
Cryptanalysis of Self-Generated-Certificate
Public Key Encryption without

Pairing in PKC07

Xu an Wang1, Xinyi Huang2, Xiaoyuan Yang1

1Key Laboratory of Information and Network Security
Engneering College of Chinese Armed Police Force, P.R. China

wangxahq@yahoo.com.cn

2Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong, Australia
xyh068@uow.edu.au

Abstract. In PKC07,Lai and Kou proposed a self-generated-certificate
public key encryption scheme without pairing [1].In this paper, we show
that this scheme is not secure.Our contribution are as following: First,
we point out that the security model is not sufficient for their scheme
and propose a new security model for CL-PKE and SGC-PKE.Second,
we give a man-in-the-middle attack scheme to their scheme in the new
security model and propose a rescue SGC-PKE scheme by giving little
change to the original scheme .We further point out the reason for suc-
cessfully attacking is binding the user’s secret key with the multiply of
partial public key from KGC and user’s self-generated public key instead
of binding with partial public key from KGC and user’s self-generated
public key independently. At last, Based on Baek et al’s security proof for
their CLPKE scheme without pairing in [6],we prove our new scheme’s
security in the random oracle model.

1 Introduction

In Asiacrypt’03, Al-Riyami and Paterson introduced the concept of Certificate-
less Public Key Cryptography (CL-PKC) .It is a new cryptographic paradigm
which lies between Traditional Public Key Cryptography and Identity Based
Cryptography. The idea is to eliminate the inherent key-escrow problem of
Identity-Based Cryptography (IBC). At the same time, it preserves the attractive
advantage of IBC which is the absence of digital certificates (issued by Certificate
Authority) and their important management overhead. Different from IBC, the
user’s public key is no longer an arbitrary string. Rather, it is similar to the pub-
lic key used in the traditional PKC generated by the user. A crucial difference
between them is that the public key in CL-PKC does not need to be explicitly
certified as it has been generated using some partial private key obtained from

the trusted authority called Key Generation Center (KGC). Note here that the
KGC does not know the user’s private keys since they contain secret information
generated by the users themselves, thereby removing the escrow problem in IBC
[6–10].

It seems that CL-PKC has successfully solved the explicit certification prob-
lem. Unfortunately, it suffers Denial-of-Decryption (DoD) Attack found by Liu
and Au in AisaCCS07. Suppose a sender want to encrypt a message to a re-
ceiver, The adversary can replace the receiver’s public key by any other’ s public
key. Although the adversary cannot decrypt the ciphertext, the receiver can-
not decrypt too while the sender can not be aware of this. This is similar to
Denial of Service (DoS) Attack in the way that the attacker cannot gain any se-
cret information but precluding others from getting the normal service. Liu and
Au [2, 3] propose a new paradigm called Self-Generated-Certificate Public Key
Cryptography (SGC-PKC) to defend the above attack while preserving all ad-
vantages of Certificateless Public Key Cryptography. Similar to CL-PKC, every
user is given a partial secret key by the KGC and generates his own secret key
and corresponding public key. In addition, he also needs to generate a certificate
using his own secret key. The purpose of this self-generated certificate [11] is
to bind the identity (or personal information) and the public key together. The
main difference is that, it can be verified by using the user’s identity and public
key only and does not require any trusted party. It is implicitly included in the
user’s public key. If Carol uses her public key to replace Alice’s public key (or
certificate), Bob can be aware of this and he may ask Alice to send him again
her public key for the encryption.

Liu and Au proposed the first SGC-PKE scheme in [2, 3], which defends
the DoD attack that exists in CL-PKE. In PKC07, Lai and Kou proposed a
self-generated-certificate public key encryption without pairing scheme, to the
best of our knowledge, this is the second SGC-PKE scheme[1]. In this paper,
we show that this scheme cannot resist a man-in-the-middle attack. We further
point out the reason for successfully attacking is binding the user’s secret key
with the multiply of partial public key from KGC and user’s public key instead of
binding with partial public key from KGC and user’s public key independently.

We organize the paper as following. In section 2, we give BSS’s definition for
CL-PKE and LK’s definition for CL-PKE. In section 3, we propose two security
models–Type A model and Type B model–for CL-PKE (As an independent
interesting for cryptographic community, we thoroughly revisit certificateless
public cryptography keygeneration algorithm and security model in appendix).
In section 4, we give LK’s SGC-PKE scheme and their security model in [1]. In
section 5, we point out this model falls in type A model but their scheme falls in
type B model, so the original model is not sufficient, and we give an attack to the
LK scheme in the type B model. In section 6, we propose a rescue scheme and
prove its security in the random oracle model. We give our concluding remarks
in section 7.

2 Definitions

In this section we first introduce BSS’s definition for CL-PKE, Next, we recall
the LK’s definition for CL-PKE .Last we compare the two definitions.

2.1 BSS’s Definition for Certifiateless Public Key Encryption

Definition 1. (BSS’s Certificateless Public Key Encryption) A generic
CLPKE (Certificateless Public Key Encryption) scheme, consists of the following
algorithms.

– Setup: The Key Generation Center (KGC) runs this algorithm to generate a
common parameter params and a master key masterKey. Note that params
is given to all interested parties. We write (params,masterKey) = Setup().

– PartialKeyExtract:Taking params, masterKey and an identity ID received
from a user as input, the KGC runs this algorithm to generate a par tial
private key DID and a partial public key PID. We write (PID, DID) =
PartialKeyExtract(params,masterKey, ID).

– SetSecretValue: Taking params and ID as input, the user runs this algorithm
to generate a secret value sID. We write sID = SetSecretV alue(params, ID).

– SetPrivateKey: Taking params, DID and sID as input, the user runs this algo
rithm to generate a private key SKID. We write SKID = SetPrivateKey(pa
rams, DID, sID).

– SetPublicKey: Taking params, PID, sIDand ID as input, the user runs this
algorithm to generate a public key PKID. We write PKID = SetPublicKey(
params, PID, sID, ID).

– Encrypt: Taking params, ID, PKID, and a plaintext message M as in-
put, a sender runs this algorithm to create a ciphertext C. We write C =
Encrypt(params, ID, PKID,M).

– Decrypt: Taking params, SKID and the ciphertext C as input, the user as a
recipient runs this algorithm to get a decryption , which is either a plaintext
message or a ”Reject” message. We write = Decrypt(params, SKID, C) .

2.2 LK’s Definition for Certifiateless Public Key Encryption

Definition 2. (LK’s Certificateless Public Key Encryption) A generic
Certificateless Public Key Encryption scheme, denoted by CLPKE, consists of
the following algorithms:

– Setup: is a probabilistic polynomial time (PPT) algorithms run by a Key
Generation Center (KGC), given a security parameter k as input, outputs a
randomly chosen master secret mk and a list of public parameter param.We
write (mk, param) =Setup(k).

– UserKeyGeneration: is PPT algorithm, run by the user, given a list of public
parameters param as inputs, outputs a secret key sk and a public key pk.
We write (sk, pk) = UserKeyGeneration(param).

– PartialKeyExtract: Taking param, mk, a user’s identity ID and pk received
from the user, the KGC runs this PPT algorithm to generate a partial
private key DID and a partial public key PID. We write (PID, DID) =
PartialKeyExtract(param, mk, ID, pk).

– SetPrivateKey: Taking param, DID and sk as input, the user runs this PPT
algorithm to generate a private key SKID. We write SKID = SetPrivateKey
(param, DID, sk).

– SetPublicKey: Taking param, PID and pk as input, the user runs this PPT
algorithm to generate a public key PKID. We write PKID=SetPublicKey
(param, PID, pk).

– Encrypt: Taking a plaintext M , list of parameters param, a receiver’s identity
ID and PKID as inputs, a sender runs this PPT algorithm to create a
ciphertext C. We write C = Encrypt(param, ID, PKID,M).

– Decrypt: Taking param, SKID, the ciphertext C as inputs, the user as a recip-
ient runs this deterministic algorithm to get a decryption m, which is either a
plaintext message a ”Reject”message. We write m=Decrypt (param, SKID, C).

Comparison: The Setup,SetPrivateKey, Encrypt and Decrypt algorithm are
same in [6] as in [1].The SetSecretValue in [6] plays the same role as UserKeyGen-
eration in [1], the difference lies in the former just outputing a user’s local secret
value but the latter outputing also a user’s local public key.In [6] SetSecretValue
can run independently with PartialKeyExtract while in [1]UserKeyGeneration
must run precede with PartialKeyExtract as PartialKeyExtract must include
user’s local public key pk as its input.In [6],SetPublicKey does not include user’s
local public key as input while In [1]this is required.

3 Two Kinds of Security Model for CL-PKE

In this section, we give two kinds of security model for CL-PKE, one for the
BSS’s CL-PKE ,we denote it as Type A model; the other for the LK’s CL-
PKE, we denote it as Type B model.According to the original scheme in [4],
there are two types of adversaries. Type I adversary does not have the KGC’s
mater secret key but it can replace public keys of arbitrary identities with other
public keys of its own choices. It can also obtain partial and full secret keys of
arbitrary identities.Type II adversary know the master secret key (hence it can
compute partial secret key by itself). It is still allowed to obtain full secret key
for arbitrary identities but is not allowed to replace public keys at any time.So
in both security models there are two kinds of adversaries: Type I adversary and
Type II adversary.

3.1 Type A security model for BSS’s CL-PKE

Definition 3. (Type A security model for IND-CCA Security for BSS’s
CL-PKE) A Certificateless Public Key Encryption scheme CLPKE is IND-
CCA secure if no PPT adversary A of Type I or Type II has anon-negligible
advantage in the following game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting system parameters param. If A is of Type I, the
challenger keeps the master secret key mk to itself, otherwise, it gives mk
to A.

2. A is given access to the following oracles:
– Public-Key-Request-Oracle: on input a user’s identity ID, it computes(PID,

DID) = PartialKeyExtract(params,masterKey, ID)and sID = SetSec
retV alue(params, ID) . It then computes PKID = SetPublicKey(params,
PID, sID, ID)and returns it to A.

– Partial-Key-Extract-Oracle: on input a user’s identity ID , it computes
(PID, DID) = PartialKeyExtract(params,masterKey, ID) and returns
it to A. (Note that it is only useful to Type I adversary.)

– Private-Key-Request-Oracle: on input a user’s identity ID, it computes
sID = SetSecretV alue(params, ID) and (PID, DID) = PartialKeyEx
tract(params,masterKey, ID). It then computes SKID = SetPrivate
Key(params,DID, sID)and returns it to A. it outputs ”Reject”. if the
user’s public key has been replaced (in the case of Type I adversary.)

– Public-Key-Replace-Oracle: (For Type I adversary only) on input identity
and a valid public key, it replaces the associated user’s public key with
the new one.

– Decryption-Oracle: on input a ciphertext and an identity, returns the
decrypted plaintext using the private key corresponding to the current
value of the public key associated with the identity of the user.

3. After making oracle queries a polynomial times, A outputs and submits two
message (M0,M1), together with an identity ID∗ of uncorrupted secret key
to the challenger. The challenger picks a random bit b ∈ 0, 1 and computes
C∗, the encryption of Mb under the current public key PKID∗ for ID∗. If
the output of the encryption is ”Invalid ciphertext”, then A immediately
losses the game. Otherwise C∗ is delivered to A.

4. A makes a new sequence of queries.
5. A outputs a bit b′. It wins if b′ =b and fulfills the following conditions:

– At any time, ID∗ has not been submitted to Private-Key-Request-Oracle.
– In Step (4), C∗ has not been submitted to Decryption-Oracle for the

combination (ID∗, PKID∗) under which Mb was encrypted.
– If it is Type I, ID∗ has not been submitted to both Public-Key-Replace-

Oracle before Step (3) and Partial-Key-Extract-Oracle at some step.

Define the guessing advantage of A as

SuccIND−CCA
CLE (A) =| Pr(b = b′)− 1

2
|

3.2 Type B security model for LK’s CL-PKE

Definition 4. (Type B security model for IND-CCA Security for LK’s
CL-PKE) A Certificateless Public Key Encryption scheme CLPKE is IND-
CCA secure if no PPT adversary A of Type I or Type II has anon-negligible
advantage in the following game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting system parameters param. If A is of Type I, the
challenger keeps the master secret key mk to itself, otherwise, it gives mk
to A.

2. A is given access to the following oracles:
– Public-Key-Request-Oracle: on input a user’s identity ID, it computes

(sk, pk) = UserKeyGeneration(param) and (PID, DID) = PartialKey
Extract(param, mk, ID, pk). It then computes PKID = SetPublicKey
(param, PID, pk) and returns it to A.

– Partial-Key-Extract-Oracle: on input a user’s identity ID and pk, it com-
putes (PID, DID) = PartialKeyExtract (param, mk, ID, pk) and re-
turns it to A. (Note that it is only useful to Type I adversary.)

– Private-Key-Request-Oracle: on input a user’s identity ID, it computes
(sk, pk)=UserKeyGeneration(param)and (PID, DID) = PartialKeyEx
tract(param, mk, ID, pk). It then computes SKID =SetPrivateKey(pa
ram, DID, sk) and returns it to A. it outputs ”Reject”. if the user’s pub-
lic key has been replaced (in the case of Type I adversary.)

– Public-Key-Replace-Oracle: (For Type I adversary only) on input identity
and a valid public key, it replaces the associated user’s public key with
the new one.

– Decryption-Oracle: on input a ciphertext and an identity, returns the
decrypted plaintext using the private key corresponding to the current
value of the public key associated with the identity of the user.

3. After making oracle queries a polynomial times, A outputs and submits two
message (M0,M1), together with an identity ID∗ of uncorrupted secret key
to the challenger. The challenger picks a random bit b ∈ 0, 1 and computes
C∗, the encryption of Mb under the current public key PKID∗ for ID∗. If
the output of the encryption is ”Invalid ciphertext”, then A immediately
losses the game. Otherwise C∗ is delivered to A.

4. A makes a new sequence of queries.
5. A outputs a bit b′. It wins if b′ =b and fulfills the following conditions:

– At any time, ID∗ has not been submitted to Private-Key-Request-Oracle.
– In Step (4), C∗ has not been submitted to Decryption-Oracle for the

combination (ID∗, PKID∗) under which Mb was encrypted.
– If it is Type I, (ID∗, PKID∗) has not been submitted to both Public-Key-

Replace-Oracle before Step (3) and Partial-Key-Extract-Oracle at some
step.

Define the guessing advantage of A as

SuccIND−CCA
CLE (A) =| Pr(b = b′)− 1

2
|

3.3 The difference Between Type A security model and Type B
Security model

We note that Type A security model denies access to PartialKeyExtract -Oracle
with any input containing ID∗. But in Type B security model for CL-PKE, the

adversary can access PartialKeyExtract-Oracle with input (ID∗, PKID”) where
PKID” 6= PKID∗ .

The LK’s IND-CCA2 model [1] denied access to PartialKeyExtract -Oracle
with any input containing ID∗, we consider this is unreasonable. This restric-
tion is applied only to CL-PKE scheme with the property of PartialKeyExtract
algorithm running independently with UserKeyGeneration algorithm. But LK’s
CL-PKE has no this property.This is the reason why the following attack can
succeed.

Actually, there are many different definitions and security models for CL-
PKC.We thoroughly revisiting the current literature [6-10,14-21]in CL-PKC (We
suggest Dent’s paper [15] as a good reference for current CL research) and we give
a new framework for CL-PKC’s definitions and security models, which maybe
be interesting for the cryptographic community, we give it in appendix.

4 LK’s Definition and Security Model for SGC-PKE and
the Concrete Scheme

4.1 LK’s Definition and Security Model for SGC-PKE

The definition of SGC Encryption is same as the definition of CL-encryption
given in Definition 1, except for SetPublicKey in which the user generates a
certificate using his own secret key.

For security, in addition to IND-CCA, we require the scheme to be DoD-Free,
which is formally defined as follow as a game played between the challenger and
a PPT adversary (DoD Adversary), which has the same power of a Type I
adversary defined in CL-encryption.

Definition 5. (DoD-Free Security) A SGC Encryption scheme is DoD-Free
secure if no PPT adversary A has a non-negligible advantage in the following
game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting systems parameters param. The challenger keeps the
master secret key mk to itself.

2. A is given access to Public-Key-Request-Oracle , Partial-Key-Extract-Oracle,
Private-Key-Request-Oracle and Public-Key-Replace-Oracle.

3. After making oracle queries a polynomial times, A outputs a message M∗,
together with an identity ID∗ to the challenger. The challenger computes
C∗, the encryption of M∗ under the current public key PKID∗ for ID∗. If
the output of the encryption is ”Invalid ciphertext”, then A immediately
losses the game. Otherwise it outputs C∗.

4. A wins if the following conditions are fulfilled:
– The output of the encryption in Step (3) is not ”Invalid ciphertext”
– Decrypt(param, SKID∗ , C∗) = M∗.
– At any time, ID∗ has not been submitted to Partial-Key-Extract-Oracle.

Define the advantage of A as

SuccDoD−Free
SGC (A) = Pr(A Wins)

4.2 LK’s SGC-PKE Scheme

1. Setup: Generate two large primes p and q such that q|p−1 . Pick a generator g
of ZZq∗ . Pick x ∈ZZq∗ uniformly at random and compute y = gx. Choose hash
functions H1 : {0, 1}∗ × ZZ∗

p → ZZ∗
q , H2 : {0, 1}l0 × {0, 1}l1 → ZZ∗

q and H3 :
ZZ∗

p → {0, 1}l , where l = l0 + l1 ∈ N . Return param = (p,q,g,y,H1,H2,H3)
and mk = x .

2. UserKeyGeneration: Pick z ∈ ZZ∗
q at random and compute u = gz, Return(sk,pk)

=(z,u).
3. PartialKeyExtract: Taking param, mk, ID, pk as input, it outputs (PID, DID)

= (w = gs, t = s + xH1(ID,w ∗ pk) = s + xH1(ID,wu)) .
4. SetPrivateKey: outputs SKID = sk + DID = z + t.
5. SetPublicKey: Except for taking param, PID and pk as input, it includes

ID and SKID as inputs. Chooses a new hash function H0 : {0, 1}∗ × ZZ∗
p ×

ZZ∗
p × ZZ∗

p → ZZ∗
q ,then computes PK1

ID = pk ∗ PID = uw and PK2
ID =

pk ∗ PID ∗ yH1(ID,pk∗PID) = uwyH1(ID,uw) = gz+t = gSKID . Next, it does
the following performances to sign the user’s identity ID and PK1

ID,PK2
ID

using the user’s private key SKID and Schnnor’s signature scheme [13]. (1)
Choose a random r ∈ ZZq∗ , (2) compute R = grmod p ;(3) set the signature
to be (R, s), where s = r+SKID∗H0(ID, PK1

ID, PK2
ID, R) . Finally, returns

PKID = (PK1
ID, PK2

ID, (R, s)).
6. Encrypt: let PKID = (PK1

ID, PK2
ID, (R, s)).If PK2

ID 6= PK1
ID∗yH1(ID,PK1

ID)

or gs 6= R ∗ (PK2
ID)H0(ID,PK1

ID,PK2
ID,R), it returns”Reject”, else pick o ∈

{0, 1}l1 at random, and compute r = H2(M,o).Compute C = (C1, C2) such
that C1 = gr, C2 = H3((uwyH1(ID,uw))r)⊕s(M ‖ o) = H3((PK2

ID)r)⊕(M ‖
o).

7. Decrypt: Parse C as (C1, C2) and SKID as (z, t).Compute M ‖ o = H3((C1)z+t

⊕ C2. If gH1(M,o) = C1 , returnM .Else return ”Reject”.

5 Attack on LK’s SGC-PKE Scheme

The LK’s SGC-PKE definition and security model comes from the definition and
security model for CL-PKE. So the IND-CCA2 security for LK’s SGC-PKE suf-
fering from not allowing PartialKeyExtract-Oracle querying with (ID∗, PKID”)
6= (ID∗, PKID∗).Similarly the Dod-Free security for LK’s SGC-PKE suffering
from this too.

That is, LK’s SGC-PKE scheme falls in Type B security model, but their
security model falls in Type A security model and they ananlysis their scheme
in Type A model, this is why their secuurity ananlysis is not sufficient and our
attack can work.

Note that in Lai and Kou’s SGC-PKE scheme, the SKID binds with the
multiply of partial public key from KGC and user’s self-generated public key
instead of with partial public key from KGC and user’s self-generated public key
independently. We can explore this shortcoming to give a man-in-the-middle at-
tack. We attack the target user when he generates his privatekey and public key.

First the attacker corrupts the target ID and gets his key (sk,pk)=(z,u).Then
the attacker pretends to be a user with identity ID for KGC and pretends to be
the KGC for the target user. He can always control the target user’s privatekey
be equal to his privatekey which is definitely insecure.

1. The attacker gets the target ID’s user’s key (sk,pk)=(z,u) where u = gz by
corruption the target ID or via UserKeyGeneration Oracle.

2. The attacker generates his own key(sk′,pk′)=(z′,u′) where u′ = gz′ .
3. The attacker pretends to be the target ID to the KGC, and then he gets

the partial key (PID, DID) = (w = gs, t = s + xH1(ID,w ∗ pk′) = s +
xH1(ID,wu′)) via the PartialKey Extract Oracle (param, mk, ID, pk′).

4. The attacker computes his private key SKAttacker = sk + DID = z′ + t.
5. The attacker pretends to be the KGC to the target ID, and he sets (P ∗

ID, D∗
ID)

= (w∗ = wu′

gz , SKAttacker − z). Send it as the result of PartialKeyExtract

(param, mk, ID, pk) to the target ID.
6. The target ID checks whether equation gD∗

ID = w∗ ∗ yH1(ID,w∗∗PK) holds.
If it holds, he computes his own private key SKTarget = sk + D∗

ID = z +
SKAttacker − z = SKAttacker,else ”reject”.

7. Thus the attacker can control the target ID’s Privatekey be equal to his
Privatekey and decrypt all the ciphertext sends to the target ID.

First we verify the equation gD∗
ID = w∗ ∗ yH1(ID,w∗∗PK) always holds.

gD∗
ID = gSKAttacker−z

= gz′+t−z

= gz′+s+xH1(ID,wu′)−z

= gz′+s+xH1(ID,w∗∗pk)−z

=
wu′

gz
∗ yH1(ID,w∗∗pk)

= w ∗ yH1(ID,w∗∗pk)

In our attack, the attacker can access two oracles: Usergeneration Oracle
and PartialKey Extract Oracle. Assuming UserKeyGeneration Oracle’s output is
(sk, pk), we must note that query to thePartialKey Extract Oracle is (param, mk, ID,
pk′) instead of (param, mk, ID, pk). Otherwise our attack is a trivial attack.

6 A Rescue Scheme and Its Security Proof

6.1 A Rescue Scheme

Actually, we just need give little change to the Lai and Kou’s scheme to resist this
attack. In the new scheme, the SKID binds with partial public key from KGC
and user’s self-generated public key independently, so the man-in-the-middle
attack can not work any more. Following is the rescue scheme.

1. Setup: Generate two large primes p and q such that q|p−1 . Pick a generator
g of ZZq∗ . Pick x ∈ZZq∗ uniformly at random and compute y = gx. Choose
hash functions H1 : {0, 1}∗ × ZZ∗

p × ZZ∗
p → ZZ∗

q , H2 : {0, 1}l0 × {0, 1}l1 →
ZZ∗

q and H3 : ZZ∗
p → {0, 1}l , where l = l0 + l1 ∈ N . Return param =

(p,q,g,y,H1,H2,H3) and mk = x .
2. UserKeyGeneration: Pick z ∈ ZZ∗

q at random and compute u = gz, Return(sk,pk)
=(z,u).

3. PartialKeyExtract: Taking param, mk, ID, pk as input, it outputs (PID, DID)
= (w = gs, t = s + xH1(ID,w, pk) = s + xH1(ID,w, u)) .

4. SetPrivateKey: outputs SKID = sk + DID = z + t.
5. SetPublicKey: Except for taking param, PID and pk as input, it includes

ID and SKID as inputs. Chooses a new hash function H0 : {0, 1}∗ × ZZ∗
p ×

ZZ∗
p × ZZ∗

p → ZZ∗
q ,then computes PK1

ID = (pk, PID) = (u, w) and PK2
ID =

pk∗PID∗yH1(ID,pk,PID) = uwyH1(ID,u,w) = gz+t = gSKID . Next, it does the
following performances to sign the user’s identity ID and PK1

ID,PK2
ID using

the user’s private key SKID and Schnnor’s signature scheme. (1) Choose a
random r ∈ ZZq∗ , (2) compute R = grmod p ;(3) set the signature to be
(R, s), where s = r + SKID ∗ H0(ID, PK1

ID, PK2
ID, R) . Finally, returns

PKID = (PK1
ID, PK2

ID, (R, s)).
6. Encrypt: let PKID = (PK1

ID, PK2
ID, (R, s)).parse PK1

ID as(u, w). If PK2
ID 6=

PK1
ID∗yH1(ID,u,w) or gs 6= R∗(PK2

ID)H0(ID,PK1
ID,PK2

ID,R), it returns”Reject”,
else pick o ∈ {0, 1}l1 at random, and compute r = H2(M,o).Compute
C = (C1, C2) such that C1 = gr, C2 = H3((uwyH1(ID,uw))r) ⊕ (M ‖ o) =
H3((PK2

ID)r)⊕ (M ‖ o).
7. Decrypt: Parse C as (C1, C2) and SKID as (z, t).Compute M ‖ o = H3((C1)z+t

⊕ C2. If gH1(M,o) = C1 , returnM .Else return ”Reject”.

6.2 Security Analysis

The security proofs of our scheme are similar to the BSS’s CL-PKE [6]. Basically,
the main idea of the security proofs given in this section is to have the CDH
attacker B simulates the environment of the Type I and Type II attackers AI

and AII in Type B security model respectively until it can compute a Diffie-
Hellman key gab of ga and gb using the ability of AI and AII .

For the attacker AI , B sets ga as a part of the challenge ciphertext and gb

as a KGC’s public key. On the other hand, for the attacker AII , B sets ga as a
part of the challenge ciphertext but uses gb to generate a public key associated
with the challenge identity.

The following two theorems show that our scheme is IND-CCA secure in
the random oracle, assuming that the CDH problem is intractable. We will give
proofs of Theorm1 due to our attacker is a Type I attacker. We omit the proof
of Theorm2 due to its similarity with Theorm2 in [1] .

Theorem 1. The SGC-PKE scheme is (t, qH1 , qH2 , qH3 , qpar, qpub, qprv, qD, ε) -
IND-CCA secure against the Type I attacker AI in the random oracle assuming
the CDH problem is (t

′
, ε

′)-intractable and the Schnorr’s signature scheme is

(t
′′
, ε

′′
) secure against the adaptively chosen message attack in the random oracle

model , where ε
′
> 1

qH2
(2(ε−ε

′′
)

e(qprv+1) −
qH2
2l1

− qDqH2
2l1

− qD

q) and t
′
> t + t

′′
+ 2(qpar +

2qpub +qprv)tex +10qDqH2qH3tex +3tex where tex denotes the time for computing
exponentiation in Zp∗ .

Proof. Let AI be an IND-SGCPKE-CCA Type I attacker. We show that using
AI , one can construct an attacker B that can solve the CDH problem. Suppose
that B is given (p, q, g, ga, gb as an instance of the CDH problem. B can simulate
the Challenger’s execution of each phase of IND-SGCPKE-CCA game for AI as
follows.
[Simulation before challenge] B sets y = gb and gives AI (p, q, g, y,H0,H1,H2,
H3) as params, where (H0,H1,H2,H3)are random oracles controlled by B as fol-
lows.

On receiving a query (ID, ω, u) to H1:
1. If (ID, ω, u, e) exists in H1List, return e as answer.
2. Otherwise, pick e ∈ Z∗

q at random, add (ID, ω, u, e) to H1List and return
e as answer.

On receiving a query (M,) to H2 :
1. If (M, , r) exists in H2List, return r as answer.
2.Otherwise, pick r ∈ Z∗

q at random, add (M, , r) to H2List and return r as
answer.

On receiving a query k to H3:
1. If (k, R) exists in H3List, return R as answer.
2. Otherwise, pick R ∈ {0, 1}l at random, add (k,R) to H3List and return

R as answer.
On receiving a partial key extraction query ((ID, u) , ”partial key extract”)
1. If ((ID, u), ω, t) exists in PartialKeyList, return (ω, t) as answer.
2. Otherwise, do the following:
(a) Pick t, e ∈ Z∗

q at random and compute ω = gty−e

u ; add to H1List (That
is, e is defined to be H1(ID, ω, u).) and ((ID, u), ω, t) to PartialKeyList; return
(ω, t) as answer.

Note from the above simulation that we have uωyH1(ID,PK,PID = u ∗ gty−e

u ∗
ye = gt , which holds in the real attack too.

On receiving a public key request query (ID,”public key request”)
1. If (ID, PK1

ID, PK2
ID, (R, σ)) exists in PublicKeyList, return (PK1

ID, PK2
ID,

(R, σ)) as answer.
2. Otherwise, pick coin ∈ {0, 1} , so that Pr[coin = 0] = δ (δ will be deter-

mined later).
3. If coin = 0, do the following:
(a) If ((ID, u), ω, t) exists in PartialKeyList, pick z ∈ Z∗

q at random and
compute u = gz; compute skID = z + t add (ID, skID to PrivateKeyList;
Choose a random r

′ ∈ Z∗
q , compute R = grmodp,set the signature to be (R, σ),

where σ = r
′
+skID∗H0(ID, PK1

ID, PK2
ID, R)(On receiving a query(ID, PK1

ID,
PK2

ID, R) to H0: 1. If (coin = 0, (ID, PK1
ID,

PK2
ID, R), h)exists in H0List, return h as answer. 2. Otherwise, pick h ∈ Z∗

q

at random, add (coin = 0, (ID, PK1
ID, PK2

ID, R), h) to H0List and return h
as answer.). Let PK1

ID = (u, ω), PK2
ID = gskID . Finally, returns PKID =

(ID, PK1
ID, PK2

ID, R) as answer.
(b) Otherwise, run the above simulation algorithm for partial key extraction

taking r(ID, u) as input to get a partial key (w, t); pick z ∈ Z∗
q at random and

compute u = gz; compute skID = z + t add (ID, skID to PrivateKeyList;
Choose a random r

′ ∈ Z∗
q , compute R = grmodp,set the signature to be

(R, σ), where σ = r
′
+ skID ∗ H0(ID, PK1

ID, PK2
ID, R)(B simulate the H0 as

the above simulation). Let PK1
ID = (u, ω), PK2

ID = gskID . Finally, returns
PKID = (ID, PK1

ID, PK2
ID, R) as answer.

4. Otherwise (if coin = 1), pick s, z ∈ Z∗
q and compute w = gs and u =

gz; compute PK1
ID = (u, ω) and PK2

ID = uωyH1(ID,PK,PID ; pick σ, j ∈
Z∗

q , compute R = gσ

(PK2
ID

j)
(Let j = H0(ID, PK1

ID, PK2
ID, R), add (coin =

1,H0(ID, PK1
ID, PK2

ID, R), j)to H0List), add (ID, ?, z, s) to PrivateKeyList
and ((ID, PK1

ID, PK2
ID, (R, σ)), coin) to PublicKeyList; return (PK1

ID, PK2
ID,

(R, σ))as answer.

On receiving a private key extraction query (ID,” privatekeyextract”)
1. Run the above simulation algorithm for public key request taking ID as

input to get a tuple ((ID, PK1
ID, PK2

ID, (R, σ)), coin) ∈ PublicKeyList.
2. If coin = 0, search PrivateKeyList for a tuple (ID, skID)and return

SKID = skID as answer.
3. Otherwise, return ”Abort” and terminate.

On receiving a decryption query ((ID, PK1
ID, PK2

ID, (R, σ)), C, ”decryption”),
where C = (C1, C2)

1. Search PublicKeyList for a tuple ((ID, PK1
ID, PK2

ID, (R, σ)), coin).
2. If such a tuple exists and coin = 0
(a) Search PrivateKeyList for a tuple (ID, skID). (Note that from the sim-

ulation of public key request, (ID, skID) must exist in PrivateKeyList as long
as one can find (ID, (ID, PK1

ID, PK2
ID, (R, σ)), coin) with coin =0 in PublicK-

eyList.
(b) Parses PKID as (PK1

ID, PK2
ID, (R, σ)), parse PK1

IDas(u,ω) . If PK2
ID 6=

PK1
ID ∗ yH1(ID,u,w) or gs 6= R ∗ (PK2

ID)H0(ID,PK1
ID,PK2

ID,R), it returns”Reject”,
Parse C as (C1, C2) and SKID as (z, t).Compute M ‖= H3((C1)z+t ⊕ C2. If
gH1(M,) = C1 , returnM .Else return ”Reject”.

3. Else if such a tuple exists and coin = 1
(a) Run the above simulation algorithm for H1 to get a tuple (ID, ω, u, e).
(b) If there exist(M, , r) ∈ H2List and (k,R) ∈ H3List such that c1 =

gr, c2 = R ⊕M ‖, k = uωyer Return M and Reject otherwise. We remark that
the pair(M, , r) that satisfies the above condition uniquely exists in H2List as
the encryption function is injective with respect to (ID, ω, u, e).

4. Else if such a tuple does not exist (This is the case when the public key of
a target user is replaced by AI , but from the SGC-PKE definition, this means
breaking Schnnor’s signature scheme).

[Simulation on challenge] B answers AI ’s queries as follows:
On receiving a challenge query (ID∗, (M0,M1)):
1. Run the above simulation algorithm for public key request taking ID as

input to get a tuple ((ID∗, PK1
ID

∗
, PK2

ID
∗
, (R∗, σ∗)), coin) ∈ PublicKeyList.

2. If coin = 0 return ”Abort” and terminate
3. Otherwise, parse PK1

ID
∗ as (u∗, ω∗) . If PK2

ID∗ 6= PK1
ID

∗ ∗yH1(ID∗,u∗,w∗)

or gσ∗ 6= R∗∗(PK2
ID

∗)H0(ID∗,PK1
ID

∗
,PK2

ID
∗
,R∗), it returns”Reject”(This case can

only happen with negligible probability).else do the following:
(a)Search PrivateKeyList for a tuple (ID∗, ?, z∗, s∗). In this case, we know

that ω∗ = gs∗ and u∗ = gz∗.
(b) Pick ∗ ∈ {0, 1}l1 ,c2

∗ ∈ {0, 1}l and ∈ {0, 1}random.
(c) Set c∗1 = ga, γID∗ = u∗ω∗ye∗ and e∗ = H1(ID∗, u∗, ω∗)
(d) Define a = H2(M,∗) and H3(γa

ID∗) = c∗2 ⊕ (M∗) Note that B does not
know ”a”)

4. Return c∗ = (c∗1, c
∗
2) as a target ciphertext.

Note that by the construction given above, c∗2 =H3(γa
ID∗)⊕ (M∗).

[Simulation after challenge] In this phase, B answers AI ’s queries in the same
way as before except the natural constraints.

[Guess]When A outputs its , B returns the set S = {(ki

gas∗gaz∗)
1

e∗ |ki are the
queries toH3 for i ∈ [1, qH3]such that e∗ = H1(ID∗, u∗, ω∗).}

[Analysis]We first evaluate the simulations of the random oracles given above.
From the construction of H1, it is clear that the simulation of H1 is perfect. As
long as AI does not query (M, ∗) to H2 nor (u∗ω∗ye∗)

a
to H3, the simulations

of H2 and H3 are perfect. By Ask∗H3
we denote the event (u∗ω∗ye∗)

a
has been

queried to H3. Also, by Ask∗H2
we denote the event(M, ∗) has queried to H2.

Next, one can notice that the simulated target ciphertext is identically dis-
tributed as the real one from the construction.

Now, we evaluate the simulation of the decryption oracle. If a public key
PKID has not been produced under coin = 1, the simulation is perfect as
B knows the private key SKID corresponding to PK .Otherwise, simulation
errors may occur while B running the decryption oracle simulator specified
above. However, these errors are not significant as shown below: Suppose that
(ID, PK1

ID
∗
, PK2

ID
∗
, (R∗, σ∗), C) has been issued as a valid decryption que ry.

Even if C is valid, there is a possibility C can be produced without querying
(uωye)r toH3, where e = H1(ID, ω, u) and r = H2(M,) Let Valid be an event
that C is valid. Let AskH3and AskH2 respectively be events that (uωye)r has
been queried to H3 and (M,)has been queried to H2. We then have

Pr[V alid | ¬AskH3] ≤ Pr[V alid ∧AskH2 | ¬AskH3] + Pr[V alid ∧ ¬AskH2 | ¬AskH3]
≤ Pr[AskH2 | ¬AskH3] + Pr[V alid | ¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1
q

Let DecErr be an event that V alid | ¬AskH3 happens during the entire simu-
lation. Then, since qD decryption oracle queries are made, we have

Pr[DecErr] ≤ qDqH2

2l1
+

qD

q
.

Now we define an event E to be (AskH∗
3 ∨ (AskH∗

2 | ¬AskH∗
3) ∨DecErr) |

¬Abort where Abort denotes an event that B aborts during the simulation. By
definition of ε

′
and ε

′′
, we then have

(ε− ε
′
) ≤ | Pr[β

′
− β]− 1

2

≤ 1
2
Pr[E]

≤ 1
2Pr[¬Abort]

(Pr[AskH∗
3] + Pr[AskH∗

2 | ¬AskH∗
3] + Pr[DecErr])

First, notice that the probability that B does not abort during the simulation
is given by δqprv(1−δ) which is maximized at δ = 1 − 1

qprv+1 .Hence we have
Pr[¬Abort] ≤ 1

e(qprv+1) where e denotes the base of the natural logarithm.
Since Pr[AskH∗

2 | ¬AskH∗
3] ≤ qH2

2l1
and Pr[DecErr] ≤ qDqH2

2l1
+ qD

q , we obtain

Pr[AskH∗
3] ≥ 2(ε− ε

′′
)

e(qprv + 1)
− qH2

2l1
− qDqH2

2l1
− qD

q

Meanwhile, if AskH∗
3 happens then B will be able to solve the CDH problem by

picking (ki

gas∗gaz∗)
1

e∗ from the set S defined in the simulation.Consequently, we
obtain

ε
′
≥ 1

qH3

(
2(ε− ε

′′
)

e(qprv + 1)
− qH2

2l1
− qDqH2

2l1
− qD

q
),

The running time of the CDH attacker B is

t
′
≥ t + t

′′
+ 2(qpar + 2qpub + qprv)tex + 10qDqH2qH3tex + 3tex

where tex denotes the time for computing exponentiation in Zp∗ .
[Remark]Our security proof follows the Baek et al’s security proof for their
CLPKE scheme without pairing in [6], but interestingly, their security proof
was not correct in the Simulation on challenge phase.When the Type I attacker
AIpossibly replaces the public key (ω∗, u∗) = (gs∗, gz∗) associated with the tar-
get identity ID∗ with its own (ω, u) = (gs, gz). When s 6= s∗, the CDH attack
algorithm B simulating the environment of AI may not know s and hence has no
way to find the Diffie-Hellman key at the end of the simulation and hence fails to
solve the CDH problem. but our security proof can avoid this case, because our
scheme is a self-generated certificate public key encryption, the replacing public
key attack can not happen unless the schnnor signature scheme is not secure.

Theorem 2. The SGC-PKE scheme is (t, qH1 , qH2 , qH3 , qpar, qpub, qprv, qD, ε) -
IND-CCA secure against the Type II attacker AII in the random oracle assum-
ing the CDH problem is (t

′
, ε

′)-intractable and the Schnorr’s signature scheme
is (t

′′
, ε

′′
) secure against the adaptively chosen message attack in the random

oracle model , where ε
′

> 1
qH2

(2(ε−ε
′′

)
e(qprv+1) −

qH2
2l1

− qDqH2
2l1

− qD

q) and t
′

> t +

t
′′

+ 2(2qpub + qprv)tex + 10qDqH2qH3tex + 3tex where tex denotes the time for
computing exponentiation in Zp∗ .

Theorem 3. The SGC-PKE scheme proposed in this paper is secure against
DOD adversary, assuming that the Schnorr’s signature scheme is secure against
the adaptively chosen message attack in the random oracle model.

The proof of the above two theorems is similar as [1]. Due to lack of space,
we omit it.

7 Concluding Remarks

In this paper, we show that Lai and Kou’s SGC-PKE scheme cannot resist man-
in-the-middle attack. First, we propose two security models–Type A model and
Type B model–for CL-PKE we point out that the security model in their paper
does not fit for their scheme.(We thoroughly revisit certificateless public cryp-
tography definition and security model in appendix,which maybe be interesting
for cryptographic community). Second, we give a man-in-the-middle attack to
their scheme in the Type B model and a rescue SGC-PKE scheme by giving a
little change to the original scheme. We further point out the reason for success-
fully attacking is binding the user’s secret key with the multiply of partial public
key from KGC and user’s self-generated public key instead of binding with par-
tial public key from KGC and user’s self-generated public key independently. At
last, Based on Baek’s security proof for their CLPKE scheme without pairing in
[6],we prove our new scheme’s security in the random oracle model.

References

1. J.Lai and W.Kou. Self-Generated-Certificate Public Key Encryption Without Pair-
ing. In Public Key Cryptography (PKC’07), LNCS 4450, pages 476–489. Springer–
Verlag, 2007.

2. J. K. Liu and M. H. Au. Self-Generated-Certificate Public Key Cryptosystem. Cryp-
tology ePrint Archive, Report 2006/194, 2006.

3. J. K. Liu and M. H. Au.Self-Generated-Certificate Public Key Cryptography and
Certificateless Signature/Encryption Scheme in the standard Model. In AisaCCS
2007, , pages 273–283, 2007.

4. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In
Advances in Cryptology, Proc. ASIACRYPT 2003, LNCS 2894, pages 452–473.
Springer–Verlag, 2003.

5. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. Cryptol-
ogy ePrint Archive, Report 2003/126, 2003.

6. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption with-
out pairing. In ISC 2005, LNCS 3650, pages. 134–148. Springer–Verlag, 2005.

7. B. Libert and J. Quisquater. On constructing certificateless cryptosystems from
identity based encryption. In Public Key Cryptography (PKC’06), LNCS 3958, pages
474–490. Springer–Verlag, 2006.

8. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In
ICCSA’04, LNCS 3040, pages. 802–811. Springer–Verlag, 2004.

9. Y. Shi and J. Li. Provable efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/287, 2005.

10. Z. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/012, 2005.

11. M. Girault. Self-certified public keys. In Advances in Cryptology, Proc. EURO-
CRYPT 1991, LNCS 547, pages 490–497. Springer–Verlag, 1992.

12. A. Shamir. Identity-based Cryptosystems and Signature Schemes. In Advances in
Cryptology, Proc. CRYPTO 1984, LNCS 196, pages 47–53. Springer–Verlag, 1984.

13. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
Vol. 4, No. 3, pages. 161–174, 1991.

14. Au,M.H.,Chen,J.,Liu,J.K.,Mu,Y.,Wong,D.S.,Yang,G. Malicious KGC attack in
certificateless cryptography. In Proc.ACM Symposium on Information, Computer
and Communications Security, CCS’07 ACM Press,New-York,2007.

15. Dent,A.W. A survey of certificateless encryption schemes and security mod-
els.Cryptology ePrint Archive, Report 2006/211, 2006.

16. Dent,A.W., Libert,B., Paterson,K.G. Certificateless encryption schemes strongly
secure in the standard model. Cryptology ePrint Archive, Report 2007/121, 2007.

17. Galindo,D., Morillo,P., Rafols,C. Breaking Yum and Lee generic constructions of
certificateless and certificate-based encryption schemes. In EuroPKI2006, LNCS
4043, pages 81–91. Springer–Verlag, 2006.

18. Hu,B.C.,Wong,D.S.,Zhang,Z.,Deng,X. Key replacement attack against a generic
construction of certificateless signature.In ACISP2006 LNCS 4058, pages 235–246.
Springer–Verlag, 2006.

19. Huang,Q.,Wong,D.S.Genericc ertificateless encryption in the standard model. In
IWSEC2007, LNCS 4752, pages 278–291. Springer–Verlag, 2007.

20. Huang,X., Susilo,W., Mu,Y., Zhang,F. On the security of certificateless signature
schemes from Asiacrypt2003. In CANS’05, LNCS 3810, pages 130–145. Springer–
Verlag,2005.

21. Zhang,Z.,Wong,D.S.,Xu,J.,Feng,D.,Zhang,F. Certificateless public-key signature:
Security model and efficient construction. In ACNS’06, LNCS 3989, pages 293–308.
Springer–Verlag,2006.

A Certificateless Public Cryptography KeyGeneration
Algorithm and Security Model Revisited

In the current literature [1-10, 14-21], LK’s CL-PKE is different from the other’s
CL-PKE by LK’s PartialKeyExtract algorithm including user’s public key as
input while other’s not. Also, LK’s PartialKeyExtract algorithm must run after
UserKeyGeneration algorithm while other’s PartialKeyExtract algorithm can
run independently with UserKeyGeneration algorithm. We thoroughly revisit-
ing the current literature in CL-PKC (We suggest Dent’s paper [15] as a good
reference for current CL research) and we give a new framework for CL-PKC’s
KeyGeneration Algorithm and reconsider its security model.

A.1 KeyGeneration Algorithm

Syntax: {.} means the variant is a choice, not a necessary input.Variant with ∗
means this variant is a malicious variant controlled by the adversary.

1.KGC and USER thoroughly independently (User’s setup and
KGC’s setup independently)

-Setup: takes as input a security parameter 1k and returns the master private
key msk and the master public key mpk.This algorithm is run by a KGC to
initially setup a certicateless system.

(mpk, msk) = Setup(1k)

-PartialprivatekeyGen: takes as input the master public key mpk,the master
private key msk, and an identifier ID ∈ {0, 1}∗.It outputs a partial private key
dID.This algorithm is run by a KGC once for each user, and the corresponding
partial private key is distributed to that user in a suitably secure manner.

dID = Extract(ID,mpk, msk)

-UserkeyGen: takes as input a security parameter 1k and generates user’s public
key upk and private key usk.

(upk, usk) = UserkeyGen(1k, {ID})

-Setprivatekey: takes as input the master public key mpk, an entity’s partial
private key dID an entity’s public value upk and an entity’s secret value usk .It
outputs the full private key sk for that user. This algorithm is run once by the
user.

sk = Setprivatekey(mpk, dID, upk, usk)

-SetPublickey: given the master public key mpk, a user’s public key upk and
a user’s secret value sk, this algorithm outputs a public key pkID ∈ PK for
that user. This algorithm is run once by the user and the resulting public key is
widely and freely distributed.

pkID = Setpublickey(mpk, upk, sk)

[Remark]: this is the algorithm considered in a few existing literature papers,
including HU and HUANG’s works[18,19]. Most of these work are constructed
just in generic, no efficient construction is proposed.

2. KGC’s setup influence User’s setup:

2.1 KGC’s partialprivatekey and user’s localkey generate
independently

-Setup: Takes as input a security parameter 1k and returns the master private
key msk and the master public key mpk.This algorithm is run by a KGC to
initially setup a certicateless system.

(mpk∗,msk) = Setup(1k)

-PartialprivatekeyGen: takes as input the master public key mpk∗,the master
private key msk, and an identifier ID .It out puts a partial private key dID.This
algorithm is run by a KGC once for each user, and the corresponding partial
private key is distributed to that user in a suitably secure manner.

dID = Extract(ID,mpk∗,msk)

-UserkeyGen: given the master public key mpk∗ and an entity’s identity ID as
input, and outputs user’s public key upk and private key usk. This algorithm is
run once by the user.

(upk, usk) = UserkeyGen(mpk∗, ID)

-Setprivatekey: takes as input the master public key mpk∗,an entity’s partial
private key dID an entity’s public value upk and an entity’s secret value usk .It
outputs the full private key sk for that user. This algorithm is run once by the
user. equation* sk=Setprivatekey (mpk,dID, {upk}, usk)
-SetPublickey: given the master public key mpk∗, a user’s public key upk and
a user’s secret value sk, this algorithm outputs a public key pkID ∈ PK for
that user. This algorithm is run once by the user and the resulting public key is
widely and freely distributed.

pkID = Setpublickey(mpk∗, {upk}, sk)

[Remark]: this is the algorithm considered in most existing literature papers,
including AP and most other works [4,5]. UserkeyGen and PartialkeyGen can
work independently. But it can reach only Trust Level 2.

2.2 KGC’s partialprivatekey generation influenced by User’s localkey
generation

-Setup: Takes as input a security parameter 1k and returns the master private
key msk and the master public key mpk∗.This algorithm is run by a KGC to
initially setup a certicateless system. equation* (mpk∗,msk) = Setup(1k)
-UserkeyGen: given the master public key mpk∗ and an entity’s identity ID as
input, and outputs user’s public key upk and private key usk. This algorithm is
run once by the user.

(upk, usk) = UserkeyGen(mpk∗, ID)

-PartialprivatekeyGen: takes as input the master public key mpk∗,the master
private key msk, a user’s public key upk and an identifier ID .It out puts a
partial private key dID.This algorithm is run by a KGC once for each user, and
the corresponding partial private key is distributed to that user in a suitably
secure manner.

dID = Extract(ID,mpk∗,msk, upk)

-Setprivatekey: takes as input the master public key mpk∗, an entity’s partial
private key dID, an entity’s public value upk and an entity’s secret value usk .It

outputs the full private key sk for that user. This algorithm is run once by the
user.

sk = Setprivatekey(mpk∗, dID, {upk}, usk)

-SetPublickey: given the master public key mpk, a user’s public key upk and
a user’s secret value sk, this algorithm outputs a public key for that user. This
algorithm is run once by the user and the resulting public key is widely and
freely distributed.

pkID = Setpublickey(mpk∗, {upk}, sk)

[Remark]: this is the algorithm considered in LK’s paper[1]and our paper. Par-
tialkeyGen must work before UserkeyGen. But it can reach Trust Level 3.

2.3 User’s localkey generation influenced by KGC’s partialprivatekey
generation

-Setup: Takes as input a security parameter 1k and returns the master private
key msk and the master public key mpk∗.This algorithm is run by a KGC to
initially setup a certicateless system.

(mpk∗,msk) = Setup(1k)

-PartialprivatekeyGen: takes as input the master public key mpk∗,the master
private key msk, and an identifier ID .It outputs a partial private key dID.This
algorithm is run by a KGC once for each user, and the corresponding partial
private key is distributed to that user in a suitably secure manner.

dID = Extract(ID,mpk∗,msk)

-UserkeyGen: given the master public key mpk∗ and an entity’s identity ID as
input, and outputs user’s public key upk and private key usk. This algorithm is
run once by the user.

(upk, usk) = UserkeyGen(mpk∗, ID, dID)

-Setprivatekey: takes as input the master public key mpk∗, an entity’s partial
private key dID an entity’s public value upk and an entity’s secret value usk .It
outputs the full private key sk for that user. This algorithm is run once by the
user.

sk = Setprivatekey(mpk∗, dID, {upk}, usk)

-SetPublickey: given the master public key mpk∗, a user’s public key upk and
a user’s secret value sk, this algorithm outputs a public key pkID for that user.
This algorithm is run once by the user and the resulting public key is widely
and freely distributed.

pkID = Setpublickey(mpk∗, {upk}, sk)

[Remark]: this is the algorithm not considered in existing literature papers, but
we cannot ignore this case.

3. User’s setup influence KGC’s setup

[Remark]: this is the algorithm not considered in existing literature papers, but
we cannot ignore this case.

B Security Model

B.1 Adversary Types

There are at lest five kinds of adversaries we must consider:
-Type 1 adversary: Original Type 1 adversary can replace the target user’s public
key by other user’s public key or own user’s public key. But the adversary denied
accessing to the KGC’s master key.
-Type 2 adversary: Original Type 2 adversary can know the KGC’s master key
but cannot replace the target user’s public key before challenge phase.
-Type 3 adversary: Malicious but passive KGC can plant trapdoor in the public
parameters
-Type 4 adversary*: Malicious User can plant trapdoor in the upk which can
happen in the standard model
-Type 5 adversary*: Man-in-the-middle adversary can be pretend as KGC or
User.

The adverarys with symbol * means these adversaries have not been consid-
ered in the litreture until now.

B.2 Concurrent Environment

Furthermore, we must consider multi-public-key one ID model, this model maybe
be different from one-public-key one ID model.We must also consider UC security
for CL cryptography, this maybe gives important impact on CL cryptography
for it is adapted in practical application.

