
Proofs of Knowledge with Several Challenge
Values

Grzegorz Stachowiak

Institute of Computer Science, University of Wroc law, Joliot-Curie 15, 50-383
Wroc law, Poland (gst@ii.uni.wroc.pl)

Abstract. In this paper we consider the problem of increasing the num-
ber of possible challenge values from 2 to s in various zero-knowledge cut
and choose protocols. First we discuss doing this for graph isomorphism
protocol. Then we show how increasing this number improves efficiency
of protocols for double discrete logarithm and e-th root of discrete log-
arithm. Double discrete logarithm protocol is potentially a very useful
tool for constructing complex cryptographic protocols. The improvement
given by our paper is 2-4 times in terms of both time complexity and
transcript size.

1 Introduction

Zero-knowledge proof protocols were introduced by Goldwasser, Micali and Rack-
off in [8]. These proof were intended to prove validity of statements interactively
without revealing any other information. Almost at the same time the concept of
proof of knowledge [7] introduced the notion of knowledge extractor. Property of
zero-knowledge is useful when one wants to perform operations on secret values,
without revealing them. Classical examples are authentication, identification and
digital signatures.

In our proofs of knowledge we have two persons: Prover and Verifier or Peggy
and Vic denoted P and V respectively. P proves V her knowledge of some secret
x for which a Boolean formula ϕ(x) is satisfied. We assume, that P and V are
polynomial time. We say that the proof is zero-knowledge if it discloses nothing
about the secret to V. If this requires choosing V’s challenges at random this proof
is honest verifier zero-knowledge (HVZK). Such proof of knowledge is denoted

PK[x : ϕ(x)].

Basic properties of zero-knowledge protocol are

completeness A person knowing x : ϕ(x) = true can always pass the protocol.
soundness A person who can pass the protocol with non-negligible probability

must know x : ϕ(x) = true.
zero-knowledge Nothing about the secret x can be concluded from the data

exchanged during the protocol.



In zero-knowledge protocols P proves her knowledge of x responding correctly
to some challenge c received from V. Majority of zero-knowledge protocols are
cut and choose ones. In these protocols there are two possible challenges c –
typically 0 and 1. A person not knowing the secret x can respond to at most
one of them, so her probability of success is 1/2. To make impossible for her
to pass the protocol, it is necessary to repeat it multiple times. If we repeat
this protocol κ times to reduce the chance of passing the protocol without the
knowledge of x to 1/2κ. A very classical example of such a protocol is one for
graph isomorphism [8].

Thus we can measure the computational complexity of a zero-knowledge
protocol as a function of two parameters: λ and κ. The first of them λ is the
size of the problem i.e. the size of the graphs for graph isomorphism protocol or
the length of the numbers for number theoretic protocols. The second κ, is the
security parameter denoting cheating probability at most 1/2κ.

There are protocols, that admit multiple values of challenge – more than
1/2κ for any reasonable κ. E can respond to at most one of them which gives
her chance of success smaller than 1/2κ in a single iteration. Very well known
example of such a protocol is Okamoto protocol [12]. Another example is HVZK
Schnorr protocol [14].

Zero-knowledge proofs behaving like Okamoto protocol are much more de-
sired than cut and choose ones. But such efficient protocols were found only for
a limited class of problems. Nevertheless a general rule can be formulated as fol-
lows: the more possible values of challenge, the more efficient the protocol is. Our
aim in this paper is to increase the efficiency of some existing zero-knowledge
protocols by increasing the number of possible challenges.

In section 2 we discuss increasing this number for graph isomorphism pro-
tocol. But we are mainly interested in improving two other protocols. They are
Stadler [16] protocols for double discrete logarithm, and for e-th root of dis-
crete logarithm. Numerous more complicated cryptographic protocols are based
on these two zero-knowledge proofs. These zero-knowledge proofs are cut and
choose ones, so they are quite inefficient. Our improvements increase efficiency
of our protocols O(log κ) times. In terms of practical improvement for κ = 160
it is 2-4 times.

The double discrete logarithm protocol and e-th root of discrete logarithm
protocol were originally constructed for publicly verifiable secret sharing (PVSS)
[16, 15]. They are also used in group signatures [3, 1], divisible e-cash [11, 4, 13]
and verifiable escrow [10].

2 Graph isomorphism.

In this section we increase the number of challenge values in zero-knowledge proof
of knowledge of graph isomorphism. After increasing the number of challenges
this protocol is no longer a proof of knowledge, but we prove that it can be
still applied for purposes like identification or digital signatures. We prove that
this protocol has the property of weak soundness, which states that nobody who



knows only ϕ(·), can learn how to impersonate the prover with nonnegligible
probability. In this section we take a natural assumption of graph isomorphism
problem intractability.

Graph isomorphism example is intended to illustrate what advantages in-
creasing the number of possible challenge values gives. This example also shows
that there are protocols, other than described in the next sections, for which the
number of challenges can be increased from 2 to s. It would be interesting to
find methods to increase the number of challenges for other proofs of knowledge.
The protocol for graph isomorphism was constructed in [8]. In this protocol P
proves that she knows the isomorphism between G1 and G2. This protocol is
presented in Fig. 1.

1. P sends V random G isomorphic to G1

2. V responds with challenge c ∈ {1, 2}
3. P sends the isomorphism ϕc : G → Gc

Fig. 1. Classical protocol for graph isomorphism

In modified protocol for graph isomorphism shown in Fig. 2 P knows isomor-
phisms between G1, G2, . . . , Gs, that are images of some graph G0 by isomor-
phisms.

1. P sends V random G isomorphic to G1

2. V responds with challenge c ∈ {1, 2, . . . , s}
3. P sends the isomorphism ϕc : G → Gc.

Fig. 2. Modified protocol for graph isomorphism.

Now we discuss the properties of modified protocol.
Completeness. Follows from the formulation of the protocol.
Zero-Knowledge. The simulator for this protocol is almost identical as one

for the classical graph isomorphism protocol. Note that even if V is dishonest we
can remove from the simulator transcript the rounds in which c does not agree
with V’s choice.

Weak Soundness. We claim that an opponent not knowing any of the
isomorphisms can pass the protocol for at most one challenge c unless the graph
isomorphism problem (i.e. the version for a pair of graphs) is easy. Assume on
the contrary that in a round she can respond to two different challenges with



a non-negligible probability p. We show how she can solve graph isomorphism
problem with probability p/2. Let us have two isomorphic graphs H1 and H2 for
which we want to find an isomorphism. We can generate G1, G2, . . . , Gs as the
images of H1 and H2 by random isomorphisms. We do it so that s/2 of them are
images of H1, the other s/2 are images of H2, and they are shuffled randomly.
With probability p the opponent can respond successfully to some challenges c
and d. In such case she is able to find an isomorphism between Gc and Gd. The
probability that Gc and Gd are images of different Hi’s is at least 1/2. Thus
with probability at least p/2 using opponent’s method to pass the protocol, one
can find an isomorphism between H1 and H2.

Complexity. The probability of E ’s success in a single iteration is at most
1/s. The probability of her success in k iterations is at most 1/sk. For example
in the classical protocol to achieve probability of E ’s success 1/2100 we need 100
iterations. When we apply our protocol for s = 10 we get this probability after
only 30 iterations.

Note that modified protocol is not efficient zero-knowledge proof that G1, G2, . . . , Gs

are isomorphic. If s = 10, then the probability that fixed c is not a challenge
during k = 30 iterations at least once is close to 1/e3. So there is a big chance
that Gc is not isomorphic to other graphs and it is not verified.

3 Preliminaries for number-theoretic protocols

In the rest of the paper we present protocols, that are related to discrete loga-
rithm problem. They are protocols for double discrete logarithm and e-th root of
discrete logarithm. First we remind some results of previous authors. From now
on we consider elements of Z∗

p where p is a large prime. We take the standard DL
(discrete logarithm) assumption, that computing logg h is infeasible. We begin
with Lemma from [5]. This lemma is used in the analysis of our protocols, and
is the reason why in our protocols we implicitly require, that whenever g, h are
different elements of Z∗

p, P has no control over them and in particular does not
know logg h.

Lemma 1. Let g1, g2, . . . , gk be elements of Z∗
p of order q. Under the DL as-

sumption it holds that no probabilistic polynomial-time algorithm can output with
non-negligible probability two different tuples (u1, u2, . . . , uk) and (v1, v2, . . . , vk)
such that

gu1
1 gu2

2 · · · guk

k = gv1
1 gv2

2 · · · gvk

k .

In the paper we also apply well-known protocol for proving equality of powers
[6]. Let g,G, h ∈ Z∗

p. This protocol is presented in Fig. 3 and can be described
as

PK
[
(x,X1, X2) : Z1 = gxhX1 , Z2 = GxhX2

]
.

This protocol admits multiple challenges and one its iteration is enough to be
sure, that the prover indeed has the secret key for which the statement is true.
This protocol can be used to prove nonlinear relations. Assume, that P knows



1. P chooses at random r, R1, R2 and sends t1 = grhR1 , t2 = GrhR2 ,
2. V responds with c ∈ Zq,
3. P sends y = r + xc, Y1 = R1 + X1c, Y2 = R2 + X2c,
4. V checks if gyhY1 = Zc

1t1, G
yhY2 = Zc

2t2.

Fig. 3. Protocol for equality of powers.

secret x1, x2, X1, X2 such that z1 = gx1hX1 and z2 = gx2hX2 . In such a case she
can prove that z3 = gx1x2hX3 for some X3 performing the protocol

PK
[
(x2, X2, X4) : z2 = gx2hX2 , z3 = Zx2

1 hX4
]
.

Using this protocol it is also easy to construct a protocol (see [3] for details)

PK
[
(x,X1, X2, . . . , XS) : z1 = gxhX1 , z2 = gx2

hX2 , . . . , zs = gxs

hXs

]
.

Now we remind security assumptions related to our protocols, that were
introduced in [9].

s-Power Decisional Diffie-Hellman (s-PDDH) assumption. No polynomial-
time algorithm can distinguish between the following two distributions with non-
negligible advantage over a random guess:

– Distribution:
(
gx, gx2

, gx3
, . . . , gxs

)
where g is known and x is chosen at

random and
– Distribution: (g1, g2, . . . , gs) where g1, g2, . . . , gs are chosen at random.

s-Power Computational Diffie-Hellman (s-PCDH) assumption. No prob-
abilistic polynomial-time algorithm can compute gxs

given gx, gx2
, . . . , gxs−1

with non-negligible probability.
In this paper we can use a weaker assumption.
s-Power Discrete Logarithm (s-PDL) assumption. No probabilistic polynomial-

time algorithm can compute x given gx, gx2
, . . . , gxs

with non-negligible proba-
bility.

Note that some nice properties of DL assumption are inherited by s-PDL
assumption. One of them is first/last bit security of x, that can be proved in the
same way as for DL assumption.

In the paper we assume s-PDL for x being in two special forms: x = hy and
x = ye. In many natural cases s-PDL for x in such a form can be reduced to
s-PDL for general x.

If x = hy we can consider the case where g has order q = 2Q+ 1, h has order
Q and q, Q are primes. In this case the probability, that a random x has form
hy is 1/2. And a polynomial algorithm solving s-PDL problem for x = hy with
nonnegligible probability p solves this problem for random x with probability
p/2.



If x = ye we can assume, that g ∈ Zp and e ⊥ p − 1. In this case we can
compute e−1 mod (p − 1) using Euclidean algorithm. Thus for any x we have

x =
(
xe−1

)e

. So solving s-PDL problem for x = ye is equivalent to solving this
problem for general x.

4 Protocols for double discrete logarithm

Now we formulate a new proof of knowledge of double discrete logarithm. Ac-
tually we formulate its very simple version, whose security is based on s-PDL
assumption. Zero-knowledge version, that is based only on DL assumption is
presented later on. Let g ∈ Z∗

p (of order q) and h ∈ Zq of order n. We require,
that n does not have small divisors. The protocol can be denoted as

PK
[
x : z = ghx

]
.

It should be mentioned, that in this protocol no information about hx should be
disclosed. This zero-knowledge proof has numerous applications in more com-
plex cryptographic protocols. Classical Stadler [16] protocol for this problem is
presented in Fig. 4.

1. P chooses r at random and sends t = ghr

,
2. V responds with c ∈ {0, 1},
3. If c = 0 then P sends y = r else she sends y = r − x,
4. If c = 0 V checks whether t = ghy

else he checks whether t = zhy

.

Fig. 4. Stadler protocol for double discrete logarithm.

Stadler protocol admits two challenge values: 0 and 1. Our protocol presented
in Fig. 5 admits s + 1 challenge values, so it requires fewer iterations.

Now we analyze our protocol.
Completeness. Follows from the formulation of the protocol.
Soundness. Nobody who does not know β can pass phase 1. Suppose that

in some iteration of phase 2 we can respond to two challenges c and d. We show,
that we can compute x such that z = ghx

. Indeed we have

t = gβchyc
= gβdhyd

,

thus
βchyc = βdhyd ,

and
β = h(yc−yd)/(d−c).



Phase 1

1. P sends z0 = g = gh0
, z = z1 = ghx

, z2 = gh2x

, z3 = gh3x

, . . . , zs = ghsx

,
2. P uses the zero-knowledge protocol for nonlinear relations to prove that she

knows β, such that z1 = gβ , z2 = gβ2
, . . . , zs = gβs

.

Phase 2 (repeat k times)

1. P chooses r at random and sends t = ghr

,
2. V responds with c ∈ {0, 1, 2, . . . , s},
3. P sends y = r − cx,
4. V checks if t = zhy

c .

Fig. 5. Our protocol for double discrete logarithm.

So we can take x = (yc − yd)/(d− c).
Security. We prove that under s-PDL assumption it is intractable for the

opponent to compute hx. Assume that an opponent can compute X = hx from
the communication in the protocol in polynomial time with nonnegligible prob-
ability. She can break s-PDL assumption for X = hx putting s-PDL input as
z1, z2, z3, . . . , zs. She then uses standard simulator of phase 1 and a simulator of
phase 2 which is almost the same as for Stadler protocol to produce the amount
of protocol transcripts needed by the opponent to find X.

5 Protocols for e-th root of discrete logarithm

The proof of knowledge e-th root of discrete logarithm can be specified as

PK
[
x : z = gxe

]
.

We assume that g ∈ Zp of order n. We present an improved protocol for proving
the knowledge of the e-th root of discrete logarithm where e does not have small
divisors (2, 3, . . . , s). We also assume that e ⊥ φ(n), so all elements of Zn can be
expressed as xe.

We formulate very simple version of this protocol, whose security is based on
s-PDL assumption. Zero-knowledge version can be formulated in the same way
as double discrete logarithm protocol in the next section.

Our protocol is based on cut and choose Stadler [16] protocol that admits
two values of challenge: 0 and 1. So it requires κ iterations for security parameter
κ. Note, that his probability does not depend on e. There are also protocols for
this problem described in [3, 2] that outperform Stadler protocol for small e.
The protocol from [2] is better than Stadler protocol for log e ≤ 160 if κ = 160.
Stadler protocol is shown in Fig. 6.

Our protocol presented in Fig. 7 admits s+1 challenge values. Since it requires
fewer iterations, the protocol from [2] remains competitive only for log e ≤ 60
when κ = 160.



1. P chooses r at random and sends t = gre

,
2. V responds with c ∈ {0, 1},
3. If c = 0 then P sends y = r else she sends y = r/x,
4. If c = 0 V checks whether t = gye

else he checks whether t = zye

.

Fig. 6. Stadler protocol for e-th root of discrete logarithm

Phase 1

1. P sends z0 = g, z = z1 = gxe

, z2 = gx2e

, z3 = gx3e

, . . . , zs = gxse

,
2. P uses the zero-knowledge protocol for nonlinear relations to prove that she

knows β, such that z1 = gβ , z2 = gβ2
, . . . , zs = gβs

.

Phase 2 (repeat k times)

1. P chooses r at random and sends t = gre

,
2. V responds with c ∈ {0, 1, 2, . . . , s},
3. P sends y = r/xc,
4. V checks if t = zye

c .

Fig. 7. Our protocol for e-th root of discrete logarithm.

The analysis of this protocol is very similar to one of the protocol for double
discrete logarithm.

Completeness. Follows from the formulation of the protocol.
Soundness. Nobody who does not know β can pass phase 1. Suppose, that

in some iteration of phase 2 we can respond to two challenges c and d. We show,
that we can compute x such that z = gxe

. Indeed we have

t = gβcye
c = gβdye

d ,

so
βcye

c = βdye
d,

and
βd−c = (yc/yd)e

.

Since d − c ⊥ e Euclidean Algorithm can find a, b : a(d − c) + be = 1. Thus we
can compute

x = (yc/yd)a
βb.

It is easy to check, that xe = β.
Security. We prove that under s-PDL assumption it is intractable for the

opponent to compute xe. Assume that an opponent can compute X = xe from



the communication in the protocol in polynomial time with nonnegligible prob-
ability. She can break general s-PDL assumption (see the assumption about e)
putting s-PDL input as z1, z2, z3, . . . , zs. She then uses standard simulator of
phase 1 and a simulator of phase 2 which is almost the same as for Stadler
protocol to produce the amount of protocol transcripts needed to find X.

6 Randomized versions of protocols and signatures

In this section we present more secure version of the protocol for double discrete
logarithm. This version does not rely on s-PDL assumption and does not require
honest verifier. A very similar protocol for e-th root of discrete logarithm can also
be formulated. We skip this second protocol in this paper due to its similarity
to the protocol described in this section. These secure versions are almost as
efficient as the simple versions from the previous sections.

Secure version of protocol for double discrete logarithm is presented in Fig.
8. In this protocol we have (unrelated) elements g,G, g1, g2, . . . , gk in Z∗

p of order
q.

This protocol is written to produce a signature of knowledge according to
Fiat-Shamir heuristic [7] and uses secure hash functions Hl producing l-bit out-
puts. This protocol can be described as

PK
[
(x, x′) : z = ghx

Gx′
]

Now we analyze protocol from Fig. 8.
Completeness. Follows from the formulation of the protocol.
Soundness. The soundness property is computational If P does not know

β, x′, X0, X1, . . . , Xs such that

z = gβGx′ , t′s = G
P

βs−jXj

and for j ∈ {0, 1, 2, . . . , s}
tj =

(
t′j−1

)β
GXj ,

then she is not able to respond to challenge C. Responding to challenge C means
sending Y1, . . . , Ys, Y, y, Y ′. Having above equalities we can compute, that

t0 = GX0

k∏
i=1

g−hyiβ−ci

i

Assume P can respond to another challenge c′. In such a case

t0 = GX′
0

k∏
i=1

g−hy′iβ−c′i
i

For some i we have ci 6= c′i. Thus under DL assumption from Lemma 1

hy′iβ−c′i = hyiβ−ci .



1. Let k = dκ/ log2(s + 1)e. For random r1, . . . , rk, X0 compute

t0 = GX0

 
kY

i=1

ghri

i

!−1

.

2. Let c = Hκ (m‖t0). There are unique ci ∈ {0, . . . , s} such that

c = c1 + c2(s + 1) + c3(s + 1)2 + · · · + ck(s + 1)k−1.

3. For all i ∈ {1, 2, . . . , k} compute yi = ri + ci · x.
4. Choose X1, . . . , Xs at random and compute t′0, . . . , t

′
s and t1, . . . , ts:

t′j = tj

Y
i:ci=j

ghyi

i = tj

 Y
i:ci=j

ghri

i

!hjx

, tj =
`
t′j−1

´hx

GXj .

5. Choose R at random. For j ∈ {1, 2, . . . , s} choose Rj at random and compute

Tj =
`
t′j−1

´R
GRj .

Choose r, R′ at random and compute T = gRGr, T ′ = GR′
.

6. Let C = Hλ (m‖t0‖t1‖ · · · ‖ts‖T1‖ · · · ‖Ts‖T‖T ′).
7. Compute Y = R + Chx, y = r + Cx′, Y ′ = R′ + C

P
h(s−j)xXj and values

Yj = Rj + C ·Xj for j ∈ {1, 2, . . . , s}.
8. The signature on m has the form

t0‖t1‖ · · · ‖ts‖T1‖ · · · ‖Ts‖T‖T ′‖y1‖ · · · ‖yk‖Y1‖ · · · ‖Ys‖Y ‖y‖Y ′.

Fig. 8. Secure version of our protocol for double discrete logarithm formulated as a
signature scheme for message m.

1. Let c = Hκ (m‖t0). There are unique ci ∈ {0, . . . , s} such that

c = c1 + c2(s + 1) + c3(s + 1)2 + · · · + ck(s + 1)k−1.

Let C = Hλ (m‖t0‖t1‖ · · · ‖ts‖T1‖ · · · ‖Ts‖T‖T ′).

2. For j ∈ {0, 1, 2, . . . , s} compute t′j = tj

Y
i:ci=j

ghyi

i .

3. Verify that T ′(t′s)C = GR′
, T zC = gY Gy and Tjt

C
j =

`
t′j−1

´Y
GYj , for j ∈

{1, 2, . . . , s}.

Fig. 9. Verification of signature on m obtained by protocol from Fig. 8.



So β = h(yi−y′i)/(ci−c′i) and x = (yi − y′i)/(ci − c′i).
Zero-Knowledge. We prove zero-knowledge for version of the protocol,

whose challenges are produced by V as soon as he receives all arguments used
in hash functions. The data revealed in steps 1-4 i.e. t0, . . . , ts and y1, . . . , yk are
uniformly distributed in their domains, so they leak no information. The proof
of equality of powers from steps 5-7 in Figure 8 is known to be zero-knowledge,
so it also leaks no information.

7 Complexity of protocols

We concentrate on the protocols for double discrete logarithm. The protocols
for e-th root of discrete logarithm behave the same when e is large. If κ is a
parameter and λ is fixed, the complexity is O(κ/ log κ). But we are not interested
in asymptotics but in practical execution time and transcript length. We assume
that λ is some constant (e.g. 2048) that assures intractability of number-theoretic
problems and κ = 160. We express the length of the proof as the number of
long integers that are exchanged in the protocol. The time complexity can be
measured as the number of power operations (for x, y compute xy) on pairs of
long numbers, since they have the biggest cost. The complexities as functions of
s and k are in Fig. 10. In Fig. 11 we substitute the values s and k that minimize
the times and lengths of the proofs for κ = 160 to the formulas from Fig. 10. We
should mention, that the protocol in Fig. 8 can give even more advantages as
the length of the transcript than specified in Fig. 11. It could be the case when
n � p (similarly as in DSA), because the only information repeated k times has
the length of n.

length time P time V
Stadler [16] 2k 2k 2k

protocol Fig. 5 2k + s + 1 2k + s 2k + s

protocol Fig. 8 k + 3s + 6 2k + 4s + 5 2k + 3s + 5

Fig. 10. Complexities of double discrete logarithm protocols as functions of k and s.

length time P time V
Stadler [16] 320 320 320

protocol Fig. 5 (s = 21, k = 36) 94 93 93

protocol Fig. 8 (s = 8, k = 51) 81 140 131

Fig. 11. Complexities of protocols for double discrete logarithm for κ = 160.



Acknowledgment

Author wishes to thank Pawe l Zalewski for valuable remarks that improved the
presentation.

References

1. Giuseppe Ateniese, Dawn Xiaodong Song, Gene Tsudik: Quasi-Efficient Revocation
in Group Signatures. Financial Cryptography 2002: 183-197

2. Emmanuel Bresson, Jacques Stern: Proofs of Knowledge for Non-monotone Discrete-
Log Formulae and Applications. ISC 2002: 272-288

3. Jan Camenisch, Markus Stadler: Efficient Group Signature Schemes for Large
Groups (Extended Abstract). CRYPTO 1997: 410-424

4. Sébastien Canard, Aline Gouget: Divisible E-Cash Systems Can Be Truly Anony-
mous. EUROCRYPT 2007: 482-497

5. David Chaum, Eugène van Heijst, Birgit Pfitzmann: Cryptographically Strong Un-
deniable Signatures, Unconditionally Secure for the Signer. CRYPTO 1991: 470-484

6. David Chaum, Torben P. Pedersen: Wallet Databases with Observers. CRYPTO
1992: 89-105

7. Amos Fiat, Adi Shamir: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. CRYPTO 1986: 186-194

8. Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of
Interactive Proof-Systems (Extended Abstract) STOC 1985: 291-304

9. Philippe Golle, Stanis law Jarecki, Ilya Mironov: Cryptographic Primitives Enforcing
Communication and Storage Complexity. Financial Cryptography 2002: 120-135

10. Wenbo Mao: Verifiable Escrowed Signature. ACISP 1997: 240-248
11. Toru Nakanishi, Yuji Sugiyama: Unlinkable Divisible Electronic Cash. ISW 2000:

121-134
12. Tatsuaki Okamoto: Provably Secure and Practical Identification Schemes and Cor-

responding Signature Schemes. CRYPTO 1992: 31-53
13. Pawe l Pszona, Grzegorz Stachowiak: Unlinkable Divisible Digital Cash without

Trusted Third Party. eprint 2007/216
14. Claus-Peter Schnorr: Efficient Identification and Signatures for Smart Cards.

CRYPTO 1989: 239-252
15. Berry Schoenmakers: A Simple Publicly Verifiable Secret Sharing Scheme and Its

Application to Electronic Voting. CRYPTO 1999: 148-164
16. Markus Stadler: Publicly Verifiable Secret Sharing. EUROCRYPT 1996: 190-199.


