
Restricted Adaptive Oblivious Transfer

Javier Herranz

IIIA, Institut d’Investigació en Intel·ligència Artificial,
CSIC, Consejo Superior de Investigaciones Cient́ıficas

Campus UAB s/n, E-08193 Bellaterra, Spain
e-mail: jherranz@iiia.csic.es

Abstract

In this work we consider the following primitive, that we call restricted adaptive oblivious
transfer. On the one hand, the owner of a database wants to restrict the access of users to this
data according to some policy, in such a way that a user can only obtain information satisfying
the restrictions imposed by the owner. On the other hand, a legitimate user wants to privately
retrieve allowed parts of the data, in a sequential and adaptive way, without letting the owner
know which part of the data is being obtained.

After having formally described the components and required properties of a protocol for
restricted adaptive oblivious transfer, we propose two schemes to realize this primitive. The
first one is only of theoretical interest at the current time, because it uses a cryptographic tool
which has not been realized yet: cryptosystems which are both multiplicatively and additively
homomorphic. The second scheme, fully implementable, is based on secret sharing schemes.

Keywords. Oblivious transfer, homomorphic encryption, secret sharing.

1 Introduction

With the growth of the Internet, many practical situations involving operations on digital confi-
dential data appear constantly. On the one hand, the owner of the data wants it to remain private
against those users who do not have the right to access it. This can be achieved by keeping the
data in a secure device, or by encrypting it. Many examples of such confidential databases can be
found in the areas of medical analysis, electronic commerce, banking, or digital business in gen-
eral. On the other hand, some users can have the right to access to some parts of this confidential
data, because of their role (doctors) or because they pay for it. In some situations, these allowed
users may want to keep private what part of the data they are retrieving. Imagine the following
motivating example inspired by pay per view systems: a TV channel over the Internet broadcasts
different programs (films, sport events...) which can be watched only by those clients who have
paid for them. A client may pay a registration fee which gives him the right of watching five films
and ten football matches in the current month, for example. A solution for the TV channel is to
keep a private database containing one password for each program, and then to allow the download
of the program only to those users having the corresponding password. If a client has paid only to
watch films, he should have access only to the part of the database which contains the passwords

1



for the films. On the other hand, when asking for a password to watch a film, maybe the client
does not want the TV channel to know which film he is going to watch.

Summing up, there are situations where both the owner of the data (from now on, the server)
and the users who have access to some parts of the data (from now on, the clients) want to preserve
some kind of privacy. The server wants to restrict the access of each client to his data, by means
of some policy; these restrictions can be defined by (decreasingly) monotone families, containing
the subsets of items that are allowed to be retrieved. The clients can ask for retrieval of different
items, in a sequential and adaptive (i.e., possibly depending on the previously retrieved items) way,
and should obtain these items, as long as they form a subset of allowed items, without letting
the server know which items have been retrieved. We denote this problem as restricted adaptive
oblivious transfer. The cryptographic primitive of standard oblivious transfer [16, 7] provides an
interactive protocol between a server and a client: the client retrieves an item dbi, and nothing
else, from a database DB = {db1, . . . , dbN} of secret items maintained by the server, who does not
obtain any information about the index i (chosen by the client) of the retrieved item. Of course,
such a protocol does not solve, by itself, our problem of restricted adaptive oblivious transfer: since
the server does not know the index of the currently queried item, he cannot decide if the client has
(still) the right to obtain this item.

Related work. Ishai and Kushilevitz introduced in [13] a primitive that they called generalized
oblivious transfer (GOT), which can be seen as a non-sequential (and, thus, non-adaptive) coun-
terpart of the primitive that we consider here, restricted adaptive oblivious transfer. In a GOT
protocol, the server defines a monotone family of restrictions, as well; however, the client must
decide at the same time the whole subset of items (satisfying the restrictions) in the database he
wants to retrieve. The retrieval protocol is executed only once, and the client receives all the queried
items together. The solution proposed in [13] uses parallel instances of a standard oblivious transfer
protocol (with N = 2). This is why the authors used the term ‘generalized oblivious transfer’ to
define this primitive. A different solution to implement GOT has been recently proposed in [18], by
combining secret sharing schemes and parallel instances of standard oblivious transfer. However,
since the use of parallel instances of standard oblivious transfer is not mandatory to realize this
primitive (as we will see in this paper), and since the name ‘generalized oblivious transfer’ has
already been used for other different extensions of the concept of oblivious transfer (see [6, 5]), we
have chosen a different name, ‘restricted adaptive oblivious transfer’, for the considered primitive,
and not ‘adaptive generalized oblivious transfer’, for example.

We want to stress here that the main difference between restricted adaptive oblivious transfer
and generalized oblivious transfer, i.e. the fact that queries can be made in a sequential and
adaptive way, is of great importance in some applications. For example, in a pay-per-view system,
a client may want to see/buy a film of a particular director before deciding if he wants to buy/see
other films of this director.

Anyway, the concept of restricted adaptive oblivious transfer is not completely new. Aiello et
al. [1] introduced and realized the primitive of priced oblivious transfer, which is a particular case
of restricted adaptive oblivious transfer: each item of the database has a price, each client has a
budget, and the client can privately retrieve/buy items, through the life of the system, as long as
his money balance (which is updated by the server at the end of each execution) remains positive.
Finally, an even more particular case is that of k-out-of-N oblivious transfer [14, 9], where each
client can run the retrieval protocol at most k times, in a sequential and adaptive way.

2



Our contribution. In this paper we first describe in detail the general primitive of restricted
adaptive oblivious transfer: how to model the restrictions of clients, by using (decreasingly) mono-
tone families of subsets; which are the inputs and outputs of each of the protocols; and which
are the required security properties for these protocols. Once this is done, we explain how priced
oblivious transfer can be recovered as a particular case of this primitive.

Then we present two solutions to the general problem of restricted adaptive oblivious transfer.
The first one is inspired by the solution presented in [1] to the problem of priced oblivious transfer.
However, differently than in the priced case, the general solution that we propose makes use a very
special cryptographic tool: public key encryption schemes which are at the same time additively
and multiplicatively homomorphic. Since such schemes are not known to exist yet, the interest of
this solution is only theoretical, right now. We propose therefore a second solution, which is fully
implementable because it uses well-known (and existing) cryptographic tools; it is inspired by a
conceptual relation between restricted adaptive oblivious transfer and secret sharing schemes.

Organization of the paper. In Section 2 we recall the concepts of oblivious transfer, homo-
morphic encryption, conditional disclosure of a value, and secret sharing schemes. In Section 3 we
describe in detail the primitive that we want to implement, restricted adaptive oblivious transfer,
and we briefly explain the particular case of priced oblivious transfer. We propose our first, the-
oretical, solution to the general problem in Section 4, and we propose our second solution, fully
implementable, in Section 5. We conclude our work in Section 6.

2 Preliminaries

In this section we recall four cryptographic primitives which will appear in the solutions to the
problem of restricted adaptive oblivious transfer that we review or propose.

2.1 1-out-of-N Oblivious Transfer

The problem of 1-out-of-N oblivious transfer can be (informally) defined as follows: a server S
stores a database DB containing N items {dbi}1≤i≤N . By means of an interactive protocol, a client
C wants to obtain the i-th item, dbi, for an index i of his choice. The protocol must satisfy a
correctness property (the client obtains the required item if both parties behave correctly) and two
privacy properties:

• Privacy for the client. At the end of the protocol, the server S obtains no information
about the index i of the item dbi which has been retrieved by the client.

• Privacy for the server. At the end of the protocol, the client C obtains no information
about the other items dbj of the database, where j 6= i.

1-out-of-N oblivious transfer was introduced in [6, 7] as a generalization of the original concept
of oblivious transfer introduced in [16].

3



2.2 Homomorphic Encryption

A public key encryption scheme PKE = (KG, E ,D) consists of three probabilistic and polynomial
time algorithms. The key generation algorithmKG takes as input a security parameter (for example,
the desired length for the secret key) and outputs a pair (sk, pk) of secret and public keys. The
encryption algorithm takes as input a plaintext m and a public key pk, and outputs a ciphertext
c = Epk(m). Finally, the decryption algorithm takes as input a ciphertext and a secret key, and
gives a plaintext m = Dsk(c) as output.

Such a scheme has an homomorphic property if there exist two operations, defined on the set
of ciphertexts and plaintexts, respectively, such that the result of operating two ciphertexts is
an encryption of the result of operating the two corresponding plaintexts. For example, a public
key cryptosystem is additively homomorphic if there exists an operation ⊕ defined on the set of
ciphertexts, such that the message encrypted in c1 ⊕ c2 is m1 + m2, where mi is the message
encrypted in ci, for i = 1, 2. Formally, this property is written as

Dsk(Epk(m1)⊕ Epk(m2)) = m1 +m2.

Analogously, a cryptosystem is multiplicatively homomorphic if there exists an operation ⊗
defined on the set of ciphertexts, such that Dsk(Epk(m1) ⊗ Epk(m1)) = m1 · m2, for any pair of
plaintexts (m1,m2). Of course, these definitions make sense only if the multiplication and addition
operations are properly defined on the set of plaintexts.

ElGamal cryptosystem [11] is the classical example of multiplicatively homomorphic scheme,
whereas Paillier’s one [15] is an additively homomorphic encryption scheme. Boneh et al. [4] pro-
posed a public key encryption scheme which is, at the same time, additively and multiplicatively
homomorphic; but the multiplicatively homomorphic property is satisfied only if the product oper-
ation is applied once. Homomorphic cryptosystems have a lot of applications, including electronic
auctions and electronic voting.

2.3 Conditional Disclosure of Secrets

The general conditional disclosure primitive was introduced in [12]. In this work we are interested
in the following particular case: a server holds a secret value s, a message m and a public key pk
corresponding to some (additively homomorphic) cryptosystem PKE. A user holds the matching
secret key sk, and a message m′. By using the conditional disclosure primitive, the user gives
Epk(m′) to the server, and he must obtain secret s from the server if and only if the condition
m′ = m is satisfied. The server must obtain no information about m′.

This primitive can be realized in the following way: after receiving Epk(m′), the server takes at
random an element α and, using the homomorphic property of PKE, computes an encryption c of
β = α(m−m′) + s. The server sends c to the user, who can use sk to decrypt and obtain β, which
is equal to the secret s if m = m′, and is a random value otherwise.

This simple protocol solves the conditional disclosure problem in the case of a single equality
between a value known to the server and an encrypted value. The more general case where the
condition is a monotone formula with equality leaves can be similarly solved, using the following
recursive method, as proposed in [1]. On the one hand, to realize the conditional disclosure of
secret s under condition C1∨C2, one can run two independent instances of the protocol, one under
condition C1 and the other under condition C2. On the other hand, to realize the conditional

4



disclosure of secret s under condition C1∧C2, one can choose r at random and run two independent
instances of the conditional disclosure protocol, one for secret r under condition C1, and the other
for secret s+ r under condition C2.

2.4 Secret Sharing Schemes

In a secret sharing scheme, shares of a secret value are distributed among a set I = {1, . . . , N} of
N players, according to some access structure Γ ⊂ 2I , which is increasingly monotone: if A1 ∈ Γ
and A1 ⊂ A2, then A2 ∈ Γ, for any A1, A2 ⊂ I. If the scheme is perfect, only authorized subsets of
players (those in Γ) can recover the secret value from their shares, whereas non-authorized subsets
(those out of Γ) do not obtain any information about the secret.

Secret sharing schemes were introduced independently by Shamir [17] and Blakley [3] in 1979.
Shamir considered threshold access structures Γ = {A ⊂ P : |A| ≥ t} defined by a threshold t, and
proposed a secret sharing scheme for these structures, based on polynomial interpolation. Other
works have proposed schemes realizing more general access structures, such as vector space secret
sharing schemes [8]. An access structure Γ is realizable by such a scheme, in a finite field Zq for
some prime q, if there exist a positive integer r and an assignment of vectors ψ : I ∪{D} −→ (Zq)r

(one for each participant) such that A ∈ Γ if and only if ψ(D) is a linear combination of the vectors
in {ψ(i)}i∈A, for any A ⊂ I. Here D denotes a special entity (real or not), called the dealer, outside
the set I. If a real dealer D wants to share a secret s ∈ Zq among the players in I, he chooses a
random vector ~v ∈ (Zq)r such that ~v · ψ(D) = s. The share of each player i ∈ I is si = ~v · ψ(i).
If A ∈ Γ, there exist values {λA

i }i∈A such that ψ(D) =
∑
i∈A

λA
i ψ(i). Then, it is easy to see that

s =
∑
i∈A

λA
i si mod q. Using simple linear algebra, one can also see that subsets out of Γ obtain no

information at all about the secret value s. In other words, any possible secret s′ ∈ Zq is equally
likely from the point of view of a non-authorized subset.

Simmons, Jackson and Martin [19] introduced linear secret sharing schemes, which can be seen
as a generalization of vector space secret sharing schemes where each player can be assigned more
than one vector (and therefore, the length of each share can be larger than the secret). They proved
that any access structure can be realized by a linear secret sharing scheme.

3 Restricted Adaptive Oblivious Transfer

In this section we explain in more detail the general functionality of restricted adaptive oblivious
transfer (phases, inputs/outputs of the protocols, desired security properties). We then review
some particular cases of this functionality, which can be realized quite directly by using existing
results.

3.1 Definitions: Functionality and Properties

Let us remember the functionality we want to implement: a server S maintains a secret database
DB = {db1, . . . , dbN} with N entries/items, and a policy defining which subsets of entries of the
database can be available, on request, to the different clients. A client wants his requests to be
private, i.e. the server should not obtain any information about the item(s) that the client is
requesting. The server wants to be sure that a client C will not obtain any information about items

5



of the database which are not allowed to C. In general, a solution fulfilling this functionality will
consist of two protocols:

• 1st protocol: defining rights. This phase should be run off-line, maybe before the specific
values of the entries {dbi}1≤i≤N of the database are defined. Let I = {1, 2, . . . , N} denote the
set of indices of the items in the database. For a particular client C, the server S specifies the
family BC ⊂ 2I of subsets of items that client C is allowed to obtain. Of course, BC must be a
decreasingly monotone family: if B1 ∈ BC is allowed, and B2 ⊂ B1, then B2 ∈ BC is allowed,
as well. The family BC is known by both S and C. The server S stores an information infoC

related to C, which initially contains BC and which is updated by S each time C requests an
item of the database. Possibly, the client C receives some additional information αC from S,
to be used in the future requests.

• 2nd protocol: request and retrieval. The input for the client C includes αC and the
index i corresponding to the entry dbi he wants to retrieve from the database. The input
for the server consists of the database DB and infoC . At the end of the protocol, S must
update his information infoC , and C obtains a value outi. Assume that this is the t-th time
that C executes this protocol with S, and that previous executions had inputs i1, . . . , it−1.
Let us define the subset of indices B = {i1, . . . , it−1, i}. Then C obtains the desired value,
i.e. outi = dbi, if and only if B ∈ BC .

A scheme for this functionality of restricted adaptive oblivious transfer will be considered valid
if it satisfies some requirements. Assume that the t-th execution of the protocol has input (it, αC)
for C, where it ∈ {1, . . . , N}. The first requirement is a typical correctness one: if the client and
the server behave honestly during the t-th execution and if {i1, . . . , it} ∈ BC , then outit = dbit is
the secret output of C. Additionally, two privacy properties are required.

• Privacy for the client. In any execution of the protocol for request and retrieval of an item,
the server S does not obtain any information about the index i in the input of the client.

• Privacy for the server. In the t-th execution of the ‘request and retrieval’ protocol, with
input (it, αC), the client C

– does not obtain any information about items db`, for ` 6= it; and
– does not obtain any information about item dbit , if {i1, . . . , it} /∈ BC .

Of course, a malicious server can always refuse to execute his part of the protocol. There
is nothing we can do about it. However, there are quite standard ways to avoid other possible
misbehaviours of the server. For example, a dishonest server could arbitrarily modify his database,
and run the request and retrieval protocol with entries db′j different than the correct ones, dbj . In
this way, clients would obtain invalid items as answers to their queries. To avoid this problem, we
can use a trusted third party (TTP) which engages a commitment protocol with the server: the
server sends to the TTP the correct items dbj ; the TTP chooses random values rj and computes
hj = H(dbj , rj), for all j = 1, . . . , N , where H is some hash function. The pairs (rj , hj) are
published by the TTP. Later, when a client retrieves some item dbi, he can verify that the server
has behaved honestly, by checking if H(dbi, ri) = hi. In the rest of the paper, for simplicity, we
will assume that the server behaves honestly, i.e. he does not refuse any query of a client, and he
considers as inputs the correct values dbj of the items.

6



3.2 A Particular Case: Priced Oblivious Transfer

When the family BC ⊂ 2I is a weighted threshold family, which means that there exist a threshold
β and an assignment of positive weights ω : I → Z+ such that

BC = {B ⊂ I s.t.
∑

i∈B

ω(i) ≤ β},

then we recover priced oblivious transfer [1], where elements of the database are supposed to be
objects (or goods) with a price, and users have different budgets to privately buy goods. In the
solution given in [1], the prices of the objects are the same for all the users/buyers. But their
solution can be applied in general to the restricted adaptive oblivious transfer problem where each
user can have different restrictions (not only the budget), as long as all the restriction families BC

are weighted threshold.
Namely, assume that the restrictions of a client are described by a weighted threshold family BC ,

which is realized by a threshold β and an assignment of weights ω : I → Z+. All this information
is known by both the client and the server. We present a brief sketch of how the basic solution
proposed in [1] would work.

• All the weights are assumed to be different (if necessary, by scaling them and the threshold
with a large enough factor): ω(i) 6= ω(j), if i 6= j.

• The client generates a pair of secret/public keys (sk, pk) for an additively homomorphic
cryptosystem; encryption is denoted as c = Epk(m).

• The server encrypts c = Epk(β).

• If the client wants to retrieve element dbi, he sends c̃ = Epk(ω(i)) to the server, along with
a (cryptographic) proof that the value encrypted in c is greater or equal than the value
encrypted in c̃. The client adds a standard oblivious transfer query for the index i.

• The server verifies that the validity proof is correct. If so, he answers the standard oblivious
transfer query, and updates c = c ª c̃ = Epk(β − ω(i)), for possible future executions of the
protocol with the same client.

• The client recovers dbi using the last step of the oblivious transfer protocol, and updates
β = β − ω(i) and c = cª c̃.

This solution forces the server to store a lot of different information (the threshold β, the
assignment of weights ω, the ciphertext c) for each client. This drawback, as well as some of the
techniques used in the priced oblivious transfer protocols of [1], will appear in the generic solution
to the problem of restricted adaptive oblivious transfer that we present in next section.

4 A First Generic Solution (of Theoretical Interest)

The particular case of priced oblivious transfer does not cover all the possible cases of restricted
adaptive oblivious transfer. For example, suppose that a database DB = {db1, db2, db3, db4} con-
tains four items, and that a client C is allowed to retrieve items in one of the subsets of indices

7



defined by the family BC = {{1, 2}, {2, 3}, {3, 4}}. It is easy to see that this family cannot be
weighted threshold (actually, this is an example of a non weighted threshold family proposed in
[2]). Therefore, the ideas of priced oblivious transfer cannot be used here. This case cannot be
solved, either, by using predicate encryption techniques.

We propose in this section a first generic solution which works for any possible family BC of
restrictions. It can be seen as a generalization of the protocols in [1] for priced oblivious transfer.
Unfortunately, the solution is, at the current time, of theoretical interest only, because it employs a
cryptographic tool which has not been realized yet: cryptosystems which are both multiplicatively
and additively homomorphic. Let us assume, anyway, the existence of such a cryptosystem, PKE =
(KG, E ,D), with operations ⊗ and ⊕ defined on the set of ciphertexts, satisfying for any two
plaintexts m1,m2:

Dsk(Epk(m1)⊗ Epk(m2)) = m1 ·m2, and
Dsk(Epk(m1)⊕ Epk(m2)) = m1 +m2.

The two protocols of the generic solution that we propose work as follows.

1st protocol: defining rights. Let BC = {B1, B2, . . . , Bs} ⊂ 2I be the family of subsets of
indices expressing the collections of items that client C is allowed to query, where I = {1, 2, . . . , N}.
In general, we will have Bj = {ij,1, ij,2, . . . , ij,nj} ⊂ I. We represent each of these subsets Bj with

its incidence vector, a length N binary vector ~bj = (b(j)1 , b
(j)
2 , . . . , b

(j)
N ) ∈ {0, 1}N , such that b(j)i = 1

if and only if i ∈ Bj , for i = 1, 2, . . . , N . For simplicity of notation, we will sometimes skip the
super-index (j), when it is clear from the context.

The client generates a pair of keys (pk, sk) ← KG(1k) for the homomorphic cryptosystem
PKE, and publishes pk. The server computes an encryption of BC , by encrypting all the vectors
~bj coordinate-wise. In other words, he computes ~cj = (Epk(b

(j)
1 ), . . . , Epk(b

(j)
N )), for j = 1, . . . , s. He

also chooses a value u0. Initially, he sets infoC = (pk, u0, {~cj}j=1,...,s).

2nd protocol: request and retrieval. If the client wants to retrieve the item dbi, then he
must encrypt the vector ~e = (e1, . . . , eN ) ∈ {0, 1}N , which has a 1 in the i-th position, ei = 1, and
a 0 everywhere else, e` = 0, ∀` 6= i. The result is a vector of ciphertexts ~c = (c1, c2, . . . , cN ) =
( Epk(e1), . . . , Epk(eN ) ). If the client has behaved honestly, then the value

c̃ =
N⊗

`=1

cdb`
`

is an encryption of dbi, due to the (multiplicatively) homomorphic properties of the scheme PKE.
Now the server has to update the access family BC , because the i-th item has been already queried
and will be released. For each subset Bj ∈ BC , the server updates its representation vector ~bj , by
replacing a 1 with a 0 in the i-th position, if b(j)i = 1 (which means that index i belonged to Bj)
and by setting all the vector ~bj to 0, if b(j)i = 0 (which means that the client has asked for an item
which was not in Bj , and so the subset Bj must not be considered any more). This is done via the
formula

~b′j = [~bj · ~e](~bj − ~e),

8



where ~b′j denotes the updated version of the vector associated to subset Bj . The server must
perform this operation over encrypted data, ~c′j = [~cj ¯ ~c](~cj − ~c); this is the point where we
need PKE to be both multiplicatively and additively homomorphic. Furthermore, we will have to
perform two levels of products of ciphertexts, one for the ‘scalar’ product ~cj ¯ ~c, and another one
to multiply the resulting ciphertext with each component of the vector of ciphertexts (~cj −~c). For
this reason, the scheme in [4], which allows only one level of products of ciphertexts, cannot be
used here.

Of course, we have to consider the possibility of dishonest clients. The server will release to the
client this value c̃ (an encryption of dbi), conditioned to the fact that the query is correct, which
means that:

1. the client has behaved honestly in the previous executions of the protocol; and

2. the vector of ciphertexts ~c = (c1, . . . , cN ) contains exactly one encryption of 1, and N − 1
encryptions of 0; and

3. the index i such that ci is an encryption of 1 still belongs to some subset Bj ∈ BC .

The first condition is ensured with a chaining technique [1]: in the t-th execution of the protocol,
the client receives an encryption of some value ut, if and only if the t-th query is correct. Then, in
the (t+ 1)-th execution, the client must provide an encryption of ut.

The second condition ensures that the client will obtain at most one item, if any, and that the
client cannot try to “increase” his rights BC for the following interaction, by defining e` = −1 for
some ` ∈ {1, . . . , N}, for example. The server will not know which entry of ~c encrypts the value
1, but he will be convinced that ~c is well formed if the corresponding vector ~e = (e1, . . . , eN ) of
plaintexts satisfies

N∨

i=1

(ei = 1 ∧ e` = 0, ∀` 6= i).

Finally, the third condition is equivalent to verify that the value encrypted in the scalar product
~bj · ~c is 1, for some j ∈ {1, . . . , s}. In effect, assuming that ~e is well formed, the scalar product of
the plaintext vectors, ~bj · ~e, will be 1 if and only if i ∈ Bj .

Putting all these pieces together, the t-th execution of this ‘request and retrieval’ protocol works
as follows, for t ≥ 1.

1. To retrieve item dbi, the client computes the vector ~e = (e1, . . . , eN ) such that ei = 1 and
e` = 0, ∀` 6= i, and encrypts it coordinate-wise, to obtain ~c = (c1, . . . , cN ), where c` = Epk(e`),
for ` = 1, . . . , N .

2. The client sends ~c and Epk(u) to the server, where u = ut−1.

3. The server chooses at random ut, and encrypts it. He also computes the value c̃ =
N⊗

`=1

cdb`
` .

4. By using the protocols/ideas explained in Section 2.3, the server performs a conditioned
disclosure of the pair (Epk(ut), c̃), under the condition




N∨

i=1


ei = 1 ∧

N∧

`=1, 6̀=i

e` = 0





 ∧




s∨

j=1

~bj · ~e = 1


 ∧

(u = ut−1).

9



5. The server updates the value of the encryptions of the vectors ~bj , for j = 1, . . . , s. Remember
that the correct update is ~bj := [~bj · ~e](~bj − ~e). Therefore, the server updates the ciphertexts

~cj := [~cj ¯ ~c](~cj − ~c),
for j = 1, . . . , s, where (c1, . . . , cN )¯ (c′1, . . . , c

′
N ) = (c1 ⊗ c′1) ⊕ . . .⊕ (cN ⊗ c′N ). He replaces

the old values of ~cj with the new ones, in infoC , where he also replaces ut−1 with ut.

6. If the client has always behaved honestly, he can recover the pair (Epk(ut), c̃) and decrypt
both ciphertexts with sk, obtaining in this way ut and the desired item dbi.

Because of the security properties of the encryption scheme and of the protocol for conditional
disclosure of secrets, it is easy to see that this protocol enjoys the required privacy properties for
restricted adaptive oblivious transfer. The server cannot obtain any information about the index
i, and the client obtains item dbi only if he is allowed to do it.

5 A Second Generic Solution

In this section we propose a second solution to the general problem of restricted adaptive oblivious
transfer. Although it is not very efficient (due to the amount of computational and communication
effort which is required in each execution of the protocol), it is fully implementable in practice, since
it uses existing cryptographic tools: additively homomorphic cryptosystems, standard oblivious
transfer, and secret sharing schemes.

It can seem quite natural to relate the concept of restricted adaptive oblivious transfer (where
a decreasingly monotone family BC appears) and the concept of secret sharing (where an increas-
ingly monotone family Γ appears). Actually, the proposal in [18] for the non-sequential case of
‘generalized oblivious transfer’ already uses secret sharing as an ingredient. Let us sketch the basic
ideas of our second solution. Given a family BC ⊂ 2I defining the restrictions of a client C, the
server considers the increasingly monotone family

Γ = (BC)c = {A ⊂ I | A /∈ BC}.
For simplicity, we assume that Γ admits a vector space secret sharing scheme, defined by ψ :
I ∪ {D} → (Zq)r. The server can choose a vector ~v ∈ (Zq)r at random, such that all the shares
si = ~v · ψ(i) are different. The real secret would be s = ~v · ψ(D). Now, if we consider a different
random value s′ 6= s, the key point is that the system of equations

{
~x · ψ(D) = s′, {~x · ψ(j) =

sj}j∈B

}
, with vector of unknowns ~x, will have solution if and only if B /∈ Γ (otherwise, if B ∈ Γ,

the real shares of elements in B would completely determine the secret to be s, different from s′).
In other words, the system has solution if and only if B ∈ BC .

During each execution of the ‘request and retrieval’ protocol, the client C should prove that he
knows a solution ~x for such a system of equations, being B the subset of all the indices that C has
queried to the database (including the current one). If this subset B is not allowed, then it will be
in Γ and so C will not be able to provide such a solution to the system of equations. Of course,
care must be taken in order to preserve the privacy of the queries, and also to prevent a possible
dishonest behaviour of a client who tries to cheat the server. The details of the protocols which
compose our second solution are as follows.

10



1st protocol: defining rights. Let BC ⊂ 2I be the family containing the allowed subsets of
items for client C, where I = {1, 2, . . . , N}. The server considers the increasingly monotone family
(or access structure) Γ = (BC)c = {A ⊂ I | A /∈ BC}, which admits (for simplicity) a vector space
access secret sharing scheme, defined by ψ : I ∪ {D} → (Zq)r. Without loss of generality (for
example by multiplying the vectors with the appropriate scalar values), we can assume that all the
vectors ψ(i) are different.

1. The client generates a pair of keys (pk, sk) ← KG(1k) for an additively homomorphic cryp-
tosystem PKE = (KG, E ,D), and publishes pk.

2. The server chooses at random a vector ~v ∈ (Zq)r such that all the shares si = ~v · ψ(i), for
i = 1, . . . , N , are different. This step can be done, if necessary, at the same time as the
assignment of vectors ψ realizing Γ is chosen.

3. The server chooses at random a value s′ different from the value s = ~v · ψ(D).

4. The server makes public ψ, ~v and s′. He defines infoC = (ψ,~v, s′, pk).

2nd protocol: request and retrieval. In the t-th execution of this protocol, the client C wants
to retrieve the item dbit . Assume that the subset of indices that C has queried (including this it)
are allowed, i.e. B = {i1, . . . , it} ∈ BC .

1. The client solves the system of equations
{
~x · ψ(D) = s′, {~x · ψ(ij) = sij}j=1,...,t

}
, obtaining

a solution ~x = (x1, . . . , xr) ∈ (Zq)r.

2. The client encrypts vector ~x coordinate-wise, to obtain ~c = (c1, . . . , cr) = (Epk(x1), . . . , Epk(xr)).
He also encrypts the share s̃it = sit , to obtain c̃it = Epk(s̃it).

3. The client sends ~c, c̃it and a standard oblivious transfer (or private information retrieval,
PIR) query for the index it to the server.

4. Using the homomorphic properties of PKE and the value c̃it = Epk(s̃it) received from the
client, the server transforms the original database DB into D̃B = {d̃bj}j=1,...,N , being

d̃bj = Epk(γj(sj − s̃it) + dbj),

where γj are random elements. If the query is correct, i.e. s̃it = sit , then we have that
d̃bit = Epk(dbit), whereas d̃bj is an encryption of a totally random element, for j 6= it.

5. The server considers the oblivious transfer (or PIR) query from the client, over the trans-
formed database D̃B, and performs a conditioned disclosure (see Section 2.3) of the corre-
sponding answer, under the condition

t∧

j=1

[
N∨

i=1

(
~x · ψ(i) = si ∧ s̃ij = si

)
] ∧ (

~x · ψ(D) = s′
)
.

6. The server adds c̃it = Epk(s̃it) to infoC .

11



7. If the client has behaved honestly, he obtains the correct answer d̃bit to the oblivious transfer
(or PIR) query, he decrypts it by using sk and recovers the desired item dbi.

Again, as it happened in our first (theoretical) solution, the security of this second protocol for
restricted adaptive oblivious transfer directly infers from the security of the employed cryptographic
primitives. On the one hand, the query of the client does not reveal anything about the index it to
the server, because all the information is encrypted, and because of the privacy properties of the
standard oblivious transfer (or PIR) protocol that has been used. On the other hand, due to the
properties of the employed secret sharing scheme and protocol for conditional disclosure of secrets,
the client can obtain only subsets of items of the database that are allowed to him. The formal
proofs for the security of this proposal, which are done by reduction to the security of the employed
primitives, are omitted due to their simplicity.

5.1 Some Remarks

• Note the importance of the fact that all the shares si must be different. If this is not the case,
and si = sj for some i 6= j, then the client can send Epk(si) along with an encryption of a
correct solution ~x (if retrieving dbi is allowed at the current execution), whereas the attached
oblivious transfer (or PIR) query corresponds to the (possibly not allowed) index j. The
dishonest client would finally obtain the (possibly forbidden) item dbj .

• If the client knows a priori all the allowed queries that he is going to make, he can solve the
whole system of equations, obtain a solution ~x and use this same vector for all the executions.
If the server is prevented of this fact, he can use a chaining technique, such as the one
described in the theoretical solution of Section 4 (using random elements u0, u1, . . . for the
chaining), to ensure that the client behaves correctly in each execution. In the first execution,
the condition for the disclosure would be

N∨

i=1

(~x · ψ(i) = si ∧ s̃i1 = si)
∧

(~x · ψ(D) = s′)
∧

(u = u0).

Whereas, in the t-th execution, for t > 1, the condition for the disclosure would be

N∨

i=1

(~x · ψ(i) = si ∧ s̃i1 = si)
∧

(u = ut−1).

.

• Private Information Retrieval (PIR, for short), introduced in [10], is a very similar concept
to that of 1-out-of-N oblivious transfer (recall Section 2.1), with the difference that the
‘privacy for the server’ requirement is removed. In other words, the client may eventually
obtain information about other entries dbj different from the one he is querying for. In our
protocol for restricted adaptive oblivious transfer, a standard PIR query can be used instead
of oblivious transfer, because the other entries d̃bj that the client could obtain, do not give
any information at all about dbj to the client, provided all the shares si are different.

• For simplicity, we have considered that the access structure Γ = (BC)c admits a vector space
secret sharing scheme. If this is not the case, we know anyway that Γ admits a linear secret

12



sharing scheme, which can be seen as a generalized vector space one, where each player i can
be associated to more than one vector: ψ(i)(1), . . . , ψ(i)(`i) ∈ (Zq)r, and so he will receive
more than one share: s(1)

i , . . . , s
(`i)
i ∈ Zq. Our protocol can be easily extended to this case.

The only precaution to be taken is to ensure that all the indices i are associated to the same
amount of vectors, so that the query of the client, which includes encryptions of the shares
associated to the desired index, does not leak any information about this index. This can
be achieved by adding, if necessary, “dummy” vectors to some indices; the dummy vectors
added to an index i must be linear combinations of the real vectors already associated to i.

6 Conclusions

We have presented in this work the first solutions to the general problem of restricted adaptive
oblivious transfer. The first one is currently of theoretical interest only; it cannot be implemented
in practice, because it uses public key cryptosystems which are at the same time additively and
multiplicatively homomorphic. Instances of such cryptosystems have not been found yet. Our
second solution is fully implementable, and makes use of a conceptual relation between restricted
adaptive oblivious transfer and secret sharing schemes.

As future research related to this work, we can mention two possibilities. The first one would be
to improve the efficiency of our solutions, regarding the required efforts for computations and com-
munications. The second one would be to design a public key cryptosystem with both additive and
multiplicative homomorphic properties, which would make our first solution fully implementable,
as well.

References

[1] B. Aiello, Y. Ishai and O. Reingold. Priced oblivious transfer: how to sell digital goods.
Proceedings of Eurocrypt’01, LNCS 2045, Springer-Verlag, pp. 119–135 (2001).

[2] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. Proceedings
of Crypto’88, LNCS 403, Springer, pp. 27–35 (1990).

[3] G.R. Blakley. Safeguarding cryptographic keys. Proceedings of the National Computer Confer-
ence, American Federation of Information, Processing Societies Proceedings 48, pp. 313–317
(1979).

[4] D. Boneh, E-J. Goh and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. Proceedings
of TCC’05, LNCS 3378, Springer-Verlag, pp. 325–341 (2005).

[5] G. Brassard and C. Crépeau. Oblivious transfers and privacy amplification. Proceedings of
Eurocrypt’97, LNCS 1233, Springer-Verlag, pp. 334–347 (1997).

[6] G. Brassard, C. Crépeau and J.M. Robert. Information theoretic reductions among disclosure
problems. Proceedings of FOCS’86, IEEE Computer Society, pp. 168–173 (1986).

[7] G. Brassard, C. Crépeau and J.M. Robert. All-or-nothing disclosure of secrets. Proceedings of
Crypto’86, LNCS 263, Springer, pp. 234–238 (1987).

13



[8] E.F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and
Combinatorial Computing, 9, pp. 105–113 (1989).

[9] J. Camenisch, G. Neven and A. Shelat. Simulatable adaptive oblivious transfer. Proceedings
of Eurocrypt’07, LNCS 4515, Springer-Verlag, pp. 573–590 (2007).

[10] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information retrieval. Proceedings
of FOCS’95, pp. 41–51 (1995).

[11] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Information Theory, 31, pp. 469–472 (1985).

[12] Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in private in-
formation retrieval schemes. Journal of Computer and System Sciences, 60 (3), pp. 592–629
(2000).

[13] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. Pro-
ceedings of ISTCS’97, IEEE Computer Society, pp. 174–184 (1997).

[14] M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. Proceedings of Crypto’99,
LNCS 1666, Springer-Verlag, pp. 573–590 (1999).

[15] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. Proceed-
ings of Eurocrypt’99, LNCS 1592, Springer-Verlag, pp. 223–238 (1999).

[16] M. Rabin. How to exchange secrets by oblivious transfer. Technical report TR-81, Harvard
Aiken Computation Laboratory (1981).

[17] A. Shamir. How to share a secret. Communications of the ACM, vol. 22, pp. 612–613 (1979).

[18] B. Shankar, K. Srinathan and C. Pandu Rangan. Alternative protocols for generalized oblivious
transfer. Proceedings of ICDCN’08, LNCS 4904, Springer-Verlag, pp. 304–309 (2008).

[19] G.J. Simmons, W. Jackson and K. Martin. The geometry of secret sharing schemes. Bulletin
of the ICA 1, pp. 71–88 (1991).

14


