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Abstract. Efficiently computable homomorphisms allow elliptic curve point multiplication
to be accelerated using the Gallant-Lambert-Vanstone (GLV) method. We extend results of
Iijima, Matsuo, Chao and Tsujii which give such homomorphisms for a large class of elliptic
curves by working over quadratic extensions and demonstrate that these results can be applied
to the GLV method.
Our implementation runs in between 0.70 and 0.84 the time of the previous best methods for
elliptic curve point multiplication on curves without small class number complex multiplica-
tion. Further speedups are possible when using more special curves.
Keywords: elliptic curves, point multiplication, GLV method, isogenies.

1 Introduction

Let E be an elliptic curve over a finite field Fq and let P, Q ∈ E(Fq) have order r. The fundamental
operations in elliptic curve cryptography are point multiplication [n]P and [n]P + [m]Q where
n,m ∈ Z. There is a vast literature on efficient methods for computing [n]P and [n]P + [m]Q (a
good reference is [3]). There is a significant difference between computing [n]P for varying n and a
fixed point P , and computing [n]P where both n and P vary; this paper focusses on the latter case.

The Gallant-Lambert-Vanstone method [15] is an important tool for speeding up point multi-
plication. The basic idea is as follows. If the elliptic curve E has an efficiently computable endomor-
phism ψ (other than a standard multiplication by n map) such that ψ(P ) ∈ 〈P 〉 then one can replace
the computation [n]P by the multiexponentiation [n0]P +[n1]ψ(P ) where |n0|, |n1| ≈

√
r. The inte-

gers n0 and n1 are computed by solving a closest vector problem in a lattice, see [15] for details. In
principle this computation requires only around 0.6 to 0.7 the time of the previous method (the pre-
cise details depend on the relative costs of doubling and addition, the window size being used, etc).
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Some examples allow higher degree decompositions such as [n0] + [n1]ψ(P ) + · · ·+ [nm−1]ψm−1(P )
where |ni| ≈ r1/m which can give further speedups. We call the latter approach the m-dimensional
GLV method.

Gallant, Lambert and Vanstone [15] only gave examples of suitable efficiently computable en-
domorphisms in two cases, namely subfield curves (i.e., groups E(Fqm) where E is defined over
Fq; these do not have prime or nearly prime order unless q is very small) and curves with special
endomorphism structure (essentially, that the endomorphism ring has small class number). Hence,
if one is using randomly chosen prime-order elliptic curves over finite fields for cryptography then
the GLV method is not usually available. Indeed, in Section 7 of [30] one finds the claim “the GLV
method is only effective for those exceptional elliptic curves that have complex multiplication by
an order with small discriminant.”

In fact, Iijima, Matsuo, Chao and Tsujii [21] constructed an efficiently computable homomor-
phism on elliptic curves E(Fp2) with j(E) ∈ Fp arising from the Frobenius map on a twist of E.
Apparently they did not realise the application of their results to the GLV method. In this paper
we give a generalisation of this approach and analyse it in the context of the GLV method. The
techniques apply to all elliptic curves over Fp2 such that j(E) ∈ Fp and can be used with curves of
prime order.

The curves considered in this paper are not completely general: the number of Fq2 -isogeny classes
of elliptic curves over Fq2 is approximately 2q2 whereas our construction gives only q isomorphism
classes of curves. However, this is a major improvement over earlier papers on the GLV method
which, in practice, were only applied to a finite number of Fq-isomorphism classes for any given q.
The results of this paper therefore overturn the claims of Section 7 of [30].

The basic idea is somewhat analogous to subfield curves: We take elliptic curves E with j(E) ∈ Fq

and consider the group E(Fqm). However a crucial difference is that E is defined over Fqm , not Fq.
This means it is possible to obtain curves of prime order and so there is no need to restrict attention
to q being small. Our method can be used with any prime power q and any elliptic curves E over
Fq and always gives rise to a GLV method of dimension at least 2.

We give experimental results comparing our method for point multiplication [n](x, y) with the
best existing methods for this operation (indeed, we compare with optimised methods using only x-
coordinate arithmetic due to Bernstein [4] and Gaudry-Thomé [17]). We find that the new method
runs in between 0.70 and 0.84 the time of the previous best methods. The exact performance
depends on the platform being used; our best result is for 8-bit processors. Our methods also can
be applied in situations such as signature verification which are not covered by the timings in [4,
17] and we expect a significant speedup on previous methods in this case.

Note that our techniques can also be implemented on curves in Edwards form, and exploit their
benefits. We also generalise the method to hyperelliptic curves.

The focus in this paper is on curves over prime fields, since in small characteristic one might pre-
fer to use subfield curves and Frobenius expansions. However, Hankerson, Karabina and Menezes [20]
have experimented with the method in characteristic 2 and they report that the new method runs
in about 0.74 to 0.77 the time of the best standard method for general curves.

We now give an outline of the paper. First we describe the homomorphism and explain how it
leads to a 2-dimensional GLV method. Section 3 gives a specific key generation algorithm which
may be convenient for some applications. Section 4 shows how to get a 4-dimensional GLV method
for y2 = x3 + B over Fp2 . Section 5 shows that our homomorphisms can also be used for curves
written in Edwards form. Section 6 discusses the generalisation of our methods to higher genus
curves. Section 7 discusses the algorithm we use for multiexponentiation. The proof of the pudding
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is the timings in Section 8. Section 9 discusses known security threats from using our construction
and explains how to avoid them.

2 The homomorphism

We consider elliptic curves defined over any field Fq with point at infinity ∞. Recall that if E is an
elliptic curve over Fq with q + 1 − t points then one can compute the number of points #E(Fqm)
efficiently. For example, #E(Fq2) = q2 + 1− (t2 − 2q) = (q + 1)2 − t2. As usual we define

E(Fqm)[r] = {P ∈ E(Fqm) : [r]P = ∞}.

When we say that a curve or mapping is ‘defined over Fqk ’ we mean that the coefficients of
the polynomials are all in Fqk . The implicit assumption throughout the paper is that when we say
an object is defined over a field Fqk then it is not defined over any smaller field, unless explicitly
mentioned.

The following result gives our main construction. Novices can replace the word ‘separable
isogeny’ with ‘isomorphism’, set d = 1 and replace φ̂ by φ−1 without any significant loss of func-
tionality.

Theorem 1. Let E be an elliptic curve defined over Fq such that #E(Fq) = q + 1 − t and let
φ : E → E′ be a separable isogeny of degree d defined over Fqk where E′ is an elliptic curve defined
over Fqm with m | k. Let r | #E′(Fqm) be a prime such that r > d and such that r‖#E′(Fqk). Let
π be the q-power Frobenius map on E and φ̂ : E′ → E be the dual isogeny of φ. Let

ψ = φπφ̂.

Then

1. ψ ∈ End(E′) (i.e., ψ is a group homomorphism).
2. For all P ∈ E′(Fqk) we have ψk(P )− [dk]P = ∞ and ψ2(P )− [dt]ψ(P ) + [d2q]P = ∞.
3. There is some λ ∈ Z such that λk − dk ≡ 0 (mod r) and λ2 − dtλ + d2q ≡ 0 (mod r) such that

ψ(P ) = [λ]P for all P ∈ E′(Fqm)[r].

Proof. First note that φ̂ is an isogeny from E′ to E and is defined over Fqk , that π is an isogeny
from E to itself defined over Fq, and that φ is an isogeny from E to E′ defined over Fqk . Hence
ψ is an isogeny of E′ to itself, and is defined over Fqk (or a subfield). Therefore, ψ is a group
homomorphism.

Since φφ̂ = d on E′ it follows that

ψ2 = φπφ̂φπφ̂ = φπdπφ̂ = dφπ2φ̂

and, by induction, ψk = dk−1φπkφ̂. For P ∈ E′(Fqk) we have φ̂(P ) ∈ E(Fqk) and so πk(φ̂(P )) =
φ̂(P ). Hence ψk(P ) = [dk]P .

Similarly, writing Q = φ̂(P ) we have π2(Q)−[t]π(Q)+[q]Q = ∞ and so [d]φ(π2−[t]π+[q])φ̂(P ) =
∞. Using the previous algebra, this implies

(ψ2 − [dt]ψ + [qd2])P = ∞.
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Finally, let P ∈ E′(Fqm) have order r. Since ψ(P ) ∈ E′(Fqk) also has order r and r‖#E′(Fqk)
it follows that ψ(P ) = [λ]P for some λ ∈ Z. Since ψ is a homomorphism, ψ([a]P ) = [a]ψ(P ) =
[λ]([a]P ) for all a ∈ Z. Since ψk(P ) − [dk]P = [λk]P − [dk]P = ∞ it follows that λk − dk ≡ 0
(mod r). Similarly, λ2 − dtλ + d2q ≡ 0 (mod r). ut

We stress that there is nothing unexpected in the above construction. Consider the case when
φ is an isomorphism: Then E′ ∼= E implies End(E′) ∼= End(E). We know that End(E) contains the
p-power Frobenius map and hence End(E′) contains a corresponding endomorphism. The above
Theorem simply writes down this endomorphism explicitly.

2.1 Special case of quadratic twists

We now specialise Theorem 1 to elliptic curves over Fp and the case m = 2, p > 3.

Corollary 1. Let p > 3 be a prime and let E be an elliptic curve over Fp with p + 1 − t points.
Let E′ over Fp2 be the quadratic twist of E(Fp2). Then #E′(Fp2) = (p − 1)2 + t2. Let φ : E → E′

be the twisting isomorphism defined over Fp4 . Let r | #E′(Fp2) be a prime such that r > 2p Let
ψ = φπφ−1. For P ∈ E′(Fp2)[r] we have ψ2(P ) + P = ∞.

Proof. Let E : y2 = x3 + Ax + B with A,B ∈ Fp. We have #E(Fp2) = p2 + 1 − (t2 − 2p). Let
u ∈ Fp2 be a non-square in Fp2 , define A′ = u2A,B′ = u3B and E′ : y2 = x3 + A′x + B′. Then
#E′(Fp2) = p2 + 1 + (t2 − 2p) = (p− 1)2 + t2. The isomorphism φ : E → E′ is defined by

φ(x, y) = (ux,
√

u
3
y)

and is defined over Fp4 .
If r | #E′(Fp2) is prime such that r > 2p then r - #E(Fp2) = (p + 1 − t)(p + 1 + t) and

so r‖#E′(Fp4) = #E(Fp2)#E′(Fp2). Hence we may apply Theorem 1 to get that ψ is a group
homomorphism such that ψ(P ) = [λ]P such that λ4 − 1 ≡ 0 (mod r) for P ∈ E′(Fp2)[r]. We now
show that, in fact, λ2 + 1 ≡ 0 (mod r).

By definition, ψ(x, y) = (uxp/up,
√

u
3
yp/

√
u

3p) where u ∈ Fp2 (i.e., up2
= u) and

√
u 6∈ Fp2

(and so,
√

u
p2

= −√u). If P = (x, y) ∈ E′(Fp2) then xp2
= x, yp2

= y and so

ψ2(x, y) = (uxp2
/up2

,
√

u
3
yp2

/
√

u
3p2

)
= (x, (−1)3y)
= −(x, y).

This completes the proof. ut
The above result applies to any elliptic curve over Fp (with p > 3) and shows that the 2-

dimensional GLV method can be applied. Note that it is possible for #E′(Fp2) to be prime, since
E′ is not defined over Fp (for further analysis see Nogami and Morikawa [26]). One feature of this
construction is that, since p is now half the size compared with using elliptic curves over prime
fields, point counting is much faster than usual (this was noted in [26]). Since we are dealing with
elliptic curves over Fp2 where p is prime then Weil descent attacks are not a threat (see Section 9).

An exercise for the reader is to show that if E is an elliptic curve over Fp and if E′ over Fp is the
quadratic twist of E then the map ψ of our construction satisfies ψ(P ) = −P for all P ∈ E′(Fp).
Our homomorphism is therefore useless for the GLV method in this case.
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Corollary 2. Let p ≡ 5 (mod 8) be a prime. Let notation be as in Corollary 1. Then one may
choose

ψ(x, y) = (−xp, iyp)

where i ∈ Fp satisfies i2 = −1.

Proof. We have 4‖(p − 1) and 2‖(p + 1). Since 2 is not a square in Fp one can define Fp2 = Fp(u)
where u =

√
2. Note that up = −u and that up−1 ≡ 2(p−1)/2 ≡ −1 (mod p). It follows that

u(p2−1)/2 = −1 and so u is not a square in Fp2 .
Since −1 is a square in Fp the equation x4 = 1 has solutions x = 1,−1, i,−i ∈ Fp. Let w ∈ Fp4

satisfy w2 = u. Since w 6∈ Fp2 and (w/wp)4 = 1 we have wp = ±iw.
Finally, our homomorphism ψ is defined to be

ψ(x, y) = (uxp/up, w3yp/w3p) = (−xp,±iyp).

Renaming i if necessary gives the result. ut

Lemma 1. Let notation be as in Corollary 1. Then ψ(P ) = [λ]P where λ = t−1(p− 1) (mod r).

Proof. The proof of Corollary 1 shows that ψ(P ) = [λ]P for some λ ∈ Z. Since ψ2(P ) = −P we
have λ2 + 1 ≡ 0 (mod r). Similarly, ψ2(P ) − [t]ψ(P ) + [p]P = ∞, so λ2 − tλ + p ≡ 0 (mod r).
Subtracting the second equation from the first gives tλ + (1− p) ≡ 0 (mod r).

Finally, we give some remarks about the lattice which arises in the GLV method when decom-
posing [n]P as [n0]P + [n1]ψ(P ). Recall from [15] that we consider the lattice

L = {(x, y) ∈ Z2 : x + yλ ≡ 0 (mod r)}.

It is easy to prove that {(r, 0), (−λ, 1)} is a basis for L; this shows that the determinant of L is r.
The GLV method uses Babai’s rounding method to solve the closest vector problem (CVP), and
this method requires a reduced basis.

Lemma 2. The vectors {(t, p − 1), (1 − p, t)} are an orthogonal basis for a sublattice L′ of L of
determinant #E′(Fp2). Given a point (a, b) ∈ R2 there exists a lattice point (x, y) ∈ L′ such that
‖(a, b)− (x, y)‖ ≤ (p + 1)/

√
2.

Proof. In the proof of Lemma 1 we showed that tλ + (1 − p) ≡ 0 (mod r), which proves that
(1− p, t) ∈ L. Multiplying by λ and using λ2 = −1 gives (t, p− 1) ∈ L. This basis has determinant
(p − 1)2 + t2 = #E′(Fp2) so generates a sublattice L′ ⊆ L (if #E′(Fp2) = r then L = L′). It is
easy to check that the basis vectors are orthogonal of length

√
#E′(Fp2) ≤

√
p2 + 2p + 1 = p + 1.

Finally, simple geometry shows that the maximum distance from a lattice point is
√

#E′(Fp2)/2 ≤
(p + 1)/

√
2.

Computing the coefficients n0, n1 for the GLV method is therefore particularly simple in this
case. Further, one knows that |n0|, |n1| ≤ (p+1)/

√
2. As always, an alternative to the lattice method

which can be used in some cryptographic settings is to choose small coefficients n0, n1 ∈ Z directly
rather than choosing a random 0 ≤ n < r and then computing the corresponding (n0, n1).
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2.2 Higher dimension decompositions

The GLV method can be generalised to m-dimensional decompositions [n]P = [n0]P + [n1]ψ(P ) +
· · ·+ [nm−1]ψm−1(P ) (for examples with m = 4 and m = 8 see [13]). Such a setting gives improved
performance. As we have found 2-dimensional expansions using E′(Fp2) it is natural to try to get
an m-dimensional decomposition using E′(Fpm).

In general, to obtain an m-dimensional decomposition it is required that ψ does not satisfy
any polynomial equation on E′(Fpm)[r] of degree < m with small integer coefficients. Note that ψ
always satisfies a quadratic polynomial equation but that the coefficients are not necessarily small
modulo r.

The following result gives a partial explanation of the behaviour of ψ on E′(Fpm).

Corollary 3. Let p > 3 be a prime and let E be an elliptic curve over Fp. Let E′ over Fpm be
the quadratic twist of E(Fpm). Write φ : E → E′ for the twisting isomorphism defined over Fp2m .
Let r | #E′(Fpm) be a prime such that r > 2pm/2 Let ψ = φπφ−1. For P ∈ E′(Fpm)[r] we have
ψm(P ) + P = ∞.

Proof. As in Corollary 1, we have r‖#E′(Fp2m) = #E′(Fpm)#E(Fpm). Also, using the same method
as the proof of Corollary 1 we have

ψm(x, y) = (uxpm

/upm

,
√

u
3
ypm

/
√

u
3pm

)
= −P.

ut

The problem is that the polynomial xm + 1 is not usually irreducible, and it is possible that ψ
satisfies a smaller degree polynomial. For example, in the case m = 3 one sees that #E′(Fp3) cannot
be prime as it is divisible by N = #E(Fp2)/#E(Fp). If r | #E′(Fp3)/N then ψ2(P )−ψ(P )+1 = ∞
for P ∈ E′(Fp3)[r]. Hence one only gets a 2-dimensional decomposition in the case m = 3.

Indeed, the interesting case is when m is a power of 2, in which case xm + 1 is irreducible and
one can obtain an m-dimensional GLV decomposition. Indeed, Nogami and Morikawa [26] already
proposed exactly this key generation method (choosing E over Fp and then using a quadratic twist
over Fp2c ) as a method to generate curves of prime order. Note that [26] does not consider the GLV
method.

Therefore, the next useful case is m = 4, giving a 4-dimensional GLV method. On the downside,
this case is potentially vulnerable to Weil descent attacks (see Section 9) and so the prime p must
be larger than we would ideally like.

The other way to get higher dimension decompositions is to have maps φ defined over larger
fields than a quadratic extension. An example of this is given in Section 4.

3 Key generation

Let p > 3 be prime. We present a key generation algorithm for the quadratic twist construction.
Our algorithm is designed so that the resulting curve E′ : y2 = x3+A′x+B′ over Fp2 has coefficient
A′ = −3, which is convenient for efficient implementation when using Jacobian coordinates (see
Section 13.2 of [3]).

6



Algorithm 1 Key generation for quadratic twist construction
Output: p, E′, ψ, λ
1: Choose a prime p = 5 (mod 8) . p can be special (e.g., a NIST prime; see Section 2.2.6 of [19])
2: Set u =

√
2 ∈ Fp2

3: Set A′ = −3 and A = A′/2 ∈ Fp

4: repeat
5: Choose random B ∈ Fp and let E : y2 = x3 + Ax + B
6: Compute t = p + 1−#E(Fp).
7: until (p− 1)2 + t2 = hr where r is prime and h = 1
8: Set B′ = Bu3 ∈ Fp2 and E′ : y2 = x3 + A′x + B′

9: Set λ = t−1(p− 1) (mod r)
10: Compute i ∈ Fp so that i2 = −1
11: Define ψ(x, y) = (−xp, iyp).
12: return p, (A′, B′), ψ, λ

We use Corollary 2, which gives a particularly simple map ψ. It should be clear that the algorithm
can be used in more general cases. Our algorithm produces curves of prime order, but this can be
relaxed by requiring only h < H for some bound H in line 7.

As remarked earlier, key generation is fast compared with standard ECC, since the point count-
ing for #E(Fp) is over a field half the usual size (this is precisely the point of the paper [26]).

4 Using special curves

We have seen that one can obtain a 2-dimensional GLV method for any elliptic curve over Fp.
However, 2-dimensional GLV methods were already known for some special curves (i.e., those with
a non-trivial automorphism or endomorphism of low degree). We now show how one can get higher-
dimensional expansions using elliptic curves E over Fp2 with #Aut(E) > 2.

The two examples of interest are E : y2 = x3 + B and y2 = x3 + Ax. We give the details in the
former case. The latter is analogous.

Let p ≡ 1 (mod 6) and let B ∈ Fp. Define E : y2 = x3 + B. Choose u ∈ Fp12 such that u6 ∈ Fp2

and define E′ : Y 2 = X3 +u6B over Fp2 . Repeat the construction (choosing p,B, u) until #E′(Fp2)
is prime (or nearly prime). Note that there are 6 possible group orders for y2 = x3 + B′ over Fp2

and three of them are never prime as they correspond to group orders of curves defined over Fp.
The isomorphism φ : E → E′ is given by φ(x, y) = (u2x, u3y) and is defined over Fp12 . The

homomorphism ψ = φπφ−1, where π is the p-power Frobenius on E, is defined over Fp2 and satisfies
the characteristic equation

ψ4 − ψ2 + 1 = 0.

Hence one obtains a 4-dimensional GLV method for these curves. This leads, once again, to a major
speedup of these curves compared with previous techniques.

Note that −ψ2 satisfies the characteristic equation x2 + x + 1 and so acts as the standard
automorphism (x, y) 7→ (ζ3x, y) on E.

5 Using Edwards curves

In this section we explain how to write our homomorphism in terms of the Edwards equation for an
elliptic curve, under the assumption that our original curve E has a point of order 4 and a unique
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point of order 2 (these conditions imply that E can be written in Edwards form). This means that
the multiexponentiation can be performed using the Edwards formulae for elliptic curve additions
and doublings. We closely follow Section 2 of [7].

Let E be an elliptic curve E/Fp2 : y2 = x3 +Ax+B with a point R = (r1, s1) defined over Fp2 of
order 4 and a unique point S = [2]R = (r2, 0) of order 2. Suppose we have an efficiently computable
homomorphism ψ : E(Fp2) → E(Fp2) of the form ψ : (x, y) = (c1x

p, c2y
p), where c1, c2 ∈ Fp2 are

constants. We assume that ψ(P ) = [λ]P for P ∈ E(Fp2)[r] for some λ ∈ Z. We will transform E
to an Edwards elliptic curve Ee with an efficiently computable homomorphism ψe on it, such that
ψe(P ) = [λ]P for P ∈ Ee(Fp2)[r].

We first move S to (0, 0) using the standard transformation χ1(x, y) = (x − r2, y) which maps
to E1 : Y 2 = X3 + a2X

2 + a4X, where a2 = 3r2 and a4 = 3r2
2 + A are defined over Fp2 .

As in [7], let d = 1 − 4r3
1

s2
1
∈ Fp2 and consider the elliptic curve Ee : x̄2 + ȳ2 = 1 + dx̄2ȳ2 in

Edwards form. We now present the explicit birational map from E1 → Ee given in [7].
Let t1 =

√
r1

1−d = ± s1
2r1

. Define E2 : ( r1
1−d )y2 = x3 + a2x

2 + a4x. Then there is an isomorphism

χ2 defined over Fp2 from E1 → E2 by χ2(x, y) = (x, y/t1). As explained in [7], we know that a4 = r2
1

and a2 = 2r1(1 + d)/(1 − d). Let E3 : ( 1
1−d )y2 = x3 + 2((1 + d)/(1 − d))x2 + x. The isomorphism

χ3 from E2 to E3 over Fp2 is given by χ3(x, y) = (x/r1, y/r1). Finally, E3 is birationally equivalent
over Fp2 to Ee by the birational map χ4(x, y) = (2x/y, (x− 1)/(x + 1)).

To summarize the above, there is a birational map ρ defined over Fp2 from E to Ee given by

ρ(x, y) =
(

2t1(x− r2)
y

,
x− r2 − r1

x− r2 + r1

)
= (x̄, ȳ).

The birational map ρ−1 from Ee to E is given by ρ−1(x̄, ȳ) = ( (r2−r1)ȳ−(r1+r2)
ȳ−1 , −2r1t1(ȳ+1)

x̄(ȳ−1) ).
We may now define the homomorphism ψe = ρψρ−1. We will compute an explicit form for ψe.

Let a = r1 + r2 and b = r2 − r1. Then

ψe(x̄, ȳ) = ρψρ−1(x̄, ȳ)

= ρ

(
c1(bȳ − a)p

(ȳ − 1)p
,
c2(−2r1t1(ȳ + 1))p

(x̄(ȳ − 1))p

)

=


2t1(c1( bȳ−a

ȳ−1 )p − r2)

c2(
−2r1t1(ȳ+1)

x̄(ȳ−1) )p
,
c1( bȳ−a

ȳ−1 )p − a

c1( bȳ−a
ȳ−1 )p − b




=
(

x̄p(m1 −m2ȳ
p)

m3(ȳp + 1)
,
m4ȳ

p −m5

m6ȳp −m7

)

where m1 = c1a
p−r2, m2 = c1b

p−r2, m3 = c2r
p
1tp−1

1 , m4 = c1b
p−a, m5 = c1a

p−a, m6 = c1b
p−b,

and m7 = c1a
p − b are constants in Fp2 which may be precomputed.

It follows that ψe can be computed naively using two Frobenius computations, 5 multiplications
and two inversions. We can also use Montgomery’s trick to replace two inversions with one inversion
and one multiplication. So the homomorphism ψe is certainly efficiently computable.

6 Hyperelliptic curves

Afficionados will have noticed that Theorem 1 holds (with minor modifications to the second part
of property (2)) for arbitrary abelian varieties (this has been noted by Kozaki, Matsuo and Shim-
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bara [22], but they do not use it for the GLV method). We now present an analogue of Corollary 1
for hyperelliptic curves.

Let C : y2 = x2g+1 + f2gx
2g + · · ·+ f1x + f0 be a genus g curve over Fq with a single point at

infinity. Consider the Jacobian of C over Fqm and take a quadratic twist C ′ : y2 = x2g+1+uf2gx
2g +

· · ·+ u2gx + u2g+1f0 where u ∈ Fqm is a non-square. The isomorphism ψ : C → C ′ is given by

φ(x, y) = (ux,
√

u
2g+1

y)

This map induces an isomorphism φ : Jac(C) → Jac(C ′) over Fq2m which can be explicitly calculated
on the Mumford representation (see [22]).

Our construction gives the homomorphism ψ = φπφ−1 satisfying ψm(D) + D = 0 for D ∈
Jac(C ′)(Fqm) and therefore, when m is a power of 2, one obtains an m-dimensional GLV method.

In this case, the speedup for key generation is crucial: counting the number of points on random
Jacobians of cryptographic size in large characteristic is currently impractical, however our new
approach is certainly feasible in practice.

On the other hand, Weil descent attacks are much more successful in higher genus. Indeed, as
discussed in Section 9, even the case m = 2 is potentially vulnerable to Weil descent attacks. Hence
one needs to increase the size of q to attain the required security level. A careful implementation is
required to determine the advantages (if any) in this case.

7 Multiexponentiation

The point of the GLV method is to replace a large point multiplication [n]P by a multiexponentiation
[n0]P + [n1]ψ(P ). There are numerous algorithms for multiexponentiation and much has been
written on the topic. One approach is to use ‘interleaving’; this was first proposed in [15] and is also
described in [19]. These methods seem to be better in practice than using the joint sparse form of
Solinas [32]. We give further analysis of multiexponentiation methods in an appendix.

We propose a combination of interleaving and non-adjacent form (NAF) expansions which we
believe, for the parameters and implementation platforms considered in this paper, gives the best
efficiency. It requires relatively little precomputation and is very simple to implement. First, we
recall the definition of the NAF.

Definition 1 (Definition 3.28 [19]). A non-adjacent form (NAF) of a positive integer k is an
expression k =

∑t
i=0 ki2i where ki ∈ {0,±1}, kt 6= 0, and no two consecutive digits ki are nonzero.

The length of the NAF is t + 1.

A very efficient method (as it only uses a few word operations) to compute the NAF of an
integer n is to compute 3n (using standard integer multiplication), then form the signed expansion
(3n)− n and discard the least significant bit. It is well-known that the average Hamming weight of
a NAF of length t is t/3. See Section 9.1.4 of [3] for details.

Our method uses sliding windows over NAF expansions (this idea is also mentioned on page
101 of [19]). Let ω ≥ 2 be the window size and let W be the largest odd integer representing a
NAF of length ω with non-zero first and last coefficients (e.g., when ω = 4 then W = (1001)2 = 9).
We will then require a total of (W + 1)/2 = (2ω − (−1)ω)/3 locations to store the precalculated
points {P, [3]P, . . . , [W ]P} [19]. Given a NAF (kt, kt−1, . . . , k0) one can compute from right to left
a sequence (k′t, . . . , k

′
0) such that

∑t
i=0 k′i2

i =
∑t

i=0 ki2i, k′i ∈ {0,±1,±3, . . . ,±W} and among any
ω consecutive coefficients k′i at most one is non-zero. In practice one prefers to compute from left to
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right a sequence (k′t, . . . , k
′
0) such that

∑t
i=0 k′i2

i =
∑t

i=0 ki2i and k′i ∈ {0,±1,±3, . . . ,±W}; this
sequence can be different to the one above, but it has the same proportion of non-zero coefficients.
We call the coefficients (k′t, . . . , k

′
0) the sliding windows of length ω over the NAF.

Our proposal to compute [n0]P + [n1]ψ(P ) is as follows. We first compute the NAF represen-
tation of n0 and n1, we then perform an interleaved multiexponentiation, where the computations
[n0]P and [n1]ψ(P ) are performed using sliding windows of width ω over the NAF expansion. We
call the algorithm “interleaving ω-sliding window NAF” (I-ω-SW-NAF). The details are given in
Algorithm 2 (in greater generality, since the method is also useful for signature verification without
using the GLV idea). Steps 1 and 2 of the algorithm are performed using methods of Dahmen,
Okeya, and Schepers [12].

It may seem counterintuitive to window the NAF, rather than compute a ω-NAF, especially since
the ω-NAF is proven to have the minimal number of non-zero coefficients among such expansions.
The subtlety is that the standard definition for an ω-NAF is to have coefficients ni,j such that
|ni,j | < 2ω−1 whereas our method has coefficients |ni,j | < 2ω, but not every coefficient can arise.
Hence our method is like an intermediate between the ω-NAF and (ω + 1)-NAF. This approach
seems to offer a good balance between precomputation cost, cost of computing the NAF, and time
for the multiexponentiation.

Algorithm 2 Interleaving ω-sliding window NAF
Input: n0, n1, P, Q and widths ω0, ω1

Output: [n0]P + [n1]Q
1: Compute [i]P for i ∈ {1, 3, · · · , W0}, where W0 is largest positive odd integer in a length w0 NAF string.
2: Compute [i]Q for i ∈ {1, 3, · · · , W1},where W1 is largest positive odd integer in a length w1 NAF string.
3: Compute the NAF

∑t0
i=0 n0,i2

i of n0 (where n0,i ∈ {−1, 0, 1})
4: Compute the NAF

∑t1
i=0 n1,i2

i of n1 (where n1,i ∈ {−1, 0, 1})
5: Let t = max{t0, t1}. Set n0,i = 0 for t0 < i ≤ t and n1,i = 0 for t1 < i ≤ t
6: R = ∞
7: for i from t downto 0 do
8: R ← [2]R.
9: Compute i-th sliding window coefficient n′0,i ∈ {0,±1,±3, . . . ,±W0} the NAF of n0

10: if n′0,i 6= 0 then
11: R = R + [n′0,i]P . When n′0,i < 0, [n′0,i]P can be easily obtained from [−n′0,i]P
12: end if
13: Compute i-th sliding window coefficient n′1,i ∈ {0,±1,±3, . . . ,±W1} over the NAF of n1

14: if n′1,i 6= 0 then
15: R = R + [n′1,i]Q . When n′1,i < 0, [n′1,i]Q can be easily obtained from [−n′1,i]Q
16: end if
17: end for
18: return R

We give an estimate of the time for multiexponentiation when using elliptic curves over Fpm .
Denote by M, S, I the costs of a multiplication, squaring and inversion in Fpm respectively. One can
check that, when m = 2, M = 3m and S = 2m where m is the cost of an Fp multiplication. Note
that Fp squarings do not arise in these calculations.

When using Jacobian projective coordinates one prefers to use mixed additions in the main
loop as they are faster. However this requires that any precomputed values must be “normalized”,
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that is converted to affine form, before entering the loop. This conversion, if done naively for each
precomputed point, would require an expensive field inversion, so care must be taken to minimize
the impact of (or otherwise seek to avoid) this normalization step. See [9] for a detailed discussion.
For example when using the JSF method to calculate [a]P + [b]Q with P and Q in affine form, it is
required to precompute P + Q and P −Q. It is an easy exercise to show that these two points can
in fact be calculated jointly using a single base field inversion, and the additional cost of 4M + 2S,
which is 4(3m) + 2(2m) = 16m.

When using window methods, increasing the window size reduces the number of point addi-
tions/subtractions in the main loop, but it also increases the amount of online precomputation
required. So there is an optimal window size, which increases slowly with the length in bits of the
multiplier.

Using standard Jacobian coordinates, a point doubling costs 4M + 4S, which becomes 4(3m) +
4(2m) = 20m when working in E(Fp2), and a mixed point addition costs 8M+3S = 8(3m)+3(2m) =
30m.

We use the precomputation strategy of Dahmen, Okeya and Schepers (DOS) [12], as recom-
mended in [9], which again requires only a single inversion. For a 4-bit sliding window method, a
total of 5 points {P, [3]P, [5]P, [7]P, [9]P} need to be precalculated and stored. From [12] we find
that the precomputation cost is then 39M + 20S = 39(3m) + 20(2m) = 157m. From these pre-
computed values, the values {ψ(P ), [3]ψ(P ), [5]ψ(P ), [7]ψ(P ), [9]ψ(P )} can be quickly determined;
when working in E(Fp2) the further cost is at most 30m for the five applications of ψ. The main
loop now requires on average only one point doubling plus 0.381 mixed additions per bit, and the
total cost can be estimated as 4147m. The constant c = 0.381 is derived from the formula given in
[19], immediately after algorithm 3.38. For a window size of ω the average length of a run of zeros
between windows (which we will “slide” over) is given as

v(ω) =
4
3
− (−1)w

3.2ω−2

Then c = 2/(ω + v(ω)), as we are interleaving two sliding windows, one for P , and one for ψ(P ).
Note that for a 5-bit sliding window the estimated cost is 4157m, just marginally slower. There

is also to be considered the cost of two inversions, one associated with the precomputation, and
another at the end of the calculation to finally return a result in affine coordinates.

8 Experimental results

We now give some timing comparisons for the computation of [n]P (and also signature verification)
on elliptic curves at the 128-bit security level. Our timings are for the case of quadratic twists as
presented in Section 2.1.

8.1 The example curve

It is natural to use the Mersenne prime p = 2127−1, which is also used in Bernstein’s surface1271
genus 2 implementation [6]4. This prime supports a very fast modular reduction algorithm. Note
4 Note that the Pollard rho algorithm using equivalence classes in this case requires approximately 2125

group operations, the same as for Bernstein’s Curve25519 or Surface1271. Whether this is precisely the
same security level as AES-128 is unclear, but since Curve25519 and Surface1271 have been used for
benchmarking we feel our choice is justified.
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that since p 6= 5 mod 8 the previously described key generation process is not applicable here.
However it can easily be modified to handle this case as well, although the homomorphism requires
more multiplications to compute.

Let
E : y2 = x3 − 3x + 44

be defined over the field Fp. Then #E(Fp) = p + 1− t where t = 3604275729619761575 (or, in hex,
3204F5AE088C39A7). By Corollary 1 the quadratic twist E′ over Fp2 of E(Fp2) has #E′(Fp2) =
(p − 1)2 + t2, which is a prime we call r. The curve was quickly found using a modified version of
Schoof’s algorithm.

Since p ≡ 7 mod 8, we can choose to represent Fp2 as Fp(i) where i2 = −1. So now choose
u = 2 + i which is the non-square in Fp2 . Note also that p ≡ 2 mod 5. Our homomorphism is this
case simplifies to

ψ(x, y) = (ωxx̄, ωy ȳ)

where x̄ denotes the conjugate of x, and ωx = u/up, ωy =
√

u3/u3p as in the proof of Corollary 1.
By Lemma 1 we have ψ(P ) = [λ]P where λ = t−1(p− 1) (mod r).

8.2 Theoretical Comparison

For comparison purposes we initially consider an elliptic curve E(Fp) defined with respect to the
256-bit pseudo-Mersenne modulus p = 2256 − 189, which provides approximately the same level
of security as the curve in the previous subsection. We will compare operation counts for a full
point multiplication. (An earlier version of this paper used a NIST standard curve for comparison
purposes, but pseudo-mersenne moduli allow for a much faster modular reduction, and thus makes
for a fairer comparison.) Our implementation uses Jacobian coordinates, as specified in the IEEE-
1363 standard. Whereas improved parameterisations and formulae are available, we point out that
these would benefit both implementations more or less equally. (Having said that, when the point
doubling and addition formulae are implemented over Fp2 we note that field squarings take 2/3 the
time of field multiplications, and that field inversions are not quite as bad as they would be over Fp,
for a double-length p, and hence implementations based on affine coordinates may be of interest in
very space constrained environments.)

Recall that the calculation of interest is [k0]P + [k1]ψ(P ), where k0 and k1 arise as a result
of the decomposition of a larger random k < r. We assume that P is initially presented in affine
coordinates. Note that k0 and/or k1 might be negative – but this is not a problem as [−a]P =
[a](−P ), and point negation on an elliptic curve is essentially free.

As discussed in Section 7, we use an interleaving algorithm for multiexponentiation using NAFs
windowed with sliding windows of length 4. In practise “fractional windows” are probably to be
preferred [9], [25], as they allow for finer control over the optimal window size, but they are more
difficult to analyse, and in practise any improvement achieved by using fractional windows was
found to be negligible.

The total cost of the exponentiation is expected to be 4147m where m is the cost of a 128-bit
modular multiplication.

For the E(Fp) (256-bit p) curve we find that a window size of 5 is slightly better, and we
use a standard sliding window NAF method and random 254-bit multipliers. The expected cost
will be approximately (4M + 4S) + 0.157(8M + 3S) per bit where M is the cost of a 256-bit
Fp multiplication and S the cost of a 256-bit Fp squaring. For simplicity we will assume that
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M = S. The precomputation (again using the DOS method) costs 143M and so the total cost for
a point multiplication can be estimated as 2614M. Again two inversions are required, one for the
precomputation, one to render the final result in affine coordinates. As the number of inversions is
small, and the same in all cases, we neglect its contribution.

It is useful to also compare with the operation counts that arise when implementing straight-
forward point multiplication on E(Fp2) without using the new homomorphism, so we will include
these as well. In this case we use a standard sliding windows algorithm, again with a window size
of 5.

In our implementations we averaged the cost over 105 point multiplications, and the results are
presented in Table 1. Here SSW indicates use of standard sliding windows, GLV indicates the use of
our homomorphism with the GLV decomposition, JSF means that the Joint Sparse Form method
was used, and INT refers to the use of the interleaving algorithm of Section 7.

Table 1. Point multiplication operation counts

Method Fp muls Fp adds/subs

E(Fp), 256-bit p SSW 2600 3775

E(Fp2), 127-bit p SSW 6641 16997

E(Fp2), 127-bit p GLV+JSF 4423 10785

E(Fp2), 127-bit p GLV+INT 4109 10112

The results in Table 1 support our rough analysis above. However we also include in this table
the often neglected costs of field additions and subtractions. Note that when implementing Fp2

arithmetic, each multiplication using Karatsuba also requires five Fp additions/subtractions, so the
number of these operations increases substantially.

Clearly the superiority (or otherwise) of the new method depends on the ratio m/M, in other
words, the efficiency with which 128-bit and 256-bit field multiplications and additions/subtractions
can be implemented on particular platforms.

To give a more accurate picture we have implemented both methods on two widely differing
platforms, a 1.66GHz 64-bit Intel Core 2, and on an 8-bit 4MHz Atmel Atmega1281 chip (which is
a popular choice for Wireless Sensor Network nodes). We present the results in the following two
subsections.

8.3 8-bit processor implementation

Our first implementation is on a small 4MHz 8-bit Atmega1281 processor. Here the base field
multiplication times will dominate, so this function was written in optimal loop-unrolled assembly
language. We use the MIRACL C library [28], which includes tools for the automatic generation of
such code (and which holds the current speed record in its class for this particular processor[29]),
and we use the cycle accurate AVR Studio tool to measure the time for a single variable point
multiplication.

As can be seem from these timings in table 2, our best method for ECC point multiplication
takes about 0.70 of the time required for the 256 bit E(Fp) curve.

Observe that simply switching to an E(Fp2) curve at the same security level does not by itself
give any improvement, in fact it is somewhat slower. Digging deeper we quickly find the reason -
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Table 2. Point multiplication timings – 8-bit processor

Atmel Atmega1281 processor Method Time (s)

E(Fp), (256-bit p) SSW 5.49

E(Fp2) (127-bit p) SSW 6.20

E(Fp2), (127-bit p) GLV+JSF 4.21

E(Fp2), (127-bit p) GLV+INT 3.87

a field multiplication takes 1995 µs over Fp (256-bit p), as against 2327 µs over Fp2 (127-bit p),
although for a field squaring the situation is reversed, taking 1616 µs over Fp as against only 1529
µs over Fp2 . Field addition and subtraction favours the Fp case (124 µs versus 174 µs).

However using the new homomorphism and applying the GLV method, our new method is still
clearly superior.

Note that for this processor it is probably more appropriate in practise to use the JSF method
for point multiplication, as it is much better suited to a small constrained enviroment, with limited
space for online precomputation.

8.4 64-bit processor implementation

It has been observed by Avanzi [2], that software implementations over smaller prime fields, where
field elements can be stored in just a few CPU registers (as will be the case here), suffer dispropor-
tionally when implemented using general purpose multi-precision libraries. This effect would work
against us here, as we are using the general purpose MIRACL library [28]. Special purpose libraries
like the mpFq library [17] which generate field-specific code, and implementations which work hard
to squeeze out overheads, such as Bernstein’s implementations [6] are always going to be faster.

In the context of a 64-bit processor, while one might hope that timings would be dominated by
the O(n2) base field multiplication operations, for small values of n the O(n) contribution of the
numerous base field additions and subtractions becomes significant, as also observed by Gaudry and
Thomé [17]. Observe that on the 64-bit processor a 128-bit field element requires just n = 2 (and
indeed the description as “multi-precision” should really give way to “double precision”). Therefore
it is to be expected that the speed-up we can achieve in this case will be less than might have been
hoped.

So is our new method faster? There is really only one satisfactory way to resolve the issue –
and that is to identify the fastest known E(Fp) implementation on a 64-bit processor for the same
level of security, and try to improve on it. We understand that the current record is that announced
by Gaudry and Thomé at SPEED 2007 [17], using an implementation of Bernstein’s curve25519
[4]. This record is in the setting of an implementation of the elliptic curve Diffie-Hellman method,
which requires a single point multiplication to determine the shared secret key.

We point out that the clever implementation and optimizations of curve25519 are for the sole
context of an efficient Diffie-Hellman implementation – ours is general purpose and immediately
applicable to a wide range of ECC protocols. In particular the implementation of curve25519 uses
Montgomery’s parameterisation of an elliptic curve, is not required to maintain a y coordinate, and
hence can achieve compression of the public key at no extra cost (i.e., without the calculation of a
square root).
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On the other hand we have the use of a particularly nice modulus 2127 − 1, which brings many
benefits. For example a base field square root of a quadratic residue x can be calculated as simply
x2125

.

In order to be competitive we wrote a specialised hand-crafted x86-64 assembly language module
to handle the base field arithmetic, and integrated this with the MIRACL library. Given that each
field element can be stored in just two 64-bit registers, this code is quite short, and did not take
long to generate, optimize and test.

Table 3. Point multiplication timings – 64-bit processor

Intel Core 2 processor Method Clock cycles

E(Fp), 255-bit p Montgomery [17] 386,000

E(Fp2), 127-bit p SSW 490,000

E(Fp2), 127-bit p GLV+JSF 359,000

E(Fp2), 127-bit p GLV+INT 326,000

To obtain our timings we follow Gaudry and Thomé, and utilise two different methods, one
based on actual cycle counts, and a method which uses an operating system timer. There are
problems with both methods [17], so here we average the two. In practise the two methods were
in close agreement, but not of sufficient accuracy to justify exact numbers – so we round to the
nearest 1000 cycles. See table 3 for our results. As can be seen, our best method takes 0.84 of the
time of the Gaudry and Thomé implementation. Note that point decompression, as required by
a Diffie-Hellman implementation which wishes to minimise the size of the public key using point
decompression, would require approximately an extra 26,000 clock cycles for our implementation.

It is interesting to observe from table 3 that a careful implementation over a quadratic extension
which does not exploit our homomorphism is substantially slower, taking 490,000 cycles. So again it
seems that merely switching to a smaller field size is not by itself advantageous on a 64-bit processor,
although some of the difference can be explained by the particularly clever parameterization chosen
for curve25519. However by using our homomorphism we are still able to make up this difference,
and indeed overtake the previous record.

To ensure a fair comparison, we also utilise the very useful and easy to use eBats facility [10]. Our
eBat implements a Diffie-Hellman key exchange algorithm, and can be directly and independently
compared with an implementation based on curve25519. There are two main functions for a Diffie-
Hellman implementation, one which calculates the key pair, and a second which calculates the shared
secret. For the key pair calculation we exploit the fact that for our method a multiplication of a
fixed point can benefit from extensive off-line precomputation, and use a fixed-base comb algorithm
[19], and so this calculation requires only 146,000 cycles. For the shared secret calculation we use
the GLV+INT method, plus the cost of a point decompression.

Our latest eBat can be downloaded from ftp://ftp.computing.dcu.ie/pub/crypto/gls1271-3.tar.
Profiling the code reveals that our with-compression version spends 49% of its time doing base field
multiplications and squarings, 15.34% of the time doing base field additions and subtractions and
nearly 6% of the time is required for the few modular inversions.
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8.5 ECDSA/Schnorr Signature Verification

Verification of both ECDSA and Schnorr signatures requires the calculation of [a]P + [b]Q, where
P is fixed. In our setting we must calculate [a0]P + [a0]ψ(P ) + [b0]Q + [b1]ψ(Q) – in other words a
4-dimensional multiexponentiation algorithm is required.

Again we use an interleaving algorithm, using windows over a NAF expansion. Since P is now
fixed, precomputation of multiples of P (and therefore of ψ(P )) can be carried out offline, and so a
larger window size of 6 can be used for the multiplication of P . This requires the precomputation
and storage of 42 points. For the online precomputation required on Q, we again use a window size
of 4 over NAF expansions.

Table 4. Signature Verification timings – 64-bit processor

Intel Core 2 processor Method Fp muls Fp adds/subs Clock cycles

E(Fp2), 127-bit p GLV+INT 5174 12352 425,000

E(Fp2), 127-bit p INT 7638 19046 581,000

In table 4 we compare our method with a method that does not use our homomorphism while
using the 2-dimensional interleaving algorithm which calculates [a]P + [b]Q directly for random
a, b < r, again using a size 6 window for the fixed point P , and a size 5 window for the variable
point Q.

Antipa et al [1] propose a variant of ECDSA with faster signature verification (note that their
method does not apply to Schnorr signatures). The basic method gives essentially the same per-
formance as our method (they transform [a]P + [b]Q to a 4-dimensional multiexponentiation with
coefficients ≈ √

r). Their method, as with ours, assumes that P is fixed and that certain precom-
putation has been done.

The paper [1] also gives a variant where the public key is doubled in size to include Q and
Q1 = [2dlog2(r)/3e]Q. Their method transforms [a]P + [b]Q to a 6-dimensional multiexponentiation
with coefficients of size ≈ r1/3. In this context (i.e., enlarged public keys) we can improve upon
their result. Let M = 2dlog2(r)/4e and suppose the public key features Q and Q1 = [M ]Q. The GLV
idea transforms [a]P +[b]Q to [a0]P +[a1]ψ(P )+[b0]Q+[b1]ψ(Q) where a0, a1, b0, b1 ≈

√
r. We now

write a0 = a0,0 + Ma0,1 where a0,0, a0,1 ≈ r1/4 and similarly for a1, b0, b1. Hence the computation
becomes an 8-dimensional multiexponentiation with coefficients of size ≈ r1/4. Another advantage
of our method is that it applies to Schnorr signatures whereas the method of [1] is only for ECDSA
and other variants of ElGamal signatures.

9 Security Implications

The homomorphism ψ of Theorem 1 (at least, in the case when φ is an isomorphism) defines
equivalence classes of points in E′(Fpm) of size 2m by [P ] = {±ψi(P ) : 0 ≤ i < m}. By the
methods of Gallant-Lambert-Vanstone [14] and Wiener-Zuccherato [34] one can perform the Pollard
algorithms for the discrete logarithm problem on these equivalence classes. This speeds up the
solution of the discrete logarithm problem by a factor of

√
m over previous techniques. When

m = 2 then this is not a significant loss of security.
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A more serious threat to our proposal comes from the Weil descent philosophy, and in particular
the work of Gaudry [16]. Gaudry gives an algorithm for the discrete logarithm problem in E′(Fpm)
requiring time O(p2−4/(2m+1)) group operations (with bad constants) which, in principle, beats the
Pollard methods for m ≥ 3. Our proposal in the case m = 2 is immune to this attack.

Gaudry’s method also applies to abelian varieties: if A is an abelian varitey of dimension d over
Fpm then the algorithm has complexity O(p2−4/(2dm+1)). Hence, for Jacobians of genus 2 curves
over Fp2 one has an algorithm running in time O(p1.55), rather than the Pollard complexity of
O(p2). Gaudry’s method is exponential time and so one can secure against it by increasing the field
size. For example, to achieve 128-bit security level using our construction with genus 2 curves over
Fp2 or elliptic curves over Fp4 one should take p to be approximately 80 bits rather than the desired
64 bits.
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A Joint Sparse Forms

Solinas [32] proposed the joint sparse form (JSF) for double exponentiation which has a joint
Hamming weight approximately 1/2 the bitlength of the pair of exponents. Write l(n) = dlog2(n)e.
If a point multiplication [n]P is performed using a non-adjacent form representation of n then it
requires l(n) doubles and, on average, l(n)/3 additions. On the other hand, using a GLV method
to compute [n]P using multiexponentiation and the Solinas JSF requires l(n)/2 doubles and l(n)/4
additions. This makes the multiexponentiation significantly faster (ignoring precomputation) than
the single exponentiation when we are using simple signed expansions.
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However, the above analysis fails to account for the fact than in practice one uses window
methods and precomputation to compute [n]P , and that doublings are in general faster to compute
than additions. As discussed in Section 7, one finds that interleaving methods are simpler and more
useful than using joint sparse forms.

When considering m-dimensional versions of the GLV method or signature verification then
one could consider higher-dimensional variants of the joint sparse form. Grabner, Heuberger and
Prodinger [18] and Proos [27] have considered this problem and given algorithms to construct such
representations for any m. However, the performance improvement becomes small as m grows.
Roughly, one expects to get a joint signed representation of the m exponents ni such that each
block of m+1 bits has two ‘zero columns’. In other words, using a generalised JSF one expects the
multiexponentiation to cost 1 + l(n)/m doubles plus (m− 1)/(m + 1)(1 + l(n)/m) adds, compared
with l(n)/m doubles plus log2(n)/m adds for the naive method. In practice, it seems not useful to
use joint sparse forms for this application, and we instead suggest using interleaving and “windowing
the NAF”.

B More About Multiexponentiation

As noted in the main text, there are a number of methods for multiexponentiation in the literature
(see [3, 19] for surveys). For example, one can compute a joint sparse form and then do the standard
multiexponentation (Algorithm 3.48 of [19]). Alternatively, one can compute an ω-NAF for some
window size ω and perform interleaving (Algorithm 3.51 of [19]) or, as we propose, compute a NAF
and then use the interleaving method by taking sliding windows of length ω over the NAF.

The following table gives the results of simulations of these methods. For each method the
number of doubles is fixed, so the interesting part is the average number of adds per bit. Let
D, A, and E represent the doubling, addition, and the homomorphism respectively. Note that the
precomputation and storage costs are estimated using standard elliptic curve arithmetics. In the
implementation, the strategy of Dahmen, Okeya and Schepers (DOS) [12] can be used, this will not
significantly change the relative comparison.

Table 5. Efficiency comparision for computing [m]P

Method Cost of each bit Precomputation Storage

Simultaneous(ω = 2 ) 1D + 0.5A 11A + 3E 15 points

JSF 1D + 0.5A 2A + E 4 points

Interleaving width-4-NAF 1D + 0.407A 3A + 1D + 4E 8 points

Interleaving width-5-NAF 1D + 0.342A 7A + 1D + 8E 16 points

Interleaving ω-SW- NAF (ω = 4 ) 1D + 0.385A 4A + 1D + 5E 10 points

Interleaving ω-SW- NAF (ω = 5 ) 1D + 0.318A 10A + 1D + 11E 22 points

For 128-bit exponents Interleaving using 4-NAF, Interleaving using 5-NAF, and our variant all
require about the same number of adds. The advantage of our approach is that the set-up costs
(e.g., computing the NAF) seem to be cheaper.

19



C Point multiplication in Montgomery form

Bernstein [5] and Brown [11] have discussed the analogue of multiexponentiation in the case when
only x-coordinates are used (for example, using Montgomery elliptic curves). Using their results
one can implement the GLV method in this manner.

Unlike the standard case things are not so simple. In particular, y-coordinates are needed to
compute the initial steps. Hence, one cannot avoid “point decompression” if one wants to use the
GLV method.

Theoretically, it is attractive to use the Montgomery Euclidean ladder (see Section 3.3 of [33]).
This method computes [m]P + [n]ψ(P ), where the addition and doubling are done using Mont-
gomery’s method. Heuristically, it costs about 1.49A + 0.33D for each bit of the exponent (Conjec-
ture 3.30 of [33]). However, this method requires reduction modulo 3 and division by 3 as part of
the control code. These operations are difficult to optimise and in our implementation the control
code required half of the computation time. Hence, despite the theoretical beauty of this method,
it does not seem to be appropriate for practical applications.
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