
Preimage Attacks on 3-Pass HAVAL

and Step-Reduced MD5∗

Jean-Philippe Aumasson1†, Willi Meier1‡, and Florian Mendel2

1 FHNW, Windisch, Switzerland
2 IAIK, Graz University of Technology, Graz, Austria

Abstract. This paper presents preimage attacks for the hash functions
3-pass HAVAL and step-reduced MD5. Introduced in 1992 and 1991 re-
spectively, these functions underwent severe collision attacks, but no
preimage attack. We describe two preimage attacks on the compres-
sion function of 3-pass HAVAL. The attacks have a complexity of about
2224 compression function evaluations instead of 2256. Furthermore, we
present several preimage attacks on the MD5 compression function that
invert up to 47 (out of 64) steps within 296 trials instead of 2128. Though
our attacks are not practical, they show that the security margin of 3-
pass HAVAL and step-reduced MD5 with respect to preimage attacks is
not as high as expected.

Keywords: cryptanalysis, hash function, preimage attack.

1 Introduction

A cryptographic hash function h maps a message M of arbitrary length to a
fixed-length hash value H and has to fulfill the following security requirements:

– Collision resistance: it is infeasible to find two messages M and M⋆, with
M⋆ 6= M , such that h(M) = h(M⋆).

– Second preimage resistance: for a given message M , it is infeasible to find a
second message M⋆ 6= M such that h(M) = h(M⋆).

– Preimage resistance: for a given hash value H , it is infeasible to find a
message M such that h(M) = H .

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
A function is said to achieve ideal security if these bounds are guaranteed.

∗The work in this paper was supported in part by the Austrian Science Fund (FWF),
project no. P19863.

†Supported by the Swiss National Science Foundation, project no. 113329.
‡Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.

Recent cryptanalytic results on hash functions mainly focus on collision at-
tacks but only few results with respect to preimages have been published to date.
In this article, we analyze the preimage resistance of the hash functions MD5 and
HAVAL. Both are iterated hash functions based on the Merkle-Damg̊ard design
principle. MD4 and MD5 both underwent critical collision attacks [4,7,8,16–18],
and hence should not be used anymore. But in practice MD5 is still widespread
and remains secure for applications that do not require collision resistance. While
three preimage attacks on MD4 are known [3, 5, 6], the picture is different for
MD5: using a SAT-solver De et al. [3] inverted 26 (out of 64) steps of MD5, and
no analytical attack is known to date. Idem for HAVAL: while several collision
attacks [7, 13, 19, 20] and even a second preimage attack [9] were published, no
preimage attack is known.

Note: Independently of our work, Sasaki and Aoki also discovered preimage
attacks on modified and step-reduced MD5 [14]: their best attack on unmodified
MD5 inverts 44 steps of the compression function within 296 trials.

Our Contribution. We improve upon the state of the art as follows. First,
we invert the compression function of MD5 reduced to 45 steps by using a
meet-in-the-middle approach. The attack makes about 2100 compression function
evaluations and needs negligible memory. Second, we exploit special properties
of the permutations used in the compression function to extend this attack to
47 steps (out of 64). The attack has a complexity of 296 compression function
evaluations and memory requirements of 236 bytes. Third, we extend the attacks
on the compression function to the hash function by using a meet-in-the-middle
and tree-based approach. With this method we can construct preimages for MD5
reduced to 45 and 47 steps with a complexity of about 2106 and 2102 compression
function evaluations and memory requirements of 239 bytes.

Similar strategies can be applied to the compression function of HAVAL. We
can invert the compression function of 3-pass HAVAL with a complexity of about
2224 compression function evaluations and memory requirements of 269 bytes.
By combining a standard meet-in-the-middle with a tree-based approach we can
turn the attack on the compression function into a preimage attack on the hash
function with a complexity of about 2230 compression function evaluations and
memory requirements of 270 bytes.

Outline. The remainder of this article is structured as follows. §2 presents two
methods to invert to compression function of MD5 reduced to 45 and 47 steps.
We use the same methods to invert the compression function of 3-pass HAVAL in
§3. In §4, we show how the attacks on the compression function of step-reduced
MD5 and HAVAL can be extended to preimage attacks on the hash function.
Finally, §5 concludes.

2 Preimage Attacks on Step-Reduced MD5

This section presents two techniques to invert the MD5 compression function.
The first attack on 45 steps is based on a standard meet-in-the-middle (MITM)
and requires about 2100 trials. The second attack inverts up to 47 steps, and
exploits special properties of the message ordering. Combined with a MITM, we
construct a preimage attack with complexity about 296 trials. But prior to that,
we provide a brief description of MD5 and illustrate the basic idea of our attacks
over 32 steps.

2.1 Short Description of MD5

The MD5 compression function takes as input a 512-bit message block and a
128-bit chain value and outputs another 128-bit chain value.

Fig. 1. The step function of MD5.

The input chain value H0 . . . H3 is first copied into registers A0 . . .D0:

(A0, B0, C0, D0)← (H0, H1, H2, H3). (1)

This inner state is then transformed by a series of 64 steps and the output is

(H⋆
0 , H⋆

1 , H⋆
2 , H⋆

3) = (A64 + A0, B64 + B0, C64 + C0, D64 + D0). (2)

where A64 . . .D64 are defined by the recursion below.

Ai = Di−1

Bi = Bi−1 + (Ai−1 + fi(Bi−1, Ci−1, Di−1) + Mσ(i) + Ki) ≪ ri

Ci = Bi−1

Di = Ci−1

(3)

The Ki’s and ri’s are predefined constants and σ(i)’s are in Table 1. The function
fi is defined as

fi(B, C, D) = (B ∧C) ∨ (¬B ∧D) if 0 < i ≤ 16
fi(B, C, D) = (D ∧B) ∨ (¬D ∧ C) if 16 < i ≤ 32
fi(B, C, D) = B ⊕ C ⊕D if 32 < i ≤ 48
fi(B, C, D) = C ⊕ (B ∨ ¬D) if 48 < i ≤ 64

(4)

See Fig. 1 for a schematic view of the step function, and [12] for a complete
specification.

Table 1. Values of σ(i) in MD5 for i = 1, . . . , 64 (we boldface the M2 key inputs used
in the attacks on 32 and 47 steps, and the M6 and M9 key inputs used in the attack
on 45 steps).

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Fact 1 At step i only Bi is a really new value, the others are just shifted as in

a feedback shift register. Hence for i = 0, . . . , 60 we have Bi = Ci+1 = Di+2 =
Ai+3.

Fact 2 The step function is invertible, i.e. from Ai . . .Di and Mσ(i) we can

always compute Ai−1 . . . Di−1. Removing the feedforward by H0 . . . H3 in Eq. (2)
would thus make the compression function trivially invertible.

2.2 Preimage Attack on 32 Steps

This attack computes preimages for the 32-step compression function within
about 296 trials (instead of 2128). It introduces two tricks used in the 45- and
47-step attacks: absorption of changes in C0 and exploitation of the ordering of
the message words.

Key Facts. Observe in Table 1 that M2 is only input at the very beginning
and the very end of 32-step MD5, namely at steps 3 and 30. Hence, if we could
pick a message and freely modify M2 such that B3 stays unchanged, we would
be able to “choose” B30 = C31 = D32 (cf. Fact 1). Then, a key observation is

that the function fi can either preserve or absorb an input difference: observe
indeed that for 0 < i ≤ 16 and any C and D we have

fi(0x00000000, C, D) = (0 ∧ C) ∨ (0xffffffff∧D) = D (5)

fi(0xffffffff, 0, D) = (0xffffffff∧ 0) ∨ (0 ∧D) = 0 (6)

These properties will be used to “absorb” a change in C0 = D1 = A2 at steps 1
and 2. More precisely, we need that B0 = 0 to absorb the changes of C0 at step 1.
And to absorb the change in D1 = C0 we need that B1 = 0xffffffff. We can
now sketch the attack:

1. pick a chain value H0 . . . H3 = A0 . . . D0 (with certain constraints)

2. pick a message M0 . . . M15 (with certain constraints)

3. modify M2 to choose B30 = C31 = D32

4. modify H2 = C0 such that the change in M2 doesn’t alter subsequent
Ai . . . Di

Our strategy is inspired from Leurent’s MD4 inversion [6]; the main difference
is that while [6] exploits absorption in the second round we use it in the early
steps.

Description of the Attack. Suppose we seek a preimage of H̃ = H̃0 . . . H̃3.
The algorithm below first sets B0 = 0 and B1 = 0xffffffff, to guarantee
that a change in C0 will only affect the chaining variable A2. Then, from an
arbitrarily chosen message, it modifies M2 in order to “meet in the middle”
correctly. Finally, C0 corrects the change in M2, and this new value of C0 does
not affect the initial steps of the function. Our attack is described in Algorithm 1.

Algorithm 1 Preimage attack on 32-step MD5.

1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat

3. pick M0 such that B1 = 0xffffffff

4. pick arbitrary values for M1 . . . M15

5. compute A30 . . . D30

6. modify M2 to get B30 = D32 = H̃ − D0

7. correct C0 to keep B1 unchanged
8. compute the final hash value H⋆ = H⋆

0 . . . H⋆

3

9. if H⋆ = H̃ then

10. return A0 . . . D0 and M0 . . . M15

Algorithm 1 makes about 296 trials by choosing 32 bits in the 128-bit image and
bruteforcing the 96 remaining bits. (We denote H⋆ = H⋆

0 . . .H⋆
3 a final hash

value, so our goal is to have in the end H⋆ = H̃ .)

Correctness of the Attack. We now explain in details why the attack works.
First, the operation at line 3 of our algorithm is feasible because it corresponds
to setting

M0 = 0xffffffff−A0 −D0 −K0. (7)

Then right after line 4 we have for any choice of C0:

– f1(B0, C0, D0) = f1(0, C0, D0) = D0

– f2(B1, C1, D1) = f2(0xffffffff, C1 = B0, D1) = 0

In other words, the first two steps are independent of C0. This will allow us to
modify C0 = D1 = A2—to correct a change in M2—without altering Ai . . . Di

between steps 4 and 30.
Now, at line 6 we set

M2 = (H̃3 −D0 −B29) ≫ 9−G(B29, C29, D29)−A29 −K30 (8)

With this new value of M2 we get in the end H⋆
3 = H̃3.

Finally we “correct” this change by setting

C0 = (B3 −B2) ≫ r3 − f3(B2, C2, D2)−M2 −K2. (9)

With this new value of C0 = A2 we keep the same B3 as with the original choice
of M2.

We can thus choose the output value H⋆
3 by modifying M2 and “correcting”

C0. However, H⋆
0 , H⋆

1 and H⋆
2 are random for the attacker. Hence, 96 bits have

to be bruteforced to invert the 32-step function. This gives a total cost of 296

trials.
We experimentally verified the correctness of our algorithm by searching for

inputs that give H⋆
2 = H⋆

3 = 0 (see Appendix A).

2.3 Preimage Attack on 45 Steps

We present here an attack that computes 45-step preimages within 2100 trials
and negligible memory. This combines a MITM with a conditional linear ap-
proximation of the step function. In short, the attack is based on the fact that
M2 appears at the very beginning and that M6 and M9 appear at the very end
of 45-step MD5. Another key observation is that M2 is used only once in the
first 25 steps, and M6 and M9 are used only once after step 25. Algorithm 2
describes the attack for finding a preimage of H̃0 . . . H̃3.

Correctness of the Attack. First, we use again (at line 1) the trick to absorb
the modification of C0, necessary to keep the forward stage unchanged with the
new value of M2. Then, observe that

– between steps 25 and 45, M6 and M9 are input at steps 44 and 45 (cf.
Table 1)

Algorithm 2 Preimage attack on 45-step MD5.

1. set A0 = H̃0, B0 = 0, D0 = H̃3

(We thus need A45 = 0, B45 = H⋆

1 , D45 = 0. Note that we’ll have
f45(B44, C44, D44) = f45(C45, D45, A45) = C45.)

2. repeat

3. pick M0 such that B1 = 0xffffffff

4. set arbitrary values to the remaining Mi’s except M6 and M9

5. for all 264 choices of C0 and (M6, M9) such that

M9 = −((M6 ≪ 19) + (M6 ≪ 23))

(Here 23 coincides with r44 and 19 = r44 − r45.)
6. compute A25 . . . D25, store it in a list L

7. for M6 = M9 = 0 and all 264 choices of C45 and M2

8. compute A25 . . . D25

9. if this A25 . . . D25 matches an entry in L then

10. correct C0 to keep B1 unchanged
11. return A0 . . . D0 and M0 . . . M15

(Here the message contains the M2, M6, M9 corresponding to the matching
entries.)

– at line 7 we use values of M6 and M9 distinct from the ones used in the
forward stage (line 5)

Hence, by setting M6 and M9 to the values chosen the matching L entry, we
would expect different values of B44 = C45 and B45 than the (zero) ones used for
the backward computation. Recall (cf. line 1) that we need A45 = 0, B45 = H̃1,
D45 = 0, hence the values of C45 will not matter; we would however expect a
random B45 from the new values of M6 and M9.

The trick used here is that the condition imposed on (M6, M9) at line 5
implies that the new B45 equals the original H⋆

1 = H̃1 with probability 2−4

instead of 2−32 for random values (see below). The attack thus succeeds to
find a 96-bit preimage when the MITM succeeds and B45 = H̃1, that is with
probability 2−64 × 2−4 = 2−68. Storage for 268 bytes is required for the MITM.
For full (128-bit preimage) we bruteforce the 32 remaining bits thus the costs
grows to 2100 trials.

Reducing the Memory Requirements. Note that by using a cycle-finding
algorithm (as for instance [11, 15]) the memory requirements of the meet-in-
the-middle step of the attack can be significantly reduced. Hence, we can find
a preimage for 45-step MD5 with a complexity of about 2100 and negligible
memory requirements.

On the Choice of (M6, M9). We explain here why the condition

M9 = −(M6 ≪ 19 + M6 ≪ 23) (10)

gives B45 = H̃1 with high probability.
Consider the last two steps (44 and 45): because A45 = D45 = 0 we have

C44 = D44 = 0 and B43 = C43 = 0. Hence we have

fi(X, Y, Z) = X ⊕ Y ⊕ Z = X + Y + Z (11)

in these two steps.
Note that A43 and D43 depend on the C45 used for the backward computa-

tion. Now we can compute B44 and B45 (note r44 = 23, r45 = 9)

B44 = (A43 + D43 + K43 + M6) ≪ 23 (12)

B45 = (A44 + B44 + K44 + M9) ≪ 4 + B44 (13)

For simplicity we rewrite

B44 = (X + M6) ≪ 23 (14)

B45 = ((Y + B44 + M9) ≪ 4) + B44 (15)

Now we can express B45:

B45 = ((Y + ((X + M6) ≪ 23) + M9) ≪ 4) + ((X + M6) ≪ 23) (16)

Since (cf. line 7 of the algorithm) we chose (M6, M9) = (0, 0) this simplifies to

B45 = ((Y + (X ≪ 23)) ≪ 4) + (X ≪ 23) (17)

Consider now the case M9 = −(M6 ≪ 19 + M6 ≪ 23); Eq. (16) becomes:

B45 = ((Y + ((X + M6) ≪ 23)− ((M6 ≪ 19) + (M6 ≪ 23))) ≪ 4) (18)

+((X + M6) ≪ 23)

We will simplify this equation by using the generic approximation:

(A + B) ≪ k = A ≪ k + B ≪ k (19)

Daum showed [2, §4.1.3] that Eq. (19) holds with probability about 2−2 for
random A and B. We first use this approximation to replace (X +M6) ≪ 23 by

(X ≪ 23) + (M6 ≪ 23). (20)

Eq. (18) becomes

B45 = ((Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4) + (X ≪ 23) + (M6 ≪ 23)(21)

Finally we approximate (Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4 by

((Y + (X ≪ 23)) ≪ 4)− ((M6 ≪ 19) ≪ 4) (22)

and Eq. (21) becomes

B45 = ((Y + X ≪ 23) ≪ 4) + (X ≪ 23) (23)

Note that this is the same equation as for (M6, M9) = (0, 0) in Eq. (17). Hence,
we get the correct value in B45 with a probability of 2−4, since we used two
approximations3.

3The exact probability is 2−3.9097 according to Daum’s formulas.

2.4 Preimage Attack on 47 Steps

In the following we will show how to construct a preimage for the compression
function of 47-step MD5 with a complexity of about 296. This attack combines
the 32-step attack with a meet-in-the-middle (MITM) strategy. The latter is
made possible by the invertibility of the step function.

Suppose we want to construct the hash value H̃ = H̃0 . . . H̃3. The attack on
47-step MD5 can be summarized as follows:

– set initial state variable to absorb a change in C0, as in the 32-step attack
– compute A29 . . . D29 for all 232 choices of C0 and save the result in a list L
– compute A30 . . . D30 for all 232 choices of C47 and “meet in the middle” by

finding a matching entry in L

Algorithm 3 describes the attack more formally.

Algorithm 3 Preimage attack on 47-step MD5.

1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat

3. pick M0 such that B1 = 0xffffffff

4. pick arbitrary values for M1 . . . M15

5. for all 232 choices of C0

6. compute A29 . . . D29, store it in a list L

7. set A47 = H̃0 − A0, B47 = H̃1 − B0, D47 = H̃3 − D0

8. for all 232 choices of C47

9. compute (backwards) A30 . . . D30

10. if L contains an entry A30 = D29, C30 = B29, D30 = C29 then

11. modify M2 to have

B30 = ((A29 + f(B29, C29, D29) + M2 + K29) ≪ 9) + B29

12. correct C0 to keep B1 unchanged
13. compute the final hash value H⋆

0 . . . H⋆

3

14. return A0 . . . D0 and M1 . . . M15

Again this attack essentially exploits the “absorption” of 32 bits during the
early steps to save a 232 complexity factor. Note that when the MITM succeeds,
i.e. when the line 10 predicate holds, we only have a 96-bit preimage because
H⋆

2 = C47 + C0 is random. This is because both C0 and C47 are random for the
attacker.

Each repeat loop hence succeeds in finding a 96-bit preimage with proba-
bility 2−32, and costs 232 trials. This is respectively because

1. we have 232 × 232 = 264 candidate pairs that each match with probability
2−96

2. the cost of the two for loops amounts to 232 computations of the compression
function

The total cost for finding a 128-bit preimage is thus 232 × 232 × 232 = 296,
with a required storage of 236 bytes (64 Gb) for the MITM. This allows us
to find preimages on the 47-step MD5 compression function 232 times faster
than bruteforce. However it doesn’t directly give a preimage attack for the hash
function because the initial value is here partially random, whereas in the hash
function it is fixed.

3 Preimage Attacks on 3-Pass HAVAL

HAVAL was proposed with either 3, 4, or 5 passes, i.e. 96, 128, or 160 steps.
It has message block and hash values twice as large as MD5, i.e. 256 bits (8
words) and 1024 bits (32 words) respectively. In the following, we present two
methods to invert the compression function of 3-pass HAVAL. Both attacks have
a complexity of about 2224 compression function evaluations. Like in the attacks
on step-reduced MD5, we combine a generic MITM with weaknesses in the design
of the compression function. In detail, we exploit the properties of the Boolean
functions to absorb differences in its input and special properties of the message
ordering in 3-pass HAVAL. But before describing both attacks in more detail,
we give a short description of 3-pass HAVAL.

Fig. 2. The step function of HAVAL.

3.1 Short Description of 3-Pass HAVAL

The structure of HAVAL is somewhat similar to that of MD5: registers A0, B0, . . . , G0, H0

are initialized to the input chain values and finally the function returns

(H⋆
0 , . . . , H⋆

7) = (A96 + A0, B96 + B0, . . . , G96 + G0, H96 + H0) (24)

after 96 steps that set

Ai = Bi−1,
Bi = Ci−1

.
Gi = Hi−1

Hi = Ai−1 ≫ 11 + fi(Bi−1, Ci−1, Di−1, Ei−1, Fi−1, Gi−1, Hi−1) ≫ 7 + Ki + Mσ(i)

(25)

Table 2. Values of σ(i) in 3-pass HAVAL for i = 1, . . . , 96 (we boldface the key inputs
of M5 and M6).

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Step index i 65 66 67 68 69 70 77 72 73 74 75 76 77 78 79 80
Message word σ(i) 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

Step index i 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Message word σ(i) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

We thus have Hi = Gi+1 = Fi+2 = Ei+3 = Di+4 = Ci+5 = Bi+6 = Ai+7 for
i = 0 . . . 89. Like in MD5 the step function is invertible, and uses step-specific
constants, Boolean functions fi, and message words Mσ(i). The step functions
are defined as (with e.g. BC = (B ∧ C)):

fi(B, C, . . . , H) = FE ⊕BH ⊕ CG⊕DF ⊕D if 0 < i ≤ 32
fi(B, C, . . . , H) = ECH ⊕ CGH ⊕ CE ⊕ EG⊕ CD ⊕ FH

⊕GF ⊕BC ⊕B if 32 < i ≤ 64
fi(B, C, . . . , H) = CDE ⊕ CF ⊕DG⊕ EB ⊕ EH ⊕H if 64 < i ≤ 96

(26)
The σ(i)’s are in Table 2. See [21] or [19] for a complete specification.

3.2 Preimage Attack A

Suppose we seek a preimage of H̃0 . . . H̃7 with an arbitrary value for H̃6; that is,
we only want a 224-bit preimage. In the attack below we exploit the properties
of the Boolean function fi to absorb a difference in the input, and combine it
with a MITM to improve on bruteforce search. Algorithm 4 describes the attack
in detail.

Algorithm 4 Preimage attack A on 3-pass HAVAL.

1. set C0 = 0, D0 = H̃3 − 0xffffffff, E0 = F0, H0 = 0, and arbitrary
A0B0G0

(We need to assume D96 = 0xffffffff for our attack to work.)
2. repeat

3. choose an arbitrary message for which H1 = 0xffffffff and H3 =
H5 = 0
(This guarantees that differences in G0 will be absorbed in the first 6
rounds.)

4. for all 264 choices of G0 and M5

(A difference in M5 only changes G96 after step 48.)
5. compute A48 . . . H48 and store it in a list L.
6. set A96 = H̃0 − A0, . . . , H96 = H̃7 − H0

7. for all 264 choices of G96 and M6

8. compute A48 . . . H48 by going backwards
9. if this A48 . . . H48 matches an entry in L then

10. correct G0 such that A7 . . . H7 remains unchanged
11. return A0 . . . H0 and M0 . . . M31

In the end the computed image H⋆ is the same as the image sought H̃ except
(with probability 1 − 2−32) for H⋆

6 = G96 + G0. Here M5 and M6 are used as
“neutral words”, respectively in the second and the first part of the attack. If the
MITM condition at line 8 is satisfied then we directly get a 224-bit preimage,
because at line 6 we choose A96 . . . F96H96.

Indeed we have 264 candidates for A48, . . . , H48 resulting from the forward
computation and 264 candidates resulting from the backward computation, so we
will find a match and hence a partial pseudo-preimage with probability 2−128.
Hence, by repeating the attack 2128 we will find a 224-bit preimage with a
complexity of about 2128 × 264 = 2192 compression function evaluations. We
need storage for 269 bytes to perform the MITM. Note that a full (256-bit)
preimage is obtained by bruteforcing the 32 remaining bits, which increases the
cost to 2224 trials.

3.3 Preimage Attack B

This attack exploits the fact that M2 appears at the very beginning in the first
pass and at the very end in the last pass. By combining this with absorption of
the Boolean function in the early steps (similarly to our attack on 47-step MD5),
we can construct a 192-bit preimage within about 2160 trials. By repeating the
attack about 264 times we can construct a preimage for the compression function
with complexity of about 2224 instead of the expected 2256 compression function
evaluations. Algorithm 5 computes a preimage of H̃0 . . . H̃7 where all H̃i’s are
fixed but H̃2 and H̃6 (i.e. a 192-bit preimage):

The MITM will succeed (line 8 of Algorithm 5) with probability 2−96 = 264 ×

264/2224, hence 296 × 264 = 2160 trials are required to get a 192-bit preimage

Algorithm 5 Preimage attack B on 3-pass HAVAL.

1. set A0 = H̃0, B0 = H̃1, D0 = H̃3, E0 = H̃4, F0 = H̃5, G0 = 0.
(To get a 192-bit preimage we thus need A96 = B96 = 0, D96 = E96 =
F96 = 0, G96 = H̃6.)

2. repeat

3. pick an arbitrary message for which the state variable H1 = 0.
(This guarantees that a change in C0 will only affect A2.)

4. for all 264 choices of C0 and H0

5. compute A60 . . . H60 and store it in a list L.
6. for all 264 choices of C96 and H96

7. compute A61 . . . H61

8. if L contains a tuple such that A61 = B60, . . . , G61 = H60 then

9. modify M2 to have

H61 = (A60 ≫ 11) + (f61(. . .) ≫ 7) + M2 + K61

10. correct C0 and H96 accordingly
11. return A0 . . . H0 and M0 . . . M15

(and storage 269 bytes). A full (256-bit) preimage is obtained by bruteforcing
the 64 remaining bits, which increases the cost to 2224 trials.

4 Extension to the Hash Functions

In this section, we will show how to extend the preimage attacks on the com-
pression of step-reduced MD5 and 3-pass HAVAL to the hash function. Basically
the extension of the attacks to the hash function is constrained by the padding
rule and the the predefined IV . The padding rule of MD5 and HAVAL forces
the last bits of the message to encode its length. Hence, the choice of the last
message words is constraint. However, in our attacks we have no restrictions on
the last message words and hence the padding rule is no problem. However, the
IV of our preimages for the compression function is different from the fixed one;
e.g. in the attack on MD5 reduced to 47-steps we require B0 = 0, and get a
random value for C0. However, there are several methods to turn our attacks
into preimage attacks starting from the predefined IV as described in the next
two sections.

4.1 Basic Meet-in-the-Middle

This attack first computes forward 2n−x random images f(H, M) for random
M ’s and the fixed IV. Then it computes backward 2x preimages for a message
block with convenient padding.

For reduced-step MD5 with the optimal x we compute forward 2112 random
chain values and compute backward 216 preimages within 296×216 = 2112 trials.
The total cost of the 47-step preimage attack is thus about 2113 trials and mem-
ory for a preimage attack. For 3-pass HAVAL we compute forward 2240 chain

values and backward 216 preimages within 2224 × 216 = 2240 trials. The total
cost is 2241 trials plus memory for a preimage attack.

4.2 Tree Approach

Due to the special structure of our preimage attacks on the compression function
of 3-pass HAVAL and step-reduced MD5, this attack complexities can be im-
proved by combining the meet-in-the-middle attack with a tree-based approach.

This is exactly the technique described in [6], namely a MITM combined
with a tree of multi-block preimages (a similar approach was published before
by Mendel and Rijmen in [10]). To summarize, we proceed in two stages

1. Backward: use a tree-based technique to compute a set S of multi-block
preimages

2. Forward: compute images of random message blocks with the predefined IV
until one lies in S

For MD5 the forward stage constructs costs 296 trials and the backward stages
costs 32× 297 = 2102 trials to compute 32-block preimages, plus storage for 233

message blocks (i.e. 239 bytes). Applied to 3-pass HAVAL we get a preimage
attack that makes 2230 trials and needs 271 bytes of storage.

5 Conclusion

We presented the first preimage attacks for the hash functions 3-pass HAVAL
and step-reduced MD5: we described several preimage attacks on the MD5 com-
pression function that invert up to 47 (out of 64) steps within 296 compression
function evaluations, instead of the expected 2128, and two preimage attacks
on the 3-pass HAVAL compression function that cost 2224 compression function
evaluations instead of 2256. We extended our best attacks to the hash functions
(with padding and fixed IV) for a cost of 2230 and 2102 trials, respectively. Even
though these attacks are not practical (notably due to large memory require-
ments), they show that the security margin of 3-pass HAVAL and step-reduced
MD5 with respect to preimage attacks is not as high as expected.

References

1. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of LNCS.
Springer, 2005.

2. Magnus Daum. Cryptanalysis of Hash Functions of the MD4-
Family. PhD thesis, Ruhr Universität Bochum, 2005. Available at
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf.

3. Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan.
Inversion attacks on secure hash functions using SAT solvers. In João Marques-
Silva and Karem A. Sakallah, editors, SAT, volume 4501 of LNCS, pages 377–382.
Springer, 2007.

4. Bert den Boer and Antoon Bosselaers. Collisions for the compression function
of MD5. In Tor Helleseth, editor, EUROCRYPT, volume 765 of LNCS, pages
293–304. Springer, 1993.

5. Hans Dobbertin. The first two rounds of MD4 are not one-way. In Serge Vaudenay,
editor, FSE, volume 1372 of LNCS, pages 284–292. Springer, 1998.

6. Gaëtan Leurent. MD4 is not one-way, 2008. To appear in proceedings of FSE 2008,
preprint at http://www.eleves.ens.fr/home/leurent/files/MD4 FSE08.pdf.

7. Jongsung Kim, Alex Biryukov, Bart Preneel, and Sangjin Lee. On the security of
encryption modes of MD4, MD5 and HAVAL. In Sihan Qing, Wenbo Mao, Javier
Lopez, and Guilin Wang, editors, ICICS, volume 3783 of LNCS, pages 147–158.
Springer, 2005.

8. Vlastimil Klima. Tunnels in hash functions: MD5 collisions within a minute. Cryp-
tology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

9. Eunjin Lee, Jongsung Kim, Donghoon Chang, Jaechul Sung, , and Seokhie Hong.
Second preimage attack on 3-pass HAVAL and partial key-recovery attacks on
NMAC/HMAC-3-pass HAVAL, 2008. To appear in proceedings of FSE 2008.

10. Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V compression func-
tion. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817 of LNCS,
pages 335–345. Springer, 2007.

11. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search?
Application to DES (extended summary). In Jean-Jacques Quisquater and Joos
Vandewalle, editors, EUROCRYPT, volume 434 of LNCS, pages 429–434. Springer,
1989.

12. Ronald Rivest. RFC 1321 - The MD5 Message-Digest Algorithm, 1992.
13. Bart Van Rompay, Alex Biryukov, Bart Preneel, and Joos Vandewalle. Cryptanal-

ysis of 3-pass HAVAL. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of
LNCS, pages 228–245. Springer, 2003.

14. Yu Sasaki and Kazumaro Aoki. Preimage attack on step-reduced MD5. In Yi Mu
and Willy Susilo, editors, ACISP 2008, LNCS. Springer, 2008. To appear.

15. Robert Sedgewick, Thomas G. Szymanski, and Andrew Chi-Chih Yao. The com-
plexity of finding cycles in periodic functions. SIAM Journal of Computing,
11(2):376–390, 1982.

16. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In Moni Naor, editor,
EUROCRYPT, volume 4515 of LNCS, pages 1–22. Springer, 2007.

17. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Cramer [1], pages 1–18.

18. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Cramer [1], pages 19–35.

19. Hirotaka Yoshida, Alex Biryukov, Christophe De Cannière, Joseph Lano, and Bart
Preneel. Non-randomness of the full 4 and 5-pass HAVAL. In Carlo Blundo and
Stelvio Cimato, editors, SCN, volume 3352 of LNCS, pages 324–336. Springer,
2004.

20. Hongbo Yu, Xiaoyun Wang, Aaram Yun, and Sangwoo Park. Cryptanalysis of the
full HAVAL with 4 and 5 passes. In Matthew J. B. Robshaw, editor, FSE, volume
4047 of LNCS, pages 89–110. Springer, 2006.

21. Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL - a one-way hashing
algorithm with variable length of output. In Jennifer Seberry and Yuliang Zheng,
editors, ASIACRYPT, volume 718 of LNCS, pages 83–104. Springer, 1992.

A Partial Preimage for 32-Step MD5

With the IV

H0 = 0x67452301 H2 = 0x382ca539

H1 = 0x00000000 H3 = 0x10325476

and the message

M0 = 0xb11de410 M8 = 0x6d32a030

M1 = 0x5c0cd1ec M9 = 0x16b2e752

M2 = 0xd7d35ac7 M10 = 0x3b70c422

M3 = 0x5704c13b M11 = 0x685cb2aa

M4 = 0x792a351e M12 = 0x1dd5ec6d

M5 = 0x420582b7 M13 = 0x4794f768

M6 = 0x77v8de3d M14 = 0x04fef18f

M7 = 0x2476b43b M15 = 0x00000000

we get the image

H⋆
0 = 0xb4df93c9 H⋆

2 = 0x00000000

H⋆
1 = 0x3348e3f2 H⋆

3 = 0x00000000

We found this in less than five minutes on our 2.4 GHz Core 2 Duo, whereas brute
force would take about 264 trials (thousands of years on the same computer).

