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Abstract. A ring signature allows a user from a set of possible signers
to convince the verifier that the author of the signature belongs to the
set but identity of the author is not disclosed. It protects the anonymity
of a signer since the verifier knows only that the signature comes from
a member of a ring, but doesn’t know exactly who the signer is. This
paper proposes a new ID-based ring signature scheme based on the bi-
linear pairings. The new scheme provides signatures with constant-size
without counting the list of identities to be included in the ring. When
using elliptic curve groups of order 160 bit prime, our ring signature size
is only about 61 bytes. There is no pairing operation involved in the
ring sign procedure, and there are only three paring operations involved
in the verification procedure. So our scheme is more efficient compared
to schemes previously proposed. The new scheme can be proved secure
with the hardness assumption of the k-Bilinear Diffie-Hellman Inverse
problem, in the random oracle model.
Keywords: ID-based cryptography, proxy signatures, bilinear pairings.

1 Introduction

In 1984, Shamir [1] introduced the idea of ID-based public key cryptography
(ID-PKC) to simplify key management procedure of traditional certificate-based
public key setting. In ID-PKC, an entity’s public key is directly derived from
certain aspects of its identity, such as an IP address belonging to a network
host or an e-mail address associated with a user. Private keys are generated
for entities by a trusted third party called a private key generator (PKG). The
direct derivation of public keys in ID-PKC eliminates the need for certificates and
some of the problems associated with them. Recently, due to the contribution of
Boneh and Franklin [2], a rapid development of ID-PKC has taken place. Using
bilinear pairings, people proposed many new ID-based signature schemes [3–5].
With these ID-based signature schemes, a lot of new extensions, such as ID-
based proxy signature scheme, ID-based ring signature scheme, etc.[6, 7], have
also been proposed.
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The concept of ring signature was introduced by Rivest, Shamir and Tauman
[8] in 2001. A ring signature may be considered to be a simplified group signature
which consists of only users without the managers. It allows a user from a set of
possible signers to convince the verifier that the author of the signature belongs
to the set but identity of the author is not disclosed. It protects the anonymity of
a signer since the verifier knows only that the signature comes from a member of
a ring, but doesn’t know exactly who the signer is. Applications of ring signatures
include leaking secrets, authenticated communication, and so on.

The first scheme proposed by Rivest et al. was based on RSA cryptosystem
and certificate based public key setting. Abe, Ohkubo, and Suzuki [9] design some
general ring signature schemes where the public keys of the users can be totally
independent: different sizes, different types of keys. Their schemes are also based
on the general certificate-based public key setting. The nessary management of
certificates substantially increases the cost of both generation and verification
of a ring signature. Thus, any possible alternative which avoids the necessity of
certificates is welcome for efficiency in practices.

In 2002, Zhang and Kim [7]proposed a new ID-based ring signature scheme
using pairings. Later, some more efficient ID-based ring signature schemes have
also been proposed in [10–13]. The above scheme are all based on pairings with
signature size linear in the cardinality of the ring. The constant-size (without
counting the list of identities to be included in the ring) constructions appear in
[14, 15]. Later [16] point out a flaw in [15] and outline a patch.

In this paper, we provide an efficient ID-based ring signature scheme from
pairings. The new scheme can be proved secure in the random oracle model,
and has a number of attractive properties. Our scheme provides the shortest
signature sizes compared to schemes previously proposed as we known. When
using elliptic curve groups of order 160 bit prime, our ring signature size is only
about 61 bytes. On the other hand, although fruitful achievements [17, 18] have
been made in enhancing the computation of pairings, the pairing operations are
still a heavy burden for schemes from pairings. In our scheme, there is no pairing
operation involved in the ring sign procedure, and there are only three paring
operations involved in the verification procedure. So our scheme is more efficient
comparatively.

The rest of this paper is organized as follows: In Section 2, we recall some
preliminary works. In Section 3, we present a new ID-based ring signature scheme
with an efficiency analysis. In Section 4, we offer a security analysis in the random
orale model. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic additive groups of prime order q, generated by
P1 and P2 respectively, and GT be a cyclic multiplicative group with the same
order q. Suppose there is an isomorphism φ : G2 → G1 such that φ(P2) = P1.
Let ê : G1 ×G2 → GT be a map which satisfies the following properties.
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1. Bilinear: for all P ∈ G1, Q ∈ G2, α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;
2. Non-degenerate: ê(P, Q) 6= 1 is a generator of GT ;
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any P ∈

G1 and Q ∈ G2.

Such a bilinear map is called an admissible bilinear pairing [2]. The Weil pairings
and the Tate pairings of elliptic curves can be used to construct efficient admis-
sible bilinear pairings. For simplicity, hereafter, we set G1 = G2 and P1 = P2.
Our scheme can be easily modified for the general case when G1 6= G2.

We review a complexity problem related to bilinear pairings: the Bilinear
Diffie-Hellman Inverse (BDHI) problem [19]. Let P be a generator of G1, and
a ∈ Z∗q .

– k-BDHI problem: given (P, aP, a2P, ...akP ) ∈ (G∗1)
k+1, output ê(P, P )a−1

.
An algorithm A solves k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP ) = ê(P, P )a−1
] ≥ ε,

where the probability is over the random choice of generator P ∈ G∗1, the
random choice of a ∈ Z∗q and random coins consumed by A.

We assume through this paper that the k-BDHI problem is intractable, which
means that there is no polynomial time algorithm to solve k-BDHI problem with
non-negligible probability.

2.2 Overview of Ring Signatures

In this section we follow formalization proposed by Rivest et al.

Definition 1. [8] Assume that each user has a secret key Si and its correspond-
ing public key Pi. Let < Pr > denotes the set of possible signer where r is number
of users listed in the set. Then ring signature scheme consists of the following
algorithms.

– Ring Sign: A probabilistic algorithm which takes a message m, secret key
Sk of signer, and the possible signers set < Pr > as input and produces a
ring signature σ for the message m.

– Ring Verify: A deterministic algorithm which takes a message m, the pos-
sible signers set < Pr > and the ring signature σ as input and returns either
TRUE or FALSE.

A ring signature must satisfy the usual correctness, anonymity and unforge-
ability property.

– Correctness: A fairly generated ring signature must be accepted as valid
with higher probability.

– Anonymity: It should not be possible for an adversary to tell the identity
of the signer with a probability larger than 1/r+ε, where r is the cardinality
of the ring and ε is however negligible.
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– Unforgeability: It must be infeasible for any other user to generate, except
a negligible probability ε, a valid ring signature with the ring he does not
belong to.

In ID-based ring signature schemes, the signers set is formed by using mem-
bers’ identities rather than their public keys. We specify a security model which
are selective ring secure. Selective ring secure model for ID-based ring signature is
slightly weaker security model than the chosen message-ring-signer attack model
in [15]. The chosen message-ring-signer attack allows the adversary to adaptively
choose a message, a group of identities, specify a signer in that group and query
Ring Sign for the corresponding signature, whereas in our model the adversary
must commit ahead of time to the ring that it intends to attack.

3 A New Efficient ID-based Ring Signature Scheme

3.1 Description of the Scheme

The new scheme can be described as follows:

– Setup: Given a security parameter λ ∈ N , first chooses Ω = (G1, GT , q, ê),
where (G1,+) and (GT , ·) are two cyclic groups of order q, ê : G1×G1 → GT

is an admissible bilinear map. Assuming the cardinality of ring is bounded
by ω, then it randomly chooses P, Q ∈ G1, s, t ∈ Z∗q , computes P̃ = tP ,
{Pi}i=1,...,ω = {siP}, Q̃ = tQ, g = ê(P, Q̃). It selects H1 : {0, 1}∗ → Z∗q
and H2 : {0, 1}∗ × G1 → Z∗q as hash functions. Finally it output system
parameters

paras = {Ω,ω, Q, Q̃, g, {Pi}i=1,...,ω,H1,H2}
and a master secret key mkey = {s, P̃}.

– Extract: Given an identity IDx ∈ {0, 1}∗, computes

Dx,0 = (H1(IDX) + s)−1P̃

{Dx,i}i=1,...,ω+1 = {siDx,0}
and lets {{Dx,i}i=0,...,ω+1} be the user’s secret key.

– Ring Sign: Given a message m to be signed, the possible signers’ public keys
(identities) sequence L = (ID1, ID2, . . . , IDn) (n ≤ ω) of all ring members,
and the signer’s secret key {{Du,i}i=1,...,n} (we assume the signer’s identity
is IDu, 1 ≤ u ≤ n), the signer computes the ring signature as follows.
• Choose a random x ∈ Z∗q .
• Compute r = gx, U = xQ̃, h = H2(m, r, U, L).
• Compute

V = (x + h)(
n+1∑

i=0

fiDu,i),

where qi = H1(IDi),
∑n+1

i=0 fis
i = (

∏
IDi∈L(s + qi))(s + qu).

(Note: In fact, V = (x + h)(
∏

IDi∈L(s + qi))(s + qu)Du,0.)
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The ring signature on message m is the tuple (L, h, U, V ).
– Ring Verify: On receiving the ring signature (L, h, U, V ) on message m, the

verifier computes qi = H1(IDi),

r = (ê(V, Q) · ê(Σn
i=1kiPi, U)−1 · ê(Σn

i=1kiPi, Q̃)−h · g−h·k0)k−1
0 ,

and checks if
h = H2(m, r, U, L)

holds, where
∑n

i=0 kis
i =

∏
IDi∈L(s + qi), and Pi = siP are in paras for

i = 1, ..., n. If the equation is satisfied, the verifier accepts the signature as
valid, otherwise rejects.

Some general performance enhancements can be applied to our schemes. For
pre-selected P ∈ G1 and g ∈ GT , there are efficient algorithms [20] to compute
kP and gl for random k, l ∈ Zq by pre-computing and storing. And in the
situation when the ring members do not change for a long time,

∑n+1
i=0 fiDu,i and

Σn
i=1kiPi can also be pre-computed by the signer and the verifier respectively.

The size of ring signatures linearly depends on the ring size, as the verifier
needs to know at least the ring description. However, as pointed out in [14], in
many scenarios, the ring does not change for a long time or has a short description
(e.g., the ring of all members of a committee). So an appropriate measurement
of ring signature sizes does not need to include the ring description. In the sense,
our scheme is an ID-based ring signature scheme with constant-size signatures
(without counting the list of identities to be included in the ring).

3.2 Efficiency Analysis

We denote by MG1 an ordinary scalar multiplication in (G1,+), by EGT
an Exp.

operation in (GT , .), and by ê a computation of the pairing. Do not take other
operations into account. We compare our new ID-based ring signature scheme
with some previous schemes in the following table.

Table 1. Comparison of efficiency
schemes Ring Sign Ring Verify

Zhang’s Scheme [6] (2n− 1)ê + nMG1 2nê + nMG1

Lin’s Scheme [11] (2n− 1)ê + (2n− 1)MG1 2ê + (n + 1)MG1

Nguyen’s Scheme [15] 6ê + 12MG1 + 6EGT
10ê + 8MG1 + 10EGT

Awasthi’s Scheme [10] (2n− 1)ê + 2nMG1 2ê + (n + 1)MG1

Proposed Scheme (n + 3)MG1 + 1EGT
/ 3ê + nMG1 + 3EGT

/
2MG1 + 1EGT

3ê + 3EGT

In the situation when
∑n+1

i=0 fiDu,i and Σn
i=1kiPi can be pre-computed, the

Ring Sign and Ring Verify of our scheme need only 2MG1 +1EGT
and 3ê+3EGT

respectively. What’s more, the hash function maps an identity to an element in
G1 used by the scheme in [6, 11, 10] usually requires a ”Maptopoint operation”
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[2]. As discussed in [2], Maptopoint operation is also time consuming. While in
our scheme, we only need a hash function which maps an identity to an element
in Z∗q . Such a hash function can be implemented very efficiently.

We now make a comparison of signature sizes in our ring signature scheme
with previous works. Without counting the list of identities to be included in
the ring, our scheme is an ID-based ring signature scheme with constant-size
signatures. While all previous normal ring signature schemes, except for the
schemes in [14, 15], have signature sizes linearly dependent on the group size.
The scheme in [14] is a current state-of-the-art normal ring signature scheme,
whose signature size is much larger than that in [15]. The scheme in [15] is
also an ID-based ring signature scheme from pairings. The signature is contains
(U1, U2, R, h, s1, ...s7), where U1, U2, R ∈ G1, h is a hash function and s1, ...s7 ∈
Z∗q . We assume the schemes are implemented by an elliptic curve or hyperelliptic
curve over a finite field. q is a 160-bit prime, G1 is a subgroup of an elliptic
curve group or a Jacobian of a hyperelliptic curve over a finite field with order
q and compression techniques are used. GT is a subgroup of a finite field of size
approximately 21024. A possible choice of these parameters can be from Boneh
et al.’s short signature scheme [21]. We summarize the result in the following
table.

Table 2. Comparison of sizes (in Bytes)
schemes signature size

Nguyen’s Scheme [15] 221
Proposed Scheme 61

4 Security Analysis

4.1 Correctness

Correctness of the scheme is easily proved as follows. From ring signature gen-
eration protocol, for IDi ∈ L, let qi = H1(IDi),

∑n
i=0 kis

i =
∏

IDi∈L(s + qi),
we have

ê(V, Q) = ê((x + h)(
∏

IDi∈L

(s + qi))(s + qu)Du,0, Q)

= ê((x + h)(
∏

IDi∈L

(s + qi))P̃ , Q)

= ê((
n∑

i=0

kis
i)P, Q̃)(x+h)

= ê((
n∑

i=1

kis
iP ), Q̃)x+h · ê(k0P, Q̃)x+h

= ê((
n∑

i=1

kiPi), U) · ê((
n∑

i=1

kiPi), Q̃)h · rk0 · gk0h
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Hence,

r = (ê(V, Q) · ê(Σn
i=1kiPi, U)−1 · ê(Σn

i=1kiPi, Q̃)−h · g−h·k0)k−1
0 .

4.2 Anonymity

We consider the scene that any two possible signers IDu, IDv ∈ L generate their
signatures on the message m with the same random x ∈ Z∗q . They compute
r = gx, U = xQ̃, h = H2(m, r, U, L).

IDu computes

V = (x + h)(
n+1∑

i=0

fiDu,i)

= (x + h)(
∏

IDi∈L

(s + H1(IDi))(s + H1(IDu))Du,0)

= (x + h)(
∏

IDi∈L

(s + H1(IDi))P̃ )

IDv computes

V = (x + h)(
n+1∑

i=0

fiDv,i)

= (x + h)(
∏

IDi∈L

(s + H1(IDi))(s + H1(IDv))Dv,0)

= (x + h)(
∏

IDi∈L

(s + H1(IDi))P̃ )

So we can see that IDu and IDv compute the same V , that is, their signatures
are the same. Hence, the proposed ID-based ring scheme holds unconditionally
signer-ambiguity.

4.3 Unforgeability

Now we focus on the unforgeability property. We reduce the security of our
scheme to the hardness assumption of k−BDHI problem in the random oracle
model.

Theorem 1. In the random oracle mode, for a security parameter λ, let F0 be
a polynomial-time adversary who can forge a valid ring signature within a time
bound T (λ) by non-negligible probability ε(λ). We denote respectively by n1,n2

and n3 the number of queries that F0 can ask to the random oracle H1, H2

and the Ring Sign oracle. Assume that ε(k) ≥ 10(n3 + 1)(n2 + n3)/q, and the
cardinality of ring is bounded by ω, then there is an adversary F1 who can solve
(n1 +ω+1)-BDHI problem within expected time less than 120686 ·n2 ·T (λ)/ε(λ).
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Proof : Without any loss of generality, we may assume that for any ID, F0

queries H1(.) with ID before ID is used as (part of) an input of any query to
Extract oralce or Ring Sign oracle, by using a simple wrapper of F0.

F1 is given input parameters of pairing (q, G1, GT , ê) and a random instance
(P, aP, a2P, ..., a(n1+ω+1)P ) of the k-BDHI problem, where P is a random in G∗1
and a is a random in Z∗q . F1 simulates the challenger and interacts with F0 as
follows:

1. Fix the ring L′ = (ID′
1, ID′

2, . . . , ID′
n).

2. F1 randomly chooses different h0, h1, ...hn1−1 ∈ Z∗q , and computes f(x) =∏n1−1
i=1 (x + hi) =

∑n1−1
i=0 cix

i.
3. F1 computes R =

∑n1−1
i=0 cia

iP = f(a)P , and R′ =
∑n1−1

i=1 cia
i−1P . In the

(unlikely) situation where R = 1G1 , there exists an hi = −a, hence, F1 can
solve the BDHI problem directly and abort.

4. F1 computes fk(x) = f(x)/(x + hk) =
∑n1−2

j=0 djx
j . Obviously, for 1 ≤

k ≤ n1, (a + hk)−1R = (a + hk)−1f(a)P = fk(a)P =
∑n1−2

j=0 dja
jP , and

(a + hk)−1aiR =
∑n1−2

j=0 dja
(i+j)P for 1 ≤ i ≤ ω.

5. F1 randomly chooses t, w ∈ Z∗q , computes P̃ = tR, Q = wR, Q̃ = tQ,
g = ê(R, Q̃). For i = 1 to ω, computes Pi =

∑n1−1
j=0 cja

j+iP = aiR. Finally
F1 sets the system parameters

paras = {Ω,ω, Q, Q̃, g, {Pi}i=1,...,n,H1,H2},

where H1, H2 are random oracles controlled by F1. F1 can also compute
P̃i = tPi for i = 1, ..., n.

6. F1 sets status = 0 and u = 0, gives F0 the system parameters paras and
emulates F0’s oracles as follows:
– H1: F1 maintains a H1 list, initially empty. For a query IDk (k ≥ 1),

• if IDk already appears on the H1 list in a tuple (IDk, lk, Dk), where
Dk = {Dk,i}i=0,1,...,ω+1, F1 responds with lk.

• if IDk ∈ L′ and status = 0, F1 sets lk = h0, Dk = ⊥ (⊥ means
NULL), status = 1 and u = k.
(Note: The corresponding secret key is Du = {Du,i}i=0,1,...,ω+1 with
Du,0 = a−1P̃ and Du,i = ai−1P̃ for i = 1, ..., ω + 1).

• if IDk ∈ L′ and status = 1, F1 sets lk = hk, Dk = ⊥.
• otherwise, F1 sets lk = hk + h0, computes Dk,0 = t(a + hk)−1R,

for i = 1 to ω + 1 computes Dk,i = t(a + hk)−1aiR, and sets Dk =
{Dk,i}i=0,1,...,ω+1.

In the last three case, adds the tuple (IDk, lk, Dk) to H1 list and re-
sponds with lk.

– H2: For a query (m, r, U, L), F1 checks if H2(m, r, U, L) is defined. If not,
F1 picks a random h ∈ Z∗q and defines H2(m, r, U, L) = h. F1 returns
H2(m, r, U, L) to F0.

– Extract: For input IDi, F1 searches in H1 list for (IDi, li, Di). If Di =
⊥ then F1 aborts. Otherwise, F1 responds with Di.



An Efficient ID-based Proxy Signature Scheme from Pairings 9

– Ring Sign: For input message m and the ring L, if there exists IDk not
in L′, F1 computes the ring signature τ = (L, r, U, h, V ) on m with secret
signing key Dk from H1 list, and return (m, τ) as the reply. Otherwise,
F1 simulates the ring signature on behalf of L′ as following.
• Select y ∈R G1,h ∈R Zq, satisfying h 6= y.
• Compute r = g(y−h), U = (y − h)Q̃.
• If H2(m, r, U, L′) is defined, then abort (a collision appears). Other-

wise, define H2(m, r, U, L′) = h.
• Compute V = y(Σn

i=1kiP̃i + k0P̃ ), where
∑n

i=0 kis
i =

∏
IDi∈L′(s +

H1(IDi))
• Return with (m, (L′, r, U, h, V )).

7. F1 keeps interacting with F0 until F0 halts or aborts.
If F0’s output a signature (L′, r, U, h, V ) on a message m which has not
been used for the input of Ring Sign oracle, then by replays of the attack
game with the same random tape but different choices of H2, as done in the
Forking Lemma [22], F1 can get another valid forgery (L′, r, U, h∗, V ∗) on m
such that h 6= h∗.

8. F1 can compute T = (h∗ − h)−1(V ∗ − V ). It is easy to see that
n+1∑

i=0

fiDu,i = T,

where
∑n+1

i=0 fis
i =

∏
IDi∈L′(s + H1(IDi))(s + H1(IDu)). Because Du,0 =

a−1P̃ , Du,1 = P̃ , and for i = 2 to n + 1, Du,i = ai−1P̃ = P̃i−1, F1 can
compute

a−1R = t−1f−1
0 (T − f1P̃ −

n+1∑

i=2

fiP̃i−1)

9. F1 computes ê(R, a−1R) = ê(R, R)a−1
. Then, F1 computes and outputs

ê(P, P )a−1
= ê(R, R)a−1

/ê(R′, R + c0P ))c−2
0

as the solution to the given instance of (n1 + ω + 1)-BDHI problem.

This completes the description of F1.
If F0 forge a valid signature, F0 should not query Extract oracle with iden-

tities in L′. So F1 would not abort in answering Extract queries. Because H2 is
random oracle, collisions appear in the Ring Sign with negligible probability, as
mentioned in [22]. It is easy to see that the distribution of the outputs of F1’s
simulation of Ring Sign oracle is the same as that of the real Ring Sign operation
of the signer (similar conclusion and it’s proof can be found in [23]). Hence, F1’s
simulations are indistinguishable from F0’s real oracles.

In fact, the Ring Sign produces signatures of the form (m, (r, U), h, V ), where
each of (r, U), h, V corresponds to one of the three moves of a honest-verifier
zero-knowledge protocol. By applying the forking lemma[22], F1 can produce
two valid forgery (m, (r, U), h, V ) and (m, (r, U), h∗, V ∗) such that h 6= h∗ within
expected time less than 120686 ·n2 · T (k)

ε(k) . So F1 can output ê(P, P )a−1
. Thus we

prove the theorem.
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5 Conclusion

This paper presents an efficient and provably secure ID-based ring signature
scheme based on the bilinear pairings. The scheme has attractive superiorities
both in signature size and efficiency. When using elliptic curve groups of order
160 bit prime, our ring signature size is only about 61 bytes. There is no pairing
operation involved in the ring sign procedure, and there is only three paring
operations involved in the verification procedure. The new scheme can be proved
secure with the hardness assumption of the k-BDHI problem, in the random
oracle model.

References

1. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO’84, LNCS 0196, pages 47-53. Springer-Verlag, 1984.

2. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J.
Kilian, editor, Advances in Cryptology- CRYPTO 2001, LNCS 2139, pages 213-
229. Springer-Verlag, 2001.

3. J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Y. Desmedt, editor, Public Key Cryptography - PKC 2003, volume
2567 of LNCS, pages 18-30. Springer-Verlag, 2002.

4. F. Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg
and H. Heys, editors, Selected Areas in Cryptography 9th Annual International
Workshop, SAC 2002, volume 2595 of LNCS, pages 310-324. Springer-Verlag, 2003.

5. P. S. L. M. Barreto, B. Libert, N. McCullagh, J. Quisquater, Efficient and Provably-
Secure Identity-Based Signatures and Signcryption from Bilinear Maps. In B. Roy,
editor(s), Asiacrypt 2005, LNCS 3788, pages 515-532, Springer-Verlag, 2005.

6. F. Zhang and K. Kim, Efficient ID-based blind signature and proxy signature from
bilinear pairings, ACISP 03, LNCS 2727, pages 312-323, Springer-Verlag, 2003.

7. F. Zhang, K. Kim, ID-based blind signature and ring signature from pairings.
Asiacrypt’2002, LNCS 2501, pages 533–547, Springer-Verlag, 2002.

8. R.Rivest, A. Shamir, and Y. Tauman, How to Leak a Secret, Advances in Cryp-
tology, Asiacrypt 2001, LNCS 2248, pp. 552-565, Springer- Verlag, 2001.

9. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Proc. ASIACRYPT 2002, LNCS 2501, pages 415-432. Springer-Verlag, 2002.

10. Amit K. Awasthi1 and Sunder Lal, ID-based Ring Signature and Proxy Ring Sig-
nature Schemes from Bilinear Pairings, International Journal of Network Security,
Vol.4, No.2, PP.187 C 192, Mar. 2007.

11. C. Y. Lin and T. C. Wu, An Identity-based Ring Signature Scheme
form Bilinear Pairings, Cryptology ePrint Archive, Report 2003/117. At
http://eprint.iacr.org/2003/117/.

12. J. Herranz and G. Saez. A provably secure ID-based ring signature scheme. Cryp-
tology ePrint Archive, Report 2003/261, 2003. http://eprint.iacr.org/.

13. S. S. M. Chow, S.-M. Yiu, and L. C. K. Hui. Efficient identity based ring signature.
In ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages 499-512.
Springer, 2005

14. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In EUROCRYPT 2004, volume 3027 of LNCS, pages 609-626. Springer-
Verlag, 2004.



An Efficient ID-based Proxy Signature Scheme from Pairings 11

15. L. Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA
2005, volume 3376 of LNCS, pages 275-292, 2005.

16. F. Zhang and X. Chen. Cryptanalysis and improvement of an id-based ad-hoc
anonymous identification scheme at ct-rsa 05. Cryptology ePrint Archive, Report
2005/103, 2005. http://eprint.iacr.org/.

17. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. Advances in Cryptology-Crypto’2002, LNCS 2442, pp. 354-368.
Springer-Verlag, 2002.

18. I. Duursma and H. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp + x + d. Advances in Cryptology-Asiacrypt’2003, LNCS 2894, pp. 111-
123. Springer-Verlag, 2003.

19. D. Boneh, X. Boyen. Efficient Selective ID Secure Identity Based Encryption with-
out Random Oracles. Advances In Cryptology-Eurocrypt 2004, LNCS 3027, pp.
223-238, Springer-Verlag, 2004.

20. Y. Sakai, K. Sakurai. Efficient Scalar Multiplications on Elliptic Curves without
Repeated Doublings and Their Practical Performance. ACISP 2000, LNCS 1841,
pp. 59-73. Springer-Verlag 2000.

21. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
ASIACRYPT 2001, LNCS 2248, pp.514-532. Springer-Verlag 2001.

22. D.Pointcheval and J.Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361-369,2000.

23. C. Gu, Y. Zhu. An Efficient ID-based Proxy Signature Scheme from Pairings.
INSCRYPT’2007, LNCS 4990, pp.40-50, Berlin: Springer- Verlag. 2008.


