
Endomorphisms for faster elliptic curve cryptography on
general curves

Steven D. Galbraith?, Xibin Lin??, and Michael Scott? ? ?

1 Mathematics Department,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom.

steven.galbraith@rhul.ac.uk
2 School of Mathematics and Computational Science

Sun-Yat Sen University Guangzhou, 510275, P.R.China
linxibin@mail2.sysu.edu.cn

3 School of Computing, Dublin City University.
Ballymun, Dublin 9, Ireland.
mike@computing.dcu.ie

Abstract. Efficiently computable homomorphisms allow multiplication to be accelerated
using the Gallant-Lambert-Vanstone (GLV) method. We extend results of Iijima, Matsuo,
Chao and Tsujii which give such homomorphisms for general elliptic curves by working over
quadratic extensions and demonstrate these results can be applied to the GLV method.
Our preliminary results give up to a 72 percent speedup (i.e., 0.58 times the previous best
time) for elliptic curve point multiplication on curves without small class number complex
multiplication. Further speedups are possible when using special curves.
Keywords: elliptic curves, point multiplication, GLV method, isogenies.

1 Introduction

Let E be an elliptic curve over a finite field Fq and let P ∈ E(Fq) have order r. The fundamental
operation in elliptic and hyperelliptic curve cryptography is point multiplication [n]P where n ∈ Z.
There is a vast literature on efficient methods for computing [n]P (a good reference is [2]).

The Gallant-Lambert-Vanstone method [12] is an important tool for speeding up point multipli-
cation. The basic idea is as follows. If the elliptic curve E has a efficiently computable endomorphism
ψ (other than a standard multiplication by n map) such that ψ(P) ∈ 〈P 〉 then one can replace
the computation [n]P by the multiexponentiation [n0]P + [n1]ψ(P) where |n0|, |n1| ≈

√
r. In prin-

ciple this makes the computation [n]P nearly twice as fast. In practice the speedup is not 100
percent, but is still very significant. Some examples allow higher degree decompositions such as
[n0] + [n1]ψ(P) + · · · + [nm−1]ψm−1(P) where |ni| ≈ r1/m which gives further speedups (though,
for technical reasons discussed in Section 6, one does not expect it to be m-times faster than the
other best methods). We call the latter approach the m-dimensional GLV method.

Gallant, Lambert and Vanstone [12] only gave examples of suitable efficiently computable en-
domorphisms in two cases, namely subfield curves (i.e., groups E(Fqm) where E is defined over
? This work supported by EPSRC grant EP/D069904/1.

?? This author thanks the Chinese Scholarship Council.
? ? ? This author acknowledges support from the Science Foundation Ireland under Grant No. 06/MI/006

Fq; these do not have prime or nearly prime order unless q is very small) and curves with special
endomorphism structure (essentially, that the endomorphism ring has small class number). Hence,
if one is using randomly chosen prime-order elliptic curves over finite fields for cryptography then
the GLV method is not usually available. Indeed, in Section 7 of [24] one finds the claim “the GLV
method is only effective for those exceptional elliptic curves that have complex multiplication by
an order with small discriminant.”

In fact, Iijima, Matsuo, Chao and Tsujii [17] constructed an efficiently computable homomor-
phism on elliptic curves E(Fp2) with j(E) ∈ Fp arising from the Frobenius map on a twist of E.
Apparently they did not realise the application of their results to the GLV method. In this paper
we give a generalisation of this approach and analyse it in the context of the GLV method. The
techniques apply to all elliptic curves over Fp2 such that j(E) ∈ Fp (regardless of the endomor-
phism structure) and can be used with curves of prime order. Hence, although our curves are not
completely general, we overturn the claims of Section 7 of [24].

The basic idea is somewhat analogous to subfield curves: We take elliptic curves E with j(E) ∈ Fq

and consider the group E(Fqm). However a crucial difference is that E is defined over Fqm , not Fq.
This means it is possible to obtain curves of prime order and so there is no need to restrict attention
to q being small. Our method can be used with any primes p and any elliptic curves E over Fq and
always gives rise to a GLV method of dimension at least 2.

Our experimental results demonstrate up to a 72 percent speedup (i.e., 0.58 the time) over
previous methods for point multiplication [n](x, y) on general curves. Note that for some applications
one could already obtain faster timings by using only x-coordinate arithmetic (i.e., Montgomery
form); for examples see Bernstein [3] and Gaudry-Thomé [14]. These ideas can also be used in our
setting, but with less of a speedup. Nevertheless, our methods can be applied in situations (such as
signature verification) which are not covered by the timings in [3, 14] and we expect a significant
speedup in this case.

Note that our techniques can also be implemented on curves in Edwards form, and exploit their
benefits. We also stress that our approach requires no special properties of the elliptic curves E
(except that j(E) ∈ Fp) and so can be applied to elliptic curves of prime order.

We now give an outline of the paper. First we describe the homomorphism and explain how
it leads to a 2-dimensional GLV method for any elliptic curve. Section 3 gives a specific key gen-
eration algorithm which may be convenient for some applications. Section 4 shows how to get a
4-dimensional GLV method for y2 = x3 + B over Fp2 . Section 5 shows that our homomorphisms
can also be used for curves written in Edwards form. Section 8 discusses the generalisation of our
methods to higher genus curves. The proof of the pudding is the timings in Section 9. Section 10
discusses known security threats from using our construction and explains how to avoid them.

2 The homomorphism

We consider elliptic curves defined over any field Fq with point at infinity ∞. Recall that if E is an
elliptic curve over Fq with q + 1 − t points then one can compute the number of points #E(Fqm)
efficiently. For example, #E(Fq2) = q2 + 1− (t2 − 2q) = (q + 1)2 − t2. As usual we define

E(Fqm)[r] = {P ∈ E(Fqm) : [r]P = ∞}.

When we say that a curve or mapping is ‘defined over Fqk ’ we mean that the coefficients of
the polynomials are all in Fqk . The implicit assumption throughout the paper is that when we say

2

an object is defined over a field Fqk then it is not defined over any smaller field, unless explicitly
mentioned.

The following result gives our main construction. Novices can replace the word ‘isogeny’ with
‘isomorphism’, set d = 1 and replace φ̂ by φ−1 without any significant loss of functionality.

Theorem 1. Let E be an elliptic curve defined over Fq such that #E(Fq) = q + 1 − t and let
φ : E → E′ be a separable isogeny of degree d defined over Fqk where E′ is an elliptic curve defined
over Fqm with m | k. Let r | #E′(Fqm) be a prime such that r > d and such that r‖#E′(Fqk). Let
π be the q-power Frobenius map on E and φ̂ : E′ → E be the dual isogeny of φ. Let

ψ = φπφ̂.

Then

1. ψ ∈ End(E′) (i.e., ψ is a group homomorphism).
2. For all P ∈ E′(Fqk) we have ψk(P)− [dk]P = ∞ and ψ2(P)− [dt]ψ(P) + [d2q]P = ∞.
3. There is some λ ∈ Z such that λk − dk ≡ 0 (mod r) and λ2 − dtλ+ d2q ≡ 0 (mod r) such that

ψ(P) = [λ]P for all P ∈ E′(Fqm)[r].

Proof. First note that φ̂ is an isogeny from E′ to E and is defined over Fqk , that π is an isogeny
from E to itself defined over Fq, and that ψ is an isogeny from E to E′ defined over Fqk . Hence
ψ is an isogeny of E′ to itself, and is defined over Fqk (or a subfield). Therefore, ψ is a group
homomorphism.

Since φφ̂ = d on E′ it follows that

ψ2 = φπφ̂φπφ̂ = φπdπφ̂ = dφπ2φ̂

and, by induction, ψk = dk−1φπkφ̂. For P ∈ E′(Fqk) we have φ̂(P) ∈ E(Fqk) and so πk(φ̂(P)) =
φ̂(P). Hence ψk(P) = [dk]P .

Similarly, writingQ = φ̂(P) we have π2(Q)−[t]π(Q)+[q]Q = ∞ and so [d]φ(π2−[t]π+[q])φ̂(P) =
∞. Using the previous algebra, this implies

(ψ2 − [dt]ψ + [qd2])P = ∞.

Finally, let P ∈ E′(Fqm) have order r. Since ψ(P) ∈ E′(Fqk) also has order r and r‖#E′(Fqk) it
follows that ψ(P) = [λ]P for some λ ∈ Z. Clearly, ψ([a]P) = [a]ψ(P) = [λ]([a]P) for all a ∈ Z. Since
ψk(P)−[dk]P = [λk]P−[dk]P = ∞ it follows that λk−dk ≡ 0 (mod r). Similarly, λ2−dtλ+d2q ≡ 0
(mod r). ut

2.1 Special case of quadratic twists

We now give our general result, which applies to elliptic curves over Fp. Our construction can of
course be used for elliptic curves over fields of small characteristic, but it seems more natural to
use subfield curves and Frobenius expansions in that case. Hence, for the remainder of the paper
we focus on the case of characteristic p > 3.

Corollary 1. Let p > 3 be a prime and let E be an elliptic curve over Fp with p+ 1− t points. Let
E′ over Fp2 be the quadratic twist of E(Fp2), so that #E′(Fp2) = (p− 1)2 + t2. Write φ : E → E′

for the twisting isomorphism defined over Fp4 . Let r | #E′(Fp2) be a prime such that r > 2p Let
ψ = φπφ−1. For P ∈ E′(Fp2)[r] we have ψ2(P) + P = ∞.

3

Proof. Let E : y2 = x3 + Ax + B with A,B ∈ Fp. We have #E(Fp2) = p2 + 1 − (t2 − 2p). Let
u ∈ Fp2 be a non-square in Fp2 , define A′ = u2A,B′ = u3B and E′ : y2 = x3 + A′x + B′. Then
#E′(Fp2) = p2 + 1 + (t2 − 2p) = (p− 1)2 + t2. The isomorphism φ : E → E′ is defined by

φ(x, y) = (ux,
√
u

3
y)

and is defined over Fp4 .
If r | #E′(Fp2) is prime such that r > 2p then r - #E(Fp2) and so r‖#E′(Fp4) = #E(Fp2)#E′(Fp2).

Hence we may apply Theorem 1 to get that ψ is a group homomorphism such that ψ(P) = λP
such that λ4 − 1 ≡ 0 (mod r) for P ∈ E′(Fp2)[r]. We now show that, in fact, λ2 + 1 ≡ 0 (mod r).

By definition, ψ(x, y) = (uxp/up,
√
u

3
yp/

√
u

3p) where u ∈ Fp2 (i.e., up2
= u) and

√
u 6∈ Fp2

(and so,
√
u

p2

= −
√
u). If P = (x, y) ∈ E′(Fp2) then xp2

= x, yp2
= y and so

ψ2(x, y) = (uxp2
/up2

,
√
u

3
yp2

/
√
u

3p2

)
= (x, (−1)3y)
= −P.

This completes the proof. ut

The above result applies to any elliptic curve over Fp (with p > 3) and shows that the 2-
dimensional GLV method can be applied. Note that it is possible for #E′(Fp2) to be prime, since
E′ is not defined over Fp (for further analysis see Nogami and Morikawa [20]). One feature of this
construction is that, since p is now half the size compared with using elliptic curves over prime
fields, point counting is much faster than usual (this was noted in [20]). Since we are dealing with
elliptic curves over Fp2 where p is prime then Weil descent attacks are not a threat (see Section 10).

We stress that there is nothing unexpected in our construction. We know that End(E) contains
the p-power Frobenius map and, since E′ ∼= E, we know that End(E′) ∼= End(E) contains a
corresponding endomorphism.

Corollary 2. Let p ≡ 5 (mod 8) be a prime. Let notation be as in the previous corollary. Then
one may choose

ψ(x, y) = (−xp, iyp)

where i ∈ Fp satisfies i2 = −1.

Proof. We have 4‖(p − 1) and 2‖(p + 1). Since 2 is not a square in Fp one can define Fp2 = Fp(u)
where u =

√
2. Note that up = −u and that up−1 ≡ 2(p−1)/2 ≡ −1 (mod p). It follows that

u(p2−1)/2 = −1 and so u is not a square in Fp2 .
Since −1 is a square in Fp the equation x4 = 1 has solutions x = 1,−1, i,−i ∈ Fp. Let w ∈ Fp4

satisfy w2 = u. Note that (w/wp)4 = 1 and so wp = ±iw.
Finally, our homomorphism ψ is defined to be

ψ(x, y) = (uxp/up, w3yp/w3p) = (−xp,±iyp).

Renaming i if necessary gives the result. ut

An exercise for the reader is to show that if E is an elliptic curve over Fp and if E′ over Fp is the
quadratic twist of E then the map ψ of our construction satisfies ψ(P) = −P for all P ∈ E′(Fp).
Our homomorphism is therefore useless for the GLV method in this case.

4

2.2 Higher dimension decompositions

The GLV method can be generalised to m-dimensional decompositions [n]P = [n0]P + [n1]ψ(P) +
· · ·+ [nm−1]ψm−1(P) (for examples with m = 4 and m = 8 see [10]). Such a setting gives improved
performance. As we have found 2-dimensional expansions using E′(Fp2) it is natural to try to get
an m-dimensional decomposition using E′(Fpm).

In general, to obtain an m-dimensional decomposition it is required that ψ does not satisfy
any polynomial equation on E′(Fpm)[r] of degree < m with small integer coefficients. Note that ψ
always satisfies a quadratic polynomial equation but that the coefficients are not necessarily small
modulo r.

The following result gives a partial explanation of the behaviour of ψ on E′(Fpm).

Corollary 3. Let p > 3 be a prime and let E be an elliptic curve over Fp. Let E′ over Fpm be
the quadratic twist of E(Fpm). Write φ : E → E′ for the twisting isomorphism defined over Fp2m .
Let r | #E′(Fpm) be a prime such that r > 2pm/2 Let ψ = φπφ−1. For P ∈ E′(Fpm)[r] we have
ψm(P) + P = ∞.

Proof. As in Corollary 1, we have r‖#E′(Fp2m) = #E′(Fpm)#E(Fpm). Also, using the same method
as the proof of Corollary 1 we have

ψm(x, y) = (uxpm

/upm

,
√
u

3
ypm

/
√
u

3pm

)
= −P.

ut

The problem is that the polynomial xm + 1 is not usually irreducible, and it is possible that ψ
satisfies a smaller degree polynomial. For example, in the case m = 3 one sees that #E′(Fp3) cannot
be prime as it is divisible by N = #E(Fp2)/#E(Fp). If r | #E′(Fp3)/N then ψ2(P)−ψ(P)+1 = ∞
for P ∈ E′(Fp3)[r]. Hence one only gets a 2-dimensional decomposition in the case m = 3.

Indeed, the interesting case is when m is a power of 2, in which case xm + 1 is irreducible and
one can obtain an m-dimensional GLV decomposition. Indeed, Nogami and Morikawa [20] already
proposed exactly this key generation method (choosing E over Fp and then using a quadratic twist
over Fp2c) as a method to generate curves of prime order. Note that [20] does not consider the GLV
method.

Therefore, the next useful case is m = 4, giving a 4-dimensional GLV method. On the downside,
this case is potentially vulnerable to Weil descent attacks (see Section 10) and so the prime p must
be larger than we would ideally like.

The other way to get higher dimension decompositions is to have maps φ defined over larger
fields than a quadratic extension. An example of this is given in Section 4.

3 Key generation

Let p > 3 be prime. We present a key generation algorithm for the construction based on quadratic
twists. Our algorithm is designed so that the resulting curve E′ : y2 = x3 + A′x + B′ over Fp2

has coefficient A′ = −3, which is convenient for efficient implementation when using Jacobian
coordinates (see Section 13.2 of [2]).

We follow the conditions of Corollary 2, which give a particularly simple map ψ. It should be
clear that the algorithm can be used in more general cases.

5

1. Choose a prime p = 5 (mod 8). Note that p can be a special prime, such as NIST prime (see
Section 2.2.6 of [16]).

2. Set u =
√

2 ∈ Fp2 .
3. Set A′ = −3 and A = A′/2 ∈ Fp.
4. Repeat

– Choose random B ∈ Fp and let E : y2 = x3 +Ax+B.
– Compute t = p+ 1−#E(Fp).

5. Until (p − 1)2 + t2 = hr where r is prime and h = 1 (or maybe h < H for some bound H on
the cofactor).

6. Set B′ = Bu3 ∈ Fp2 and E′ : y2 = x3 +A′x+B′.
7. Compute λ ∈ Z such that λ2 + 1 ≡ 0 (mod r).
8. Compute i ∈ Fp so that i4 = 1. Then ψ(x, y) = (−xp, iyp).

One can directly verify that (B′)p = −B′ and so ψ clearly maps E′(Fp2) to itself. As in Corol-
lary 1, the homomorphism ψ is can be used for a 2-dimensional GLV method, since ψ(P) = λP for
P ∈ E′(Fp2)[r].

As remarked earlier, key generation is fast compared with standard ECC, since the point count-
ing for #E(Fp) is over a field half the usual size (this is precisely the point of the paper [20]).

4 Using special curves

We have seen that one can obtain a 2-dimensional GLV method for any elliptic curve over Fp.
However, 2-dimensional GLV methods were already known for some special curves (i.e., those with
a non-trivial automorphism or endomorphism of low degree). We now show how one can get higher-
dimensional expansions using elliptic curves E over Fp2 with #Aut(E) > 2.

The two examples of interest are E : y2 = x3 +B and y2 = x3 +Ax. We give the details in the
former case. The latter is analogous.

Let p ≡ 1 (mod 6) and let B ∈ Fp. Define E : y2 = x3 +B. Choose u ∈ Fp12 such that u6 ∈ Fp2

and define E′ : Y 2 = X3 +u6B over Fp2 . Repeat the construction (choosing p,B, u) until #E′(Fp2)
is prime (or nearly prime). Note that there are 6 possible group orders for y2 = x3 + B′ over Fp2

and three of them are never prime as they correspond to group orders of curves defined over Fp.
The isomorphism φ : E → E′ is given by φ(x, y) = (u2x, u3y) and is defined over Fp12 . The

homomorphism ψ = φπφ−1, where π is the p-power Frobenius on E, is defined over Fp2 and satisfies
the characteristic equation

ψ4 − ψ2 + 1 = 0.

Hence one obtains a 4-dimensional GLV method for these curves. This leads, once again, to a nearly
doubling of the speed of these curves compared with previous techniques.

5 Using Edwards curves

In this section we explain how to write our homomorphism in terms of the Edwards equation for an
elliptic curve, under the assumption that our original curve E has a point of order 4 and a unique
point of order 2 (these conditions imply that E can be written in Edwards form). This means that
the multiexponentiation can be performed using the Edwards formulae for elliptic curve additions
and doublings. We closely follow Section 2 of [6].

6

Let E be an elliptic curve E/Fp2 : y2 = x3 + Ax + B with a point P = (r1, s1) of order 4
and a unique point Q = [2]P = (r2, 0) of order 2. Suppose we have an efficiently computable
homomorphism ψ : E(Fp2) → E(Fp2) of the form ψ : (x, y) = (c1xp, c2y

p), where c1, c2 ∈ Fp2 are
constants. We assume that ψ(P) = λP for P ∈ E(Fp2) for some λ ∈ Z. We will transform E to
an Edwards elliptic curve Ee with an efficiently computable homomorphism ψe on it, such that
ψe(P) = [λ]P for P ∈ Ee(Fp2).

We first move Q to (0, 0) using the standard transformation χ1(x, y) = (x− r2, y) which maps
to E1 : y2 = X3 + a2X

2 + a4X, where a2 = 3r2 and a4 = 3r22 +A are defined over Fp2 .

As in [6], let d = 1 − 4r3
1

s2
1
∈ Fp2 and consider the elliptic curve Ee : x̄2 + ȳ2 = 1 + dx̄2ȳ2 in

Edwards form. We now present the explicit birational map from E1 → Ee given in [6].
Let t1 =

√
r1

1−d = ± s1
2r1

. Define E2 : (r1
1−d)y2 = x3 + a2x

2 + a4x. Then there is an isomorphism

χ2 from E1 → E2 by χ2(x, y) = (x, y/t1). As explained in [6], we know that a4 = r21 and a2 =
2r1(1+d)/(1−d). Let E3 : (1

1−d)y2 = x3 +2((1+d)/(1−d))x2 +x. The isomorphism χ3 from E2 to
E3 is given by χ3(x, y) = (x/r1, y/r1). Finally, E3 is birationally equivalent to Ee by the birational
map χ4(x, y) = (2x/y, (x− 1)/(x+ 1)).

To summarize the above, there is a birational map ρ from E to Ee given by

ρ(x, y) =
(

2t1(x− r2)
y

,
x− r2 − r1
x− r2 + r1

)
= (x̄, ȳ).

The birational map ρ−1 from Ee to E is given by ρ−1(x̄, ȳ) = ((r2−r1)ȳ−(r1+r2)
ȳ−1 , −2r1t1(ȳ+1)

x̄(ȳ−1)).
We may now define the homomorphism ψe = ρψρ−1. We will compute an explicit form for ψe.

Let a = r1 + r2 and b = r2 − r1. Then

ψe(x̄, ȳ) = ρψρ−1(x̄, ȳ)

= ρ

(
c1(bȳ − a)p

(ȳ − 1)p
,
c2(−2r1t1(ȳ + 1))p

(x̄(ȳ − 1))p

)

=

2t1(c1(bȳ−a
ȳ−1)p − r2)

c2(
−2r1t1(ȳ+1)

x̄(ȳ−1))p
,
c1(bȳ−a

ȳ−1)p − a

c1(bȳ−a
ȳ−1)p − b

=

(
x̄p(m1 −m2ȳ

p)
m3(ȳp + 1)

,
m4ȳ

p −m5

m6ȳp −m7

)
where m1 = c1a

p−r2, m2 = c1b
p−r2, m3 = c2r

p
1t

p−1
1 , m4 = c1b

p−a, m5 = c1a
p−a, m6 = c1b

p−b,
and m7 = c1a

p − b are constants in Fp2 which may be precomputed.
It follows that ψe can be computed naively using two Frobenius computations, 5 multiplications

and two inversions. We can also use Montgomery’s trick to replace two inversions with one inversion
and one multiplication. So the homomorphism ψe is certainly efficiently computable.

6 Multiexponentiation

The point of the GLV method is to replace a large point multiplication [n]P by a multiexponentiation
[n0]P +[n1]ψ(P). It is well known that the 2-dimensional case there is a joint sparse form (JSF) for
double exponentiation which has a joint Hamming weight approximately 1/2 the bitlength of the

7

pair of exponents (see [26]). Write l(n) = dlog2(n)e. If the point multiplication [n]P is performed
using a non-adjacent form representation of n then it requires l(n) doubles and l(n)/2 additions.
Similarly, the double exponentiation using the Solinas JSF requires l(n)/2 doubles and l(n)/4
additions. This makes the double exponentiation roughly twice the speed (ignoring precomputation)
of a single exponentiation using simple signed expansions – but not if using windowing methods.

When consideringm-dimensional versions of the GLV method one must consider higher-dimensional
variants of the joint sparse form. This is even more serious when performing signature verification,
which is already a multiexponentiation, combined with the GLV method (i.e., a 2m-dimensional
multiexponentiation). Grabner, Heuberger and Prodinger [15] and Proos [21] have considered this
problem and given algorithms to construct such representations for any m. However, the perfor-
mance improvement becomes small as m grows. Roughly, one expects to get a joint signed repre-
sentation of the m exponents ni such that each block of m+1 bits has two ‘zero columns’. In other
words, using a generalised JSF one expects the multiexponentiation to cost 1+ l(n)/m doubles plus
(m − 1)/(m + 1)(1 + l(n)/m) adds, compared with l(n)/m doubles plus log2(n)/m adds for the
naive method. This is still an improvement, but it is clear that taking an m-dimensional version is
not in general m times faster than a 1-dimensional version.

Also note that the precomputation requirements grow significantly as m increases. This may
or may not be a concern depending on the application. One way to avoid such problems is to
not precompute and store all intermediate values of the windows, and to compute some values on
demand.

In general, the choice of m depends on the platform and application.

7 Point multiplication in Montgomery form

Bernstein [4] and Brown [9] have discussed the analogue of multiexponentiation in the case when
only x-coordinates are used (for example, using Montgomery elliptic curves). Using their results
one can implement the GLV method in this manner.

Unlike the standard case things are not so simple and y-coordinates are needed to compute the
initial steps. Hence, one cannot avoid “point decompression”. In future work we will compare the
cost of the GLV method when using Montgomery form with our results already obtained.

8 Hyperelliptic curves

Afficionados will have noticed that Theorem 1 holds (with minor modifications to the second part
of property (2)) for arbitrary abelian varieties. We now present an analogue of Corollary 1 for
hyperelliptic curves.

Let C : y2 = x2g+1 + f2gx
2g + · · ·+ f1x+ f0 be a genus g curve over Fq with a single point at

infinity. Consider the Jacobian of C over Fqm and take a quadratic twist C ′ : y2 = x2g+1+uf2gx
2g +

· · ·+ u2gx+ u2g+1f0 where u ∈ Fqm is a non-square. The isomorphism ψ : C → C ′ is given by

φ(x, y) = (ux,
√
u

2g+1
y)

This map induces an isomorphism φ : Jac(C) → Jac(C ′) over Fq2m which can be explicitly calculated
on the Mumford representation.

Our construction leads to the homomorphism ψ = φπφ−1 satisfying ψm(D) + D = 0 for D ∈
Jac(C ′)(Fqm) and therefore, when m is a power of 2, one obtains an m-dimensional GLV method.

8

In this case, the speedup for key generation is crucial: counting the number of points on random
Jacobians of cryptographic size in large characteristic is currently impractical, however our new
approach is certainly feasible in practice.

On the other hand, Weil descent attacks are much more successful in higher genus. Indeed, as
discussed in Section 10, even the case m = 2 is potentially vulnerable to Weil descent attacks.
Hence one needs to increase the size of q to attain the required security level and so the benefit of
our ideas in this setting is unclear.

9 Experimental results

We now give some timing comparisons for the computation of [n]P . We consider the case where
the point P is not fixed, and so include the cost of all precomputations needed for window methods
and multiexponentiation.

Consider an elliptic curve implementation which is to provide security at the standard AES-
128 bit level. In this case, from an implementation point of view, it is hard to resist the obvious
attractions of the Mersenne prime p = 2127−1, which is also used in Bernstein’s surface1271 genus
2 implementation [5]. This prime supports a very fast modular reduction algorithm. Note that since
p 6= 5 mod 8 the previously described key generation process is not applicable here. However it can
easily be modified to handle this case as well, although the homomorphism becomes a little more
complex.

Over this prime field we will use the elliptic curve

y2 = x3 − 3x+ 44

defined over the field Fp, whose quadratic twist over Fp2 has #E′(Fp2) = p+ 1 + t2 − 2p points
on it, where

#E
′
(Fp2) = 3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE09C5F010948D9D930E79156D8BA3CAF5

is a prime. The curve was quickly found using a modified version of Schoof’s algorithm.
Since p ≡ 7 mod 8, we can choose to represent values in Fp2 as a+ib, or [a, b], where i =

√
−1. So

now choose u = 2+ i which is a non-square in Fp2 . Note also that p ≡ 2 mod 5. Our homomorphism
is this case simplifies to

ψ(x, y) = (ωx.x̄, ωy.ȳ)

where x̄ denotes the conjugate of x, and

ωx = [(p+ 3)/5, (3p+ 4)/5]
ωy = [12B04E814703D49C1AFAC10F88821962, 426B94A2AD451F296F755142FE73FB62]

For comparison purposes we use an elliptic curve E(Fp) defined with respect to a 256-bit pseudo-
Mersenne modulus p, which provides the same level of security, and we will compare times for a
full point multiplication. Our implementation will use standard Jacobian coordinates, as specified
in the IEEE-1363 standard. Whereas improved parameterisations and formulae have since become
available, we point out that these would benefit both implementations more or less equally. (Having
said that, when the point doubling and addition formulae are implemented over Fp2 we note that
field squarings are now fully 50% faster than field multiplications, and that field inversions are not

9

quite as bad as they would be over Fp, for a double-length p, and hence implementations based on
affine coordinates may be of interest in very space constrained environments.)

First, a short analysis of the speed-up to be expected using the new idea. When implementing
Fp2 arithmetic, extension field multiplication using Karatsuba costs 3m, where m is the cost of
an Fp multiplication. Also, using an obvious trick, a field squaring costs 2m. Since Fp squarings
do not arise in these calculations, we ignore them. When implementing the double-multiplication
algorithm using a Joint Sparse Form [26, 16], the cost of the calculation for each bit of the multiplier
is 1 point doubling, plus 0.5 ”mixed” point additions. Substituting the costs of point doubling and
mixed point addition using standard Jacobian coordinates and IEEE-1363 formulae, gives a total
cost of (3(3m) + 6(2m) + (8(3m) + 3(2m))/2 = 36m per bit. For the 128 bit size of the multipliers
required for the GLV method, this amounts to 128.36m = 4608m for the whole calculation.

For the 256-bit curve, the cost of a point multiplication depends on the windowing method
used. Here we use a standard wNAF method, with a sliding window size of 4. Since we only
perform additions at most one quarter of the time the expected cost will then be approximately
(4M+4S)+0.25(8M+3S) per bit whereM is the cost of an Fp multiplication and S the cost of an Fp

squaring. For simplicity we will assume that M = S, and we ignore the cost of the precomputation,
and so the total cost for a 256-bit point multiplication works out as roughly 2752M .

It is useful to also compare with the operation counts that arise when implementing straight-
forward point multiplication on E(Fp2) without using the new homomorphism, so we include these
as well.

In our implementations we averaged the cost over 105 point multiplications, and the results are
presented in Table 1. These results validate our rough analysis above. However we also include in
the table the often neglected costs of field additions and subtractions. Note that when implementing
Fp2 arithmetic, each multiplication using Karatsuba also requires five Fp additions/subtractions, so
the number of these operations increases dramatically.

Table 1. Point multiplication operation counts

Fp muls Fp adds/subs

E(Fp) (256-bit p) 2729 3824

E(Fp2) using GLV (128-bit p) 4499 12061

E(Fp2) without GLV (128-bit p) 6596 19023

Clearly the superiority (or otherwise) of the new method depends on the efficiency with which
128-bit and 256-bit field multiplications and additions/subtractions can be implemented on partic-
ular platforms. To this end we have initially implemented both methods on two widely differing
platforms, a 1.666GHz 64-bit Intel Core 2, and on an 8-bit 4MHz Atmel Atmega128L chip (which
is a popular choice for Wireless Sensor Network nodes).

9.1 8-bit processor implementation

On the small Atmega128L 8-bit processor, the multiplication times will dominate, so this function
was written in optimal loop-unrolled assembly language. We use the MIRACL library [22], which
includes tools for the automatic generation of such code (and which holds the current speed record

10

in its class [23]). An 8-bit processor is generally happier with a smaller base field size, so it is to be
expected that simply moving from a 256-bit field size to a 128-bit field size will bring some benefits.
Up at the 256-bit field size, standard “school-boy” methods of multiprecision multiplication start
to become slow, and should ideally begin to give way to Karatsuba-based methods, but in fact we
are not in a comfort zone for either method – both are rather inefficient. Our tests indicate that for
a 256-bit field O(n2) “school-boy” methods are still (just) a bit faster.

Table 2. Point multiplication timings – 8-bit processor

Atmel Atmega128L processor Time (s)

E(Fp) (256-bit p) 7.45

E(Fp2) using GLV (128-bit p) 4.34

E(Fp2) without GLV (128-bit p) 6.61

As can be seem from these timings, our new method for ECC point multiplication is nearly 72%
faster. However observe that there are two effects at work here – and that some of this improvement
can be put down to the fact that a smaller word length processor prefers a smaller field size.
Nonetheless the major speed-up is due to the applicability of the GLV method.

9.2 64-bit processor implementation

It has been eloquently observed by Avanzi [1], that software implementations over smaller prime
fields (as required by our proposed method), where field elements can be stored in just a few
CPU registers, suffer disproportionally when implemented using general purpose multi-precision
libraries. This “Avanzi effect” would work against us here, as we are using the general purpose
MIRACL library [22]. Special purpose libraries like the mpFq library [14] which generate field-
specific code, and implementations which work hard to squeeze out overheads, such as Bernstein’s
implementations [5] are always going to be faster.

In the context of a 64-bit processor, while one might hope that timings would be dominated by
the O(n2) base field multiplication operations, for small values of n the O(n) contribution of the
numerous base field additions and subtractions becomes significant, as also observed by Gaudry and
Thomé [14]. Observe that on the 64-bit processor a 128-bit field element requires just n = 2 (and
indeed the description as “multi-precision” should really give way to “double precision”). Therefore
it is to be expected that the speed-up we can achieve in this case will be less than might have been
hoped.

So is our new method faster? There is really only one satisfactory way to resolve the issue –
and that is to identify the fastest known E(Fp) implementation on a 64-bit processor, and try to
improve on it. We understand that the current record is that announced by Gaudry and Thomé
at SPEED 2007 [14], using an implementation of Bernstein’s curve25519 [3]. This record is in the
setting of an implementation of the elliptic curve Diffie-Hellman method, which requires a single
point multiplication to determine the shared secret key.

We point out that the implementation and optimizations of curve25519 are very much in the
sole context of an efficient Diffie-Hellman implementation – ours is general purpose and immediately
applicable to a wide range of ECC protocols. In particular the implementation of curve25519 uses

11

Montgomery’s parameterisation of an elliptic curve, and is not required to maintain a y point
coordinate, and hence can achieve compression of the public key without the calculation of a field
square root.

On the other hand we have the use of a particularly nice modulus 2127 − 1, which brings many
benefits. For example a base field square root of a quadratic residue x can be calculated as simply
x2125

.
In order to be competitive we wrote a specialised hand-crafted x86-64 assembly language module

to handle the base field arithmetic, and integrated this with the MIRACL library. Given that each
field element can be stored in just two 64-bit registers, this code is quite short, and did not take
long to generate, optimize and test.

To obtain a fair comparison, we utilise the very useful and easy to use eBats facility [8]. This
measures the runtime in terms of CPU clock cycles. Our cycle counts are for an Intel Core 2
processor. Note that for technical reasons there is a small natural variance in the number of clock
cycles recorded, so these are averaged figures.

Table 3. Point multiplication timings – 64-bit processor

Intel Core 2 processor Clock cycles

E(Fp) (256-bit p) 386,000

E(Fp2) (128-bit p) without compression 359,344

E(Fp2) (128-bit p) with compression 375,736

Our eBat can be downloaded from ftp://ftp.computing.dcu.ie/pub/crypto/gls1271-2.tar.
Profiling the code reveals that our with-compression version spends 48.32% of its time doing base
field multiplications and squarings, and 19.18% of the time doing base field additions and subtrac-
tions. Calculating and managing the joint sparse form takes 4.84% of the total time, and approxi-
mately 6% of the time is required for modular inversion.

10 Security implications

Our homomorphisms (at least, in the case when φ is an isomorphism) define equivalence classes
of points in E′(Fpm) of size 2m by [P] = {±ψi(P) : 0 ≤ i < m}. By the methods of Gallant-
Lambert-Vanstone [11] and Wiener-Zuccherato [27] one can perform the Pollard algorithms for the
discrete logarithm problem on these equivalence classes. This speeds up the solution of the discrete
logarithm problem by a factor of

√
m over previous techniques.

A more serious threat to our proposal comes from the Weil descent philosophy, and in particular
the work of Gaudry [13]. Gaudry gives an algorithm for the discrete logarithm problem in E′(Fpn)
requiring time O(p2−4/(2n+1)) (with bad constants) which, in principle, beats the Pollard methods
for n ≥ 3. Gaudry’s method also applies to abelian varieties: if A is an abelian varitey of dimension
d over Fpn then the algorithm has complexity O(p2−4/(2dn+1)). Hence, for Jacobians of genus 2
curves over Fp2 one has an algorithm running in time O(p1.55), rather than the Pollard complexity
of O(p2).

Gaudry’s method is still exponential time and so one can secure against it by increasing the
parameters. For example, to achieve 128-bit security level using our construction with genus 2 curves

12

over Fp2 (or elliptic curves over Fp4) one should take p to be approximately 80 bits rather than the
desired 64 bits.

Acknowledgements

We thank Dan Bernstein, Billy Brumley, Jinhui Chao, Pierrick Gaudry, Alfred Menezes, Yasuyuki
Nogami and Fre Vercauteren for suggestions and comments.

References

1. R. Avanzi, Aspects of Hyperelliptic Curves over Large Prime Fields in Software Implementations, CHES
2004, Springer LNCS 3156 (2004), 148–162

2. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren, Handbook of elliptic
and hyperelliptic cryptography, Chapman and Hall/CRC, 2006.

3. D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, in M. Yung et al (eds), PKC 2006,
Springer LNCS 3958 (2006) 207–228.

4. D. J. Bernstein, Differential addition chains, preprint.
5. D. J. Bernstein, Elliptic vs. hyperelliptic, part 1 ECC 2006, Toronto, Canada

http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/slides.html
6. D. J. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, in K. Kurosawa (ed),

Asiacrypt 2007, Springer LNCS 4833 (2007) 29–50.
7. D. J. Bernstein and T. Lange, Inverted Edwards coordinates, in S. Boztas and H.-F. Lu (eds.), AAECC

2007, Springer LNCS 4851 (2007) 20–27.
8. eBATS: ECRYPT Benchmarking of Asymmetric Systems, http://www.ecrypt.eu.org/ebats/
9. D. R. L. Brown, Multi-Dimensional Montgomery Ladders for Elliptic Curves, eprint 2006/220.
10. S. D. Galbraith and M. Scott, Exponentiation in pairing-friendly groups using homomorphisms, preprint

2008. http://eprint.iacr.org/2008/117
11. R. P. Gallant, R. J. Lambert and S. A. Vanstone, Improving the parallelized Pollard lambda search on

anomalous binary curves, Math. Comp., 69 (2000), 1699-1705.
12. R. P. Gallant, R. J. Lambert and S. A. Vanstone, Faster Point Multiplication on Elliptic Curves with

Efficient Endomorphisms. In J. Kilian (Ed.), CRYPTO 2001, Springer LNCS 2139 (2001), 190–200.
13. P. Gaudry, Index calculus for abelian varieties and the elliptic curve discrete logarithm problem, to

appear in J. Symbolic Comput.
14. P. Gaudry and E. Thome, The mpFq library and implementing curve-based key exchanges. SPEED

workshop presentation, Amsterdam, June 2007
15. P. J. Gabner,C. Heuberger and H. Prodinger, Distribution results for low-weight binary representations

for pairs of integers, Theoretical Comp. Sci., 319 (2004) 307–331.
16. D. Hankerson, A. J. Menezes and S. Vanstone, Guide to elliptic curve cryptography, Springer (2004).
17. T. Iijima, K. Matsuo, J. Chao and S. Tsujii, Costruction of Frobenius maps of twists elliptic curves

and its application to elliptic scalar multiplication, SCIS 2002.
18. A. J. Menezes, Another look at HMQV, J. Mathematical Cryptology, 1 (2007), 47-64.
19. B. Möller, Algorithms for multi-exponentiation. In S. Vaudenay and A. M. Youssef (Eds.), SAC 2001,

Springer LNCS 2259 (2001), 165–180.
20. Y. Nogami and Y. Morikawa, Fast generation of elliptic curves with prime order over Fp2c , in Proceed-

ings International Symposium on Information Theory 2003.
21. J. Proos, Joint sparse forms and generating zero solumns when combing, Technical report CORR 2003-

23, CACR (2003)
22. M.Scott, MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Library,

http://ftp.computing.dcu.ie/pub/crypto/miracl.zip, 2008

13

23. M. Scott and P. Szczechowiak, Optimizing Multiprecision Multiplication for Public Key Cryptography,
preprint 2007. http://eprint.iacr.org/2007/299

24. F. Sica, M. Ciet, J.-J. Quisquater, Analysis of the Gallant-Lambert-Vanstone method based on efficient
endomorphisms: Elliptic and hyperelliptic curves, in K. Nyberg and H. M. Heys (eds.), SAC 2002,
Springer LNCS 2595 (2003) 21–36.

25. J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer-
Verlag, 1986.

26. J. A. Solinas, Low-weight binary representations for pairs of integers, Technical report CORR 2001–41,
CACR, 2001.

27. M. J. Wiener and R. J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems. In S. Tavares and
H. Meijer (Eds.), SAC 1998, Springer LNCS 1556 (1999), 190–200.

14

