least 262 memory accesses. However, our attack seems to have a slightly better
data complexity because overall six right pairs are sufficient. When applying
the attack against Present-128-16, we obtain a similar complexity. We note
however that for Present-Ks-16, we can also make use of backward key guessing
to recover more key bits. Because we have distinguished a right pair already we
expect the signal to noise ratio to be quite high and thus expect relatively few
wrong suggestions for candidate keys.

4.2 PRESENT-128-17

Note that we cannot use the filter function for 17 rounds, thus the attack
against Present-80-17 gives worse performance when compared to exhaustive
key search. However, it may still be applied against Present-128-17. Indeed,
we expect to learn 4 bits of information for Present-128-17 in about 262 · 18
seconds using about 262 chosen plaintext–ciphertext pairs. This time is equiva-
lent to about 262 · 18 · 1.8 · 109 ≈ 297 CPU cycles. If this approach is repeated
6 times for the different active S-Boxes in the Present differentials, we expect
to learn 18 bits of information about the key. We can then guess the remaining
128 − 18 = 110 bits and thus have a complexity in the order of 2110 for the
attack.

A better strategy is as follows. We identify one right pair using 262 · 18 · 1.8 ·
109 ≈ 297 CPU cycles. Then, we guess 64 subkey bits of the last round and fix the
appropriate variables in the equation system for the consistency check. Finally,
we attempt to solve this system again, which is equivalent to the algebraic part of
the 2R attack. We repeat this guess-and-verify step until the right configuration
is found, i.e. the system is not inconsistent. This strategy has a complexity of
297 CPU cycles for identifying the right pair and 264 · 6 · 1.8 · 109 ≈ 298 CPU
cycles to recover 64 subkey bits. Finally, we can either guess the remaining bits
or repeat the guess-and-verify step for 1R to recover another 64 subkey bits.

4.3 PRESENT-128-18

We can also attack Present-128-18 using Attack-C as follows. First note that
the limiting factor for the attack on Present-128-18 is that we run out of
plaintext–ciphertext pairs due to the small blocksize. On the other hand, we
have not yet reached the time complexity of 2128 for 128-bit keysizes. One way
5 Note that the attack can be improved by managing the plaintext–ciphertext pairs

more intelligently and by using the fact that we can abort a Present trial encryption
if it does not match the known differential.



to make use of this fact is to again consider the input difference for round 15
and iterate over all possible output differences. As discussed in Section 3.1, we
have six possible output differences and two active S-Boxes in round 15, which
result in 36 possible output differences in total. We expect to learn 4 bits of
information about the key for Present-128-18 in about 36 · 262 · 18 seconds
using about 262 chosen plaintext–ciphertext pairs. This time is equivalent to
about 36 ·262 ·18 ·1.8 ·109 ≈ 2102 CPU cycles. Again, we can iterate this process
six times to learn 18 bits of information about the key and guess the remaining
information with a complexity of approximately 2110 Present applications.

However, this strategy might lead to false positives for each guessed output
difference. To address this we need to run the brute-force attack for the remaining
110 bits for each possible candidate. Thus the overall complexity of the attack
is in the order of 36 · 2110 Present applications. The final brute-force run will
require for 2-3 plaintext-ciphertext pairs due to the large key size compared
to the blocksize. This hardly affects the time complexity since only candidates
passing the first plaintext-ciphertext pair need to be tested against a second and
potentially third pair and these candidates are few compared to 2110.

The best approach appears to be the guess-and-verify step from the 3R at-
tack, which results in an overall complexity of about 36·1.8·109(262 ·18+264 ·6) ≈
2103 CPU cycles.

Note that we were unable to reliably detect contradictions directly if R =
N − r ≥ 4 within 24 hours (compared to 18 seconds for R = 3).

4.4 PRESENT-128-19

Similarly, we can use the filter function to mount an attack against Present-
128-19 by iterating our attack 264−50.07 = 213.93 times (instead of 36) for all
possible output differences of round 16. The overall complexity of this attack is
about 213.97 · 1.8 · 109 · (18 · 262 + 6 · 264) ≈ 2113 CPU cycles.

5 Discussion of the Attack

While the attack has many similarities with conventional differential cryptanaly-
sis, such as the requirement of a high probability differential ∆ valid for r rounds
and the use of filter functions to reduce the workload, there are however some
noteworthy differences. First, Attack-C requires fewer plaintext–ciphertext pairs
for a given differential characteristic to learn information about the key than con-
ventional differential cryptanalysis, because the attacker does not need to wait
for a peak in the partial key counter. Instead one right pair is sufficient. Second,
one flavour of the attack recovers more key bits if many S-Boxes are active in
the first round. This follows from its reliance on those S-Boxes to recover key
information. Also note that while a high probability differential characteristic
is required, the attack recovers more bits per S-Box if the differences for the
active S-Box in the first round are of low probability. This is a consequence of
the simple Lemma below:



Lemma 1. Given a differential ∆ with a first round active S-Box with a differ-
ence that is true with probability 2−b, then Attack-B and Attack-C can recover
b bits of information about the key from this S-Box.

Finally, key-recovery differential cryptanalysis is usually considered infeasible
if the differential∆ is valid for r rounds, and r is much less than the full number of
rounds N , since backward key guessing for N−r rounds may become impractical.
In that case the Attack-C proposed here could possibly still allow the successful
cryptanalysis of the cipher. However, this depends on the algebraic structure of
the cipher, as it may be the case that the time required for the consistency check
is such that the overall complexity remains below the one required for exhaustive
key search.

We note that Attack-C shares many properties with the differential crypt-
analysis of the full 16-round DES [5]. Both attacks are capable of detecting a
right pair without maintaining a candidate key counter array. Also, both attacks
use active S-Boxes of the outer rounds to recover bits of information about the
key once such a right pair is found. In fact, one could argue that Attack-C is a
generalised algebraic representation of the technique presented in [5]. From this
technique Attack-C inherits some interesting properties: first, the attack can be
carried out fully in parallel because no data structures such as a candidate key
array need to be shared between the nodes. Also, we allow the encryption keys
to change during the data collection phase because exactly one right pair is suf-
ficient to learn some key information. However, if we try to learn further key
bits by repeating the attack with other characteristics we require the encryption
key not to change. We note however that while the attack in [5] seems to be
very specific to the target cipher DES, Attack-C can in principle be applied to
any block cipher. Another way of looking at Attack-C is to realise that it is in
fact is a quite expensive but thorough filter function: we invest more work in the
management of the outer rounds using algebraic techniques.

In the particular case of Present-80-N , our attack seems to offer only
marginal advantage when compared with the differential attack presented in [27]:
it should require slightly less data to distinguish a right pair and similar overall
complexity. On the other hand, for Present-128-N this attack seems to perform
better than the one in [27]. As in this case the limiting factor is the data and not
the time complexity of the attack, i.e. we run out of plaintext–ciphertext pairs
before running out of computation time, the attack has more flexibility.

The use of Gröbner bases techniques to find contradictions in propositional
systems is a well known idea [10]. In the context of cryptanalysis, it is also a
natural idea to try to detect contradictions to attack a cipher. However, in prob-
abilistic approaches used in algebraic attacks, usually key bits are guessed. This
is an intuitive idea because polynomial systems tend to be easier to solve the
more overdefined they are and because the whole system essentially depends on
the key. Thus guessing key bits is a natural choice. However this simplification
seems to bring few benefits to the attacker, and more sophisticated probabilis-
tic approaches seem so far to have been ignored. The method proposed in this
paper can thus highlight the advantages of combining conventional (statistical)



cryptanalysis and algebraic cryptanalysis. By considering differential cryptanal-
ysis we showed how to construct an equation system for a structurally weaker
and shorter related “cipher” which can then be studied independently. To at-
tack this “cipher” algebraic attacks seem to be the natural choice since very few
”plaintext–ciphertext” pairs are available but the “cipher” has few rounds (i.e.
2R− 1). However, other techniques might also be considered.

Future research might also investigate the use of other well established (statis-
tical) cryptanalysis techniques in combination with algebraic cryptanalysis such
as linear cryptanalysis (defining a version of Attack-A in this case is straightfor-
ward), higher order and truncated differentials, the Boomerang attack or impos-
sible differentials.

We note that this attack may also offer a high degree of flexibility for im-
provements. For example, the development of more efficient algorithms for solv-
ing systems of equations (or good algebraic representation of ciphers that may
result in more efficient solving) would obviously improve the attacks proposed.
For instance, by switching from Singular to PolyBoRi for Attack-B, we were
able to make the consistency check up to 60 times faster6. As an illustration of
the forementioned flexibility, if for instance an attacker could make use of an
optimised method to find contradictions in t � 2128−62 = 266 CPU cycles for
Present-128-20, this would allow the successful cryptanalysis of a version of
Present with 6 more rounds than the best known differential, which is con-
sidered “a situation without precedent” by the cipher designers [6]. This task is
equivalent to mount a meet-in-the-middle attack against an 11 round Present-
like cipher with a symmetric key schedule. Unfortunately with the available
computer resources, we are not able to verify whether this is currently feasible.

We ran simulations with small numbers of rounds to verify that the attack
indeed behaves as expected. For instance, when using a 3R Attack-C against
Present-80-6 and Present-80-7 we found right pairs with the expected number
of trials. Also, as expected we saw false positives, i.e. the attack suggested wrong
information. However, a majority vote on a small number of runs (e.g., 3) always
recovered the correct information. We are of course aware that it is in general
difficult to reason from small scale examples to bigger instances.

Finally, as our results depend on experimental data and the set of data we
evaluated is rather small due to the time consuming nature of our experiments,
we make our claims verifiable by providing the source code of the attack online
http://bitbucket.org/malb/algebraic_attacks/src/tip/present.py.

6 Conclusion

We propose a new cryptanalytic technique combining differential cryptanalysis
and algebraic techniques. We show that in some circumstances this technique
can be effectively used to attack block ciphers, and in general may offer some
advantages when compared to differential cryptanalysis. As an illustration, we

6 We did not see any further speed improvement by using e.g. Magma 2.14 [7]



applied it against reduced versions of Present-80 and Present-128. While this
paper has no implications for the security of either Present-80 or Present-128,
it was shown that the proposed techniques can improve upon existing differential
cryptanalytic methods using the same difference characteristics. In particular we
were able to recover key information for Present-128 reduced to 19 rounds. Also
we pointed out promising research directions for the field of algebraic attacks.

Acknowledgements

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under contract ICT-2007-216646
ECRYPT2. We would like to thank William Stein for allowing the use of his
computers7. We also would like to thank Sean Murphy, Matt Robshaw, Ludovic
Perret, Jean-Charles Faugère and anonymous referees for helpful comments.

References

1. Gregory V. Bard. Algorithms for Solving Linear and Polynomial Systems of Equa-
tions over Finite Fields with Applications to Cryptanalysis. PhD thesis, University
of Maryland, 2007.

2. Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polyno-
mials over GF(2) via SAT-Solvers. Cryptology ePrint Archive, Report 2007/024,
2007. Available at http://eprint.iacr.org/2007/024.

3. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

4. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
In Advances in Cryptology — CRYPTO 1990, volume 537 of Lecture Notes in
Computer Science, pages 3–72. Springer Verlag, 1991.

5. Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-round DES.
In Advances in Cryptology — CRYPTO 1992, volume 740 of Lecture Notes in
Computer Science, pages 487–496, Berlin Heidelberg New York, 1991. Springer
Verlag.

6. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, Matthew Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher.
In CHES 2007, volume 7427 of Lecture Notes in Computer Science, pages 450–
466. Springer Verlag, 2007. Available at http://www.crypto.rub.de/imperia/

md/content/texte/publications/conferences/present_ches2007.pdf.
7. Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA Algebra Sys-

tem I: The User Language. In Journal of Symbolic Computation 24, pages 235–265.
Academic Press, 1997.

8. Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner
basis computations with Boolean polynomials. In Electronic Proceedings of MEGA
2007, 2007. Available at http://www.ricam.oeaw.ac.at/mega2007/electronic/

26.pdf.

7 purchased under National Science Foundation Grant No. 0555776 and National Sci-
ence Foundation Grant No. DMS-0821725



9. Carlos Cid, Sean Murphy, and Matthew Robshaw. Algebraic Aspects of the Ad-
vanced Encryption Standard. Springer Verlag, 2006.

10. Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th ACM
Symposium on Theory of Computing, pages 174–183, 1996. Available at http:

//www.cse.yorku.ca/~jeff/research/proof_systems/grobner.ps.

11. Nicolas T. Courtois and Gregory V. Bard. Algebraic Cryptanalysis of the Data
Encryption Standard. In Steven D. Galbraith, editor, Cryptography and Coding
– 11th IMA International Conference, volume 4887 of Lecture Notes in Computer
Science, pages 152–169, Berlin Heidelberg New York, 2007. Springer Verlag. Avail-
able at http://eprint.iacr.org/2006/402.

12. Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations.
In Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 392–407. Springer Verlag, 2000.

13. Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers with
linear feedback. In Advances in Cryptology — EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer Verlag, 2003.

14. Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. Cryptology ePrint Archive, Report 2002/044,
2002. Available at http://eprint.iacr.org/2002/044.

15. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES - the Advanced
Encryption Standard. Springer Verlag, 2002.

16. Nicklas Een and Nicklas Sörensson. An extensible SAT-solver. In Proceedings
of SAT ’03, pages 502–518, 2003. Available at http://www.cs.chalmers.se/Cs/

Research/FormalMethods/MiniSat/.

17. Jean-Charles Faugère. A New Efficient algorithm for Computing Gröbner Basis
(F4), 1999. Available at http://modular.ucsd.edu/129-05/refs/faugere_f4.

pdf.

18. Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases
without Reduction to Zero (F5). In Proceedings of ISSAC, pages 75–83. ACM
Press, 2002.

19. Jean-Charles Faugère. Groebner bases. Applications in cryptology. FSE 2007 –
Invited Talk, 2007. Available at http://fse2007.uni.lu/v-misc.html.

20. Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. Singular 3.0. A
Computer Algebra System for Polynomial Computations, Centre for Computer
Algebra, University of Kaiserslautern, 2005. Available at: http://www.singular.
uni-kl.de.

21. L.R. Knudsen. Truncated and higher order differentials. In Fast Software En-
cryption 1995, volume 1008 of Lecture Notes in Computer Science, pages 196–211.
Springer Verlag, 1995.

22. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryp-
tology — EUROCRYPT 1993, volume 765 of Lecture Notes in Computer Science,
pages 386–397. Springer Verlag, 1993. Available at http://homes.esat.kuleuven.
be/~abiryuko/Cryptan/matsui_des.PDF.

23. Sean Murphy and Matthew Robshaw. Essential Algebraic Structure Within the
AES. In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science, pages 1–16. Springer Verlag, 2002. Available
at http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/aes-crypto.pdf.



24. H̊avard Raddum and Igor Semaev. New technique for solving sparse equation
systems. Cryptology ePrint Archive, Report 2006/475, 2006. Available at http:

//eprint.iacr.org/2006/475.
25. The SAGE Group. SAGE Mathematics Software (Version 3.3), 2008. Available

at http://www.sagemath.org.
26. David Wagner. The boomerang attack. In Fast Software Encryption 1999, volume

1636 of Lecture Notes in Computer Science, pages 156–170. Springer Verlag, 1999.
Available at http://www.cs.berkeley.edu/~daw/papers/boomerang-fse99.ps.

27. Meiqin Wang. Differential Cryptanalysis of reduced-round PRESENT. In Serge
Vaudenay, editor, Africacrypt 2008, volume 5023 of Lecture Notes in Computer
Science, pages 40–49. Springer Verlag, 2008.

28. Meiqin Wang. Private communication: 24 differential characteristics for 14-round
present we have found, 2008.

29. Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T. Courtois. On Asymptotic Security
Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis. In Proceed-
ings of Information and Communications Security; 6th International Conference
2004, volume 3269 of Lecture Notes in Computer Science, pages 401–413. Springer
Verlag, 2004.



A Small Key Bit Recovery System

X ′0 = K0 + P ′0, X ′1 = K1 + P ′1, X ′2 = K2 + P ′2, X ′3 = K3 + P ′3,

Y ′0 = X ′0X
′
1X
′
3 +X ′0X

′
2X
′
3 +X ′0 +X ′1X

′
2X
′
3 +X ′1X

′
2 +X ′2 +X ′3 + 1,

Y ′1 = X ′0X
′
1X
′
3 +X ′0X

′
2X
′
3 +X ′0X

′
2 +X ′0X

′
3 +X ′0 +X ′1 +X ′2X

′
3 + 1,

Y ′2 = X ′0X
′
1X
′
3 +X ′0X

′
1 +X ′0X

′
2X
′
3 +X ′0X

′
2 +X ′0 +X ′1X

′
2X
′
3 +X ′2,

Y ′3 = X ′0 +X ′1X
′
2 +X ′1 +X ′3,

X ′′0 = K0 + P ′′0 , X ′′1 = K1 + P ′′1 , X ′′2 = K2 + P ′′2 , X ′′3 = K3 + P ′′3 ,

Y ′′0 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
2X
′′
3 +X ′′0 +X ′′1X

′′
2X
′′
3 +X ′′1X

′′
2 +X ′′2 +X ′′3 + 1,

Y ′′1 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
2X
′′
3 +X ′′0X

′′
2 +X ′′0X

′′
3 +X ′′0 +X ′′1 +X ′′2X

′′
3 + 1,

Y ′′2 = X ′′0X
′′
1X
′′
3 +X ′′0X

′′
1 +X ′′0X

′′
2X
′′
3 +X ′′0X

′′
2 +X ′′0X

′′
1X
′′
2X
′′
3 +X ′′2 ,

Y ′′3 = X ′′0 +X ′′1X
′′
2 +X ′′1 +X ′′3 ,

∆Y0 = Y ′0 + Y ′′0 , ∆Y1 = Y ′1 + Y ′′1 , ∆Y2 = Y ′2 + Y ′′2 , ∆Y3 = Y ′3 + Y ′′3 ,

where ∆Yi are the known difference values predicted by the characteristic.

B 14-round Differential Characteristic for PRESENT

Rounds Differences Pr Rounds Difference Pr
I x2 = 7,x14 = 7 1

R1 S x2 = 1,x14 = 1 2−4 R8 S x8 = 9,x10 = 9 2−4

R1 P x0 = 4,x3 = 4 1 R8 P x2 = 5,x14 = 5 1
R2 S x0 = 5,x3 = 5 2−4 R9 S x2 = 1,x14 = 1 2−6

R2 P x0 = 9,x8 = 9 1 R9 P x0 = 4,x3 = 4 1
R3 S x0 = 4,x8 = 4 2−4 R10 S x0 = 5,x3 = 5 2−4

R3 P x8 = 1,x10 = 1 1 R10 P x0 = 9,x8 = 9 1
R4 S x8 = 9,x10 = 9 2−4 R11 S x0 = 4, x8 = 4 2−4

R4 P x2 = 5,x14 = 5 1 R11 P x8 = 1, x10 = 4 1
R5 S x2 = 1,x14 = 1 2−6 R12 S x8 = 9, x10 = 9 2−4

R5 P x0 = 4,x3 = 4 1 R12 P x2 = 5, x14 = 5 1
R6 S x0 = 5,x3 = 5 2−4 R13 S x2 = 1, x14 = 1 2−6

R6 P x0 = 9,x8 = 9 1 R13 P x0 = 4, x3 = 4 1
R7 S x0 = 4,x8 = 4 2−4 R14 S x0 = 5, x3 = 5 2−4

R7 P x8 = 1,x10 = 1 1 R14 P x0 = 9, x8 = 9 1



C Times in seconds for Attack-B

N Ks r p #trials Singular #trials PolyBoRi

4 80 4 2−16 20 11.92− 12.16 50 0.72− 0.81
4 80 3 2−12 10 106.55− 118.15 50 6.18− 7.10
4 80 2 2−8 10 119.24− 128.49 50 5.94− 13.30
4 80 1 2−4 10 137.84− 144.37 50 11.83− 33.47

8 80 5 2−22 0 N/A 50 18.45− 63.21

10 80 8 2−34 0 N/A 20 21.73− 38.96
10 80 7 2−30 0 N/A 10 39.27− 241.17
10 80 6 2−26 0 N/A 20 56.30− > 4 hours

16 80 14 2−62 0 N/A 20 43.42− 64.11
16 128 14 2−62 0 N/A 20 45.59− 65.03
16 80 13 2−58 0 N/A 20 80.35− 262.73
16 128 13 2−58 0 N/A 20 81.06− 320.53
16 80 12 2−52 0 N/A 5 > 4 hours

17 80 14 2−62 10 12, 317.49− 13, 201.99 20 55.51− 221.77
17 128 14 2−62 10 12, 031.97− 13, 631.52 20 94.19− 172.46
17 80 13 2−58 0 N/A 5 > 4 hours
17 128 13 2−58 0 N/A 5 > 4 hours

D Times in seconds for Attack-C

N Ks r p #trials Singular #trials PolyBoRi #trials MiniSat2

4 80 4 2−16 10 0.07− 0.09 50 0.05− 0.06 0 N/A
4 80 3 2−12 10 6.69− 6.79 50 0.88− 1.00 50 0.14− 0.18
4 80 2 2−8 10 28.68− 29.04 50 2.16− 5.07 50 0.32− 0.82
4 80 1 2−4 10 70.95− 76.08 50 8.10− 18.30 50 1.21 - 286.40

16 80 14 2−62 10 123.82− 132.47 50 2.38− 5.99 0 N/A
16 128 14 2−62 0 N/A 50 2.38− 5.15 0 N/A
16 80 13 2−58 10 301.70− 319.90 50 8.69− 19.36 0 N/A
16 128 13 2−58 0 N/A 50 9.58− 18.64 0 N/A
16 80 12 2−52 0 N/A 5 > 4 hours 0 N/A

17 80 14 2−62 10 318.53− 341.84 50 9.03− 16.93 50 0.70− 58.96
17 128 14 2−62 0 N/A 50 8.36− 17.53 50 0.52− 8.87
17 80 13 2−58 0 N/A 5 > 4 hours 5 > 4 hours


