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Abstract

In this paper, we show how to construct secure obfuscation for Deterministic Finite Au-
tomata, assuming non-uniformly strong one-way functions exist. We revisit the software protec-
tion approaches originally proposed by [6, 13, 16, 21] and revise them to the current obfuscation
setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some
“small” secret about the original program. Using this secret, we can construct an obfuscator
and two-party protocol that securely obfuscates Deterministic Finite Automata against mali-
cious adversaries. The security of this model retains the strong “virtual black box” property
originally proposed in [2] while incorporating the stronger condition of dependent auxiliary in-
puts in [19]. Additionally, we further show that our techniques remain secure under concurrent
self-composition with adaptive inputs and that Turing machines are obfuscatable under this
model.

Keywords: Obfuscation, deterministic finite automata, state machines, Turing machines, au-
thenticated encryption, oracle machines, provable security, game-playing.

1 Introduction

Program obfuscation, if possible and practical, would have a considerable impact on the way we
protect software systems today. It would be instrumental in protecting intellectual property, pre-
venting software piracy, and managing use-control applications. Since its inception, many practi-
tioners have relied on using heuristic notions of security [11]. These heuristics often provide a false
sense of security, as they are usually informal and lack a rigorous framework. Only recently has a
formalized framework of obfuscation been given.

The work of Barak et al. [2] initiated the first formal study of obfuscation. They define an
obfuscator O to be an efficient, probabilistic compiler that takes a program P and transforms
it into a functionally equivalent yet unintelligible program O(P ). Unintelligible is defined in the
strictest sense, to imply that the program O(P ) behaves ideally like a “virtual black box”. That is,
whatever can be efficiently extracted from the obfuscated program can also be extracted efficiently
when given only oracle access to P .

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-AC04-94AL85000. Email: weander@sandia.gov
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Figure 1: Obfuscation with respect to oracle machines

Unfortunately, in [2] it was proven that obfuscation in general is impossible. Namely, there exist
a family of functions that are unobfuscatable under the “virtual black box” notion of security. This
would seem to suggest that having physical access to the program is a much stronger capability
than having only access to its input and output behavior. In addition to this main impossibility
result, the authors also prove that if secure symmetric key encryption schemes exist, pseudorandom
functions exist, or message authentication schemes exist, then so do unobfuscatable versions of each.
Therefore, it would appear that the “virtual black box” property is inherently flawed, and if we
hope for any positive obfuscation results, then either this model needs to be abandoned or we need
to accept that many programs are not obfuscatable [2].

Numerous other impossibility results have also shed light on the problem of obfuscation. For
example, Goldwasser et al. [19] showed that many natural circuit classes are unobfuscatable when
auxiliary inputs are added to the obfuscation model. Auxiliary inputs provide for a more robust
model of obfuscation, since the adversary is assumed to have some a priori information about the
underlying program. This additional layer of security is useful in practice, since it is likely that the
obfuscated code will be utilized in a large system, and the system may inadvertently reveal partial
information about the functionality of the code. A formal definition with respect to dependent
auxiliary inputs is given Section 1.2.

In spite of the numerous impossibility results, other works such as Lynn et al. [22] have examined
alternative models of obfuscation in the hope of achieving meaningful possibility results. Under the
random oracle model of obfuscation, they assume that both the obfuscator and obfuscated code
have access to a public random oracle. Under this assumption, they are able to show that both
point functions and complex access control schemes are obfuscatable. Similar results were obtained
by [7, 10, 25] under a slightly weaker notion of “virtual black box” obfuscation (without random
oracles). For example, Wee showed in [25] that point functions are (weakly) obfuscatable, provided
that strong one-way permutations exist.

In this paper, we introduce a new model of obfuscation that has wide and meaningful possibility
results beyond those described above. To demonstrate the utility of this model, we show that
both deterministic finite automata and Turing machines are securely obfuscatable, provided non-
uniformly strong one-way functions exist. We call this model of obfuscation obfuscation w.r.t.
oracle machines.

Unlike the “virtual black box” model of obfuscation, where we assume an adversary has full access
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to the obfuscated code, we instead consider the case where a small portion of the computation
remains hidden and is only accessible via black box. See Figure 1 for an illustration. A compiler
in this case takes a program P and returns two outputs, the obfuscated code O(P ) which is given
to the adversary, and a small secret which is given to the oracle (black box). An execution of
the obfuscated code takes an input x and computes O(P )(x), via a two-party protocol. To avoid
certain trivialities, we impose restrictions on the oracle’s computational resources. Namely, we
will consider only the case when the oracle’s space resources are asymptotically smaller than the
program itself. In practice, the oracle may be implemented as a computationally limited device,
such as a smart card or crypto processor.

1.1 Our Contribution

We generalize the software protection model originally proposed by Goldreich [13] into the current
setting of virtual black box obfuscation with dependent auxiliary input. We prove several necessary
conditions for obfuscating non-resettable deterministic finite automata and show they are securely
obfuscatable provided that non-uniformly strong one-way functions exist. We further extend this
model to the composition setting and show our techniques remain secure under concurrent self-
composition with adaptive inputs. Using the obfuscation techniques derived for deterministic finite
automata, we also prove that Turing machines (hence all programs) are obfuscatable under this
model.

1.2 Related work

Obfuscation w.r.t. Auxiliary Inputs. In [19], Goldwasser and Kalai introduced the notion
of obfuscating w.r.t. auxiliary inputs. Under this setting, the adversary is given some additional
a priori (auxiliary) information in addition to the obfuscated code. They consider two types of
auxiliary inputs in their paper, dependent and independent. For our examination here, we will
review only the dependent case.

Dependent auxiliary input includes the case when the a priori information may depend on the
underlying program. Whatever the auxiliary information happens to be, it should not provide the
adversary any additional advantage in extracting information from the obfuscated code than would
be the case if that same auxiliary information was available to an adversary with only black box
access to the machine. A formal definition is given below.

Definition 1 (Obfuscation w.r.t. Dependent Auxiliary Input) A probabilistic polynomial-
time algorithm O is said to be an obfuscator of the family F = {Fk}k∈N w.r.t. dependent auxiliary
input, if the following three conditions hold:

• (Approximate Functionality) There exists a negligible function µ such that for all k and M ∈
Fk, O(M, 1k) describes an TM that computes the same function as M with probability at least
1− µ(k).

• (Polynomial Slowdown) The description length and running time of O(M, 1k) is at most
polynomial larger than that of M . That is, there exists a polynomial p such that for all k and
M ∈ Fk, |O(M, 1k)| ≤ p(k) and if M takes t time steps on an input x, then O(M, 1k) takes
at most p(k + t) time steps on x.
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• (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function
ν such that, for all k and M ∈ Fk, and every polynomial q with bounded auxiliary input z of
size q(k) we have

∣

∣

∣
Pr[A(O(M, 1k), 1k, z) = 1]− Pr[SM (1|M |, 1k, z) = 1]

∣

∣

∣
≤ ν(k).

Under the dependent case, the authors prove that if the class of point-filter functions1 can be
(weakly) obfuscated with respect to dependent auxiliary input, then every class of circuits with
super-polynomial pseudo-entropy cannot be (weakly) obfuscated w.r.t. dependent auxiliary input.
This would imply that many cryptographic tasks, such as pseudorandom functions, encryption
schemes, and signature algorithms cannot be obfuscated [19].

1.3 Notation

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine. If A is
a PPT, B an oracle, and x an input to A, then by AB(x) we mean the algorithm that runs on
input x using oracle access to B. We will often refer to A as a PPT oracle machine. When writing
x ⇐ A we mean the value x is returned by A. Additionally, A(1k) implies A is given the value
k. In our algorithm descriptions, we make use of the statements return y and Return z. When
using the syntax return, we imply that the value y is returned internally to the algorithm (such
as the output of a function call), while by using Return, we imply that the value z is written to
the output tape. As usual, we use the notation {0, 1}k to denote the set of all k-bit binary strings,

and by x
$
← {0, 1}k we mean x is uniformly chosen from {0, 1}k . We also use the conventional

notation of ‖ and ⊕ to denote the string operators concatenate and exclusive or. Unless explicitly
stated otherwise, we will assume all references to log are based 2. A function µ : N → R

+ is
said to be negligible, if for any positive polynomial p there exists an integer N such that for any
k > N , µ(k) < 1/p(k). We will sometimes use the notation neg(·) to denote an arbitrary negligible
function.

2 Obfuscation with respect to Oracle Machines

In this section we introduce the framework for obfuscating w.r.t. oracle machines. We model obfus-
cation under this new framework as a two-party protocol, where one party represents the obfuscated
code and the other an oracle containing some “small” secret. The communication between the two
parties is characterized using interactive Turing machines introduced by [17]. Under this frame-
work, we assume the adversary has complete control over both the obfuscated code and message
scheduling. We further assume the adversary is malicious, and may deviate from the protocol in
any way. This allows the adversary to adaptively query the oracle with messages of its own choice.
We define an interactive Turing machine as follows.

Interactive Turing Machines. An interactive Turing machine (ITM) is a Turing machine that
has an additional communication tape, together with its read-only input tape, read-only random

1The class of point-filter functions ∆L = {∆L
n}n∈N for a language L ∈ NP, is defined as the set of functions

∆L
n := {δx,b}x∈{0,1}n,b∈{0,1} where δx,b(w) = (x, b) if w is a valid witness to x in RL and δx,b(w) = x otherwise.
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tape, write-only output tape, and read-and-write work tape. The communication tape consists of
two tapes, a write-only outgoing communication tape and a read-only incoming communication tape.
When the incoming and outgoing communication tape of one ITM are shared with the outgoing
and incoming communication tapes of the other ITM we call this pair an interactive pair of Turing
machines.

We denote a pair of interactive Turing machines M and N as the tuple (M,N). The pair (M,N)
is assumed to be ordered in the sense that at any one time only one Turing machine is active. The
active Turing machine can compute on its internal work tapes, read from its input tapes, write to
its output tape, and send a message to the other Turing machine on its outgoing communication
tape. When one Turing machine has completed its computation, it transfers control over to the
other. This process continues until one machine reaches a halt state.

Informally, we view the oracle as a computationally limited device containing some “small” secret
related to the original program. The oracle’s internal computations are assumed to be hidden, so
that, behaviorally, it appears to be a black box.

Oracle Model. The obfuscation oracle R is modeled as an interactive Turing machine with one
additional read-and-write tape called internal state. The tape internal state has a unique feature
called persistence that distinguishes it from the other tapes in the oracle. We say a tape is persistent
if the tape’s contents are preserved between each successive execution of R. The other internal
working tapes do not share this property and are assumed to be blank after each execution. Given
a particular input and internal state, the oracle R computes an output (which may be ⊥) on its
outgoing communication tape along with a new internal state, internal state′.

(output , internal state′)←R(input , internal state)

If R does not have access to a random tape then we say R is deterministic.

Before we finalize the oracle’s computational model, we need to capture the idea of a resource-
limited device. This will help clarify our meaning of an oracle maintaining a “small” secret. To
explore this idea more throughly, we consider the following two illustrations. In our first example,
we examine the case when the internal state tape is assumed to be very large, so large in fact that
it can store the entire program that is being obfuscated. In this instance, we can create a trivial
obfuscator that loads the entire program into the oracle’s internal state at setup. This simulates
a true black box and maintains the security properties we are after. However, in practice very
large programs may not physically fit on a device, or it may be prohibitively expensive to do so,
especially if the device requires tamper and read-proof protection.

As another example, we consider the parallel case when the input tape is very large. In this case
we can devise a protocol that loads an authenticated encrypted version of the program onto the
oracle’s work tape (for each input query), which the oracle later decrypts, authenticates, and runs.
Having a large input tape does not make sense in practice, as the input is usually comparatively
smaller than the program size. To avoid these trivialities we consider placing bounds on both the
size of the internal state and input tape of the oracle. Under this supposition, we assume there
exists a polynomial s(·) such that for each k ∈ N, both tapes are polynomial bounded by s(k). In
this framework, we will consider only the non-trivial case when s(k) = o(f(k)),2 where the device’s

2The size of each M ∈ Fk is polynomial bounded by f(k).
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resources are asymptotically smaller than the program itself. In the special case when s(k) = O(k),
we will say that the oracle maintains a “small” internal state.

Definition 2 (Obfuscation w.r.t. Oracle Machines) A probabilistic polynomial time algorithm
O and oracle R are said to comprise an obfuscator of the family F = {Fk}k∈N w.r.t. polynomial-
time bounded oracle machines, if the following three conditions hold:

• (Approximate Functionality) There exists a negligible function µ such that for all k and M ∈
Fk, O

R(M, 1k) describes an ITM that computes the same function as M with probability at
least 1− µ(k).

• (Polynomial Slowdown) The description length and running time of OR(M, 1k) is at most
polynomial larger than that of M . That is, there exists a polynomial p such that for all k and
M ∈ Fk, |O(M, 1k)| ≤ p(k) and if M takes t time steps on an input x, then OR(M, 1k) takes
at most p(k + t) time steps on x.

• (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function
ν such that, for all k and M ∈ Fk, and every polynomial q with bounded auxiliary input z of
size q(k), we have

∣

∣

∣
Pr[AR(OR(M, 1k), 1k, z) = 1]− Pr[SM (1|M |, 1k, z) = 1]

∣

∣

∣
≤ ν(k).

For convenience, when our family F is a family of Turing machines, we will adopt the convention
that each program is represented by its binary string encoding for some fixed3 polynomial time
universal Turing machine. Therefore, the size of each Turing machine is measured as the size of its
binary string representation. To simulate the adversaries view correctly, we will also leak to S the
number of steps taken on each oracle query to M . So not only will S be able to observe the input
and output behavior of M , but it will also observe its timing as well.

Before moving onto the next section we restate the definition of non-uniformly strong one-way
functions.

Definition 3 (Non-Uniformly Strong One-Way Functions): A polynomial-time computable
function f : {0, 1}∗ → {0, 1}∗ is called non-uniformly strong one-way if for every non-uniform PPT
A there is a negligible function neg(·) such that for sufficiently large k,

Pr
x

$
←{0,1}k

[ f−1(f(x)) ∋ y ← A(f(x), 1k) ] ≤ neg(k).

2.1 Non-Resettable Deterministic Finite Automata

We define a Deterministic Finite Automaton (DFA) as a machine Ψ = (Q,Σ, δ, s0, G) with a finite
set of states Q, finite alphabet Σ, transition function δ, initial state s0 ∈ Q, and accepting states
G. The structure of the DFA is determined by its transition function δ, which maps each state and
a given input symbol to a new state. The output function (which imitates black box behavior) of
the DFA Ψ is defined as

Ψ(s, α) :=

{

1 if δ(s, α) ∈ G
0 if δ(s, α) /∈ G

3The description size of a program between any two universal Turing machines differs by at most a constant.
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where the “user”-selectable input is α, and s is the current “internal” state. We note that the user
does not have control of the state input. Rather Ψ must internally maintain the state over each
execution. We will often write just Ψ(α).

When modeling DFAs, it is often convenient (unless stated otherwise) to assign a reset capability,
which allows the DFA to transition back to its initial state. In practice, having a reset capability
is not always a desired characteristic, especially when developing software use-control applications,
such as subscription policies and digital rights management. To differentiate between DFAs that
have a reset capability and those that don’t, we define a non-resettable DFA to be a deterministic
finite automaton that is not resettable. We note that we can always build in resettability if we add
an additional reset symbol to every state.

A topic of related interest that has been actively studied over the years has been on the problem
of developing efficient learning algorithms. A learning algorithm takes a given input-output sample
(i.e., transcript) and tries to construct a DFA that is consistent with this sample. Finding a
minimum-state DFA that is consistent for a given sample was shown by Gold [12] to be NP-
Hard. This holds for any passively observable learning algorithm of an unknown DFA (with a
particular representation). Angulin extends this result and shows that active learning that allows
user selectable inputs, is equally hard [1]. Specifically, one can construct a family of DFAs that
cannot be learned in less than exponential time. A common interest to this line of work has
been the relationship of resettability and learning. Non-resettability under certain frameworks can
sometimes lead to efficient learning algorithms [23]. In general, though, learning a non-resettable
DFA is a very difficult problem.

2.2 Necessary Conditions for Obfuscating a DFA

In this section we develop several necessary conditions for securely obfuscating a non-resettable
DFA. In particular, we show that obfuscation is feasible only provided that the oracle’s internal
state is both read-proof and non-static. To facilitate the proof in Proposition 1, we begin by
constructing a family of non-resettable DFAs that are hard to characterize given only black box
access, yet easy given some additional power, such as reset. We define the family of non-resettable
DFAs Ψi,j, i, j ∈ {0, 1} to be the set of machines with the following characteristics: Q = {0, 1, 2},
|Σ| ≥ 2, initial state 0, accept states Gi,j = {1 iff i = 1, 2 iff j = 1}, and transition function

δ(q, λ) :=







0 if q = 0 and λ ∈ Σ− {α, β}
1 if (q = 0 and λ = α) or q = 1
2 if (q = 0 and λ = β) or q = 2.

The family described above branches into two distinct states, depending on whether the first input
symbol is α or β. Clearly, one can learn the DFA’s full description if resets are allowed. We exploit
this simple observation in the following result.

Proposition 1 If non-resettable DFAs are obfuscatable w.r.t. oracle machines then the following
conditions must hold:

(1) The oracle’s internal state tape cannot be static.

(2) The oracle must be read-proof.
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Proof: For the first condition we let O be any secure non-resettable DFA obfuscator. We show
that having a static internal state gives the adversary a non-negligible advantage. Suppose |Σ| ≥ 2
and consider the non-resettable DFAs Ψi,j described above with alphabet symbols α, β ∈ Σ. Since
O is a secure obfuscator we must have for every PPT A and auxiliary input z, the existence of a
PPT simulator S satisfying

∣

∣

∣
Pr[AR(OR(MΨi,j

, 1k), 1k, z) = 1]− Pr[S
MΨi,j (1

|MΨi,j
|
, 1k, z) = 1]

∣

∣

∣
≤ ν(k)

Let A be the adversary that takes the original obfuscated code O(Ψi,j), stores a copy C ← O(Ψi,j)
and runs i← CR(α) and j ← CR(β). The distinguishing bit returned by A is b← i⊕ j. Now since

1− Pr[SΨi,j (1
|MΨi,j

|
, 1k, z) = 1] ≤ ν(k) for i 6= j

and
Pr[SΨi,j (1

|MΨi,j
|
, 1k, z) = 1] ≤ ν(k) for i = j

we must have

1− ν(k) ≤
1

2

∑

i6=j

Pr[SΨi,j (1
|MΨi,j

|
, 1k, z) = 1]

and
1

2

∑

i=j

Pr[SΨi,j (1
|MΨi,j

|
, 1k, z) = 1] ≤ ν(k).

But the following equality

∑

i6=j

Pr[SΨi,j (1
|MΨi,j

|
, 1k, z) = 1] =

∑

i=j

Pr[SΨi,j(1
|MΨi,j

|
, 1k, z) = 1]

implies 1/2 ≤ ν(k) for k sufficiently large, contradicting our assumption that ν is negligible.

For the second condition we assume the oracle is not read-proof, which implies the entire internal
state can be extracted. Therefore, the adversary can simulate an exact copy of the oracle on its
own. Using the same arguments as above we reach a contradiction.

3 DFA Obfuscation

Following the framework described in Section 2, we show how to construct a DFA obfuscator that
is secure with respect to dependent auxiliary inputs. Our goal is to develop a compact, yet very
efficient DFA obfuscator that is not only of theoretical interest, but useful in practice as well. To
obtain our results, we use a simple authenticated encryption scheme to hide the structure of the
DFA and authenticate the execution of the protocol. As noted earlier, we view a Turing machine
as a program running on a universal TM. Therefore, when describing our DFA representations, we
will informally write their descriptions as pseudocode.

Representation. We model each DFA Ψ as a polynomial-time Turing machine MΨ with an addi-
tional persistent read-and-write tape, called internal state. The internal state maintains a record of
the values needed to compute the DFA, such as the DFA’s current state. Each MΨ is represented
by a table where, ∀ α ∈ Σ, ∀ s ∈ Q, there is a table entry containing α, s, δ(s, α), and acpt (which
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equals 1 iff δ(s, α) ∈ G). Without any loss of functionality, we compress the table by employing an
injective map that encodes each α ∈ Σ to a string in {0, 1}⌈log |Σ|⌉. Using the table described, we
can create a program MΨ that simulates Ψ’s output behavior. The program consists of the DFA
table, high-level code, and two persistent variables current state and current acpt . The high-level
code describes the programming language used, table lookup algorithm, alphabet Σ, and function
calls that manipulate the persistent variables. The program MΨ works as follows: On user input
α, the table lookup algorithm searches each table entry for the pair α, current state . If a match
is found, the acpt bit is updated and δ(current state, α) is recorded temporarily. The program
continues to search the rest of the table for a match. At the end of the table search, the user is
given the recorded acpt bit, and the variable current state ← δ(current state , α) is updated. After
the acpt bit has been returned, the DFA is ready to accept its next input.

Following this description, our next goal is to define an encoding scheme of MΨ. Our choice of
encoding is important for several reasons. First, it allows us to calculate the size of |MΨ|, which is
needed for evaluating the polynomial slowdown property. And second, depending on our choice of
encoding, the size of |MΨ| may drastically affect the simulator’s ability to simulate the obfuscated
code. We formalize our encoding scheme as follows.

Encoding. We begin our encoding by splitting up the description of MΨ into its individual com-
ponents: high-level code and DFA table (which is further broken down by individual table entries).
We create a parsing scheme that takes the bit description of each component and adds a trailing
bit of a 1 or 0 to the end of each individual bit. The trailing bit allows the parser to recognize
the end of a component’s description. For example if the high-level code has a bit description
h0 . . . hm then its new bit description is h00h10 . . . hm1. Adopting this encoding scheme, we can
find a t ≥ 0 such that the size of each table entry satisfies 2t ≤ |table entry| < 2t+1. Given t,
we pad each table entry with the string 00 . . . 01 (which is a multiple of two in length) until its
length is exactly 2t+1. If the number of tables entries is even, we pad the last table entry with an
additional 2t+1 bits of the form 00 . . . 01 and add a single 1 bit value on the end. If, on the other
hand, the number of table entries is already odd, then we do nothing. For convenience we denote
the number of edges in Ψ as |E(Ψ)|. By prefixing the parser to the encoded MΨ, it follows that
|MΨ| = |Parser| + |High-level code| + |Table|, where |Table| = 2t+1|E(Ψ)| if the number of table
entries is odd and 2t+1(|E(Ψ)| + 1) + 1 if the number of table entries is even.

Since both the size of the parser and the high-level code are public, it follows that knowing the
size of |MΨ| implies that one also knows the size of |Table|. But one can efficiently extract the
number of edges |E(Ψ)| based on our encoding above. We use this deduction later in the proof of
Proposition 2 to swap the simulator’s input 1|MΨ| with 1|E(Ψ)|.

Based on the encoding above, we define the family FDFA := {Fk}k∈N to be the set of all polyno-
mial bounded MΨ satisfying

Fk := {MΨ | |MΨ| ≤ f(k) and 2 log |States(Ψ)|+ log |Σ|+ 1 < k} 4

for some fixed polynomial f(k). The parameter k is called the security parameter.

4The condition 2 log |States(Ψ)|+log |Σ|+1 < k may be removed by modifying the encryption scheme in Figure 3
to have more than one call to FK per table entry. This is a relatively easy fix since we need at most m = ⌈(2t log(ck)+
1)/k⌉ constant calls to FK given |MΨ| ≤ f(k) ≤ ckt some fixed c, t > 0. This condition was added to simplify the
obfuscation algorithm.
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Setup(MΨ, k):

Input: MΨ, 1k

Key Generation:

K ← K(k)

Generate State Table:

StateTable(Ψ) :
s← 0
|m|∗ ← ⌈log2 |Σ|⌉+ 2⌈log2 |Q|⌉+ 1
for state ← 0 to |Q| − 1 do

for symbol ← 0 to |Σ| − 1 do
sα ← αsymbol

sstate ← state
sδ(state,α) ← δ(state, αsymbol)
sacpt ← 1 iff sδ(state,α) ∈ G, 0 else
T
∗
state [s]←
sα‖sstate‖sδ(state,α)‖sacpt‖0

k−|m|∗

s← s + 1
|Table|∗ ← s
return (|m|∗, |Table |∗, T∗

state)

Encrypt State Table Entries:

EFK
(T∗

state) :

X1 ← 1k

Auth← FK(X1)
for s← 0 to |Table |∗ − 1 do

X0 ← s‖0
Y ← FK(X0)
T
∗
C [s]← Y ⊕ Tstate [s]

X1 ← Auth⊕ T
∗
C [s]

Auth← FK(X1)
Auth∗ ← Auth
return T

∗
C‖Auth∗

Return (K, |m|∗, |Table |∗, T∗
C , Auth∗)

Algorithm O(|Table |∗, T∗
C , Auth∗):

Input: |Table|∗, T∗
C , Auth∗

Initialization:

|Table | ← |Table|∗

TC ← T
∗
C

Auth← Auth∗

State ← Transition Query

State Transitions:

Case(State)

Transition Query:
α← scan input
Query oracle R with α
State ← State Update

State Update:
for s← 0 to |Table| − 1 do

if s 6= |Table | − 1 then
Query oracle R with TC [s]

if s = |Table | − 1 then
Query oracle R with TC [s]‖Auth

if acpt ⇐R

Return acpt

State ← Transition Query

if auth fail ⇐R

State ← Transition Query

Figure 2: Algorithm Setup and O.

Obfuscation. To simplify our description of the DFA obfuscator, we split the obfuscation into
three separate algorithms, Setup, O, and R. The Setup algorithm, shown in Figure 2, takes a
DFA encoding MΨ and generates inputs for both the obfuscated code and oracle. Without loss of
generality, we view our encoding of MΨ to be the DFA state transition table of Ψ. The parsing
operation and high-level code was left out for simplicity.

The obfuscated code O, also shown in Figure 2, can be described as a protocol template. The
template takes as input the encrypted table TC , authentication tag Auth, and table size |Table |
returned by the Setup algorithm. During the Transition Query phase the obfuscated code scans
in the user’s input α, queries the oracle R, and enters a new phase called State Update. Dur-
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Algorithm R(K, |m|∗, |Table|∗):

Input: K, |m|∗, |Table|∗

Initialization:

|Table| ← |Table |∗

|m| ← |m|∗

acpt ← ⊥
current state ← 0
Auth′ ← ⊥
tempα ← ⊥
tempcs ← ⊥
s ← ⊥
State ← Transition Query

State Transitions:

Case(State)

Transition Query:
On query α do

tempα ← α
s← 0
X1 ← 1k

Auth′ ← FK(X1)
State ← State Update

State Update:

On query TC [s] or TC [s]‖Auth do

State Authentication:

X1 ← Auth′ ⊕ TC [s]
Auth′ ← FK(X1)
if s = |Table | − 1 and Auth′ 6= Auth

then
Return auth fail
State ← Transition Query

Compare Table Entries:

X0 ← s‖0
Y ← FK(X0)
Ms ← Y ⊕ TC [s]
sα‖sstate‖sδ(state,α)‖sacpt ←Ms[k−1:k−|m|]

if sstate = current state and sα = tempα

then
tempcs ← sδ(state,α)

acpt ← sacpt

Update Oracle State & Counter:

if s = |Table | − 1 then

current state ← tempcs

Return acpt

State ← Transition Query

s ← s + 1

Figure 3: Oracle R.

ing State Update, the obfuscated code submits the table TC along with the authentication tag
Auth. The oracle processes TC one table entry at a time and verifies the table’s integrity. If the
authentication passes, the oracle returns an accept value corresponding to whether the new state
is an accept state.

The oracle R, shown in Figure 3, describes the oracle’s behavior. Just like the obfuscated code
O, the oracle is nothing more than a protocol with a symmetric key and a few additional variables.
Other than the padding length |m|, table size |Table|, and current state , the oracle maintains no
information about the DFA.

Proposition 2 If non-uniformly strong one-way functions exist, then non-resettable DFAs are
obfuscatable with respect to oracle machines.

Proof: Let f(k) be some positive polynomial and consider the family FDFA defined over f(k).
We will assume without loss of generality for the remainder of the proof that k is sufficiently large
so that the inequality 2 log |States(Ψ)| + log |Σ| + 1 < k is satisfied for every MΨ ∈ Fk. This
assumption follows from the fact that every MΨ ∈ Fk is polynomial bounded, and therefore there
exists a fixed t > 0 with |MΨ| ≤ kt for every k sufficiently large. Thus |States(Ψ)||Σ| < |MΨ| ≤ kt

implies log |States(Ψ)|+ log |Σ| < t log k whence 2 log |States(Ψ)|+ log |Σ|+ 1 ≤ 2t log k + 1 < k for
k sufficiently large. This last restriction was added to guarantee that the size of each table entry is
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no larger than the size of the pseudorandom function’s output.

To prove that the obfuscator in Figure 2 and 3 obfuscates non-resettable DFAs, we need to show
that the aforementioned three conditions hold: Approximate Functionality, Polynomial Slowdown,
and Virtual Black Box.

Approximate Functionality: The oracle may be in only one of two states at any one time. In the
first state, Transition Query, the user submits a transition symbol to the oracle, which the oracle
internally stores on its internal state tape. After this value has been written, the oracle’s state is
updated to its second state, called State Update. In State Update the user transmits the en-
crypted table to the oracle (from top to bottom). The oracle checks the ciphertext integrity in each
table entry and compares the underlying plaintext with the current state and stored transition sym-
bol. If a match occurs, the oracle stores the new transition state and accept bit in its internal state.
Provided that the protocol has been executed faithfully, the oracle will return the acpt bit on the
last query. After this stage has been completed, the oracle reverts back to its Transition Query
state, and this cycle repeats indefinitely. Given this short description, it is not difficult to verify
that the obfuscated DFA computes the original DFA with a probability of 1.

Polynomial Slowdown: In order to show that the obfuscator satisfies polynomial slowdown we
must prove there exists a polynomial p satisfying: for all k and MΨ ∈ Fk the description length
satisfies |O(MΨ, 1k)| ≤ p(k) and if MΨ takes t time steps on an input x then OR(MΨ, 1k) takes
at most p(k + t) time steps on x. We do this by constructing two polynomials, one that bounds
the description size of the obfuscated code and the other bounding the number of steps. We then
construct a suitable polynomial from both of these that satisfies the above requirement.

Observe that the size of the obfuscated code is asymptotically bounded above by |O(MΨ, 1k)| =
O(|High-level Code| + k|E(Ψ)|). Since MΨ ∈ Fk, we must have |E(Ψ)| ≤ |MΨ| ≤ f(k). But
this implies |O(MΨ, 1k)| = O(kf(k)); hence the description length is polynomial bounded. For
the time complexity, observe that the string comparisons for each table entry under MΨs takes
at least ⌈log |Σ|⌉ + ⌈log |States(Ψ)|⌉ ≥ log |E(Ψ)| steps. Since this operation is repeated |E(Ψ)|
times it follows that the total number of steps needed to compute MΨ on any input is at least
t ≥ |E(Ψ)| log |E(Ψ)|. On the other hand the number of steps needed for OR(MΨ, 1k) to send
the table to the oracle is at most O(k|E(Ψ)| log |E(Ψ)|), while the oracle, which is polynomial
time computable, takes at most q(k) polynomial number of steps per query. Therefore, the total
number of steps taken on any input (including the number of steps for the oracle) is at most
O(k q(k)|E(Ψ)| log |E(Ψ)|). Without loss of generality, we may assume that both polynomials
f(k) and q(k) absorb the constants for the asymptotic bounds of the description length and time
complexity. Therefore, we can find a suitable n, c > 0 such that for all k, max{f(k), q(k)} ≤ ckn.
We claim that p(k) := ckn+2 satisfies the polynomial slowdown requirement. This is clear since
the description length |O(MΨ, 1k)| ≤ kf(k) ≤ ckn+2 and the time complexity of OR(MΨ, 1k) is at
most k q(k)|E(Ψ)| log |E(Ψ)| ≤ c(k + t)n+2. Our claim follows.

Virtual Black Box: To simplify the notation in the proof we omit the input 1k. We also replace the
simulator input 1|MΨ| with 1|E(Ψ)| which can be extracted (based on our encoding of MΨ). This
reduces the virtual black box inequality to Equation (1).

We begin our analysis by breaking up Equation (1) into four separate problems, each problem
representing the indistinguishability of obfuscating with different oracles. Other than the first
oracle RFK

we do not place any computational assumptions on the others. This allows them to
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maintain a much larger internal state.
∣

∣

∣
Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]

∣

∣

∣
(1)

≤
∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (2)

+
∣

∣

∣
Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]

∣

∣

∣
(3)

+
∣

∣

∣
Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]− Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]

∣

∣

∣
(4)

+
∣

∣

∣
Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]

∣

∣

∣
. (5)

In Equation (2) we introduce the oracle RFun in order to measure the pseudorandomness of
RFK

. Both RFun and RFK
have the same description, except every call to FK in RFK

is replaced
with a similar call to a random function (independent of z) with the same input and output size.
For convenience we refer to this random function as Fun. Using algorithms E and V shown in
Figure 10 (with the IV ′s removed), we can reduce the distinguishability of Equation (2) to the
distinguishability of the pair of oracles (EFk

,VFk
) and (EFun,VFun). We base this reduction on

adversary BA,Ψ given in Figure 4.

In our description of BA,Ψ, we use the parameter Ψ to indicate the hardwiring of B’s oracle query
to E (which is dependent on StateTable(Ψ)). BA,Ψ uses E ’s response to construct the obfuscated
code, which is given to A. Using A, BA,Ψ simulates A’s query-response interaction with the oracle.
The distinguishing bit b returned by BA,Ψ is the same bit returned by A. Therefore Equation (6)
reduces to Equation (7). If we replace every oracle call to E and V with multiple calls to either
FK or Fun then we can reduce Equation (7) even further. We denote this simulation by BA,Ψ

′ to
distinguish itself from BA,Ψ. Therefore Equation (7) reduces to Equation (8). But this last equation
is just the pseudorandom distinguishability of FK given auxiliary input z. Using our assumption
that non-uniformly strong one-way functions exist, we can use the Goldreich et al. construction
in [14] to generate a pseudorandom function that is secure against non-uniform PPT adversaries
(denoted as prf-nu). If the adversary A makes no more than qv distinct5 State Update queries,
then the total number of queries made to FK or Fun by BA,Ψ

′ is no more than (qv + 2)|E(Ψ)|+ 1.
Therefore Equation (6) reduces to Equation (10), which is negligible following our assumption.

∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (6)

=
∣

∣

∣
Pr[B

EFK
,VFK

A,Ψ (z) = 1]− Pr[BEFun,VFun
A,Ψ (z) = 1]

∣

∣

∣
(7)

=
∣

∣

∣
Pr[BFK

A,Ψ

′
(z) = 1]− Pr[BFun

A,Ψ
′
(z) = 1]

∣

∣

∣
(8)

= Advprf
FK ,BA,Ψ

′(k, z) (9)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1). (10)

For Equation (3), we would like to perform a similar reduction as performed for Equation (8)
except, instead of measuring the pseudorandomness of FK , we would like to measure the unforge-
ability provided by the verifier V. To do this, we introduce the oracle R∗Fun. Internally, the oracle
R∗Fun looks identical to RFun except during the state authentication process. Instead of computing
a partial authentication tag for each State Update query, as is done in Figure 3, it collectively

5Each qv represents a complete chain of State Update queries (i.e., the user has submitted the entire encrypted
table with Auth tag).
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Setup of BA,Ψ:

Input: 1k, z

Generate State Table:

(|m|, |Table|, Tstate)← StateTable(Ψ)

Encrypt State Table Entries:

Query oracle E with Tstate

(TC , Auth)⇐ E(Tstate)

A⇐ O(|Table |, TC , Auth), z

Simulation of Oracle R:

Input: 1k, |m|, |Table|, Tstate , TC , Auth

Initialization:

current state ← 0
acpt ← ⊥
tempα ← ⊥
tempcs ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)

Transition Query:

When A makes a query α do

tempα ← α

flagauth ← false

C ← ⊥

s ← 0

State ← State Update

State Update:
When A makes a query T

′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′
C [s]

if T
′
C [s] 6= TC [s] or (s = |Table | − 1 and

Auth′ 6= Auth) then
flagauth ← true

if s = |Table | − 1 and flagauth = true then
Query oracle V with (C, Auth)
if 0⇐ V(C, Auth) then

A⇐ auth fail
State ← Transition Query

Compare Table Entries:

M ′
s ← T

′
C [s]⊕ (TC [s]⊕ Tstate [s])

sα‖sstate‖sδ(state,α)‖sacpt ←M ′
s[k−1:k−|m|]

if sstate = current state and sα = tempα

then
tempcs ← sδ(state,α)

acpt ← sacpt

Update Oracle State:

if s = |Table | − 1 then

current state ← tempcs

A⇐ acpt

State ← Transition Query

s← s + 1

Figure 4: Adversary BA,Ψ.

gathers all of the ciphertext queries and final authentication tag and submits them to a verifier
V∗. To do this, R∗Fun stores the values (TC , Auth) returned by the initial Setup(MΨ, k) algorithm.
During the State Update phase, the oracle checks to see if the table entries queried by the user
are the same entries as those in TC . If any of the table entries are incorrect, including the final
authentication tag, or if they are queried in a different order, the oracle R∗Fun returns auth fail .
This is equivalent to querying V∗,

1← V∗(C‖Auth) iff C‖Auth was a response of E , 0 else

where C is the concatenation of the queried table entries. Reusing BA,Ψ we can reduce Equation (3)
to inequality (11) by simulating the distinguishability with oracles (EFun,VFun) and (EFun,V∗). We
call this advantage IND-VERF, since it measures the indistinguishability between the two verifiers.
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Setup of (BA,Ψ)p:

Encrypt State Table Entries:

When BA,Ψ makes a query M to oracle EFun do
(C, Auth)← EFun(M)
BA,Ψ ⇐ (C, Auth)

Simulation of Oracle R:

State Authentication:

for i← 1 to qv do

When BA,Ψ makes a query (C′, Auth′) to oracle (VFun or V∗) do

if (C′, Auth′) 6= (C, Auth) then

BA,Ψ ⇐ 0

else BA,Ψ ⇐ 1

b′ ⇐ BA,Ψ

Return b′

Figure 5: Adversary (BA,Ψ)p

Therefore
∣

∣

∣
Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[BEFun,VFun

A,Ψ (z) = 1]− Pr[BEFun,V∗

A,Ψ (z) = 1]
∣

∣

∣

= Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv, z). (11)

with qe = 1 denoting the number of encryption queries and ηe = ηv − 1 = |E(Ψ)| the maximum
number of k-bit blocks each encryption or verification query may have. We claim this advantage is
bounded above by the INT-CTXT-m security of SEFun. See Appendix A.1 for more details on the
security definition of INT-CTXT-m.

Claim 1 Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv, z) ≤ Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv , z)

Proof: We will assume throughout the rest of this claim that qe = 1 and ηe = ηv − 1 = |E(Ψ)|.
To simplify the notation, we omit writing the variables qe, ηe, and ηv. Let E be the event (over
the randomness of Fun and A) that BA,Ψ submits at least one ciphertext authentication pair that
passes verification (after at most qv distinct State Update queries) and was never a response from
EFun. In Figure 5 we define a new adversary (BA,Ψ)p that simulates BA,Ψ’s interaction with the
verifier V∗. Given the event E it follows that both (BA,Ψ)p and BA,Ψ return the same distinguishing
bit b′. Therefore

Pr[ b = b′ ← BA,Ψ ∧ E ] = Pr[ b = b′ ← BA,Ψ | E ] · Pr[E ]

= Pr[ b = b′ ← (BA,Ψ)p | E ] · Pr[E ]

≤ Pr[ b = b′ ← (BA,Ψ)p ]

=
1

2
Advind-verf

SEFun,(BA,Ψ)p
(k, qv , z) +

1

2
.
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But Advind-verf
SEFun,(BA,Ψ)p

(k, qv , z) must be equal to
∣

∣

∣
Pr[BEFun,V∗

A,Ψ (z) = 1]− Pr[BEFun,V∗

A,Ψ (z) = 1]
∣

∣

∣
which

is 0. Hence

1

2
Advind-verf

SEFun,BA,Ψ
(k, qv, z) +

1

2
= Pr[ b = b′ ← BA,Ψ]

= Pr[ b = b′ ← BA,Ψ ∧ E ] + Pr[ b = b′ ← BA,Ψ ∧ E ]

≤ Pr[E ] + Pr[ b = b′ ← (BA,Ψ)p ]

=
1

2
Pr[E | b = 0] +

1

2
Advind-verf

SEFun,(BA,Ψ)p
(k, qv, z) +

1

2

=
1

2
Advint-ctxt-m

SEFun,(BA,Ψ)ctxt
(k, qv , z) +

1

2
.

and our claim follows.

Now that we have bounded Equation (3) by the INT-CTXT-m security of SEFun we are now
ready to move onto Equation (4).

In Equation (4) we measure the chosen plaintext distinguishability between encrypting with
either EFun or ERand, where ERand(M) is a random string of length |M |. The oracles R∗Rand and
R∗Fun are identical except for their calls to EFun or ERand. As before we will use the ∗ in R∗Rand

to denote that verifier V∗ is used. We define B∗A,Ψ to be the algorithm BA,Ψ that uses V∗ as its
verifier (which can be easily simulated given the output of E). Therefore Equation (4) reduces to
inequality (12)

∣

∣

∣
Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]− Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[B∗ EFun

A,Ψ (z) = 1]− Pr[B∗ ERand
A,Ψ (z) = 1]

∣

∣

∣

= Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z). (12)

with qe = 1 and ηe = |E(Ψ)|.

In the final Equation (5), we introduce the simulator S, which as you recall has only black box
access to Ψ. In order for S to properly simulate A’s view, it needs to know the number of edges
|E(Ψ)|. This can be easily extracted knowing just the size of MΨ based on our encoding. Given the
number of edges |E(Ψ)|, S can easily simulate A’s view of the obfuscated code by giving A a copy of
O(|E(Ψ)|, TC , Auth), where TC is a random table of the appropriate size (dependent on |E(Ψ)| and
k) and Auth a k-bit random string. Using its oracle access to Ψ, S can simulate A’s interaction
with R∗Rand using the values |E(Ψ)|, TC , and Auth. Therefore, the entire simulation, which we
denote by SA, consists of passing A the obfuscated code O(|E(Ψ)|, TC , Auth) and simulating the
interaction between R∗Rand and A using oracle Ψ. The full description of simulator SA is given in
Figure 6.

To help with the analysis, we model adversary AR
∗
Rand(OR

∗
Rand(Ψ), z) as we did in Equation (4) by

replacing it with B∗ERand
A,Ψ (z). From this we have Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1] = Pr[B∗ ERand

A,Ψ (z) =
1]. Notice that during the State Update phase of B∗A,Ψ, in order for the final query to reach
Update Oracle State and return an output other than auth fail , R∗Rand must pass the verifier
V∗. This implies that the adversary submits the table TC free of modifications. Hence the operations
under Compare Table Entries may be completely replaced with a simulated oracle call to the
DFA in much the same way simulator SA does. Replacing this code, we obtain a new B∗A,Ψ

′ which
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Setup of SA:

Input: 1k, 1|E(Ψ)|, z

Generate State Table:

for s← 0 to |E(Ψ)| − 1 do
Tstate [s]← 0k

Encrypt State Table Entries:

Query ERand with Tstate

(TC , Auth)⇐ ERand(Tstate)

A⇐ O(|E(Ψ)|, TC , Auth), z

Simulation of Oracle R∗
Rand

:

Input: |E(Ψ)|, TC , Auth

Initialization:

acpt ← ⊥
tempα ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)

Transition Query:

When A makes a query α do

tempα ← α

flagauth ← false

C ← ⊥

s ← 0

State ← State Update

State Update:
When A makes a query T

′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′
C [s]

if T
′
C [s] 6= TC [s] or (s = |E(Ψ)| − 1 and

Auth′ 6= Auth) then
flagauth ← true

if s = |E(Ψ)| − 1 and flagauth = true then
Query V∗ with (C, Auth)
if 0⇐ V∗(C, Auth) then

A⇐ auth fail
State ← Transition Query

Query DFA Oracle:

if s = |E(Ψ)| − 1 then
Query oracle Ψ with tempα

acpt ← Ψ(tempα)

Update Oracle State:

if s = |E(Ψ)| − 1 then

A⇐ acpt

State ← Transition Query

s← s + 1

Figure 6: Simulator SA.

is functionally equivalent to B∗A,Ψ. Since the variables current state and tempcs are no longer
needed as they are used in the simulation of oracle Ψ, we can remove them. Finally, observe that
an oracle call to ERand in Encrypt State Table Entries returns random strings regardless of
the particular input. Therefore encrypting with the real state table Tstate or one containing all
zeroes provides a random output that is of the same size. Hence it follows B∗A,Ψ

′ and SA have a
distinguishability of 0. Thus

∣

∣

∣
Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]− Pr[SΨ

A (1|E(Ψ)|, z) = 1]
∣

∣

∣

=
∣

∣

∣
Pr[B∗ ERand

A,Ψ

′
(z) = 1]− Pr[SΨ

A (1|E(Ψ)|, z) = 1]
∣

∣

∣

= 0.

Using the bounds derived in Appendix A with qe = 1 and ηe = ηv − 1 = |E(Ψ)|, we have the
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following result
∣

∣

∣
Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ(1|E(Ψ)|, z) = 1]

∣

∣

∣
(13)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1)

+Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv, z) + Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1)

+qv(|E(Ψ)|2 + |E(Ψ)|)2−k +
1

2
(3|E(Ψ)|2 + |E(Ψ)|)2−k .

The amount of persistent state needed to obfuscate the DFA in the above Proposition is in fact
quite small. In the next Proposition we show that we need at most O(k)-bits. This is especially
ideal if the oracle is implemented on a computationally limited device with a minimal amount of
tamper protection.

Corollary 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are ob-
fuscatable with respect to oracle machines with small internal state.

Proof: In Proposition 2 we used the Goldreich et al. construction in [14] to generate a pseudo-
random function that is secure against non-uniform PPT adversaries. The key generated for this
construction is the same size as the security parameter k. But this implies that the size of the ora-
cle’s internal state is no more than O(log |State(Ψ)|+ log |Σ|+ k) = O(k), following our definition
of Fk.

3.1 Composition of Obfuscations

So far, we have looked at the case of DFA obfuscation in a stand-alone setting, where the obfuscated
code is operating in isolation. Suppose now we allow multiple obfuscations to execute alongside
one another, all sharing the same oracle as shown in Figure 7. If we compose obfuscations in such
a manner, is the resulting scheme any less secure? That is, does running multiple obfuscations
provide any more information that couldn’t otherwise be efficiently extracted by running their
respective black boxes? Using a simple modification to the obfuscation algorithm presented earlier,
we show that it is possible to securely compose obfuscations in this manner.

We model the composed DFA obfuscations as a system of ITMs whose communication tapes are
connected via a polynomial-time computable control function. The control function interfaces with
the oracle’s input and output communication tapes and delegates the order in which messages are
sent to the oracle. In practice, the control function may implement a quality of service scheduling
algorithm that gives certain DFAs a higher priority over others.

The notion of composition we use here is similar in flavor to the one used in secure multi-party
protocols. While we don’t completely generalize our security claims to the protocol framework,
which includes an environment distinguisher that distinguishes between a real protocol execution
from an simulated ideal process (i.e. black box access), the proofs can be modified to this case (since
all of the reductions use the adversary as an oracle). Unfortunately, even with these modifications,
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Figure 7: Composition of obfuscations w.r.t. single oracle

general composition cannot be maintained because a symmetric key is used. Our composition
assumptions are stated below. For a more thorough introduction to the taxonomy of composition
see [9].

Concurrent Composition. Any interleaving of messages to the oracle is allowed. Multiple DFA
executions operate independently of one another and submit messages to the oracle at their
own discretion.

Adaptively Chosen Inputs. The inputs into each DFA execution are determined adaptively
by the environment. No assumptions are placed on the inputs.

Self-composition. The number of DFA executions is fixed in advance, but may be chosen
arbitrarily from the same family Fk for a given security parameter k.

Using the definitions above, we now present the main composition result.

Proposition 3 If non-uniformly strong one-way functions exist, then there exists a DFA obfuscator
that remains secure under concurrent self-composition with adaptively chosen inputs.

Proof: The DFA obfuscator used in Proposition 2 can easily be modified to account for composi-
tion. Let {MΨi

}i=1,...,t be a finite family of DFAs in Fk with the same encoding scheme as described
in Section 3. Our goal is to show that the following inequality is negligible:

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

−Pr[SΨ1,...,Ψt(1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣
. (14)

To make sure the messages sent between the oracle and the obfuscated DFAs are properly routed,
we assign a unique ID to each of them. This allows the oracle to distinguish the messages sent
from each party. The following changes were made to the obfuscation algorithms Setup,O, and R
in Figure 2:
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• Setup(MΨ1 , . . . ,MΨt , k)

– The scheme EFK
under Encrypt State Table Entries is replaced with the encryption

scheme in Figure 10.

– A unique ID i is assigned to each MΨi
, corresponding to the IV used for encryption.

• O(ID i, |Table |∗i , T
∗
C,i, Auth∗i ), i = 1, . . . , t

– All communications are prefixed with the DFA’s unique ID .

– If a message is received with an ID different than it’s own, it is ignored.

• R(K, ID1, |m|
∗
1, |Table|∗1, . . . , ID t, |m|

∗
t , |Table |∗t )

– EachO(ID i, |Table |∗i , T
∗
C,i, Auth∗i ) is assigned it’s own set of persistent variables |Table|ID i

,
|m|ID i

, acpt IDi
, current stateIDi

, Auth′ID i
, tempα,ID i

, tempcs,IDi
, sIDi

, and State IDi
.

– All outgoing messages are prefixed with the input message ID .

– If an incoming message uses an unrecognized ID , an ID‖invalid id message is returned.

– The assignment of X1 under Transition Query is changed to X1 ← ID‖1k−|ID |,
|ID | < k.

– The assignment of X0 under Compare Table Entries is changed to X0 ← ID‖s‖0.

We begin our analysis by breaking up inequality (14) into four separate problems in much the
same way as we did in Proposition 2. The oracles RFun, R∗Fun, and R∗Rand are reused with the
above ID modifications. Since obfuscations may operate concurrently, we must show that this
additional capability does not give an adversary a non-negligible advantage. In our particular case,
concurrency implies only that messages are interleaved, since a single oracle can process messages
only sequentially. In Proposition 2, the adversary BA,Ψ in Figure 4 was able to assemble a chain
of State Update queries to construct a single verification query. This was easily achieved since
only a single DFA obfuscation was communicating with the oracle at a time. We would like to use
this same basic idea to help us here; unfortunately things are more complicated since messages are
now interleaved. To mitigate this issue, we create an adversary A′ (using A as a subprotocol) that
untangles the messages and resubmits them to the oracle in an orderly fashion. A description of
adversary A′ is given in Figure 8.

Since A receives an output message from the oracle only when an obfuscated DFA has submitted
its final State Update query, we can simulate the oracle’s output by holding back all of A’s queries
until a complete chain of State Update queries have been submitted. Therefore, we can untangle
A’s queries and resubmit them in the following order (Transition QueryIDi1

,State UpdateID i1
)

, . . . , (Transition QueryIDim
,State UpdateIDim

)6. Hence it follows that

Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

= Pr[A′
RFK (ORFK (Ψ1), . . . ,O

RFK (Ψt), z) = 1].

Throughout the rest of the proof we will denote adversary A′ as A and assume A submits oracle
queries only as described above.

6(Transition QueryIDi
, State UpdateIDi

) denotes the single Transition Query and complete chain of
State Update queries made by IDi.
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Adversary A′:

Input: ORFK (Ψ1), . . . ,O
RFK (Ψt)

Extract Table Size:

for i← 1 to t do
|Table|IDi

← ExtractTableSize(ORFK (Ψi))

Reorder and Resubmit:

When A makes a Transition Query query ID i‖α do
tempα,IDi

← α
sIDi

← 0
When A makes a State Update query ID i‖T

′
C [s] or ID i‖T

′
C [s]‖Auth′

IDi
do

TIDi
[sIDi

]← T
′
C [s]

if sIDi
= |Table|IDi

− 1 then
Query oracle RFK

with ID i‖tempα,IDi

for s← 0 to |Table |IDi
− 1 do

if s 6= |Table|IDi
− 1 then

Query oracle RFK
with ID i‖TIDi

[s]
if s = |Table|IDi

− 1 then
Query oracle RFK

with ID i‖TIDi
[s]‖Auth′

IDi

A⇐ Oracle’s output
sIDi

← sIDi
+ 1

b′ ⇐ A

Return b′

Figure 8: Adversary A′

Now that the oracle messages have been untangled, we can use adversary BA,Ψ to help complete
our analysis. To account for the multiple DFA obfuscations, we relabel BA,Ψ as BA,(Ψ1,...,Ψt) and
make the following modifications in Figure 4:

• Under Generate State Table replace the existing code with:
for i← 1 to t do

(|m|i, |Table |i, Tstate,i)← StateTable(Ψi)

• Under Encrypt State Table Entries replace the existing code with:
for i← 1 to t do

Query oracle E with Tstate,i

(ID i, TC,i, Authi)⇐ E(Tstate,i)

A⇐ O(ID i, |Table |i, TC,i, Authi), . . . ,O(ID t, |Table |t, TC,t, Autht), z

• Under Simulation of Oracle R: Input include the inputs ID i, |m|i, |Table|i, Tstate,i, TC,i,
Authi for i = 1, . . . t.

• Under Simulation of Oracle R: Initialization assign each ID i a unique copy of the
variables listed.

• Modify all incoming and outgoing messages to account for IDs.
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Following Proposition 2, we replace every oracle call made to E and V in BA,(Ψ1,...,Ψt)with multiple
calls to either FK or Fun and call this simulation BA,(Ψ1,...,Ψt)

′. Therefore, given that adversary A
makes no more than qv distinct State Update queries, it follows that the total number of queries
made to FK or Fun by BA,(Ψ1,...,Ψt)

′ is no more than (qv + 2t)maxi |E(Ψi)|+ t. Hence

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1]

−Pr[ARFun(ORFun(Ψ1), . . . ,O
RFun(Ψt), z) = 1]

∣

∣

=
∣

∣

∣
Pr[B

EFK
,VFK

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[BEFun,VFun

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[BFK

A,(Ψ1,...,Ψt)

′
(z) = 1]− Pr[BFun

A,(Ψ1,...,Ψt)
′
(z) = 1]

∣

∣

∣

= Advprf
FK ,BA,(Ψ1,...,Ψt)

′(k, z)

≤ Advprf-nu
FK

(k, (qv + 2t)max
i
|E(Ψi)|+ t).

Similarly it follows that

∣

∣Pr[ARFun(ORFun(Ψ1), . . .O
RFun(Ψt), , z) = 1]

−Pr[AR
∗
Fun(OR

∗
Fun(Ψ1), . . . ,O

R∗
Fun(Ψt), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[BEFun,VFun

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[BEFun,V∗

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

= Advind-verf
SEFun,BA,(Ψ1,...,Ψt)

(k, qe, qv, ηe, ηv , z)

≤ Advint-ctxt-m
SEFun,(BA,(Ψ1,...,Ψt)

)ctxt
(k, qe, qv, ηe, ηv, z).

and
∣

∣

∣
Pr[AR

∗
Fun(OR

∗
Fun(Ψ1), . . . ,O

R∗
Fun(Ψt), z) = 1]

−Pr[AR
∗
Rand(OR

∗
Rand(Ψ1), . . . ,O

R∗
Rand(Ψt), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[B∗ EFun

A,(Ψ1,...,Ψt)
(z) = 1]− Pr[B∗ ERand

A,(Ψ1,...,Ψt)
(z) = 1]

∣

∣

∣

= Advind$-cpa
SEFun,B∗

A,(Ψ1,...,Ψt)
(k, qe, ηe, z).

where qe = t denotes the number of encryption queries made and ηe = ηv − 1 = maxi |E(Ψi)| the
maximum number of k-bit blocks each encryption and verification query may have.

Making similar changes to the simulator given in Figure 6 as those made to BA,Ψ above, we may

construct our final simulator SΨ1,...,Ψt

A . As before, we let each of the tables Tstate,i consist of all
zeroes. Therefore, following the arguments made in Proposition 2 we have

∣

∣

∣
Pr[AR

∗
Rand(OR

∗
Rand(Ψ1), . . . ,O

R∗
Rand(Ψt), z) = 1]

−Pr[SΨ1,...,Ψt

A (1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣

=
∣

∣

∣
Pr[B∗ ERand

A,(Ψ1,...,Ψt)

′
(z) = 1]− Pr[SΨ1,...,Ψt

A (1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣

= 0.
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Using the bounds derived in Appendix A with qe = t and ηe = ηv − 1 = maxi |E(Ψi)| we have
the following result

∣

∣Pr[ARFK (ORFK (Ψ1), . . . ,O
RFK (Ψt), z) = 1] (15)

−Pr[SΨ1,...,Ψt(1|E(Ψ1)|, . . . , 1|E(Ψt)|, z) = 1]
∣

∣

∣

≤ Advprf-nu
FK

(k, (qv + 2t)max
i
|E(Ψi)|+ t)

+Advint-ctxt-m
SEFun,(BA,(Ψ1,...,Ψt)

)ctxt
(k, qe, qv, ηe, ηv , z)

+Advind$-cpa
SEFun,B∗

A,(Ψ1,...,Ψt)
(k, qe, ηe, z)

≤ Advprf-nu
FK

(k, (qv + 2t)max
i
|E(Ψi)|+ t)

+
5

2
qv(t + 1)2(max

i
|E(Ψi)|

2)2−k

+
t2

2
(3max

i
|E(Ψi)|

2 + max
i
|E(Ψi)|)2

−k.

which is negligible.

3.2 Beyond DFA Obfuscation

Now that we have shown how to obfuscate DFAs w.r.t. oracle machines, we would like to investigate
if these same results can be extended to more complex computational models. Namely, we are
interested in determining whether Turing machines are obfuscatable as well. Since a Turing machine
is a DFA with access to an infinite tape, we need to figure out how to integrate tapes into our DFA
obfuscation techniques. This, as we will show, is quite easy.

We define a Turing machine as a machine Φ = (Q,Σ,Γ, δ, s0, G) with finite input alphabet Σ
(not including the blank symbol ⊔), finite tape alphabet Γ (with ⊔ ∈ Γ and Σ ⊆ Γ), transition
function δ : Q × Γ → Q × Γ× {L,R}, initial state s0 ∈ Q, and accepting states G. The read and
write tape is assumed to be infinite in both the left and right directions. For this discussion we
will associate an integer to each cell with the initial cell being 0 and the left and right cells being
-1 and 1, respectively.

To obfuscate the Turing machine Φ, we follow a similar approach to that taken in Section 3
and break up the obfuscation protocol into three different states, User Input, State Update,
and Tape Update. The User Input stage takes an input α0 . . . αt−1 provided by the user and
submits it to the oracle one symbol at a time. On receipt of each input symbol αi, the oracle
concatenates a pointer and cell hit counter giving, αi‖ptr‖cell hits . The pointer references the
numbered cell the tape symbol resides in while the cell hit counter counts the number of times
this cell has been accessed. The oracle generates an encryption and intermediate authentication
tag (stored persistently) of the concatenation above for i = 0, . . . , t − 1 and sends the resulting
encryption back to the user. The authenticated-encryption scheme used here is similar to the one
used in the DFA obfuscation protocol with the exception that the final authentication tag is not
returned to the user but rather is stored by the oracle in its persistent state. After the last input
symbol has been submitted to the oracle, the oracle changes to State Update.

For the State Update stage we follow the same procedure as before for obfuscating a DFA
except that we add two additional variables to each DFA table element scell write and sLR, giving
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0 || 0 || 0 1 || 1 || 0

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1 4 || 0 || 2

0 || 0 || 0 1 || 1 || 0 2 || 0 || 1 3 || 1 || 1 4 || 0 || 2 5 || -1 || 0

Authenticated-Encrypted Tape
Head 

Movement
Head 

Position

R

L

L

L

Step

0

1

0

-1

1

2

3

4
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Figure 9: Tape Update with input α0α1.

sα‖sstate‖sδ(state ,α)‖scell write‖sLR‖sacpt . The variable scell write stores the tape symbol to be written
in the current cell while sLR stores the heads transition (either 1=left or 0=right). In addition, if
the authentication fails during this stage rather than going back to User Input, the oracle loops
to the beginning of State Update, and the user resubmits the authenticated-encrypted table. If
the authentication does pass, then the oracles changes to Tape Update.

During the final stage Tape Update, the user submits the encrypted tape to the oracle one
encrypted cell at a time. The oracle decrypts and scans through each cell, looking for the cell that
has the correct pointer and largest number of cell hits (which corresponds to the most recent symbol
written to that cell). If the oracle does not find the pointer in the authenticated-encrypted tape,
then the pointer must be pointing to a previously unaccessed cell and therefore the tape symbol
must be blank. In Figure 9 we give an example run of the Tape Update stage over multiple steps.
To avoid unnecessary complications, a description of the DFA is not given. In the first step the
authenticated-encrypted tape contains just the encrypted cells returned by the User Input stage.
The symbol α0 has a pointer 0 since it is in the initial cell position, while α1 has pointer 1 since
it is to the right of α0. Both symbols have cell hits of 0 since neither of them have been accessed
before. We will assume in this example that the previous state State Update determined that
the current cell’s symbol is to be replaced by α2 and the tape head would move one position to
the right. During the first Tape Update, the oracle decrypts each cell and scans for the current
pointer 1 (cell position 0 moved one position to the right) with the largest number of cell hits. It
finds α1‖1‖0 and stores the tape symbol α1 in its persistent state, which will be used by the next
DFA State Update. At the end of the scan and authentication check, the oracle encrypts the
cell α2‖0‖1 and updates the authentication tag for the new encrypted tape. The encrypted cell is
then returned to the user and the oracle’s state changes to State Update. This procedure repeats
indefinitely until a DFA accept state has been reached, thus allowing the user to submit a new
input. The authenticated-encrypted tape given in step 2 is the end result of Tape Update in step
1. The other steps follow based on the above arguments.

A more complete description of this protocol is given below as well as a list of the primary
persistent variables used by the oracle.

Persistent variables:

K: Encryption key.
ctr : Changes after each TM execution. Allows TM to execute multiple times.
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State : User Input, State Update, Tape Update.
acpt : Current state accept status.
tape symbol : Stores current cell’s tape symbol.
ptr : Current tape position.
cell hits : Number of cell hits for current head position.
cell hits temp : Number of scanned cell hits for new head position.
|Tape |: Current size of tape.
|Table|: Size of DFA table.
LR: Tape head movement.
cell write : Tape symbol to be written in current cell.
tempcs : Temporary storage of current state.
current state : Current state of DFA.
tempα: Temporary storage of tape symbol when scanning DFA.
Authtape : Intermediate authentication tag for encrypted tape.
Auth∗tape : Final authentication tag for encrypted tape.
AuthDFA: Intermediate authentication tag for encrypted DFA table.

TM obfuscation protocol:

• Input Query:

1. User transmits input symbols α0, . . . , αt−1 to oracle with the initial input symbol α0

sent first.

2. For each received input symbol αi oracle performs the following:

– Stores first input symbol tape symbol ← α0 in persistent state.

– Generates encrypted tape cell Ti ← αi‖i‖0 ⊕ FK(ctr‖i‖01) and returns to user.

– Stores intermediate authentication tag Authtape ← FK(Authtape ⊕ Ti) and final tag
Auth∗tape ← FK(Authtape ⊕ Tt−1) in persistent state (with initial tag Authtape ←
FK(ctr‖10)).

In addition on the final input symbol oracle does the following:

– Set persistent variables ptr ← 0, cell hits temp ← 0, cell hits ← 1, |Tape | ← t, and
State ← State Update.

• State Update:
Following the DFA obfuscator in Section 3

1. User transmits encrypted DFA table and authentication tag.

2. Oracle decrypts each table entry and scans for current state and tape symbol .

– If current state and tape symbol are found then oracle updates persistent variables
ptr ← ptr + (−1)sLR , LR ← sLR, cell write ← scell write , acpt ← sacpt , and
tempcs ← sδ(current state,tape symbol).

– If DFA table authentication passes then oracle updates persistent variables
current state ← tempcs and cell hits temp ← 0.

− If acpt = 1 then return acpt to user and set ctr ← ctr + 1 and
State ← Input Query, else State ← Tape Update.
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– If DFA table authentication does not pass then return auth fail to user and set
State ← State Update. User must retransmit encrypted DFA table and authenti-
cation tag.

• Tape Update:

1. User transmits encrypted tape cells T0, . . . , Tt−1 to oracle.

2. Oracle decrypts each encrypted cell Ti one at a time and scans for ptr and cell hits .

– If ptr matches decrypted ptr ′ and the number of cell hits temp is less than or equal to
the decrypted cell hits ′ then update persistent variables tape symbol ← tape symbol ′

and cell hits temp ← cell hits ′.

– Oracle updates intermediate authentication tag Authtape ← FK(Authtape ⊕ Ti) in
persistent state (with initial tag Authtape ← FK(ctr‖10)).

– If tape authentication passes then oracle updates persistent variables in the following
order T|Tape| ← cell write‖ptr − (−1)LR‖cell hits ⊕ FK(ctr‖|Tape |‖01),
Auth∗tape ← FK(Auth∗tape ⊕ T|Tape|), and |Tape | ← |Tape |+ 1.

− If ptr matched a decrypted ptr ′ during tape scan then set
cell hits ← cell hits temp + 1, else set cell hits ← 0 and tape symbol ← ⊔.

Set State ← State Update

– If tape authentication does not pass then return auth fail to user and set
cell hits temp ← 0 and State ← Tape Update. User must retransmit encrypted
tape.

It is important to observe that the above protocol makes use of several encryption tweaks in the
authenticated-encryption scheme for both the DFA table and tape. For the tape encryption we used
the two-bit tweak 01 while for the seed feeding the initial authentication we used 10. Similarly for
the DFA table we used the tweaks 00 (different than the original tweak) and 11 for the encryption
and authentication, respectively. These tweaks guarantee that the inputs into the pseudorandom
function are unique with high probability.

Also observe that many of the variables may grow exponentially large (if the TM never halts) over
time and may overload the number of bits originally assigned to them, thereby potentially breaking
the approximate functionality requirement for obfuscation. To work around this technicality, the
oracle may release the encryption key once these variables are overloaded. The obfuscated code
could then decrypt itself and run in the open. This does not break the virtual black box security
requirement since the adversary has a running time polynomial in k and thus will never overload
these variables for k sufficiently large.

Following a similar proof as in Proposition 2 we have the following result.

Proposition 4 If non-uniformly strong one-way functions exist, then Turing machines are obfus-
catable with respect to oracle machines with small internal state.
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A Supplementary Proofs

In this appendix we review the security definitions of INT-CTXT and IND$-CPA and prove the
bounds used in inequality 13 and 15. All of the results proven below are based on the authenticated
encryption scheme shown in Figure 10. This generalized scheme is used for composing obfuscations,
with the DFA’s ID corresponding to the encryption IV . We will assume the IV s are fixed in size,
with size strictly less than the security parameter k.

A.1 Integrity Awareness

In Proposition 2 and 3 we showed that the distinguishing advantage between the verifiers VFun and
V∗ (with the adversary also having access to EFun) is bounded above by the strong unforgeability
of the ciphertexts. We state the security definition formally below.

Definition 4 (Integrity Awareness w.r.t. Auxiliary Input): Let SEFun be the symmetric
encryption scheme in Figure 10 using random functions and Actxt a PPT adversary with access to
two oracles, EFun and VFun. Consider the following experiment with k ∈ N and z ∈ {0, 1}q(k) for
some polynomial q
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Algorithm Eρ(M) Algorithm Vρ(IV
′, C ′‖Auth′)

C ← ⊥ C0
′‖ . . . ‖Ct−1

′ ← C ′

IV ← 0|IV |, |IV | < k X−1
1 ← IV ′‖1k−|IV |

M0‖ . . . ‖Mt−1 ←M , |Mi| = k Auth← ρ(X−1
1 )

X−1
1 ← IV ‖1k−|IV | for s← 0 to t− 1 do

Auth← ρ(X−1
1 ) Xs

1
′ ← Auth⊕ Cs

′

for s← 0 to t− 1 do Auth← ρ(Xs
1)

Xs
0 ← IV ‖s‖0 if Auth = Auth′ and

Y ← ρ(Xs
0) IV ′ ∈ prevIV and

Cs ← Y ⊕Ms sizeC(IV ′) = |C ′| then
C ← C‖Cs Return 1, else Return 0.
Xs

1 ← Auth⊕ Cs

Auth← ρ(Xs
1)

sizeC(IV )← |C|
prevIV ← prevIV ∪ {IV }
IV ← IV + 1
Return (IV , C‖Auth).

Figure 10: Generalized Encryption and Verification Schemes.

Experiment Expint-ctxt-m
SEFun,Actxt

(k, z)

Fun
$
← Fun(k)

If AEFun,VFun
ctxt (k, z) makes a query C to

the oracle VFun such that
- VFun(C) = 1
- C was never a response to EFun

then Return 1 else Return 0.

We denote the winning probability in adversary Actxt breaking INT-CTXT-m as

Advint-ctxt-m
SEFun,Actxt

(k, z) := Pr[Expint-ctxt-m
SEFun,Actxt

(k, z) = 1]

The INT-CTXT-m advantage over all PPT adversaries Actxt is defined as the maximum

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv , z) := max
Actxt

{Advint-ctxt-m
SEFun,Actxt

(k, z)}

where qe and qv denote the maximum number of oracle calls to EFun and VFun, while ηe and ηv

denote the maximum number of k-bit blocks per encryption and verification query. The scheme
SEFun is said to be INT-CTXT-m secure w.r.t. auxiliary input if the advantage Advint-ctxt-m

SEFun
is

negligible over all PPT adversaries (with time-complexity polynomial bounded in k) given arbitrary
auxiliary input.

In the special case where we allow only a single verification query qv = 1, we define the advantage
as INT-CTXT-1. It was shown by Bellare et al. in [3] that if an encryption scheme SE is INT-
CTXT-1 secure (without an auxiliary input), then it is also INT-CTXT-m secure. Adding auxiliary
inputs is a trivial modification to the original proof. Since we will be using this result to simplify
our analysis, we state it in the following lemma.
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Lemma 1 (INT-CTXT-1 ⇒ INT-CTXT-M [3]) Let SE be any symmetric encryption scheme
and z any polynomial bounded string in k with k ≥ 1. Then

Advint-ctxt-m
SE (k, qe, qv, ηe, ηv, z) ≤ qv ·Advint-ctxt-1

SE (k, qe, ηe, ηv, z)

In the following Proposition we prove the scheme in Figure 10 is INT-CTXT-m secure when
qe = 1. This result is used to help facilitate the proof in Proposition 2.

Proposition 5 Let SEFun be the scheme given in Figure 10 with IV = ⊥. Let z be any polynomial
bounded string in k with qe = 1, ηv = ηe + 1, and qv, k ≥ 1. Then

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤ qv(4η
2
e + ηe)2

−k

Proof: To prove the above inequality holds, we will use the game-playing techniques introduced by
Bellare and Rogaway in [5]. Our goal is to incrementally construct a chain of games using simple
transformation techniques so that the terminal game is bounded above by a negligible factor. To
simplify our analysis we use the result of Lemma 1 and derive an upperbound for INT-CTXT-
1. Once we have found a bound for INT-CTXT-1, the more general INT-CTXT-m bound will
follow. For the sake of this proof, we will also assume that our adversary A is computationally
unbounded and therefore deterministic (since it may deterministically choose its queries to maximize
its advantage). The only restrictions we place on A is the number of queries it can make.

We begin our analysis by giving a description of game G1 shown in Figure 12. The scheme in
G1 is the same encryption scheme shown in Figure 10 with IV = ⊥. Notice that since we assumed
IV = ⊥ the scheme SEFun is no longer stateful and therefore not IND-CPA secure. Having IND-
CPA security is not essential to proving the claim (since qe = 1). Also observe that we removed the
checking of sizeC in game G1. We will instead assume without loss of generality that the ciphertext
submitted for verification is the same size of the ciphertext returned by the encryption query. Let
ρ be a randomly (independent of z) chosen function from the set Fun(k). Observe that game G1

has only two queries in its description: an encryption query and a verification query. The single
encryption query (qe = 1) simulates obfuscating a single DFA while the verification query (qv = 1)
is the result of restricting our analysis to INT-CTXT-1. Based on the description of game G1 it
follows that

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) = Pr[Game G1 sets bad ]

with qe = 1 and ηe = ηv − 1 = t.

To transform game G1 → G2, we add additional settings of bad in lines 208, 214, and 224. We
also observe that during the second query, the Auth value after the first index i where Ci

′ 6= Ci

is just ρ(Xi−1
1 ). Therefore, the modifications made in lines 219 through 225 are a direct result of

this observation. Since the functionality of game G1 and G2 are equivalent with the exception of
additional settings of bad it follows that Pr[Game G1] ≤ Pr[Game G2].

To go from game G2 → G3, we unroll the for loops in line 205 and 221 and postpone the
recordings of the variable Xs

1 in Dom(ρ). We also swap the assignment of the variable Xs
1 ←

Auth⊕ Cs with a random sampling Xs
1

$
← {0, 1}k , since the Auth variable used in the assignment

of Xs
1 is randomly sampled during s − 1. Finally, the assignments occurring after the setting of

bad ← true are removed. Therefore, the changes made from game G2 to G3 are conservative (i.e.
Pr[Game G2] = Pr[Game G3]).
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Game G1

100 On first query M0‖ . . . ‖Mt−1

101 C ← ⊥
102 X−1

1 ← 1k

103 Auth
$
← {0, 1}k

104 ρ(X−1
1 )← Auth

105 for s← 0 to t− 1 do
106 Xs

0 ← s‖0

107 Y
$
← {0, 1}k

108 if Xs
0 ∈ Dom(ρ) then Y ← ρ(X0)

109 ρ(Xs
0)← Y

110 Cs ← Y ⊕Ms

111 C ← C‖Cs

112 Xs
1 ← Auth⊕ Cs

113 Auth
$
← {0, 1}k

114 if Xs
1 ∈ Dom(ρ) then Auth← ρ(Xs

1)
115 ρ(Xs

1)← Auth
116 Return C‖Auth

117 On second query C′‖Auth′

118 C0
′‖ . . . ‖Ct−1

′ ← C′

119 Auth← ρ(X−1
1 )

120 for s← 0 to t− 1 do

121 Xs
1
′ ← Auth⊕ Cs

′

122 Auth
$
← {0, 1}k

123 if Xs
1
′ ∈ Dom(ρ) then Auth← ρ(Xs

1
′)

124 ρ(Xs
1
′)← Auth

125 b← 0

126 if Auth = Auth′ then bad ← true, b← 1

127 Return b

Game G2

200 On first query M0‖ . . . ‖Mt−1

201 C ← ⊥
202 X−1

1 ← 1k

203 Auth
$
← {0, 1}k

204 ρ(X−1
1 )← Auth

205 for s← 0 to t− 1 do
206 Xs

0 ← s‖0

207 Y
$
← {0, 1}k

208 if Xs
0 ∈ Dom(ρ) then bad ← true,

Y ← ρ(Xs
0)

209 ρ(Xs
0)← Y

210 Cs ← Y ⊕Ms

211 C ← C‖Cs

212 Xs
1 ← Auth⊕ Cs

213 Auth
$
← {0, 1}k

214 if Xs
1 ∈ Dom(ρ) then bad ← true,

Auth← ρ(Xs
1)

215 ρ(Xs
1)← Auth

216 Return C‖Auth

217 On second query C′‖Auth′

218 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C′

219 i← min{s | Cs
′ 6= Cs}

220 Auth← ρ(X i−1
1 )

221 for s← i to t− 1 do

222 Xs
1
′ ← Auth⊕ Cs

′

223 Auth
$
← {0, 1}k

224 if Xs
1
′ ∈ Dom(ρ) then bad ← true,

Auth← ρ(Xs
1
′)

225 ρ(Xs
1
′)← Auth

226 b← 0

227 if Auth = Auth′ then bad ← true, b← 1

228 Return b

Figure 11: INT-CTXT-1 Games G1-G2.

For the final game G3→ G4 we begin by first swapping the random-assignment in line 305 with

line 308 by replacing Y
$
← {0, 1}k and Cs ← Y ⊕Ms with Cs

$
← {0, 1}k and Y ← Cs ⊕Ms. Since

the variable Y is no longer used, we may eliminate it from the game. Similarly, since the values
recorded for ρ(Xs

1) and ρ(Xs
0) are never reused, they may be arbitrarily renamed as defined. The

only prerecorded variable that is reused is Xi
1 on line 413. Given the above swapping it is easy

to see that both C and Auth are random. Using the derandomization technique7 we may replace
them with constants C‖Auth. Since adversary A is deterministic, there exist queries M0‖ . . . ‖Mt−1

and C
′‖Auth′ corresponding to output C‖Auth. By hardwiring these query-responses into game G4,

we may bound the probability of setting bad as the maximum over all the possible query-responses

7Derandomization Technique: If a game G chooses a variable X
$
← X and never redefines it, we may derandomize

the variable by choosing a constant X to replace it. Given any adversary A, it follows that Pr[Game GA sets bad ] ≤
maxX Pr[Game G

X

A sets bad ].
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Game G3

300 On first query M0‖ . . . ‖Mt−1

301 C ← ⊥
302 X−1

1 ← 1k

303 for s← 0 to t− 1 do
304 Xs

0 ← s‖0

305 Y
$
← {0, 1}k

306 if Xs
0 ∈ Dom(ρ) then bad ← true

307 ρ(Xs
0)← Y

308 Cs ← Y ⊕Ms

309 C ← C‖Cs

310 Xs
1

$
← {0, 1}k

311 Auth← Xs
1 ⊕ Cs

312 ρ(Xs−1
1 )← Auth

313 if Xs
1 ∈ Dom(ρ) then bad ← true

314 Auth
$
← {0, 1}k

315 ρ(Xt−1
1 )← Auth

316 Return C‖Auth

317 On second query C′‖Auth′

318 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C′

319 i← min{s | Cs
′ 6= Cs}

320 Auth← ρ(X i−1
1 ) = X i

1 ⊕ Ci

321 X i
1
′
← Auth⊕ C′

i

322 if X i
1
′
∈ Dom(ρ) then bad ← true

323 if i < t− 1 then

324 for s← i + 1 to t− 1 do

325 Xs
1
′ $
← {0, 1}k

326 Auth← Xs
1
′ ⊕ Cs

′

327 ρ(Xs−1
1

′
)← Auth

328 if Xs
1
′ ∈ Dom(ρ) then bad ← true

329 Auth
$
← {0, 1}k

330 ρ(Xt−1
1

′
)← Auth

331 if Auth = Auth′ then bad ← true

332 Return 0

Game G4

400 Given M0‖ . . . ‖Mt−1

401 X−1
1 ← 1k

402 for s← 0 to t− 1 do
403 Xs

0 ← s‖0
404 if Xs

0 ∈ Dom(ρ) then bad ← true
405 ρ(Xs

0)← defined

406 Xs
1

$
← {0, 1}k

407 ρ(Xs−1
1 )← defined

408 if Xs
1 ∈ Dom(ρ) then bad ← true

409 ρ(Xt−1
1 )← defined

410 Given C
′‖Auth′

411 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C
′

412 i← min{s | Cs
′ 6= Cs}

413 Auth← X i
1 ⊕ Ci

414 X i
1
′
← Auth⊕ C

′
i = X i

1 ⊕ δ, some δ 6= 0

415 if X i
1
′
∈ Dom(ρ) then bad ← true

416 if i < t− 1 then

417 for s← i + 1 to t− 1 do

418 Xs
1
′ $
← {0, 1}k

419 ρ(Xs−1
1

′
)← defined

420 if Xs
1
′ ∈ Dom(ρ) then bad ← true

421 Auth
$
← {0, 1}k

422 ρ(Xt−1
1

′
)← defined

423 if Auth = Auth
′ then bad ← true

Figure 12: INT-CTXT-1 Games G3-G4.

(thus removing the adaptivity of the adversary). It is not difficult to see that this maximum occurs
when t = ηe, and the adversary submits a t+1-block authentication query with the first ciphertext
block changed. Since there are t + 1 non-random variables Xs=0,...,t−1

0 ,X−1
1 that do not collide

with one another and 2t − 1 independent random variables Xs=0,...,t−1
1 ,Xs=1,...,t−1

1

′
with a single

dependent random variable X0
1
′
= X0

1 ⊕ δ some fixed δ 6= 0 recorded in Dom(ρ), it follows that the
setting of bad based on these variables is

Pr[Variables in Dom(ρ) set bad ] ≤

{(

3t + 1

2

)

−

(

t + 1

2

)

− 1

}

2−k
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which holds for any computationally unbounded adversary. Therefore, given qe = 1, ηv = ηe + 1,
and Pr[Auth sets bad in line 423] = 2−k we have

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) ≤ Pr[Game G4 sets bad ]

≤ Pr[Variables in Dom(ρ) set bad ]

+Pr[Auth sets bad in line 423]

≤

{(

3ηe + 1

2

)

−

(

ηe + 1

2

)}

2−k

= (4η2
e + ηe)2

−k.

In the case that IV 6= ⊥ we may derive a more general result. By letting the IV ’s represent
the identity (which we denote as IDs) of each obfuscated DFA instance we may use the following
generalization to prove the main composition result in Section 3.1.

Proposition 6 Let SEFun be the authenticated encryption scheme given in Figure 10 using random
functions and z any polynomial bounded string in k with qe, qv ≥ 1, ηv = ηe + 1, and k ≥ 1. Then

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤
5

2
qvη

2
e(qe + 1)22−k

Proof: To simplify our analysis we will reuse the result of Lemma 1 and derive an upperbound for
INT-CTXT-1. Following the description in Figure 10 we modify the encryption scheme in games
G1 through G4 (Proposition 5) to include IV s. Observe that the verifier shown in Figure 10 only
accepts ciphertext queries that contain IV s previously returned by EFun, such that the length of
the new ciphertext match’s the length of the original. Therefore an adversary gains no advantage
by submitting a ciphertext query that contains an IV never seen before or if the length of the
ciphertext submission is different than the length of the original for that particular IV . To simplify
the game descriptions we assume wlog that an adversary does not make these type of queries.

As in the last Proposition it is easy to see that an adversary maximizes their advantage by
submitting encryption queries satisfying the bound ηe with a single ηe + 1-block authentication
query with the first ciphertext block changed (may choose any of the past IV s). It follows for
any fixed chain of queries there are at most qe(ηe + 1) non-random variables X−1

1,IV ,Xs=0,...,ηe−1
0,IV ,

IV = 0, . . . , qe − 1 that do not collide with one another and ηe(qe + 1) − 1 independent random

variables Xs=0,...,ηe−1
1,IV ,Xs=1,...,ηe−1

1,IV

′
, IV = 0, . . . , qe − 1 with a single dependent random variable

X0
1,IV

′
= X0

1,IV ⊕ δ some fixed δ 6= 0 recorded in Dom(ρ). It follows that the setting of bad for
these variables is bounded above by

Pr[Game G4 sets bad ] ≤

{(

qe(ηe + 1) + ηe(qe + 1)

2

)

−

(

qe(ηe + 1)

2

)

− 1

}

2−k

=

{(

ne(qe + 1)

2

)

+ qeηe(qe + 1)(ηe + 1)− 1

}

2−k

≤

{

5

2
η2

e(qe + 1)2 − 1

}

2−k
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which holds for any computationally unbounded adversary. Therefore, we have

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤ Pr[Game G4 sets bad ]

≤ Pr[Variables in Dom(ρ) set bad ]

+Pr[Auth sets bad in line 423]

≤
5

2
η2

e(qe + 1)22−k.

A.2 Indistinguishable from Random

In Proposition 2 and 3, we measured the indistinguishability between the schemes EFun and ERand

under chosen plaintext attacks. The randomized scheme ERand as you recall took any message M
that was a multiple of k-bits (k the security parameter) say t and returned a random string of
(t + 1)k-bits along with an IV . In Proposition 2, EFun does not use an IV ; therefore, in this case
we take IV = ⊥. Formally we define ERand as

Algorithm ERand(M)
M0‖ . . . ‖Mt−1 ←M , |Mi| = k

Rand
$
← {0, 1}(t+1)k

IV ← IV + 1
Return (IV ,Rand).

For the definition of indistinguishable from random to make sense in our setting, we give the
adversary an additional auxiliary input.

Definition 5 (Indistinguishable from Random): Let SEFun be the symmetric encryption
scheme in Figure 10 using random functions and Acpa a PPT adversary with access to two or-
acles, EFun and ERand. Consider the following experiment with k ∈ N and z ∈ {0, 1}q(k) for some
polynomial q

Experiment Expind$-cpa
SEFun,Acpa

(k, z)

Fun
$
← Fun(k)

b← AEFun,ERand
cpa

Return b

We denote the winning probability in the adversary breaking IND$-CPA as

Advind$-cpa
SEFun,Acpa

(k, z) := Pr[Expind$-cpa
SEFun,Acpa

(k, z) = 1]

with the maximum over all possible PPT adversaries as

Advind$-cpa
SEFun

(k, qe, ηe, z) := max
Acpa

{Advind$-cpa
SEFun,Acpa

(k, z)}

where qe denotes the maximum number of oracle calls to EFun or ERand, and ηe the maximum
number of k-bit blocks per encryption query.
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Proposition 7 Let SEFun be the authenticated encryption scheme given in Figure 10 using random
functions and z any polynomial bounded string in k with qe ≥ 1, and k ≥ 1. Then

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤
q2
e

2
(3η2

e + ηe)2
−k

Proof: We can bound the IND$-CPA advantage using game G2 in Figure 11 if we remove the single
authentication query and allow for more than one encryption query. This simulates both SEFun and
SERand, which are identical until bad is set. Therefore, using the Fundamental Lemma of Game-
Playing we have Advind$-cpa

SEFun
(k, qe, ηe, z) ≤ Pr[Game 2 sets bad ]. Following the same arguments

as used in Proposition 5 (including the assumption that A is deterministic and computationally
unbounded), we may transform game G2 to G4. Since for any fixed chain of queries there are at
most qe(ηe+1) non-random variables X−1

1,IV ,Xs=0,...,ηe−1
0,IV , IV = 0, . . . , qe−1 that do not collide with

one another and qeηe independent random variables Xs=0,...,ηe−1
1,IV , IV = 0, . . . , qe − 1 in Dom(ρ), it

follows that the setting of bad in game G4 is bounded above by

Pr[Game G4 sets bad ] ≤

{(

qe(2ηe + 1)

2

)

−

(

qe(ηe + 1)

2

)}

2−k

which holds for any computationally unbounded adversary. Therefore, it follows that

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤ Pr[Game G4 sets bad ]

≤

{(

qe(2ηe + 1)

2

)

−

(

qe(ηe + 1)

2

)}

2−k

=
q2
e

2
(3η2

e + ηe)2
−k.
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