
Cryptanalysis of Self-Generated-Certificate Public Key
Encryption without Pairing in PKC07

Xu An Wang Xiaoyuan Yang Yiliang Han

Key Laboratory of Information and Network Security
Department of Electronic Technology, Engineering College of Armied Police Force

 Wujing Road, Xi’an 710086
 Wangxahq@yahoo.com.cn

Abstract: In PKC07, Junzuo Lai and Weidong Kou proposed a self-generated-certificate
public key encryption without pairing scheme. In this paper, we show that this scheme
cannot resist a special kind of attack-identity forgery attack. We further point out the
reason for successfully attacking is binding the user’s secret key with the multiply of
partial public key from KGC and user’s self-generated public key instead of binding with
partial public key from KGC and user’s self-generated public key independently. At last,
we give a new SGC-PKE scheme based on Lai and Kou’s scheme which can resist this
attack.

Keywords: Certificateless Public Key Cryptography, Self-Generated-Certificate
Public Key Encryption, Identity Forgery Attack.

1. Introduction

In traditional Public Key Cryptography (PKC), each user selects his own private key
and computes the corresponding public key. If a user wants to send an encrypted
message to other user, he needs to know the user’s public key. However, it is easy to
suffer from the man-in-the-middle attack. There is a need to provide an assurance to
the user about the relationship between a public key and the identity (or authority) of
the holder of the corresponding private key. In a traditional Public Key Infrastructure,
This assurance is delivered in the form of certificate, essentially a signature by
a Certification Authority (CA) on a public key. However, a PKI faces with many
challenges in the practice, such as revocation, storage and distribution of certificates.
Identity-Based Public Key Cryptography (ID-PKC), first proposed by Shamir [12],
solves the problem of authenticity of keys in a different way to traditional PKI. In
ID-PKC, a user’s public key is derived directly from its identity, for example, an IP
address belonging to a network host, or an e-mail address associated with a user.
Private keys are generated for entities by a trusted third party called a Private Key
Generator (PKG). The only disadvantage of ID-PKC is an unconditional trust to the
PKG, which results that PKG can impersonate any user, or decrypt any ciphertext.

In order to solve for the above problem, Certificateless Public Key Cryptography
(CL-PKC) was introduced by Al-Riyami and Paterson [2, 3]. It is a new paradigm
which lies between Identity-Based Cryptography and traditional Public Key
Cryptography. The concept is to eliminate the inherent key-escrow problem of
Identity-Based Cryptography (IBC). At the same time, it preserves the attractive

advantage of IBC which is the absence of digital certificates (issued by Certificate
Authority) and their important management overhead. Different from IBC, the user’s
public key is no longer an arbitrary string. Rather, it is similar to the public key used
in the traditional PKC generated by the user. A crucial difference between them is that
the public key in CL-PKC does not need to be explicitly certified as it has been
generated using some partial private key obtained from the trusted authority called
Key Generation Center (KGC). Note here that the KGC does not know the user’s
private keys since they contain secret information generated by the users themselves,
thereby removing the escrow problem in IBC [4, 5, 6, 7, 8, 9, 10].

It seems that CL-PKC can solve the problem of explicit certification. Nevertheless
it suffers Denial-of-Decryption (DoD) Attack called by Liu and Au [2, 3].Suppose
Alice wants to send an encrypted message to Bob. She takes Bob’s public key and his
identity (or personal information) as input to the encryption function. However, Carol,
the adversary, has replaced Bob’s public key by someone’s public key. Although
Carol cannot decrypt the ciphertext, Bob also cannot decrypt the message while Alice
is unaware of this. This is similar to Denial of Service (DoS) Attack in the way that
the attacker cannot gain any secret information but precluding others from getting the
normal service. Liu and Au [2, 3] propose a new paradigm called Self-Generated-
Certificate Public Key Cryptography (SGC-PKC) to defend the above attack while
preserving all advantages of Certificateless Public Key Cryptography. Similar to
CL-PKC, every user is given a partial secret key by the KGC and generates his own
secret key and corresponding public key. In addition, he also needs to generate a
certificate using his own secret key. The purpose of this self-generated certificate [11]
is similar to the one in traditional PKC. That is, to bind the identity (or personal
information) and the public key together. The main difference is that, it can be
verified by using the user’s identity and public key only and does not require any
trusted party. It is implicitly included in the user’s public key. If Carol uses her public
key to replace Alice’s public key (or certificate), Bob can be aware of this and he may
ask Alice to send him again her public key for the encryption.

Liu and Au proposed the first SGC-PKE scheme in [2, 3], which defends the DoD
attack that exists in CL-PKE. In PKC07, Junzuo Lai and Weidong Kou proposed a
self-generated-certificate public key encryption without pairing scheme, which is the
second SGC-PKE scheme. In this paper, we show that this scheme cannot resist a
special kind of attack-identity forgery attack. We further point out the reason for
successfully attacking is binding the user’s secret key with the multiply of partial
public key from KGC and user’s public key instead of binding with partial public key
from KGC and user’s public key independently.
 We organize the paper as following. In section 2, we give the definition and
security notions for SGC-PKE. In section 3, we review the SGC-PKE scheme
proposed by Lai and Kou in PKC07 [1]. In section 4, we give the identity forgery
attack. In section 5, we propose a rescue scheme which can resist this attack. At Last,
We give our conclusion in section 6.

 2

2. Definition and Security Notions for SGC-PKE

Definition 1 (Certificateless Public Key Encryption). A generic Certificateless
Public Key Encryption scheme, denoted by Π, consists of the following algorithms:
-Setup: is a probabilistic polynomial time (PPT) algorithms run by a Key Generation
Center (KGC), given a security parameter k as input, outputs a randomly chosen
master secret mk and a list of public parameter param.We write (mk, param) =
Setup(k).
-UserKeyGeneration: is PPT algorithm, run by the user, given a list of public
parameters param as inputs, outputs a secret key sk and a public key pk. We write (sk,
pk) = UserKeyGeneration (param).
-PartialKeyExtract: Taking param, mk, a user’s identity ID and pk received from
the user, the KGC runs this PPT algorithm to generate a partial private key DID and a
partial public key PID. We write (PID, DID) = PartialKeyExtract (param, mk, ID,
pk).
-SetPrivateKey: Taking param, DID and sk as input, the user runs this PPT
algorithm to generate a private key SKID. We write SKID = SetPrivateKey (param,
DID, sk).
-SetPublicKey: Taking param, PID and pk as input, the user runs this PPT algorithm
to generate a public key PKID. We write PKID = SetPublicKey(param, PID, pk).
-Encrypt: Taking a plaintext M, list of parameters param, a receiver’s identity ID
and PKID as inputs, a sender runs this PPT algorithm to create a ciphertext C. We
write C = Encrypt (param, ID, PKID, M).
-Decrypt: Taking param, SKID, the ciphertext C as inputs, the user as a recipient
runs this deterministic algorithm to get a decryptionδ, which is either a plaintext
message or a “Reject”message. We write δ = Decrypt (param, SKID, C).

Security Model. According to the original scheme in [2], there are two types of
adversaries. Type I adversary does not have the KGC’s mater secret key but it can
replace public keys of arbitrary identities with other public keys of its own choices. It
can also obtain partial and full secret keys of arbitrary identities.Type II adversary
know the master secret key (hence it can compute partial secret key by itself). It is
still allowed to obtain full secret key for arbitrary identities but is not allowed to
replace public keys at any time.

Definition 2 (IND-CCA Security). A Certificateless Public Key Encryption scheme
Πis IND-CCA secure if no PPT adversary A of Type I or Type II has anon-negligible
advantage in the following game played against the challenger:
1. The challenger takes a security parameter k and runs the Setup algorithm. It gives
A the resulting system parameters param. If A is of Type I, the challenger keeps the
master secret key mk to itself, otherwise, it gives mk to A.
2. A is given access to the following oracles:
- Public-Key-Request-Oracle: on input a user’s identity ID, it computes (sk, pk) =
UserKeyGeneration (param) and (PID, DID) =PartialKeyExtract (param, mk, ID,
pk). It then computes PKID =SetPublicKey (param, PID, pk) and returns it to A.
- Partial-Key-Extract-Oracle: on input a user’s identity ID and pk, it computes (PID,

 3

DID) = PartialKeyExtract (param, mk, ID, pk) and returns it to A. (Note that it is
only useful to Type I adversary.)
- Private-Key-Request-Oracle: on input a user’s identity ID, it computes (sk, pk) =
UserKeyGeneration (param) and (PID, DID) =PartialKeyExtract (param, mk, ID,
pk). It then computes SKID =SetPrivateKey (param, DID, sk) and returns it to A. it
outputs ⊥ if the user’s public key has been replaced (in the case of Type I
adversary.)
- Public-Key-Replace-Oracle: (For Type I adversary only) on input identity and a
valid public key, it replaces the associated user’s public key with the new one.
- Decryption-Oracle: on input a ciphertext and an identity, returns the decrypted
plaintext using the private key corresponding to the current value of the public key
associated with the identity of the user.
3. After making oracle queries a polynomial times, A outputs and submits two
message (M0, M1), together with an identity ID∗ of uncorrupted secret key to the
challenger. The challenger picks a random bit β ∈ {0, 1} and computes C∗, the
encryption of Mβ under the current public key PKID∗ for ID∗. If the output of the
encryption is ⊥, then A immediately losses the game. Otherwise C∗ is delivered to A.
4. A makes a new sequence of queries.
5. A outputs a bit β’. It wins if β’ = β and fulfills the following conditions:
-At any time, ID∗ has not been submitted to Private-Key-Request-Oracle.
-In Step (4), C∗ has not been submitted to Decryption-Oracle for the combination (ID
∗, PKID∗) under which Mβwas encrypted.
-If it is Type I, ID∗ has not been submitted to both Public-Key-Replace-Oracle
before Step (3) and Partial-Key-Extract-Oracle at some step.

Define the guessing advantage of A as ' 1() | Pr[] |
2

ind cca
cleAdv A β β− = = − .

The definition of SGC Encryption is same as the definition of CL-encryption given

in Definition 1, except for SetPublicKey in which the user generates a certificate
using his own secret key.

For security, in addition to IND-CCA, we require the scheme to be DoD-Free,
which is formally defined as follow as a game played between the challenger and a
PPT adversary (DoD Adversary), which has the same power of a Type I adversary
defined in CL-encryption.
Definition 3 (DoD-Free Security). A SGC Encryption scheme is DoD-Free secure if
no PPT adversary A has a non-negligible advantage in the following game played
against the challenger:
1. The challenger takes a security parameter k and runs the Setup algorithm. It gives
A the resulting systems parameters param. The challenger keeps the master secret
key mk to itself.
2. A is given access to Public-Key-Request-Oracle, Partial-Key-Extract-Oracle,
Private-Key-Request-Oracle and Public-Key-Replace-Oracle.
3. After making oracle queries a polynomial times, A outputs a message M∗, together
with an identity ID∗ to the challenger. The challenger computes C∗, the encryption of
M∗ under the current public key PKID∗ for ID∗. If the output of the encryption is ⊥,

 4

then A immediately losses the game. Otherwise it outputs C∗.
4. A wins if the following conditions are fulfilled:
- The output of the encryption in Step (3) is not ⊥.
-Decrypt (param, SKID∗, C∗) = M∗.
- At any time, ID∗ has not been submitted to Partial-Key-Extract-Oracle.

Define the advantage of A as () Pr[]DoD Free
SGCEAdv A A wins− =

3. Lai and Kou’s SGC-PKE scheme

Setup: Generate two large primes p and q such that | 1q p − . Pick a generator g of *
pZ .

Pick *
qx Z∈ uniformly at random and compute xy g= . Choose hash functions 1 :H

*{0,1} × * *
p qZ Z→ , 0 1 *

2 :{0,1} {0,1}l l
qH Z× → }and , where*

3 : {0,1 l
pH Z → 0 1l l l N= + ∈ . Return

param = 1 2 3(, , , , , ,)p q g y H H H and mk = 1 2 3(, , , , , ,)p q g x H H H .
UserKeyGeneration: Pick at random and compute*

qz Z∈ zu g= , Return (,)sk pk =
(,)z u .

PartialKeyExtract: Taking param, mk, ID and pk as input, it outputs (,)ID IDP D
(,sgω= = 1 1(,) (,))t s xH ID pk s xH ID uω ω= + ∗ = + .

SetPrivateKey: outputs . ID IDSK sk D z t= + = +

SetPublicKey: Except for taking param, PID and pk as input, it includes ID and SKID
as inputs. Chooses a new hash function 0 :H *{0,1} × * * * *

p p p qZ Z Z Z× × → , then computes
1
ID IDPK pk P μω= ∗ = and . Next, it does 1 1(, *) (, *)2 ID ID IDH ID pk P H ID pk P SKz t

ID IDPK pk P y y g gμω += ∗ ∗ = = =

the following performances to sign the user’s identity ID and 1 2,ID IDPK PK using the
user’s private key SKID and Schnnor’s signature scheme [13]. (1) Choose a
random , (2) compute *

qr Z∈ modrR g= p (3) set the signature to be (,)R σ , where σ =
1 2

0* (, , ,ID ID IDr SK H ID PK PK R+)). Finally, returns 1 2(, , (,)ID ID IDPK PK PK R σ= .

Encrypt: Parses PKID as 1 2(, , (,)ID IDPK PK R)σ .If or 1
1(,)2 1 IDH ID PK

ID IDPK PK y≠ ∗
1 2

0 (, , ,)2() ID IDH ID PK PK R
IDg R PKσ ≠ ∗ it returns ⊥ , else pick at random, and 1{0,1}lσ ∈

compute 2 (,)r H M σ= . Compute such that1 2(,)C C C= 1
rC g= , 1(,)

2 3 (())H ID rC H y ωμμω=
2

3(||) (()) (||)r
IDM H PK Mσ σ⊕ = ⊕ .

Decrypt: Parse as and C 1 2(,)C C IDSK as . Compute(,)z t 3 1 2|| (())z tM H c cσ += ⊕ .

If 1(,)
1

H Mg cσ = , return M . Else return “Reject”.

Firgure1 Lai and Kou’s SGC-PKE scheme

 5

4. Attack on Lai and Kou’s SGC-PKE Scheme

Note that in Lai and Kou’s SGC-PKE scheme, the SKID binds with the multiply of
partial public key from KGC and user’s self-generated public key instead of with
partial public key from KGC and user’s self-generated public key independently. We
can explore this shortcoming to give an identity collusion attack.

1 The attacker gets the target ID’s public key 1 2(, , (,)ID ID IDPK PK PK R)σ= where

1
ID IDPK pk P μω= ∗ = and . 1 1(, *) (, *)2 ID ID IDH ID pk P H ID pk P SKz t

ID IDPK pk P y y g gμω += ∗ ∗ = = =

2 The attacker gets the target ID’s partial key (,)ID IDP D (,sgω= = 1(,)t s xH ID pkω= + ∗
1(,))s xH ID uω= + via the PartialKeyExtract Oracle.

3 The attacker randomly choose a and modifies the partial key as *
qa Z∈

* *(,)ID IDP D (,s agω −= = 1(,)t s a xH ID pkω= − + ∗ 1(,))s a xH ID uω= − + .Set it to be the result as

the output of PartialKeyExtract (param, mk, ID, pk=
1

aIDPK g
ω

•).

4 The attacker sets his user key as * *(,)sk pk =
1

(,) (,)a IDPKu g g
ω

• = •W W a where Wdenotes

blank representing the attacker do not the discrete logarithm (DL).
5 The attacker claims his identity as ID and his public key as IDPK .
 Firgure2 Identity collusion attack

 Because 1 * *

ID IDPK pk P pk Pμω= ∗ = = ∗ ID

)

, the attacker can claim his identity as “ID” and
his public key as 1 2(, , (,)ID ID IDPK PK PK R σ= .

KGC and any other user cannot distinguish the real entity whose identity
indeed is ID and the attacker whose identity is maliciously changed to “ID”.We
call this attack as identity collusion attack just as forging ip-address attack in network.
 Maybe someone doubts this problem can also arise in traditional PKI or IBC
environment. We show that this is not true. In traditional PKI environment, the CA
will check the user’s claimed identity whether be the real identity in the registration
process. But In SGC environment, no party check the real identity whether be the
claimed identity in the key generation process, actually, it give the user freedom to
generate his own private and public key and claimed identity. In IBC environment, the
KGC can check that in the system no two users have common identity and have
common private/public key. But in SGC environment, this is not the case: The KGC
does not know the user’s self-generated private/public key and cannot decide the
user’s private/public key; also no party check the real identity whether is the claimed
identity.

5. The Rescue Scheme

Actually, we just need give little change to the Lai and Kou’s scheme to resist this
attack. Following is the rescue scheme.

 6

Setup: Generate two large primes p and q such that | 1q p − . Pick a generator g of *
pZ .

Pick *
qx Z∈ uniformly at random and compute xy g= . Choose hash functions 1 :H

*{0,1} × * *
p p

*
qZ Z Z× → , 0 1 *

q2 :{0,1} {0,1}l lH Z→× }and , where . *
3 : {0,1 l

pH Z → 0 1l l l N= + ∈

Return param = 1 2 3(, , , , , ,)p q g y H H H and mk = 1 2 3(, , , , , ,)p q g x H H H .
UserKeyGeneration: Pick at random and compute*

qz Z∈ zu g= , Return (,)sk pk =
(,)z u .

PartialKeyExtract: Taking param, mk, ID and pk as input, it outputs (,)ID IDP D
(,sgω= = 1 1(, ,) (, ,))t s xH ID pk s xH ID uω ω= + = + .

SetPrivateKey: outputs . ID IDSK sk D z t= + = +

SetPublicKey: Except for taking param, PID and pk as input, it includes ID and SKID
as inputs. Chooses a new hash function 0 :H *{0,1} × * * * *

p p p qZ Z Z Z× × → , then computes
1 (,) (,)ID IDPK pk P μ ω= = and . Next, it 1 1(, ,) (, ,)2 ID ID IDH ID pk P H ID pk P SKz t

ID IDPK pk P y y g gμω += ∗ ∗ = = =

does the following performances to sign the user’s identity ID and 1 , 2
ID IPK PK D using

the user’s private key SKID and Schnnor’s signature scheme. (1) Choose a
random , (2) compute *

qr Z∈ modrR g= p (3) set the signature to be (,)R σ , where σ =
1 2

0* (, , ,ID ID IDr SK H ID PK PK R+)). Finally, returns 1 2(, , (,)ID ID IDPK PK PK R σ= .

Encrypt: Parses PKID as 1 2(, , (,)ID IDPK PK R)σ , parse 1
IDPK as (,)μ ω .If

1(, ,)2 H ID
IDPK y μ ωμω≠ ∗ or 1 2

0 (, , ,)2() ID IDH ID PK PK R
IDg R PKσ ≠ ∗ it returns ⊥ , else pick at 1{0,1}lσ ∈

random, and compute 2 (,)r H M σ= . Compute such that , 1 2(,)C C C= 1
rC g=

1 (,)
2 3 (())H ID rC H y ωμμω= 2

3(||) (()) (||)r
IDM H PK Mσ σ⊕ = ⊕ .

Decrypt: Parse as and C 1 2(,)C C IDSK as . Compute(,)z t 3 1 2|| (())z tM H c cσ += ⊕ .

If 1(,)
1

H Mg cσ = , return M . Else return “Reject”.

Firgure3 the rescue scheme

In this scheme, the SKID binds with partial public key from KGC and user’s

self-generated public key independently, so identity collusion attack can not still
succeed.

6. Conclusion

In this paper, we show that Lai and Kou’s SGC-PKE scheme cannot resist a special kind of
attack-identity forgery attack. We further point out the reason for successfully attacking is
binding the user’s secret key with the multiply of partial public key from KGC and user’s
self-generated public key instead of binding with partial public key from KGC and user’s
self-generated public key independently. We give an improved SGC-PKE scheme based on Lai
and Kou’s scheme which can resist this attack. But we note that our scheme has not yet be
proven secure in random oracle, that is our further work.

 7

References

1. Junzuo Lai and Weidong Kou. Self-Generated-Certificate Public Key Encryption Without
Pairing. In PKC 07, LNCS 4450, pp. 476-489, Springer-Verlag, 2007.

2. J. K. Liu and M. H. Au. Self-Generated-Certificate Public Key Cryptosystem. Cryptology
ePrint Archive, Report 2006/194, 2006. http://eprint.iacr.org/2006/194.

3. J. K. Liu and M. H. Au. Self-Generated-Certificate Public Key Cryptography and
Certificateless Signature/Encryption Scheme in the standard Model. In AsiaCCS 07, pp.
273-283, 2007.

4. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In Proc.
ASIACRYPT 2003, LNCS 2894, pp. 452-473, Springer-Verlag, 2003.

5. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. Cryptology
ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/2003/126.

6. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption
withoutpairing. In ISC 05, LNCS 3650, pp. 134-148, Springer-Verlag, 2005.

7. B. Libert and J. Quisquater. On constructing certificateless cryptosystems from identity
based encryption. In PKC 2006, LNCS 3958, pp. 474-490, Springer-Verlag,2006.

8. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In ICCSA’
04, LNCS 3040, pp. 802-811, Springer-Verlag, 2004.

9. Y. Shi and J. Li. Provable efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/287, 2005. http://eprint.iacr.org/2005/287.

10. Z. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/012, 2005. http://eprint.iacr.org/2005/012.

11. M. Girault. Self-certified public keys. In Proc. EUROCRYPT 91, LNCS 547, pp. 490-497,
Springer-Verlag, 1992.

12. A. Shamir. Identity-based Cryptosystems and Signature Schemes. In Crypto’84,LNCS
196, pp. 47-53, Springer-Verlag, 1984.

13. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,Vol. 4,
No. 3, pp. 161-174, 1991.

 8

