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Abstract 
Abelian class group Cl(D) of imaginary quadratic order with odd squarefree discriminant 

D is used in public key cryptosystems, based on discrete logarithm problem in class group and 
in cryptosystems, based on isogenies of elliptic curves. Discrete logarithm problem in Cl(D) 
is hard if #Cl(D) is prime or has large prime divisor. But no algorithms for generating such D 
are known. 

We propose probabilistic algorithm that gives discriminant of imaginary quadratic order 
with subgroup of given prime order l. Algorithm is based on properties of Hilbert class field 
polynomial HD for elliptic curve ( )lpE   over field of pl elements. Let trace of Frobenius 

endomorphism is T, discriminant of Frobenius endomorphism D = T 2 − 4pl and 
( ( ))l ppj E ∉  . Then deg(HD) = #Cl(OD) and #Cl(D) ≡ 0 (mod l). If Diophantine equation D = 

T 2 − 4pl with variables 4( | |)l O D< , prime p and T has solution only for l = 1, then class 
number is prime. 

1. Class group of imaginary quadratic order 
Let a, b, c ∈  and Q = (a, b, c) = {ax2 + bxy + cy2} — integral quadratic 

form of discriminant D = b2 − 4ac. Form Q is positive definite if D < 0 and a > 
0. 

If variables x, y run through , Q runs through subset of . Equivalent forms 
have equal sets of values (possibly permuted). It is sufficient to consider forms 
with (a, b, c) = 1, D is not perfect square and a > 1. If Q is positive definite 
form, then Q(x, y) ≥ 0 and Q = 0 if and only if x = 0 and y = 0. All considered 
forms are positive definite. 

Equivalent forms have the same discriminant. Equivalence partitions set of 
forms with given discriminant into finite set of classes. For given D pair (a, b) 

completely defines the quadratic form: 
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Product of 2 × 2 integral matrices is integral matrix. Such matrix is invertible 
if and only if its discriminant is ±1. Matrix group with integral elements contains 
subgroup SL2() with discriminant 1. Infinite group SL2() is generated by 

matrices ( )0 1
1 0S −=  and ( )1 1

0 1T = , ( )1
0 1

n nT =  for n ∈ . 

Forms (a, b, c) = {ax2 + bxy + cy2} and (a′, b′, c′) = {a′u2 + b′uv + c′v2} are 

equivalent if and only if there exists matrix L ∈ SL2() such that ( ) ( )x uLy v= . 

Multiplying vector by matrix can be considered as transformation of coefficients 
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of the form. Applying matrices S, T to given positive definite form, one can 
obtain uniquely defined reduced quadratic form (a, b, c) with properties 

1. 0 < a ≤ c; 
2. −a < b ≤ a; 
3. if a = c then b > 0. 
Let D < 0 is discriminant of quadratic form. Define complex number Dξ =  

for −D ≡ 0 (mod 4) and 1
2

D+
ξ =  for −D ≡ 3 (mod 4). Imaginary quadratic 

order OD of discriminant D is ring [ξ]. Joining those two cases, we can write 

2D
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 . Fields of fractions for quadratic orders of discriminant D 

and f 2D for integer conductor f are the same, but 2D f DO O⊃ . Hence there exists 

maximal quadratic order for given field of fractions. Order with squarefree 
discriminant is maximal. 

Ideal of quadratic order is subset A ⊆ OD such that if α, β ∈ A, then α ± β ∈ 
A, and αx ∈ A for arbitrary x ∈ OD. Ideal A ⊆ OD defines quotient ring OD/A, it 
is finite if A ≠ (0). Norm N(A) of nonzero ideal A is #OD/A. Norm is the 
smallest positive integer contained in A. Ideal (α) = αOD for α ∈ OD is 
principal. Generally ideal of quadratic order is generated by two elements: 
A = a + (b + ξ), where a, b ∈  and there exists such c ∈ , that b2 − 4ac = 
D. So there is one-to-one correspondence between non-zero ideals of OD and 
quadratic forms of discriminant D. We use short designation A = (a, b) instead 
of A = a + (b + ξ). N(a, b) = a. 

Set of ideals admits commutative and associative multiplication: 

(a + (b + ξ))(c + (d + ξ)) = ac + c(b + ξ) + a(d + ξ) + (b + ξ)(d + 
ξ)) 
(ideal in the right side of the equation is generated by at most two elements). So 
set of ideals of order OD form commutative monoid with identity OD = (1). 

Norm of ideal is multiplicative function: N(AB) = N(A)N(B). If ideal cannot 
be represented as product of two proper ideals, it is prime. Hence ideals with 
prime norm are the prime ones. Generally ring OD does not possess unique 
factorization, for example, 21 3 7 (1 20)(1 20)= ⋅ = + − − −  because prime ideal 
is not necessary principal. But each ideal can be uniquely represented as product 
of prime ideals, so OD is Dedekind domain. So 

(3) (3,1 21)(3,1 21)= + − − − , (7) (7,1 21)(7,1 21)= + − − − , 

(1 21) (3,1 21)(7,1 21)+ − = + − + − , (1 21) (3,1 21)(7,1 21)− − = − − − − . 



Define ideal equivalence: A ∼ B, if there exists pair of non-zero quadratic 
integers α, β ∈ OD such that αA = βB. Hence all principal non-zero ideals are 
equivalent. Equivalence partitions set of ideals into classes. Each class can be 
represented by reduced ideal with the smallest norm. Equivalence of ideals 
corresponds to equivalence of quadratic forms, and there is bijection between 
reduced quadratic forms and reduced ideals. 

Multiplication of ideals induces multiplication in set of classes, and this set is 
Abelian group Cl(D). Its identity element is ideal (1, 1) for odd D and (1, 0) for 
even D. If A is ideal then A#Cl(D) is principal ideal. 

Reduced quadratic form (a, b, c) corresponds to ideal (a, b) and has inverse 
(a, −b, c) only if a ≠ 1 and a ≠ c, otherwise (a, b)−1 = (a, b). Case a = 1 
corresponds to identity in class group. In the case a = c quadratic form (a, b, a) 
has order two in class group. Notice that form (a, b, a) is possible if its 
discriminant D = b2 − 4a2 = (b + 2a)(b − 2a) is product of different integers (b − 
2a ≠ ±1 since −a < b ≤ a). So class number #Cl(D) is odd if D is prime or degree 
of prime. Imaginary quadratic orders have #Cl(D) = 1 for −D ∈ {3, 4, 7, 8, 11, 
12, 16, 19, 27, 28, 43, 67, 163}. 

There are no known effective algorithms for computing #Cl(D). There exists 
estimation #Cl( ) ( | |)D O D=  and explicit formula for #Cl(D) as sum of infinite 
Dirichlet’s series. D. Shanks presented algorithm for computing class number 
with two stages. 1. Find approximation for #Cl(D) and estimate search interval. 
2. Search the class number using giant step − baby step algorithm. 

Experiments show that partial sum Sn of n first terms of Dirichlet’s series is 

near to #Cl(D) (error #Cl( )
#Cl( )

nD S
D
−  is near to logn

n
). So for 6( | |)n O D=  

complexity of each stage is 6( | |)O D  and the whole complexity is 6( | |)O D . 
Any ideal is product of prime ideals. Probability that an ideal has prime 

divisor with small norm is more than probability that prime divisor has large 
norm. So we can take set of prime ideals with small norms and try to represent 
an ideal as product of taken prime ideals. This leads to subexponential algorithm 
for computing class number with complexity (exp( ln | | ln ln | |)O c D D  [2]. 

2. Modular functions, elliptic curves and class field polynomial 
Let L = ω1 + ω2 be a lattice in complex plane  with basis [ω1, ω2], 

Im(ω2/ω1) > 0. Then there exists quotient group /L. Define equivalent lattices: 
L ∼ M, if L = αM for some α ∈ *. Two lattices with bases [ω1′, ω2′] and [ω1, 

ω2] coincide if and only if ( )1 1
22

a b
c d

 ′ω ω =     ω′  ω 
, ( )a b

c d  ∈ SL2(). Due to 



equivalence, lattice can be defined by single parameter τ: L =  + τ, Im(τ) > 0. 

Matrix transforms parameter τ: ( )( ) a ba b
c d c d

τ +
τ =

τ +
. 

Since group SL2() is generated by matrices S, T, arbitrary lattice can be 
transformed to equivalent lattice so that −1/2 < Re(τ) ≤ 1/2, Re(τ)2 + Im(τ)2 ≥ 1, 

3Im( )
2

τ ≥ . 

Modular function f is defined as meromorphic function of complex variable 

τ, that maps upper half plane to plane  so that ( ) a bf f
c d

τ + τ =  τ + 
 for any 

matrix ( ) 2SL ( )a b
c d ∈  . 

Modular functions for given lattice form subfield in field ((τ)) of 
meromorphic functions. In practice for speeding-up the convergence of Laurent 
series for modular function, usually Fourier transform q = e2πiτ is used instead of 
τ. The “simplest” modular function is j(q) = q−1 + 744 + … ∈ ((q)) — Laurent 
series with integer coefficients. Any modular function is rational function of 
j(q). Hence complex number j(τ) defines lattice up to equivalence. 

Elliptic curve E(K): 
Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 

is set of points (X, Y, Z) ∈ K\(0, 0, 0), satisfying this equations under 
equivalence (X, Y, Z) = (uX, uY, uZ) for any u ≠ 0 and there is no point on 
elliptic curve such that all three partial derivatives are zero. Elliptic curve points 
form Abelian group under addition with zero element P∞ = (0, 1, 0). Elliptic 

curve isomorphism can be defined as multiplication 
X

L Y
Z

 
 
 
 

, where matrix L is 

invertible over K. Elliptic curve over algebraically closed field up to 
isomorphism can be determined by its invariant j ∈ K(a1, a2, a3, a4, a6). 

If K = , then elliptic curve as Abelian group is isomorphic to quotient group 
/L for some lattice L, so there is bijection between lattices and elliptic curves. 
Elliptic curve isomorphism corresponds to lattice equivalence and elliptic curve 
invariant j is the image of lattice invariant j(τ) in field K (this is possible only if 
τ is element of imaginary quadratic field [3]). 

If field characteristic is 2, then linear change of variables gives a1 ≠ 0 or a3 ≠ 
0 (but not both of them). If a1 = 0, then j = 0. 

In cryptographic applications elliptic curve ( )lpE   is considered over finite 

field lp  of pl elements, l ≥ 1. Frobenius map ( )( , , ) , ,
l l lp p p

l X Y Z X Y Zπ =  



keeps the elliptic curve equations, keeps all points over field lp  and changes 

other points (over algebraic closure of field lp ). Frobenius map satisfies 

equation πl
2 − Tπl + pl = 0, where T is trace and D = T 2 − 4pl < 0 is discriminant 

of this map. Twisted curves have traces with the same absolute value and 
different signs. 

Number of elliptic curve points ( )lpE   is finite and equals 

# ( ) 1l
l

pE p T= + − . 

Discriminant D up to sign determines T and hence determines # ( )lpE  . 

Let 
2D

D DO
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=  
 

  is imaginary quadratic order for given discriminant D 

of Frobenius map, #Cl(D) is its class number and {(ai, bi, ci)}, 1 ≤ i ≤ hD is set of 
reduced quadratic forms (or set of reduced ideals in class group). Let 

2
i

i
i

b D
a

+
τ = . Function j(τ) can be computed with small error for all i as partial 

sum of Laurent series. Irreducible over  (and [ ]D ) Hilbert class field 
polynomial is defined as 

# ( )

1
( ) ( ( )) [ ]

Cl D

D i
i

H X X j X
=

= − τ ∈∏  . 

Its roots are algebraic integers. Joining the root j of HD to  or to [ ]D  
gives field extensions of the same degree, and [ , ]D j  is class field — 
maximal unramified Abelian extension. Elliptic curve over prime finite field p 
with trace T up to isomorphism and up to twisted curve is determined by its 
invariant j as a root of HD(X) (mod p). So to find j-invariant one needs 
computing D, Cl(D), HD(X), factoring HD(X) (mod p) and taking a root as 
required j-invariant. This is common method for elliptic curve generation with 
given p and T. 

Theorem 1. Let l is prime, p ≠ l is prime or degree of prime, and class field 
polynomial has no roots in p. Elliptic curve lp  with j ∈ \l pp   and 

Frobenius discriminant D = T 2 − 4pl exists if class number #Cl(D) has factor l. 
Proof. Let q = pl, p is prime or degree of prime. If class field polynomial 

HD(X) has a root j in lp , then HD(X) factors completely over lp  and there 

exists elliptic curve ( )lpE   with invariant j and Frobenius discriminant D = T 2 

− 4pl. Back, if there is elliptic curve ( )lpE   with Frobenius discriminant D, then 

its invariant is a root of polynomial HD(X). Hence class field polynomial splits 



completely over lp . Since p ≠ l, class field polynomial gives separable 

extension of field of characteristic p. 
Notice that if l is prime and class field polynomial splits over lp , it may 

split already over prime field p. Then j ∈ p and class number possibly has no 
factor l. n 

Theorem 1 can be explained in terms of quadratic orders. If D = T 2 − 4pl then 

we have factorization 
2 2

l T D T Dp
  + −

=   
  

. Reduction modulo p gives 

existence of (mod )D p , so 1D
p

 
= 

 
. Ideal (pl) splits as product of two 

principal ideals. Hence ideal (p) also splits in OD as product of two prime ideals. 
Its factors can be principal or not. Any ideal powered by class number becomes 
principal. If factors of ideal (p) are not principal and l is prime, then l divides 
class number. 

3. Class group with subgroup of given prime order 
Class group of imaginary quadratic order is used in public key cryptosystems 

of two types. The first one is based on discrete logarithm problem directly in 
class group [1]. The second one is based on computing isogenies between 
elliptic curves [5] (number of possible j-invariants divides class number for 
Frobenius discriminant). 

If class number has largest prime divisor r, then complexity of computing 
discrete logarithms in class group does not exceed ( )O r  due to Pollard’s 
algorithm [4]. So in cryptographic applications it is likely that class number is 
large prime or it has large prime divisor. 

To construct digital signature algorithm, similar to DSS, it is necessary to 
compute prime class number or its large prime divisor. But there are no known 
effective methods for prime D to recognize primality of class number. It is 
known that if D = f 2D′, discriminant D′ has class number 1, conductor f is odd 

prime, then #Cl( ) DD f
f

 
= −  

 
, where D

f
 
 
 

 is Jacobi symbol. So one can 

obtain required prime divisor l of group order as 1
2

fl ±
= . But it is hard to find 

squarefree discriminant with given prime factor of class number. 
Assume that class field polynomial has a root j ∈ p, i.e. ( ( ))l ppj E ∈   for 

prime l. Then Frobenius automorphism π1(x, y) = (xp, yp) satisfies equation π1
2 − 

T1π1 + p = 0 with discriminant D1 = T1
2 − 4p. Let ,α α  be roots of the equation. 

Then #E(p) = p + 1 − α − α  and # ( ) 1l
ll l

pE p= + − α − α . Frobenius map 



( , ) ( , )
l lp p

l x y x yπ =  has discriminant 2( ) 4
ll lD p= α + α − . According to 

theorem 1 imaginary quadratic order OD may have class number with no factor l. 
If p is small, set of possible traces T1 is small too. So it is not hard to test 
whether D has representation 2( ) 4

ll lD p= α + α − . 

Example 1. Consider elliptic curve 2( )lE   

y2 + xy = x3 + a2x2 + a6 (a2 ∈ 2, a6 ≠ 0), 

with invariant j = a6
−1, map a2 → a2 + 1 gives the twisted curve. 

If P = (x, y) ∈ 2( )lE  , then −P = (x, x + y). Hence 2P = P∞ if and only if x = 
0. Point (0, y) of order 2 always exists and corresponds equation y2 = a6, 

12
6

l
y a

−
= . Point of order 4 exists, if equation 2P = (0, y) is solvable for 2( )lE  . 

For P = (u, v) we have equation λ2 + λ + a2 = 0, 
2u v
u
+

λ = . This equation is 

solvable if and only if a2 = 0. Notice that elliptic curve E1(2): y2 + xy = x3 + a2x2 
+1 has 2 points if a2 = 1 and has 4 points if a2 = 0, its Frobenius trace is ±1. 
Hence the curve 2( )lE   has subgroup isomorphic to curve E1(2) with the same 
a2. Frobenius discriminant D = T 2 − 4⋅2l for curve 2( )lE   is odd if trace T is odd. 

Let q = 211, T = 55, 112# ( )E   = q + 1 − T = 1994 = 2⋅997, D = T 2 − 4q = 
−5167 is prime, #Cl(D) = 33. Computing Hilbert class field polynomial and 
reduction its coefficients modulo 2 gives: 

HD = 1 + X 2 + X 3 + X 5 + X 6 + X 7 + X 8 + X 9 + X 12 + X 13 + X 16 + X 21 + X 23 + 
X 26 + X 27 + X 29 + X 31 + X 33. 

Its factorization over 2 is 

HD = (1 + X 2 + X 4 + X 6 + X 7 + X 9 + X 11)(1 + X 2 + X 3 + X 4 + X 5 + X 7 + X 8 + 
X 10 + X 11)(1 + X 2 + X 4 + X 6 + X 9 + X 10 + X 11). 

All irreducible divisors of class field polynomial over prime field have 
degree 11 and factor completely over field 112 . For discriminant D = T 2 − 4⋅211 
class number has factor 11. Similarly for any odd T = 1, 3, …, 89 (T = 89 is 
maximum that gives D < 0) class number has factor 11. n 

Conversion of theorem 1 gives probabilistic algorithm that generates 
imaginary quadratic order with given prime factor l of class number. 

Algorithm 1. (Computes discriminant of imaginary quadratic order that 
probably has class number with given prime factor l). 

1. Choose small prime p ≠ l (for example, p = 2), compute D = T 2 − 4pl < 0 
for integer T relatively prime to p. If p = 2, then T must be odd. 



2. Find all elliptic curves over p and corresponding traces T1 of Frobenius 
automorphisms π1(x, y) = (xp, yp). Find roots ,α α  of corresponding 
equations for π1. 

3. For all different absolute traces T1 test that 1
ll lD p≠ + − α − α . 

4. Return: D. n 

Algorithm 1 gives true result if there exists elliptic curve ( )lpE   with given 

trace T (this existence is not tested). And result can be wrong if there is no such 
elliptic curve. But if l is sufficiently large, probability of mistake is negligibly 
small. 

Notice that |D| growths as exponential of l. So obtained discriminant for large 
l can be extremely large. 

Example 2. Discriminant D = −45402459391 = 971840159992 − 4⋅271 gives 
class number 52⋅53⋅71, D = −39281659711 = 24296033999 − 4⋅267 gives class 
number 25⋅3⋅19⋅67. n 

From theorem 1 we deduce 

Corollary 2. Let D < 0 is prime. Assume that exponential Diophantine 
equation D = T 2 − 4pl with three variables l, p, T and prime p, for 4( | |)l O D<  
has solution only for l = 1. Then class number #Cl(D) is prime. 

Proof. #Cl( ) ( | |)D O D= . If #Cl(D) is composite, it has factor #Cl( )l D<  
and there exists elliptic curve ( )lpE   with required Frobenius discriminant D = 

T 2 − 4pl. But Diophantine equation has no such solutions, so class number must 
be prime. n 

This algorithm can be used to deduce whether imaginary quadratic order has 
non-prime class number: if representation D = T 2 − 4pl for large |D| exists, then 
class number is probably composite and has factor l. This observation can 
simplify computation of class number with Shanks algorithm. 

Algorithm 1 can be generalized. Quadratic order OD has ideal with norm pl if 
there exists quadratic form (pl, b, c) with discriminant D. So we have b2 − 4plc = 
D. This ideal is principle if there exists representation 4pl = A2 − DB2 for 
integers A, B. Hence instead of equation D = T 2 − 4pl we can consider equation 
D = T 2 − 4plS for integer S. Here again D is a square modulo p. 
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