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Abstract

In the last years, DNA sequencing techniques have advaondbe tpoint that DNA iden-

tification and paternity testing has become almost a comiyodiie to the critical nature

of DNA related data, this causes substantial privacy isslieghis paper, we introduce
cryptographic privacy enhancing protocols that allow tof@en the most common DNA-

based identity, paternity and ancestry tests and thus mwmié privacy-enhanced online
genealogy services or research projects. In the semi-hattasker model, the protocols
guarantee that no sensitive information about the involMsé is exposed, and are resilient
against common forms of measurement errors during DNA sexug. The protocols are
practical and efficient, both in terms of communication aachputation complexity.

1 Introduction

Since the first deployment of DNA tests for person identifagatn 1994, advances in forensic
sciences have decreased the effort of collecting DNA sastiplthe point that DNA-based iden-
tification and paternity testing have almost become a conitolflost western governments
keep databases with DNA profiles of criminal offenders argpsats: In the US, the FBI main-
tains the CODIS system [14, 6], storing (as of February 2003)e than4.3 million profiles;
the British authorities alone maintain a database comgiBiNA samples of more than five per-
cent of the population. Besides the professional law-eefoient domain, DNA-based tests are
increasingly available in private life: fathership tests affered for as little as $150, online ge-
nealogy projects use DNA testing to derive family trees []land large-scale scientific studies
try to unravel the history of mankind (e.g., the GenoGragnmject launched by the National
Geographic Society [24]). With upcoming technical advanseich as microarrays, the effort of
collecting and processing DNA samples will further deceei@sthe point where dedicated and
expensive lab equipment may become unnecessary. DNA testbenoffered by pharmacies
or stores, or even performed at home.

Besides person identification, DNA-related data is indregyg used in health care to gain
a precise diagnosis and optimize treatments. DNA may, famgte, code a pre-disposition



to develop a specific disease; knowledge of this genetiodigpn allows for preventive mea-
sures. In addition, DNA information is used to test for drilgrgies and estimate the individual
success rate of a specific treatment.

Due to its dual role of simultaneously providing both priyaensitive health data and iden-
tification information, special care must be taken when Didiated data is stored and processed
for identification purposes. While person identificatiorugally done with a ‘Short Tandem
Repeat’ (STR) profile extracted from parts of the DNA that emesidered non-functional, it
has turned out that potentially sensitive medical infoioratan be derived from STRs as well.
For example, [16] notes that particular STRs may be linkegetoetic diseases, since they are
closely located to a particular gene that is responsibleafgenetic disorder. The results in
[10] show how STRs can be used to analyze the genome in ordecdte genes responsible
for a particular disease. Further, a series of examplesagisgg the links between STRs used
for forensics and diseases can be found in [5]. Given theenuscientific knowledge on the
human genome, it can thus not be excluded that DNA profilended solely for identification
purposes reveal sensitive medical data as well.

This increases the already eminent privacy problem corddctthe use of DNA for iden-
tification purposes. Apart from the fact that even sampldkeced for the sole purpose of
person identification may contain highly sensitive medinfdrmation, the wide range of pos-
sibilities DNA identification offers, calls for a very catgfpolicy on when to voluntarily reveal
DNA-related information.

While there is little doubt that DNA forensics is a powerfabt for police investigations,
the existence of DNA databases does create desires forages-that were not intended at
the time of data collection; examples are known from variotlseer domains, such as road
taxing information (which is now used to track suspects)nberinet data retention (which was
introduced as a tool against terrorism, and now is used t& paer to peer users). For DNA,
first proposals have been issued to use genetic informatiaetermine the likelihood of a
person becoming a criminal [2]; for example, [17] quotes astife senator arguing that DNA
profiles may help predict which probationers will likely comt further crimes. A summary of
privacy issues in forensic use of DNA can be found in [13]. §hare believe it is important
to technically restrict the usage of DNA forensics to a mmimand to require a watchdog
organization to prevent abuse of the data—for example,enthi¢ police may have a database
of encrypted DNA, the watchdog organization may hold theskagcessary to make use of the
data.

In addition to forensic uses, DNA testing can allow for ussfrvices to end consumers and
researchers. Already now, several providers offer DNA thaseestry discovery and paternity
testing; more advanced services (e.g., exact determihangxact ethnicity of a person) are also
becoming available. In the future, the number of such sesvis likely to increase, including
for example DNA based health recommendations. While wedatuidentity testing here, our
techniques can also be applied in those settings.

Related Work on DNA protection. There has been a considerable interest in the protection
of genomic sequences for research purposes. Traditior@alyection was mainly achieved
through anonymization techniques (see [19] for an overki¢towever, it was recently shown

in [20] that re-identification of anonymized records is pbleswith high probability in case
the anonymization preserved genealogical relations. deighe better protection, cryptographic



privacy enhancing technologies have been investigatashtigc For example, [15] aims at sup-
porting large-scale biomedical research projects pelfggrfrequency counts of mutations; in
their approach, genomic sequences are encrypted using @anmaphic public-key encryption
scheme and the queries are performed directly on encryated kh [25] the authors concentrate
on running queries formulated as regular expressionsiobBly on DNA data; the approach can
be extended to allow privacy-preserving fuzzy string Seiag:

While the approaches described above were designed forrdiection of full DNA se-
guences in a research setting, the authors of [3] considbeegrotection of forensic DNA
databases: each entry in the database is encrypted with th&eis derived (e.g., by a Fuzzy
Extractor [9, 18]) from the DNA sample itself. If a DNA sampbé a suspect is to be tested
against the entries in the database, a key is first extramedthe sample; the test proceeds by
trying to decrypt each entry in the database with the derkegd A match is obtained if at least
one entry in the database can successfully be decrypted. apiproach has the disadvantage
that it is only applicable to a forensic testing scenario eaxthot easily be extended to other ge-
nealogical tests considered in the present paper. Sigyitad concept of negative databases [8]
can be used to test a single profile against a database sbéhairitent of the database cannot
be efficiently enumerated. However, this approach cannektended in a straightforward way
to handle error-prone profiles and more complex tests likerpal tests.

Contribution. In the present paper we provide—to the best of our knowledgdhie first
time—efficient and practical privacy enhancing protocdiattallow the secure matching of
DNA profiles. In contrast to previous approaches, which wred protection of DNA se-
guences and databases, we aim at protection of STR profildsepsare currently used in
forensics and genealogy. Our protocols support identdyemtal and ancestor tests and thus
cover a wide range of questions on person relationshipsrioff the possibility to implement
privacy-enhanced Internet genealogy services or res@aopects.

In Section 2 we review Short Tandem Repeats, which are cotynuseed in forensic sci-
ences to perform both paternity and identity tests. In $ac3i we present privacy-preserving
protocols for the most common applications of DNA-basedhtithe testing; furthermore we
discuss their efficiency and privacy. Finally, Section 4cdsses active attackers and shows
fundamental limits of STR privacy protection techniques.

2 Short Tandem Repeats and | dentity Testing

Desoxyribo-Nucleic Acid (DNA) is found in basically evergltof a living organism and de-
termines to a great extent its physical characteristics.ARNnsists of complementary pairs
of long strands of four different nucleotides (A,C,G,T);total, human DNA consists of sev-
eral billion nucleotides. Every person inherits half of SIA from the father and half from
the mother (except mitochondrial DNA and the male Y chromaes)p siblings inherit different
combinations from their parents and thus have differentddated DNA.

Some parts of the DNA, which have no apparent functionaditg, known to contain short
sequences of nucleotides that repeat a number of times. phiisomenon is called a Short
Tandem Repeat (STR). The actual number of repetitive ntidkeoin a STR varies widely over
the population and is thus useful for identification purgos&he length of individual STRs



| Locus]| Allele ()| Repeat structure |

THOL|[ ...
8 |[AATGls

8.3 |[AATG]sATG[AATG];
9 |[AATGly

9.3 |[AATG|sATG|AATG];

Table 1: Part of a specification how repetitive patterns apeéed as alleles (elementsXf for
the locus THO1 [4].

can be determined using chemical analysis: the analyzed Dhl&cule is cut with restriction
enzymes in front of and immediately after the STR. Finalig kength of the obtained fragment
(and thus the number of repetitions, calkldtkles can be determined using gel electrophoresis.
STRs appear at different positions (calledi) in the DNA molecule and can be analyzed by
using different types of restriction enzymes [4].

For the 22 pairs of autosomal chromosomes, every STR loqesaptwice, one originating
from the father and one from the mother. Thus for these STRshian two potentially differ-
ent numbers of repetitions. For the two types of sex chromesa(X and Y), the structures are
different; when evaluating the Y chromosome, only one nunatbeepeats is found. STRs are
a common phenomenon: thousands of different STRs are krlmwtmnly few, the core STRs,
are usually used for forensics. In the field of criminal faies, the Europea8GM plusiden-
tification method uses 10 different STR loci and gender mfation, whereas the US CODIS
system utilizes a set of 13 loci. For genealogy, usually 3706 TRs on the Y-chromosome are
utilized.

In the rest of the paper, we will denote a STR occurring twice cell as a multiseftr;, z2}
of two not necessarily distinct elements over a finiteasetzs € X, whereX is a set of sym-
bols (alleles) coding possible repetition numbers. Foatimhal compatibility, STRs on the
Y-chromosome will be denoted as singleton set$ € . Note that it is possible for a STR
thatz; = x5 if the number of repetitions in DNA material inherited frohetfather is identical
to the number of repetitions in the material inherited frém@a inother. The sef includes small
integers and a few fractional numbers, which are commondy s forensic sciences to code
incomplete repetition patterny; is always a finite set, typically containing 50 to 100 difietre
symbols. Table 1 illustrates for one locus (THO1) how rdjpetiDNA patterns are encoded as
alleles inX.

Even though the number of repetitions in a single STR vanies the population, the distri-
bution of allelest andy is far from uniform over:; for each locus there are a few symbols that
occur with overwhelming probability. It is known from largeale statistical analysis over the
DNA of the population [21] that one STR allele viewed as a random variable oveycontains
about 2.5 bits of entropy.

In the rest of the paper, by imposing an arbitrary order onNhici considered, we will
denote the STR profile of a person by &rtuple of multisets

S ={z11,z12},{z21, 222}, ..., {zNn1, 2N 2})



or anN-tuple of singleton sets

S = ({z1},{z2},..., {zn})

in case of STRs on the Y chromosome. For a profilewe will use the short notation
({si1,si2}) or ({si}), wherel < ¢ < N are indices of the loci; furthermore, we have
T, Tj 5 € .

In this paper, we present protocols that allow to test whrdilie or three STR profiles are
‘related’ without disclosing the profiles to each other (core precisely without leaking any
information on the individual profiles in an information tretic sense or under computational
assumptions). We consider the following major questionpason relationships, which can be
effectively tested on STRs:

e |dentity testing. In this scenario, two STR profile§ = ({s;1,s,2}) andT =
({ti1,ti2}) are available; e.g., one profile may come from a crime scedeona from
a forensic database. The goal is to determine whether bofligsrwere taken from the
same person. This is the case if the alleles for each locudemécal, i.e.,

N

/\[{Si,b si2} = {ti1, ti2}] = TRUE, 1)

i=1
where =’ denotes a binary operator testing equivalence of mugtiset

Due to the imperfection of the chemical process used to aadDNA samples and infer
the STR alleles, infrequent errors occur in STR profiles widmall probability. In addi-
tion, in the cell reproduction process infrequent mutatioray occur, thereby interfering
with the STR patterns. To account for these imperfectiatesntity tests usually allow a
small number of mismatches at different loci. Instead offyerg the condition of Eq. (1)
for each of theV loci, a match is already reported if they are satisfied onastly — ¢
out of all N loci for a small numbet. Note that the accuracy of the test degrades sig-
nificantly with a growing numbet of errors. Thus, as the total numh#Tof tested loci
is already extremely limited, identity tests usually do atbbw more than two errors in
order to allow reliable identification. The protocols prege in this paper are designed
to support this level of error-resilience.

e Common ancestor testing on the Y chromosome. In this scenario, two Y-chromosome
STRsS = ({s;}) andT = ({t;}) are available, e.g., one may be stored in an online
genealogy database and one may be possessed by a personshbs twidetermine his
ancestry. Due to the stability of the Y chromosome duringadpction, the persons from
which the profilesS and R are taken are considered to be related, if they share the¥¥ame
chromosome and thus have the same STR profile. If there iseantiglationship between
S and R, some STR alleles may have changed due to mutations durnpngdwction.
Thus, a positive test result is reported if the STRs agredldbat mostt loci, wheret
usually does not exceed three:

\/ [\ [{si} = {t:}] = TRUE. 2)

CC{1,..,N},|C|>N—t i€C



e Paternity testing with one parent. Two profilesS = ({s; 1, si2}) andT = ({t;1,ti2})
are available. The goal is to determine whetlieis a profile of a person that can po-
tentially be a parent of the person from whiShwas taken. As noted above, during the
reproduction process, for each locus one STR allele is iteltefrom the parent. For
testing a parent-child relationship, it thus suffices teduine whether

N

/\[{8171', 8271'} N {tl,ia t27i} #* @] = TRUE, )

i=1

where N’ denotes the multiset intersection operation. Again, ideorto enhance the
robustness of the test, a limited numbef mismatches at different loci may be allowed;
in that case, the logical operatgzﬁ(iN:1 should be replaced (similar to the last case) by

\/Cg{l,...,N},|C\2N—t Nicc:

e Paternity testing with two parents. In this case three profiled8/ = ({m;1,m;2}),
F = {{fi1, fiz}) andC = ({c¢;1,¢i2}) are available. The task is to determine whether
profiles M and £’ come from persons who can be the parents of a person witheptafil
This is indeed the case if for each locus@hn one allele comes from/ and theother
allele comes fron¥'. Thus,M andF’ can be parents af, if

N

/\[{Ci,l,ci,z} € ({mi1, mi2} W {fi1, fi2})] (4)

i=1
N
= /\((Ci,l =mi1 Vi1 =m2) A(ci2 = fi1Veia= fi2)V
i=1
((cip=fiaVein = fia) Ncig=mi1 Vg =mi2) =T,

where A X B denotes the set of all two-element multisets, where oneegiels taken
from A and the other one from, i.e., AKX B = {{a,b} |a € A, b € B}. Again, the test
may be designed so that it allows a small number of mismatches

3 Protocolsfor Secure STR Matching

In this section we consider efficient privacy-preservingliementations of the tests outlined in
Section 2: two or three STR profiles are tested whether treyrelated’ according to Egs. (1)-
(4), while being assured that the protocol execution doétea& information about the profiles
except the result under computational assumptions. Incp&t, in case of a mismatch, no
protocol participant should learn any information abow tther participant’s profiles, except
that they do not match his own.

Our protocols require a semi-honest attack model, i.etigsathat correctly follow the pro-
tocol. Furthermore, for obvious reasons, the protocol oagnarantee that the participants use
proper input data; if a participant manages to use the DNAeofdwg instead of her own, the
results of the protocol will be correspondingly wrong. Imsoof our settings, no party has an
interest in such a form of cheating; while, for example, amegdogy service may have an inter-
est in keeping more data than actually needed, there i fgison to manipulate the protocol
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output. (However note that it sometimes is possible to deirformation from the protocols
input/output behavior alone; as we will show later in Setty such an information leak is
unavoidable). In settings in which one party has an inténastanipulating the output—such as
comparison of DNA found at a crime scene and that of a suspics—party would usually not
participate in the protocol in the first place. Rather, olnesae allows for a separation of duties.
While the police can collect a database of encrypted DNAtites, a watchdog organization
may hold the keys and thus be able to prevent abusive use BbNAedatabase.

3.1 Preiminaries

The privacy problem addressed in this paper can be formtukdean instance of secure multi-
party computation [26, 7]. Technically, we show that se@wauation of multivariate polyno-
mials (using homomorphic encryption) can yield efficieniRsSfatching protocols. The use of
polynomial evaluation for comparison of private data (peofnatching) was first proposed by
Freedman et al. [12]. For a specific matching problem, onstoocts a polynomial over the
input values of each party, which evaluates to zero if ang ibthe inputs match. The matching
protocol consists of a secure two-party computation touatal the polynomial on the private
input values. In this paper we concentrate on protocolsafeasecure in the semi-honest adver-
sary model; however, extensions to the malicious case aslpe using standard constructions
of secure multiparty computation [23], at the expense otiefficy.

Homomor phic Encryption. In the constructions, we use a homomorphic public key encryp
tion schemeE!, such as Paillier encryption [22] over a message spatewhich has the
property thatE (z + ) can be efficiently computed from the individual encryptidii€ (z)
and £ (y) without knowledge of the secret key, where the addition ajen is performed in a
finite ring. Additionally, E (r2) can be computed fromand E¥ (z) asEH (z)".

Besides Paillier encryption, it is also possible to emplayfollowing homomorphic variant
of EIGamal [23] withM = Z,. Letp be a large prime and be a generator of prime order
(with ¢ [p — 1) of a suitably large subgroup @;. To generate a public-/private key pair, one
chooses a randorh < o < ¢ — 1 and computes = ¢ modp; the public key is given by
the tuple(p, g, ), whereas the private key i& To encrypt an element € Z,, one chooses a
random element € Z, and computes the ciphertext tuglg, c2) = (¢" modp, g™ h" modp).
The scheme can thus be seen as plain EIGamal encryptiong wihreessage: is encoded as
g before encryption. It is easy to see that this encryptiorsehis homomorphic with respect
to addition inZ,: suppose thatci, c2) is the encryption of a plaintext and (¢}, ¢,) is the
encryption ofz’, then(c; ¢, modp, cac), modp) is an encryption of: + 2’ modp.

Unfortunately this encryption scheme offers only limiteglcd/ption possibilities. As in
the plain EIGamal scheme, to decrypt a ciphertextc,), one first computes, (c§') ~! modp,
yielding the encoded messagé&. Recoveringn from this encoding requires taking a discrete
logarithm inZj, which is assumed to be intractable. However, if the ene/phessage: is
known to belong to a small message spatecan be decoded by brute force search. Similarly,
given the private key, it can be tested efficiently whetfigr ;) is the encryption of a specific
messagen. The protocols presented in the paper require only the ledjgability: it is sufficient
to distinguish, given the knowledge of the private key, acrgpotion of the message = 0 from



1. T maps his alleles; ; = H;(t;1) andt; o = H;(t;2) for 1 <i < N.
2. T computes the sum = 3"V ;1 + 1, and send@ﬁT(A) to S.

3. S similarly maps her aIIeIeszl = H;(si1) and% = H;(si, 2) computes the
sumB = ZZ 1 i1 + si2 and computes an encryptlcmgﬁ

4. S computes, using homomorphic propertiedt, an encryptio@ﬁT(rZI) =
EﬁcT (r(A— B)), wherer is a blinding factor, chosen uniformly at random. The
obtained encryption is sent back’to

5. T decrypts the result and reports a match if a zero is obtained.

Figure 1: Secure identity testing protocol.

an encryption of a message # 0. This can be performed efficiently by ordinary ElGamal
decryption to obtain the coded messggeand by testing whethef™ = 1.

Representation of Alleles. To represent alleles as elements of the message sphoéthe
underlying encryption scheme, we use families of randoreciije functions(Hy, ..., Hy),
where each function is randomly drawn from the set of injectunctions® — M. The cardi-
nality | M| acts as security parameter. In the protocols describeavbele use the functio;

to map the alleles of locus Due to the random choice @f;, the mapping becomes dependent
on the locus. The correctness of the protocols highly depemdthe property that the same
allele will be mapped to different messages at differenit IGiven an STR profile{¢; 1,t;2})

or ({t;}), we will denote witht; ; = H,(t; ;) ort; = H;(t;) the alleles, mapped according to
the locus in which they appear.

In the analysis, we will assume that eadhis a random injective function, which is known
to all protocol participants. In practice it is possible,edw the small cardinality of, to
store eachH; as a table. Alternatively, a more space-efficient implesmugort can be derived
from any collision-resistant hash functidi that maps into the seM by letting H;(m) =
H(pad||i|| m), wherepad denotes some padding. Assuming th&is collision-resistant, the
function H; will, due to the small cardinality of, be injective with high probability (note that
any two inputsz, o’ € ¥ that violate the injectivity of; immediately yield a collision of?).

3.2 ldentity Testing

We fix a family (H1, ..., Hy) of random functions, as described in Section 3.1. By mapping
all alleles to messages v, secure evaluation of Eq. (1) reduces to determining wiettee

sum
N

N
Zr = Z(Sm —ti1) + (si2 —tio) = Z (si1+ Sz 2)
i=1

1=1

Mz

(®)

z:l



evaluates to zero. This can be efficiently tested (in onedawith constant communication
complexity) by the simple protocol depicted in Figure 1. tRgrant 7" maps all his alleles
using H;, adds the mapped alleles, encrypts the result with his plkly pkr and sends it to
participantS. S in turn maps her own alleles and subtracts their encrypticoma the value
received byT'. Finally, the result is multiplicatively blinded and seradi to 7", who reports

a match if he received an encryption of a zero. The protoaatepts the privacy of both STR
profiles (assuming semi-honest participants)$ abtains only a semantically secure encryption
of the sum ofl’'s mapped alleles arifl obtains only a binary answer: a zero if there was a match
or a uniformly chosen random number otherwise.

Correctness. It is easy to see that the above protocol is correct, i.e.eldgiZ; = 0 if and

only if there is a match, except with negligible probabiliithere is a match between the STR
profiles of S and T, i.e., for all locil < i < N, the multisets{s; 1,s;2} and{t; 1,t;2} are

equivalent, Eq. (5) obviously yields zero. Suppose now thete is a mismatch. Under the
assumption that bottN = O(log |M|) and |X| = O(log |M|), the above protocol yields a
positive result only with negligible probability. This cée seen as follows: The probability of
a false positive in the above protocol is equal to the prdibalthat the following event happens

N N-1
tne = (si1+si2)— Zt“—Zt =,

1=1

Since the injective function&/; for i = 1,..., N are randomly chosen from the set of injective
functions¥ — M, the valuess; 1,s;2,t;1 fori =1,...,N andt;pofori =1,...,N — 1 are
randomly distributed. Hence,
1
PI’Ot{Z[ = 0] = PI’Ot{HN(tNQ) = I{] = W, (6)

which is negligible.

Coping with Errors. The protocol as depicted above is sensitive to errors in THe @ofile.
As mentioned in Section 2, usually a small humber of mismesgtone or two) need to be
tolerated due to the chemical imperfections of the DNA saqung process.

To cope with one mismatch, the above protocol can be extendestraightforward manner:
we modify the polynomial in such a way that we compute a siras

ZE = Z ZiZj,

(6.5)e{L,...N}, i<y

wherez; = (sZ 1+ s 2) (ztZ 1 — ) By expanding the polynomial and writing it in terms
of factorstsZ 1+ sipandt; 1 + tia 2, ZE can be computed efficiently by if T" pre-computes
encryptions of the required term(su + tug) ( 1+ tj,g) for 0 < k,I < 1 and different
indicesi andj. The protocol is depicted in Figure 2. starts by pre-computing the required
encryptions of his mapped alleles and forwards the®, twho in turn can use the homomaorphic
properties of£ to compute an encryptioEﬁT(ZE). Finally, R submits a blinded encryption
EﬁcT(TZE) to T, who decrypts the result. If he obtains a zero, a match isrtego

9



1. Foreachlocus < i < N, T maps his alleles; ; = H;(t; 1) andt; o = H;(t;2).

2. T computes encryptions of all produd®, ((t; 1 + ti2)*(t;1 +t;2)") for 0 <
k.l < 1with (k1) # (0,0) and1 < i < j < N and forwards them t&.

3. R maps her alleles; ; = H;(s; 1) ands; o = H;(s;2) and uses the homomory
phic property of the encryption to obtain an encrypted va‘l]ﬁT(Z £), Which
she blinds with a uniformly random blinding factor

4. R forwardsEﬁT(rZE) to T, who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 2: Secure identity testing protocol tolerating olela@error.

Communication Transmitted Data (in KB)

Complexity N=13 | N=37 | N=67
Identity testt = 0 1 0.3 0.3 0.3
Identity testt = 1 SN(N —1) 58.5 499.5 1658.3
Identity testt = 2 %N(N —1)(N -2) 500.5| 13597.5| 83833.7
Common Ancestor Test,= 1 gN(N -1) 58.5 499.5 1658.3
Common Ancestor Test,= 2 zN(N —1)(N -2) 500.5| 13597.5| 83833.7
One Parent Paternity Tegt= 0| 18N 26.0 74.0 134.0
One Parent Paternity Test= 1 ||[40N(N — 1) 3120.0| 13320.0| 44220.0
Two Parent Paternity Test= 0|[23N + 1 74.7 212.7 385.2

Table 2: Complexity of the matching protocols.

Note thatZ g will (except with negligible probability) be zero if an erroccurs in at most
one locus of the profile: in this case only one of the valyesill be non-zero. If there is more
than one error, at least one produgt; will be nonzero, which results iz being nonzero,
except with negligible probability. This construction che generalized in a straightforward
manner for arbitrary by summing over all products efvaluesz;; however, the scheme soon
gets inefficient due to large space requirements for tratisgnithe pre-computed products of

mapped alleles.

Complexities. Table 2 gives an overview of the communication complexitiethe matching

protocols proposed in this section. As it can be seen, thelaxity highly depends on the num-
ber of errorg that need to be tolerated during the matching process. 8g#ig communication
complexity (measured in the number of transmitted enooystiwith respect to the lengthi of
the STR profile), we also list the number of transmitted bjaepractical length STR sequences
(N =13, N = 37 andN = 67), assuming a message spac@®fs bits for £

10



1. Foreachlocus < i < N, T maps his alleles; ; = H;(t; 1) andt; o = H;(t;2).

2. T computes encryptions of all producﬁp’i tl 1 (@)l) foro < k,1 <2
and(k,l) # (0,0) and forwards them t&.

3. R maps her alleles; ; = H;(s; 1) ands; o = H;(s;2) and uses the homomory
phic property of the encryption to obtain an encrypted va‘llj%T(Zo), which
she blinds with a uniformly random blinding factor

4. R forwardsEﬁT(rZo) to T, who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 3: Secure paternity testing protocol (one parerg)cas

3.3 Paternity Testing with One Parent

The problem of paternity testing with one parent can be fdaied as a secure function evalua-
tion problem as well. Evaluating Eqg. (3) can be performeddsyimg whether the sum

N

Zo ="y (si1 = tin)(sig = tia)(siz = ti1)(si2 — ti2) (7)

i=1

2

is zero. This can be done, again using homomaorphic encrypip the efficient protocol de-
picted in Figure 3, which requires one round and linear comoation complexity. These com-
plexity bounds can be achieved by observing that Eq. (7) eanriiten as a multivariate poly-
nomial of degree two im; ; andt; , for 1 < < N. To securely and efﬁciently evaluate Eq. (7),
it is thus sufficient forl" to provide encryptions of all mixed producﬁp’}’€ ti1)*(ti2)!) for

0 < k,l < 2and(k,l) # (0,0) under his public keykr to R, who in turn can use the
homomorphic properties o to compute an encryptioEﬁT(Zo). Finally, R submits a
blinded encryptionEZ{}QT (rZop) to T', who decrypts the result. If he obtains a zero, a match is
reported. The privacy of the profiles of bdthand R are assured (in the semi-honest model), as
R only obtains semantically secure encryptions @hekceives a binary answer. Table 2 gives
an overview of the communication complexity of the approacmpared with the protocols of
Section 3.2.

Correctness. It is easy to see that the protocol is correct. If there is ampdty relationship
betweenS andR, i.e., for all loci we have(s; 1, s;2} N {t;1,t2} # 0, the sum of Eq. (7) will
certainly evaluate to zero and the protocol reports a ma8uppose now there is no match.
Then, for at least one locus < i < N, the elements ifs; 1, s; 2} will be different from
the elements ift; 1, 2}. Subsequently, theth summand of Eq. (7) will, due to the random
nature of the mappind?;, be a random eIement of the message spate The probability
ProZo = 0] = Proljz; + ...+ 2y = 0] = ‘M‘ is negligible according to a similar reasoning
as in Eq. (6); thus the protocol will, except with negligilplebability, report a mismatch.
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1. For each locus < i < N, T maps his allele; = H;(t;).

2. T computes encryptions of all produdi; ((t;)*(t;)") for 0 < k,1 < 1 with
(k,1) # (0,0) and1 < i < j < N and forwards them té.

3. R maps her alleles; = H;(s;) and uses the homomorphic property of the
encryption to obtain an encrypted val@iT(Zc), which she blinds with a
uniformly random blinding factor.

4. R forwardsEﬁT(ch) to T, who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 4: Secure common ancestor testing protocol.

Variations. The protocol can be made error-resilient in the same way &eation 3.2. To
cope with one error, the valugp is computed agio = >_; ;) Yl N}, i< Zi% which can be

done by precomputing all required powéts )" (t; 2)!(t;.1)™ (tj2)".

3.4 Common Ancestor Testing

By using a similar approach as the paternity test with onergaprivacy-preserving common
ancestor tests on the Y chromosome can be implemented. Vife giga only the protocol
that allows to cope with at most one errar=£ 1); extensions to larger are straightforward.
Testing the condition of Eq. (2) between the two Y-chromos@®@TR profilesS = ({s;}) and
T = ({t;}) for the case of one error requires evaluating the polynomial

Zc = > (si = ti)(55 — t7)-

(6.5)e{L,...N}, i<y

This can again be done by pre-evaluating all required poakefs )* ( ! by the efficient pro-
tocol of Figure 4.

3.5 Paternity Testing with Two Parents

The problem of paternity testing with two parents can, inmailsir way as the related problem
with one parent, be posed as a secure function evaluatidstepno Evaluating Eq. (4) straight-
forwardly translates into the problem of testing whether
N —_ —_ —_
Zr = Z [(61,1 —mi1)(cin —miz2) + (cia — fir)(cia — fi,2)} .

i=1

|:(Cz L — fin)(cin — fia) + (cia —mi1)(cia — mz2):| (8)

evaluates to zero. By expanding the factors, the above iequzdn be written as a polynomial
in theva|U68221,CZQ,A —m11—|—m12,B m“mlg,C’ fl1+f22 andD lefz2’|n
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which all pOWEfS(a)k(@)l with 0 < ]{T,l <4 and termSAZ-, B;, Ci> D;, AzBu CzDza AZCZ,
A;D;, B;C;, B;D;, A?, B, C?, D? appear. This allows for an efficient oblivious evaluation of
the polynomial; depending on which party receives the ang¢he matching process, the
following evaluation strategies can be employed:

¢ Result availableto M. M starts the protocol by choosing a pair of public/privateskey
encrypting the values\;, B;, A%, B2, A; B; and sending them t&", who in turn uses the
homomorphic properties of the encryption to compute enagp of the cross terms
A;C;, A;D;, B;C;, B; D;; he then forwards all computed encryptions, includirig D;,
C?,D?,C;D;, to C, who finally uses again the homomorphic property to computera
cryption of Zr. This result is randomized with a multiplicative blindingctor and sent
back toM. Finally, M decrypts the result and checks the answer.

e Result available to F. This case is analogous to the previous one, with the rolds of
andM interchanged.

e Result available to C. C starts the protocol by choosing a pair of public/private key
and encrypting all required powe(si_,l)’f (@)l . He forwards all encryptions t&', who
computes all terms that involve the valu€s D;, sends the result on tb/, who finally
evaluates the polynomial under encryption, blinds theltesud sends the encrypted value
back toC', who decrypts to obtain the answer.

Note that the complexity of the protocol depends on the ewan strategy. In casé/ or F'
receive the result, the protocol requires transmissior9adtricryptions for each locus; in cae
gets the result, it requires 23 encryptions per locus.

4 Fundamental Limitations of STR Privacy

The protocols designed in this paper assumed semi-honeglipents, who execute the proto-
cols correctly and do not ‘lie’ about their input profiles. this section we consider the impact
of an attacker who (honestly) runs the matching protocoli®atlowed to execute the proto-
col on arbitrarily chosen inputs. In this setting, we showeaeayal impossibility: In case the
involved protocol participants can ‘lie’ about their STROfiles on which the protocols are run
and multiple dependent protocol runs are perfornmedprotocol can existhat perfectly assures
participants’ privacy in paternity tests. The intuitiveasen for this result lies small length and
limited entropy of STR profiles, as noted in Section 2. As th&ult is an inherent consequence
of the problem statement, it is important to limit the akehit of the protocol participants to arbi-
trarily modify their input profiles. (This can e.g. be aclae\by requiring the parties to commit
to their inputs before the protocol runs and proving thatekecution is correct with respect to
the committed profiles.)

We will illustrate this result for the one-parent parentgsting problem of Eq. (3). If an at-
tacker has a parental relationship with the vidigach invocation of an STR matching protocol

INote that the parent-child relationship required betwéenattacker and victim for a successful attack is tran-
sitive. For example, a mother can use it to determine theeseruof her child, and in turn use this to determine
the sequence of the father. Using this, a sufficiently deitezthattacker could get the sequence of arbitrary persons,
though the level of determination and minimum duration ofé@th needed for that attack would make it difficult in
practice.
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allows to derive information about the victims DNA. In pattiar, we will show that running
N|X| tests allows a malicious attacker with a parent-child retethip to the victim to recon-
struct the entire STR sequence of the victim.

Suppose we have a black box matching protocol that, given ofles.S andT’, outputs
yesif and only if the attackelS is in a parent-child relationship with the victifi. Suppose
further that the attacker is in a parent-child relationshigh the victim, i.e.,S knows a STR
profile that results in ges and thatl” can arbitrarily modify his input to the black box protocol.
Denote withS = ({s; 1, si2}) andT = ({t; 1,t;2}) the STR profiles of the attacker and the
victim, respectively. By the assumption that the attacket the victim are related, running one
instance of the test will result ipes To learn whether a specific allelec X appears in the
STR profile ofT" at locusi, i.e.,a € {t;1,%; 2}, the attacker replaces both allelgg ands; 2 in
his own profile witha, and reruns the matching protocol with the modified profiféhé result
is still positive, he knows that appears iff’'s STR profile at locus. To learn the entire profile
of T, the attacker runs the protocol with all valuesao€ . on all positionsi. This results in
an attack that requires at mast>| protocol runs to extract the complete profile of the victim
(note that the attacker can optimize by stopping some teskg er incorporate knowledge on
the distribution of alleles ix).

Similar attacks exist for the other matching problems ad.viFgr example, in the parental
test scenario with two parents, an attacker can run the yefdaling his own STR profile as
inputs of bothC' and M. As, according to Eqg. (3), every person can potentially tsedwn
parent, this allows to run the above attack also in a two+gdest scenario.

5 Conclusions

We have presented a set of protocols that allow to run the oomesmon DNA-based identity,
paternity and ancestry tests in a privacy-preserving martime protocols can form the basis for
privacy enhanced genealogical services or research gojear protocols take into account the
special structure and properties of STR profiles, whichnalfor error-resilient, efficient and
practical protocols. Furthermore, they offer full privaoythe semi-honest attacker model.
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