
Partial Fairness in Secure Two-Party Computation

S. Dov Gordon∗ Jonathan Katz∗

Abstract

Complete fairness is impossible to achieve, in general, in secure two-party computation. In
light of this, various techniques for obtaining partial fairness in this setting have been suggested.
We explore the possibility of achieving partial fairness with respect to a strong, simulation-based
definition of security within the standard real/ideal world paradigm. We show feasibility with
respect to this definition for randomized functionalities where each player may possibly receive
a different output, as long as at least one of the domains or ranges of the functionality are
polynomial in size. When one of the domains is polynomial size, our protocol is also secure-
with-abort. In contrast to much of the earlier work on partial fairness, we rely on standard
assumptions only (namely, enhanced trapdoor permutations).

We also provide evidence that our results are, in general, optimal. Specifically, we show
a boolean function defined on a domain of super-polynomial size for which it is impossible to
achieve both partial fairness and security with abort, and provide evidence that partial fairness
is impossible altogether for functions whose domains and ranges all have super-polynomial size.

1 Introduction

In the setting of secure two-parry computation, two parties wish to run some protocol that will
enable each of them to learn a (possibly different) function of their inputs while preserving, to the
extent possible, security properties such as privacy, correctness, input independence, etc. These
requirements, and more, are typically formalized by comparing a real-world execution of the pro-
tocol to an ideal world where there is a trusted entity who performs the computation on behalf of
the parties. Informally, a given protocol is said to be “secure” if for any real-world adversary A
there exists a corresponding ideal-world adversary S (corrupting the same party as A) such that
the result of executing the protocol in the real world with A is computationally indistinguishable
from the result of computing the function in the ideal world with S.

One desirable security property is fairness which, intuitively, means that either both parties
learn the output, or else neither party does. In a “true” ideal world — and this is the ideal world
used for proving security in the multi-party setting when a majority of parties are honest — fairness
is ensured since the trusted party would, in fact, provide output to both parties. Unfortunately,
results of Cleve [9] show that complete fairness is impossible to achieve, in general, in the two-party
setting. For this reason, the usual treatment of secure two-party computation within the real/ideal
world paradigm (see [17]) weakens the ideal-world model to one in which fairness is not guaranteed
at all. A protocol is then defined to be “secure-with-abort” if it can be simulated (as described
above) with respect to this, less-satisfying ideal-world model.

∗Dept. of Computer Science, University of Maryland. Email: {gordon,jkatz}@cs.umd.edu. This work was
supported by NSF CAREER award #0447075.

1



Various methods for achieving partial fairness have been suggested; we provide an extensive
discussion in Section 1.2. With the exception of [16], however, all previous work has departed
from the real/ideal paradigm in defining partial fairness; this deficiency is explicitly noted, for
example, by Goldreich [17, Section 7.7.1.1]. Our aim is to define, and achieve, a meaningful notion
of partial fairness while staying within the traditional real/ideal paradigm. Furthermore, many
previously-suggested protocols only apply in certain settings (e.g., fair exchange of signatures) or
under certain assumptions on the parties’ inputs (e.g., that inputs are chosen uniformly at random)
but do not give a “general-purpose” solution that can be used for arbitrary functions computed
on arbitrary inputs. In contrast, protocols analyzed within the real/ideal paradigm do not suffer
from these drawbacks. Finally, we note that much previous work on partial fairness requires strong
cryptographic assumptions (e.g., regarding the precise amount of time needed to perform some
computation, even using parallelism); we would prefer a solution based on standard assumptions.

As we have remarked already, the most desirable (but, in general, unachievable) definition
of security requires computational indistinguishability between the real world and a “true” ideal
world where both parties receive output. The standard relaxation of security-with-abort [17] leaves
unchanged the requirement of computational indistinguishability, but weakens the ideal world to one
in which fairness is no longer guaranteed at all. Katz [21], in a slightly different context, suggested
an alternate relaxation: keep the ideal world unchanged, but relax the notion of simulation and
require instead that the real and ideal worlds be distinguishable with probability at most 1

p+negl, for

p some specified polynomial1 (see Definition 1). We refer to a protocol satisfying this definition as
being “1

p -secure”. Cleve [9] and Moran et al. [24] show 1
p -secure protocols for two-party coin tossing

with O(p2) and O(p) rounds, respectively.2 We are not aware of any other results that satisfy our
definition and, in particular, none of the previous approaches for achieving partial fairness appear
to yield protocols that are 1

p -secure. See Section 1.2 for further discussion.

1.1 Our Results

We show general feasibility results for partial fairness in the two-party setting, with respect to the
definition of 1

p -security. Specifically, let fn : Xn × Yn → Z1
n × Z2

N be a (randomized) functionality

where player 1 (resp., player 2) provides input x ∈ Xn (resp., y ∈ Yn) and receives output z1 ∈ Z1
n

(resp., z2 ∈ Z2
n). (Throughout this paper, n denotes the security parameter.) Assuming the

existence of enhanced trapdoor permutations we prove, for arbitrary polynomial p, the existence
of a 1

p -secure protocol for computing fn as long as at least one of Xn, Yn, Z1
n, Z2

n is polynomial size
(in n). When either Xn or Yn is polynomial-size, our protocol is also secure-with-abort.

As far as general feasibility results go, we also show that our results are essentially the best pos-
sible. First, we show an example of a deterministic, boolean function fn : Xn× Yn → {0, 1}, where
|Xn| and |Yn| are both super-polynomial, for which no protocol computing fn can achieve both
security-with-abort and 1

p -security (for p > 4) simultaneously. We also show that if exponentially-
strong one-way functions exist, then there exists a deterministic function fn : Xn × Yn → Zn, with
each of Xn, Yn, Zn super-polynomial in size, such that f cannot be 1

p -securely computed for p > 2.
Taken together, our work thus settles the main open questions in this direction.

1This definition is similar in spirit to (but weaker than) the notion of ǫ-zero knowledge [12] and is analogous to
the definition used in [18] in the context of password-based key exchange, although there the value of p is fixed by the
size of the password dictionary. A similar idea, formalized differently and in a different context, is also used in [1].

2Actually, they prove something weaker but one can show that their protocols satisfy our stronger definition.

2



1.2 Prior Work

There is an extensive literature devoted to the problem of achieving partial fairness when an
honest majority is not present, both for the case of specific functionalities like coin tossing [9, 10,
24] and contract signing/exchanging secrets [5, 22, 13, 4, 11], as well as for the case of general
functionalities [26, 15, 3, 19, 14, 6, 25, 16]. Prior work (with the exception of [16]), however, does
not consider a simulation-based security definition of the sort we do here. Moreover, to the best of
our knowledge none of the previous approaches (with the exception of [9, 24], that deal only with
coin tossing) can be proven 1

p -secure.
Garay et al. [16] give a simulation-based formalization of “gradual release” [15, 3, 11, 6, 25]

within the universal composability framework [8]. The guarantee their protocol provides, informally,
is that at any point in the protocol both the adversary and the honest party can obtain their entire
output by investing a “similar” amount of work. Somewhat unsatisfying is that the decision of
whether an honest party should invest the necessary work and recover the output is not mandated
by the protocol, but is somehow supposed to be decided “externally”. A gradual release approach
also seems problematic in defending against an adversary who runs in polynomial time, but has
more computational power than honest parties are able to invest. Finally, we add that the proof
of security in [16] relies on a strong, non-standard assumption regarding the precise time required
to solve a specific computational problem.

Gordon et al. [20] recently showed that, in contrast to the accepted folklore, complete fairness
is possible in the two-party setting for certain non-trivial functions. Work continuing that direc-
tion should be viewed as complementary to our work here: while we do not yet have a complete
characterization of what can be computed with complete fairness, we know that there certainly do
exist some functions that cannot be computed with complete fairness [9] and so some relaxation
must be considered (at least for some functions). Note further that currently the only (non-trivial)
feasibility results for complete fairness in the two-party setting [20] pertain to single-output, de-
terministic, boolean functions over polynomial-size domains. Our feasibility results here apply to
substantially-larger classes of functions.

1.3 Overview of our Approach

We now give an informal description of our feasibility result. Let x denote the input of P1, let y
denote the input of P2, and let f : X×Y → Z denote the function they are trying to compute. (For
simplicity, here we focus on the case when each party receives the same output; the more general
case is handled when we formally describe our protocols.) As in [21, 20, 24], our protocols will be
composed of two stages, where the first stage can be viewed as a “pre-processing” step and the
second stage takes place in a sequence of r = r(n) iterations. The stages have the following form:

First stage The first stage includes the following steps:

1. First, a value i∗ ∈ {1, . . . , r} is chosen according to some distribution.

2. Values a1, . . . , ar and b1, . . . , br are generated. For i < i∗, the value ai (resp., bi) is chosen
according to some distribution that is independent of y (resp., x). For i ≥ i∗, however,
it holds that ai = bi = f(x, y).

3. Each ai is randomly shared as a
(1)
i , a

(2)
i with a

(1)
i ⊕ a

(2)
i = ai (and similarly for each bi).

The stage concludes with P1 being given a
(1)
1 , b

(1)
1 , . . . , a

(1)
r , b

(1)
r , and P2 being given

3



a
(2)
1 , b

(2)
1 , . . . , a

(2)
r , b

(2)
r . (These shares are also authenticated using an information-theoretic

MAC, but we omit this in the current description of the protocol.)

Note that, at the end of this stage, each party only has a set of random shares that reveal
nothing about the other party’s input. This stage can therefore be carried out by any two-
party protocol that is secure-with-abort.

Second stage In each iteration i, for i = 1, . . . , r, the parties do the following: First, P2 sends a
(2)
i

to P1 who reconstructs ai; then P1 sends b
(1)
i to P1 who reconstructs bi. (In the real protocol,

parties must also verify validity of the shares but we omit this step here.) If a party (say,
P1) aborts or otherwise fails to send a valid message in some iteration i, then the other party
(here, P2) outputs the value reconstructed in the previous iteration (i.e., bi−1). Otherwise,
parties reach the end of the protocol and output ar and br, respectively.

The above defines a generic template, but to fully specify the protocol we must specify the
distribution of i∗ as well as the distribution of the ai, bi for i < i∗. As in [21, 24], we choose i∗

uniformly from {1, . . . , r}. (In [20] a geometric distribution was used. That would work in our
context as well, but would result in worse round complexity.) For the case when X and Y (the
domains of f) are polynomial size, we follow [20] and set ai = f(x, ŷ) for ŷ chosen uniformly from
Y , and set bi = f(x̂, y) for x̂ chosen uniformly (and independently) from X. Note that ai (resp.,
bi) is independent of y (resp. x), as desired.

Intuitively, this is partially fair for the following reasons: fairness is only violated if P1 aborts
exactly in iteration i∗ (indeed, if it aborts before iteration i∗ then neither party learns the “correct”
value of the function, while if it aborts subsequently then both parties learn the correct value).
But even if P1 knows the value of z = f(x, y), it cannot determine when iteration i∗ occurs with
certainty because ai = z with some noticeable probability α even when i < i∗. In [24] (which deals
with coin tossing), the distribution of ai for i < i∗ is identical to the distribution of ai∗ , and so
it is relatively straightforward to see that P1 cannot abort in iteration i∗ except with probability
at most 1/r, where r is the number of iterations. In our case things are complicated by the fact
that the distribution of ai for i < i∗ is different from the distribution of ai∗ , and furthermore the
adversary may know (partial information about) the correct result ai∗ = f(x, y). Nevertheless, we
use a combinatorial argument (see Lemma 1) to prove that the adversary cannot abort in iteration i∗

except with probability at most 1/αr. Taking α∗ = minz∈f(x,Y ){Pr[ai = z | i < i∗]}, we conclude

that setting r = p/α∗ suffices to achieve 1
p -security. As long as Y is polynomial-size, α∗ ≥ 1/|Y | is

noticeable and we get a protocol with polynomially-many rounds.
The above approach does not work without additional modifications in the case when Y has

super-polynomial size. Essentially, this is because it could be the case that f(x, y) = z for some
value z for which the probability that f(x, ŷ) = z when ŷ is chosen uniformly from Y is negligible.
In this case, conditioned on ai = z is it overwhelmingly likely that i = i∗, and this gives a strategy
for the adversary to abort exactly in iteration i∗ with overwhelming probability. (Namely, abort
in the first iteration when ai = z.) To fix this, we must ensure that every possible output in Z
(the range of f) occurs with noticeable probability. We do this by changing the distribution of
ai (for i < i∗) as follows: with probability 1 − 1/q choose ai as before, but with probability 1/q
choose ai uniformly from Z. (We will set q in a moment, but it will be polynomial in n.) Defining
α∗ = minz∈Z{Pr[ai = z | i < i∗]} we now have α∗ ≥ 1/q|Z|, which is noticeable when |Z| is
polynomial. Furthermore, as before, setting r = p/α∗ ≤ pq|Z| suffices to ensure that the adversary
cannot abort in iteration i∗ except with probability at most 1/p.

4



By changing the distribution of ai, however, we introduce a new problem: if a malicious P2

aborts in some iteration prior to i∗, then the output of the honest P1 in the real world cannot
necessarily be simulated in the ideal world. We show, however, that it can be simulated to within
statistical difference O(1/q). Taking q = p (along with r = pq|Z|) thus gives a protocol with
polynomially-many rounds that is 1

p -secure.
We refer the reader to Section 3 for further details regarding our protocols.

1.4 Organization of the Paper

We present our definitions in Section 2. These are largely standard, except for our definition of 1
p -

security (Definition 1). The reader may also want to quickly review our notation for functionalities.
In Section 3 we describe protocols showing feasibility of 1

p -secure computation for a large class of
functionalities. Our impossibility results are given in Section 4.

2 Definitions

We denote the security parameter by n.

2.1 Preliminaries

A function µ(·) is negligible if for every positive polynomial p(·) and all sufficiently large n it holds
that µ(n) < 1/p(n). A distribution ensemble X = {X(a, n)}a∈Dn , n∈N is an infinite sequence of
random variables indexed by a ∈ Dn and n ∈ N, where Dn is a set that may depend on n. For a
fixed function p, two distribution ensembles X = {X(a, n)}a∈Dn , n∈N and Y = {Y (a, n)}a∈Dn, n∈N

are computationally 1
p-indistinguishable, denoted X

1/p
≈ Y , if for every non-uniform polynomial-time

algorithm D there exists a negligible function µ(·) such that for every n and every a ∈ Dn

∣

∣Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]
∣

∣ ≤
1

p(n)
+ µ(n).

Two distribution ensembles are computationally indistinguishable, denoted X
c
≡ Y , if for every

c ∈ N they are computationally 1
nc -indistinguishable.

The statistical difference between two distributions X(a, n) and Y (a, n) is defined as

SD
(

X(a, n), Y (a, n)
)

=
1

2
·
∑

s

∣

∣Pr[X(a, n) = s]− Pr[Y (a, n) = s]
∣

∣ ,

where the sum ranges over s in the support of either X(a, n) or Y (a, n). Two distribution ensem-

bles X = {X(a, n)}a∈Dn, n∈N and Y = {Y (a, n)}a∈Dn, n∈N are statistically close, denoted X
s
≡ Y ,

if there is a negligible function µ(·) such that for every n and every a ∈ Dn, it holds that
SD

(

X(a, n), Y (a, n)
)

≤ µ(n).

2.2 Two-Party Computation

Functionalities. In the two-party setting, a functionality F = {fn}n∈N is a sequence of ran-
domized processes for which fn can be computed in time poly(n). We view fn as a (randomized)

5



mapping fn : Xn× Yn → Z1
n×Z2

n, where Xn (resp., Yn) denotes the valid inputs of the first (resp.,
second) party and we assume that elements of Xn, Yn, Z1

n, and Z2
n can be described by strings of

length poly(n). We write fn = (f1
n, f2

n) if we wish to emphasize the two outputs of fn, but stress
that if f1

n and f2
n are randomized then the outputs of f1

n and f2
n are correlated random variables.

If Pr[f1
n(x, y) = f2

n(x, y)] = 1 for all x, y, then we call fn a single-output functionality and write it
as fn : Xn × Yn → Zn.

In the rest of the paper, we frequently drop the explicit dependence on n. It is important to
keep in mind, however, that the domain and range of f depend n, since the complexity of our
protocols will depend on their sizes.

Two-party computation. A two-party protocol for computing a functionality F = {(f1, f2)} is
a protocol running in polynomial time and satisfying the following functional requirement: if party
P1 begins by holding 1n and input x ∈ X, and party P2 holds 1n and input y ∈ Y , then the joint
distribution of the outputs of the parties is statistically close to (f1(x, y), f2(x, y)).

In what follows, we define what we mean by a secure protocol. Our definition uses the stan-
dard real/ideal paradigm of [17] (based on [23, 2, 7]), except that we will sometimes require only
1
p -indistinguishability rather than indistinguishability. We consider active adversaries, who may
deviate from the protocol in an arbitrary manner, and static corruptions.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted party exists) can do no more
harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. The parties are P1 and P2, and there is an adversary A who has
corrupted one of them. An ideal execution for the computation of F = {fn} proceeds as follows:

Inputs: P1 and P2 hold 1n and inputs x ∈ Xn and y ∈ Yn, respectively; the adversary A receives
an auxiliary input aux.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by A may send any value of its choice. Denote the pair of inputs
sent to the trusted party by (x′, y′).

Trusted party sends outputs: If x′ 6∈ Xn the trusted party sets x′ to some default element
x0 ∈ X (and likewise if y′ 6∈ Yn). Then, the trusted party chooses r uniformly at random and
sends f1

n(x′, y′; r) to P1 and f2
n(x′, y′; r) to party P2.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing, and A outputs any arbitrary (probabilistic polynomial-time computable)
function of its view.

We let idealF ,A(aux)(x, y, n) be the random variable consisting of the output of the adversary and
the output of the honest party following an execution in the ideal model as described above.

Execution in the real model. We next consider the real model in which a two-party protocol
π is executed by P1 and P2 (and there is no trusted party). In this case, the adversary A gets the

6



inputs of the corrupted party and sends all messages on behalf of this party, using an arbitrary
polynomial-time strategy. The honest party follows the instructions of π.

Let π be a two-party protocol computing F . Let A be a non-uniform probabilistic polynomial-
time machine with auxiliary input aux. We let realπ,A(aux)(x, y, n) be the random variable con-
sisting of the view of the adversary and the output of the honest party, following an execution of π
where P1 begins by holding 1n and input x, and P2 begins by holding 1n and input y.

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows:

Definition 1 Let F , π be as above, and fix a function p. Protocol π is said to 1
p -securely compute F

if for every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a
non-uniform probabilistic polynomial-time adversary S in the ideal model such that

{

idealF ,S(aux)(x, y, n)
}

(x,y)∈X×Y, aux∈{0,1}∗

1/p
≈

{

realπ,A(aux)(x, y, n)
}

(x,y)∈X×Y, aux∈{0,1}∗
.

We stress that, in the above definition, we compare the real-world execution of the protocol
to an ideal world in which fairness is guaranteed. 1

p -security thus guarantees, in particular, that

fairness is guaranteed in the real world except with probability at most 1
p .

We also define security-with-abort in the standard way [17]. We remark that the notions of
1
p -security and security-with-abort are incomparable.

2.3 Information-Theoretic MACs

We briefly review the standard definition for information-theoretically secure message authentica-
tion codes (MACs). A message authentication code consists of three polynomial-time algorithms
(Gen,Mac,Vrfy). The key-generation algorithm Gen takes as input the security parameter 1n in
unary and outputs a key k. The message authentication algorithm Mac takes as input a key k and
a message M ∈ {0, 1}≤n, and outputs a tag t; we write this as t = Mack(M). The verification
algorithm Vrfy takes as input a key k, a message M ∈ {0, 1}≤n, and a tag t, and outputs a bit b;
we write this as b = Vrfyk(M, t). We regard b = 1 as acceptance and b = 0 as rejection, and require
that for all n, all k output by Gen(1n), all M ∈ {0, 1}≤n, it holds that Vrfyk(M,Mack(M)) = 1.

We say (Gen,Mac,Vrfy) is a secure m-time MAC, where m may be a function of n, if no
computationally-unbounded adversary can output a valid tag on a new message after seeing valid
tags on m other messages. For our purposes, we do not require security against an adversary who
adaptively chooses its m messages for which to obtain a valid tag; it suffices to consider a non-
adaptive definition where the m messages are fixed in advance. (Nevertheless, known constructions
satisfy the stronger requirement.) Formally:

Definition 2 Message authentication code (Gen,Mac,Vrfy) is an information-theoretically secure

m-time MAC if for any sequence of messages M1, . . . ,Mm and any adversary A, the following is
negligible in the security parameter n:

Pr

[

k ← Gen(1n); ∀i : ti = Mack(Mi);
(M ′, t′)← A(M1, t1, . . . ,Mm, tm)

: Vrfyk(M
′, t′) = 1

∧

M ′ 6∈ {M1, . . . ,Mm}

]

.

7



3 1
p -Secure Computation of General Functionalities

We begin in Section 3.1 by stating and proving a combinatorial lemma that will form an essential
piece of our analysis in the two sections that follow. The reader who is willing to accept the
results of that lemma on faith is welcome to skip to Section 3.2 where we demonstrate a 1

p -secure
protocol that works for functionalities defined on polynomial-size domains. A slight modification
of this protocol is also secure-with-abort. To keep the exposition as simple as possible, we restrict
our attention there to single-output functionalities, though the techniques extend easily to the case
where each party receives a different function of the inputs. In Section 3.3 we show how to adapt the
protocol for functionalities defined over domains of super-polynomial size (but polynomial range),
and also generalize to the case of functionalities generating different outputs for each party.

3.1 A Useful Lemma

In this section, we analyze an abstract game Γ between a challenger and an (unbounded) adver-
sary A. The game is parameterized by a value α ∈ (0, 1] and an integer r ≥ 1. Fix (arbitrary)
distributions D1,D2 such that for every z it holds that

Pra←D1
[a = z] ≥ α · Pra←D2

[a = z]. (1)

The game Γ(α, r) proceeds as follows:

1. The challenger chooses i∗ uniformly from {1, . . . , r}, and then prepares values a1, . . . , ar as
follows:

• For i < i∗, it chooses ai ← D1.

• For i ≥ i∗, it sets ai ← D2.

2. The challenger and the adversary then interact in a sequence of at most r iterations. In
iteration i:

• The challenger gives ai to the adversary.

• The adversary can either abort or continue. In the former case, the game stops. In the
latter case, the game continues to the next iteration.

3. A wins if it aborts the game in iteration i∗. (Since A can no longer win once iteration i∗ has
passed, we may simply assume the game stops if that ever occurs.)

Let Win(α, r) denote the maximum probability with which A can win the above game.

Lemma 1 For any D1,D2 satisfying Equation (1), Win(α, r) ≤ 1/αr.

Proof: Fix D1,D2 satisfying Equation (1). We prove the lemma by induction on r. When r = 1
the lemma is trivially true; for completeness, we also directly analyze the case r = 2. Since A is
unbounded we may assume it is deterministic. Then, without loss of generality, we may assume

8



the adversary’s strategy is determined by a set S in the support of D2 such that A aborts in the
first iteration iff a1 ∈ S, and otherwise aborts in the second iteration (no matter what). We have

Pr[A wins] = Pr[A wins and i∗ = 1] + Pr[A wins and i∗ = 2]

=
1

2
· Pra←D2

[a ∈ S] +
1

2
·
(

1− Pra←D1
[a ∈ S]

)

≤
1

2
· Pra←D2

[a ∈ S] +
1

2
·
(

1− α · Pra←D2
[a ∈ S]

)

=
1

2
+

1

2
·
(

(1− α) · Pra←D2
[a ∈ S]

)

≤ 1− α/2,

where the first inequality is due to Equation (1). One can easily verify that 1− α/2 ≤ 1/2α when
α > 0. We have thus proved Win(α, 2) ≤ 1/2α.

Assume Win(α, r) ≤ 1/αr, and we now bound Win(α, r + 1). As above, let S denote a set in
the support of D2 such that A aborts in the first iteration iff a1 ∈ S. If A does not abort in the
first iteration, and the game does not end, then the conditional distribution of i∗ is uniform in
{2, . . . , r + 1} and the game Γ(α, r + 1) from this point forward is exactly equivalent to the game
Γ(α, r). In particular, conditioned on the game Γ(α, r + 1) not ending after the first iteration, the
best strategy for A is to play whatever is the best strategy in game Γ(α, r). We thus have

Pr[A wins] = Pr[A wins and i∗ = 1] + Pr[A wins and i∗ > 1]

=
1

r + 1
· Pra←D2

[a ∈ S] +
r

r + 1
·
(

1− Pra←D1
[a ∈ S]

)

·Win(α, r)

≤
1

r + 1
· Pra←D2

[a ∈ S] +
1

α(r + 1)
·
(

1− α · Pra←D2
[a ∈ S]

)

·

=
1

α(r + 1)
.

This completes the proof.

3.2 A 1

p
-Secure Protocol for Functions over Polynomial-Size Domains

In this section, we describe an approach that works for functions where at least one of the domains
is polynomial-size. Although the protocol we describe would work even when the parties receive
different outputs, for simplicity we assume here that the parties compute a single-output function.
(We will return to the more general setting in the following section.) We prove the following:

Theorem 3 Let F = {fn : Xn × Yn → Zn} be a sequence of (randomized) functions where |Yn| =
poly(n). Then, assuming the existence of enhanced trapdoor permutations, for any polynomial p
there exists an O (p · |Yn|)-round protocol that 1

p -securely computes F .

Proof: As described in Section 1.3, our protocol Π consists of two stages. Let p be an arbitrary
polynomial, and set r = p · |Yn|. We will implement the first stage using a sub-protocol for com-
puting a randomized functionality ShareGenr defined in Figure 1. (ShareGenr is parameterized by a
polynomial r.) This functionality returns shares to each party, authenticated using an information-
theoretically secure r-time MAC, and in the second stage of the protocol the parties exchange these
shares in a sequence of r iterations as described in Figure 2.

9



ShareGenr

Inputs: The security parameter is n. Let the inputs to ShareGenr be x ∈ Xn and y ∈ Yn. (If one
of the received inputs is not in the correct domain, a default input is substituted.)

Computation:

1. Define values a1, . . . , ar and b1, . . . , br in the following way:

• Choose i∗ uniformly at random from {1, . . . , r}.

• For i = 1 to i∗ − 1 do:

– Choose ŷ ← Yn and set ai = f(x, ŷ).

– Choose x̂← Xn and set bi = f(x̂, y).

• For i = i∗ to r, set ai = bi = f(x, y).

2. For 1 ≤ i ≤ r, choose (a
(1)
i , a

(2)
i ) and (b

(1)
i , b

(2)
i ) as random secret sharings of ai and bi,

respectively. (E.g., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ r, let tai = Macka
(i‖a

(2)
i ) and tbi = Mackb

(i‖b
(1)
i ).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
r and (b

(1)
1 , tb1), . . . , (b

(1)
r , tbr), and the MAC-key ka.

2. Send to P2 the values (a
(2)
1 , ta1), . . . , (a

(2)
r , tar) and b

(2)
1 , . . . , b

(2)
r , and the MAC-key kb.

Figure 1: Functionality ShareGenr.

We analyze our protocol in a hybrid model where there is a trusted party computing ShareGenr.
(In this ideal world, if P1 is adversarial it can abort the trusted party computing ShareGenr before
the trusted party sends output to the honest party.) We will prove 1

p -security of Π in this hybrid
model (in fact, we will prove that an execution in the hybrid world has statistical difference at most
1
p + negl(n) from an ideal-world computation of F); it follows as in [7] that if we use a sub-protocol

for computing ShareGenr that is secure-with-abort, then Π is 1
p -secure.

Claim 1 For every non-uniform, polynomial-time adversary A corrupting P1 and running Π in a
hybrid model with access to an ideal functionality computing ShareGenr (with abort), there exists a
non-uniform, polynomial-time adversary S corrupting P1 and running in the ideal world with access
to an ideal functionality computing fn (with complete fairness), such that

{

idealfn,S(aux)(x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗

1/p
≈

{

hybrid
ShareGenr

Π,A(aux) (x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗
.

Proof: We construct a simulator S that is given black-box access to A. For readability in what
follows, we ignore the presence of the MAC-tags and keys. That is, we do not mention the fact that
S computes MAC-tags for messages it gives to A, nor do we mention the fact that S must verify
the MAC-tags on the messages sent by A. When we say that A “aborts”, we include in this the
event that A sends an invalid message, or a message whose tag does not pass verification. We also
drop the subscript n from our notation.

1. S invokes A on the input3 x′, the auxiliary input, and the security parameter n. The simulator
also chooses x̂ ∈ X uniformly at random (it will send x̂ to the trusted party, if needed).

3To simplify notation, we reserve x for the value input by A to the computation of ShareGenr.

10



Protocol 1

Inputs: Party P1 has input x and party P2 has input y. The security parameter is n. Let r = p·|Yn|.

The protocol:

1. Preliminary phase:

(a) P1 chooses ŷ ∈ Yn uniformly at random, and sets a0 = f(x, ŷ). Similarly, P2 chooses
x̂ ∈ Xn uniformly at random, and sets b0 = f(x̂, y).

(b) Parties P1 and P2 compute ShareGenr, using their inputs x and y.

(c) If P2 receives ⊥ from the above computation, it outputs b0 and halts. Otherwise, the
parties proceed to the next step.

(d) Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
r , (b

(1)
1 , tb1), . . . , (b

(1)
r , tbr), and ka.

(e) Denote the output of P2 from π by (a
(2)
1 , ta1), . . . , (a

(2)
r , tar ), b

(2)
1 , . . . , b

(2)
r , and kb.

2. For i = 1, . . . , r do:

P2 sends the next share to P1:

(a) P2 sends (a
(2)
i , tai ) to P1.

(b) P1 receives (a
(2)
i , tai ) from P2. If Vrfyka

(i‖a
(2)
i , tai ) = 0 (or if P1 received an invalid

message, or no message), then P1 outputs ai−1 and halts.

(c) If Vrfyka
(i‖a

(2)
i , tai ) = 1, then P1 sets ai = a

(1)
i ⊕a

(2)
i (and continues running the protocol).

P1 sends the next share to P2:

(a) P1 sends (b
(1)
i , tbi ) to P2.

(b) P2 receives (b
(1)
i , tbi ) from P1. If Vrfykb

(i‖b
(1)
i , tbi) = 0 (or if P2 received an invalid message,

or no message), then P2 outputs bi−1 and halts.

(c) If Vrfykb
(i‖b

(1)
i , tbi) = 1, then P2 sets bi = b

(1)
i ⊕b

(2)
i (and continues running the protocol).

3. If all r iterations have been run, party P1 outputs ar and party P2 outputs br.

Figure 2: Generic protocol for computing a function fn.

2. S receives the input x of A to the computation of the functionality ShareGenr. (If x 6∈ X a
default input is substituted.)

3. S sets r = p · |Y |, and chooses uniformly-distributed shares a
(1)
1 , . . . , a

(1)
r and b

(1)
1 , . . . , b

(1)
r .

Then, S gives these shares to A as its output from the computation of ShareGenr.

4. If A sends abort to the trusted party computing ShareGenr, then S sends x̂ to the trusted party
computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends continue),
S proceeds as below.

5. Choose i∗ uniformly from {1, . . . , r}

6. For i = 1 to i∗ − 1:

(a) S chooses ŷ ∈ Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)
i = a

(1)
i ⊕ ai.

It gives a
(2)
i to A. (Note that a fresh ŷ is chosen in every iteration.)

(b) If A aborts, then S sends x̂ to the trusted party, outputs whatever A outputs, and halts.

11



7. For i = i∗ to r:

(a) If i = i∗ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a
(2)
i = a

(1)
i ⊕ z and gives a

(2)
i to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,
then S proceeds.

8. If A has never aborted (and all r iterations are done), then S outputs whatever A outputs
and halts.

Ignoring the possibility of a MAC forgery, we claim that the statistical difference between
an execution of A, running Π in a hybrid world with access to an ideal functionality computing
ShareGenr, and an execution of S, running in an ideal world with access to an ideal functionality
computing f , is at most 1/p. (Thus, taking into account the possibility of a MAC forgery makes
the statistical difference at most 1/p+µ(n) for some negligible function µ.) To see this, let y denote
the input of the honest P2 and consider three cases depending on when the adversary aborts:

1. A aborts in round i < i∗. Conditioned on this event, the view of A is identically distributed
in the two worlds (and is independent of y), and the output of the honest party is f(x̂, y) for
x̂ chosen uniformly in X.

2. A aborts in round i > i∗, or never aborts. Conditioned on this event, the view of A is again
distributed identically in the two worlds, and in both worlds the output of the honest party
is f(x, y).

3. A aborts in round i = i∗: here the distributions are not identical in the two worlds. Although
the view of A is identical in both worlds, the output of the honest party is not: in the hybrid
world the honest party will output f(x̂, y), for x̂ chosen uniformly in X, while in the ideal
world the honest party will output f(x, y).

However, we use Lemma 1 to claim that this event occurs with probability at most 1/p. To
see this, let D1 denote the distribution of ai for i < i∗, and let D2 denote the distribution of
ai∗ . By construction of the protocol, we have

Pra←D1
[a = z]

def
= Prŷ←Y [f(x, ŷ) = z]

≥
1

|Y |
· Pr[f(x, y) = z] =

1

|Y |
· Pra←D2

[a = z].

Taking α = 1/|Y | and applying Lemma 1, we see that A aborts in iteration i∗ with probability
at most 1/αr = |Y |/|Y |p = 1/p.

This completes the proof of the claim.

Claim 2 For every non-uniform, polynomial-time adversary A corrupting P2 and running Π in a
hybrid model with access to an ideal functionality computing ShareGenr (with abort), there exists a
non-uniform, polynomial-time adversary S corrupting P2 and running in the ideal world with access
to an ideal functionality computing f (with complete fairness), such that

{

idealf,S(x, y, n)
}

x∈Xn,y∈Yn,n∈N

c
≡

{

hybrid
ShareGenr

Π,A (x, y, n)
}

x∈Xn,y∈Yn,n∈N

.

12



ShareGen′p,r

Inputs: The security parameter is n. Let the inputs to ShareGen′p,r be x ∈ Xn and y ∈ Yn. (If one
of the received inputs is not in the correct domain, a default input is substituted.)

Computation:

1. Define values a1, . . . , ar and b1, . . . , br in the following way:

• Choose i∗ uniformly at random from {1, . . . , r}

• For i = 1 to i∗ − 1 do:

– Choose x̂← X and set bi = f2(x̂, y).

– With probability 1
p
, choose z ← Z1

n and set ai = z

– With the remaining probability 1− 1
p
, choose ŷ ← Y and set ai = f1(x, ŷ).

• For i = i∗ to r, set ai = f1(x, y) and bi = f2(x, y).

2. For 1 ≤ i ≤ r, choose (a
(1)
i , a

(2)
i ) and (b

(1)
i , b

(2)
i ) as random secret sharings of ai and bi,

respectively. (E.g., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ r, let tai = Macka
(i‖a

(2)
i ) and tbi = Mackb

(i‖b
(1)
i ).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
r and (b

(1)
1 , tb1), . . . , (b

(1)
r , tbr), and the MAC-key ka.

2. Send to P2 the values (a
(2)
1 , ta1), . . . , (a

(2)
r , tar) and b

(2)
1 , . . . , b

(2)
r , and the MAC-key kb.

Figure 3: Functionality ShareGen′p,r.

The simulation is identical to the one in Claim 1, though the proof is much simpler (and we can
prove a stronger notion of security) since P1 always “gets the output first” in every iteration.

Achieving security-with-abort. As written, the protocol is not secure-with-abort. However, it
is easy to modify it so that it is (without affecting 1

p -security): simply have ShareGenr set bi∗−1 =⊥,
where ⊥ is some distinguished value outside the range of f . Although this allows a malicious P2

to identify exactly when iteration i∗ occurs, this does not affect security (as reflected by Claim 2).

3.3 A 1

p
-Secure Protocol for Functions over Arbitrary Domains

The protocol from the previous section does not directly apply to functions on arbitrary (i.e., not
necessarily polynomial-size) domains, since the round complexity of the protocol is polynomial in
the smaller domain. In this section we demonstrate how to extend the protocol so as to handle
arbitrary domains, as long as the range of the function is polynomial size (for at least one of the
parties). For completeness, we now also explicitly take into account the case when parties obtain
different outputs. Intuition for the changes we introduce is given in Section 1.3.

Theorem 4 Let F = {fn : Xn × Yn → Z1
n × Z2

n} be a sequence of (randomized) functions, with
|Z1

n| = poly(n). Then, assuming the existence of enhanced trapdoor permutations, for any polyno-
mial p there exists an O

(

p2 · |Z1
n|

)

-round protocol that 1
p -securely computes F .

Proof: Our protocol Π is, once again, composed of two stages. The second stage will be identical
to the second stage of the previous protocol (see Figure 2), except that the number of iterations r

13



will now be set to r = p2 · |Z1
n|. The first stage will generate shares using a new sub-routine

ShareGen′p,r, parameterized by both p and r, as described in Figure 3.
We will again analyze our protocol in a hybrid model, but where there is now a trusted party

computing ShareGen′p,r. (Once again, P1 can abort the computation of ShareGen′p,r even in the

ideal world.) We will prove 1
p -security in this hybrid model, which implies that if the parties use a

secure-with-abort protocol for computing ShareGen′p,r then the entire protocol Π is 1
p -secure.

Claim 3 For every non-uniform, polynomial-time adversary A corrupting P1 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen′p,r (with abort), there exists
a non-uniform, polynomial-time adversary S corrupting P1 and running in the ideal world with
access to an ideal functionality computing F (with complete fairness), such that

{

idealF ,S(aux)(x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗

1/p
≈

{

hybrid
ShareGen′

p,r

Π,A(aux) (x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗
.

Proof: The simulator is essentially the same as the simulator used in the proof of Claim 1, except
that in step 6(a) the distribution on ai (for i < i∗) is changed to the one used by ShareGen′p,r. The
analysis is similar, too, except for bounding the probability that A aborts in iteration i∗. To bound
this probability we will again rely on Lemma 1, but now distribution D1 (i.e., the distribution of
ai for i < i∗) is different. Let y denote the input of P2. Note that, by construction of ShareGen′p,r,

for any z ∈ Z1
n we have Pra←D1

[a = z] ≥ 1
p ·

1
|Z1

n
|
. Regardless of f1 and y, it therefore holds for all

z ∈ Z1
n that

Pra←D1
[a = z] ≥

1

p · |Z1
n|
· Pra←D2

[a = z].

Setting α = 1/p · |Z1
n| and applying Lemma 1, we see that A aborts in iteration i∗ with probability

at most
1

αr
=

p · |Z1
n|

p2 · |Z1
n|

=
1

p
.

This completes the proof.

The following claim considers the case of a malicious P2. We stress that, in contrast to Claim 2,
here we claim only 1

p -indistinguishability.

Claim 4 For every non-uniform, polynomial-time adversary A corrupting P2 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen′p,r (with abort), there exists
a non-uniform, polynomial-time adversary S corrupting P2 and running in the ideal world with
access to an ideal functionality computing F (with complete fairness), such that

{

idealF ,S(aux)(x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗

1/p
≈

{

hybrid
ShareGen′

p,r

Π,A(aux) (x, y, n)
}

x∈Xn,y∈Yn,aux∈{0,1}∗
.

Proof: The simulator S in this case is fairly obvious, but we include it for completeness. Once
again, for readability we ignore the presence of the MAC-tags and keys.

1. S invokes A on the input y′, the auxiliary input, and the security parameter n. The simulator
also chooses ŷ ∈ Y uniformly at random (it will send ŷ to the trusted party, if needed).

14



2. S receives the input y of A to the computation of the functionality ShareGen′p,r. (If y 6∈ Y a
default input is substituted.)

3. S sets r = p2 · |Z1|, and chooses uniformly-distributed shares a
(1)
1 , . . . , a

(1)
r and b

(1)
1 , . . . , b

(1)
r .

Then, S gives these shares to A as its output from the computation of ShareGen′p,r.

4. Choose i∗ uniformly from {1, . . . , r}

5. For i = 1 to i∗ − 1:

(a) S chooses x̂ ∈ X uniformly at random, computes bi = f2(x̂, y), and sets b
(1)
i = b

(2)
i ⊕ bi.

It gives b
(1)
i to A. (Note that a fresh x̂ is chosen in every iteration.)

(b) If A aborts, then S sends ŷ to the trusted party, outputs whatever A outputs, and halts.

6. For i = i∗ to r:

(a) If i = i∗ then S sends y to the trusted party computing f and receives z = f2(x, y).

(b) S sets b
(1)
i = b

(2)
i ⊕ z and gives b

(1)
i to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,
then S proceeds.

7. If A has never aborted (and all r iterations are done), then S outputs whatever A outputs
and halts.

Ignoring the possibility of a MAC forgery, we claim that the statistical difference between
an execution of A, running Π in a hybrid world with access to an ideal functionality computing
ShareGen′p,r, and an execution of S, running in an ideal world with access to an ideal functionality
computing F , is at most 1/p. (Thus, taking into account the possibility of a MAC forgery makes
the statistical difference at most 1/p + µ(n) for some negligible function µ.) In fact, the view of
A is identical in the two worlds; the only issue is the output of the honest P1 holding input x.
Specifically, if A aborts in any iteration prior to i∗ then, in the ideal world interaction with S,
party P1 outputs f1(x, ŷ) for a uniformly-chosen ŷ ∈ Y . In the hybrid world, however, the output
of P1 is given by the distribution of ai (for i < i∗) as determined by ShareGen′p,r. However, these
two distributions are within statistical difference (at most) 1/p. The claim follows.

4 Optimality of Our Results

In this section, we prove two impossibility results showing that the results of the previous section
are optimal as far as generic feasibility results go. The first result is unconditional, while the second
relies on cryptographic assumptions.

4.1 Impossibility of 1
p
-Security and Security-with-Abort for Functions over Ar-

bitrary Domains

As mentioned earlier, the notions of security-with-abort and 1
p -security are incomparable. Although

we are able to achieve 1
p -security and security-with-abort simultaneously for the case of function-

alities where at least one of the domains is polynomial-size (cf. Section 3.2), we were not able to

15



do so for the case of arbitrary domains. We show, in fact, that it is impossible to achieve both of
these criteria (in general) in this case.

Consider the equality function EQ defined over domains of super-polynomial size. (Formally,
consider EQ : Xn × Yn → {0, 1} where Xn = Yn = {0, 1}ℓ(n) for some ℓ(n) = ω(log n).) Let Π be
some protocol computing EQ, where we assume without loss of generality that P2 goes first and
P1 goes last. Say Π has r = r(n) iterations for some polynomial r. (An iteration consists of a
message sent by P2 followed by a message from P1.) We show that Π cannot be simultaneously
secure-with-abort and 1

p -secure for any p > 4 + 1
poly(n) .

Let a0 denote the value that P1 outputs if P2 sends nothing, and let ai, for 1 ≤ i ≤ r, denote
the value that P1 outputs if P2 aborts after sending its iteration-i message. Similarly, let b0 denote
the value that P2 outputs if P1 sends nothing, and let bi, for 1 ≤ i ≤ r, denote the value that P2

outputs if P1 aborts after sending its iteration-i message. We may assume without loss of generality
that, for all i, ai ∈ {0, 1} and bi ∈ {0, 1,⊥}.

We will consider two experiments involving an execution of Π. In the first, x and y are chosen
uniformly and independently from {0, 1}ℓ(n); the parties are given inputs x and y, respectively; and
the parties then run protocol Π honestly. We denote the probability of events in this probability
space by Prrand[·]. In the second experiment, x is chosen uniformly from {0, 1}ℓ(n) and y is set
equal to x; these inputs are given to the parties and they run the protocol honestly as before. We
denote the probability of events in this probability space by Preq[·].

Claim 5 If Π is secure-with-abort, then Prrand[a0 = 1∨· · ·∨ar = 1] and Prrand[b0 = 1∨· · ·∨br = 1]
are negligible.

Proof: If, say, Prrand[a0 = 1 ∨ · · · ∨ ar = 1] were not negligible, then we could consider an
adversarial P2 that runs the protocol honestly but aborts at a random round. This would result in
the honest P1 outputting 1 with non-negligible probability in the real world, whereas this occurs
with only negligible probability in the ideal world (when the parties are given independent, random
inputs). A similar argument applies to Prrand[b0 = 1 ∨ · · · ∨ br = 1].

Assume for simplicity that Π has perfect correctness, i.e., that ar = br = EQ(x, y) when the two
parties run the protocol honestly holding initial inputs x and y. (This assumption is not necessary,
but allows us to avoid introducing burdensome notation.) Then Preq[a0 = 1 ∨ · · · ∨ ar = 1] =
Preq[b0 = 1 ∨ · · · ∨ br = 1] = 1. Let i∗ denote the lowest index, if any, for which ai∗ = 1. Similarly,
let j∗ denote the lowest index, if any, for which bj∗ = 1. Since

Preq[i
∗ ≤ j∗] + Preq[i

∗ > j∗] = Preq[i
∗ and j∗ are defined] = 1,

at least one of the two terms on the left-hand side is at least 1/2. We assume Preq[i
∗ ≤ j∗] ≥ 1/2

in what follows, but the exact same argument (swapping the roles of the parties) applies in case
Preq[i

∗ > j∗] ≥ 1/2.
Consider now a third experiment that is a mixture of the previous two. Specifically, in this

experiment a random bit b is chosen; if b = 0 then the parties are given inputs x and y as in
the first experiment (i.e., chosen uniformly and independently at random), while if b = 1 then the
parties are given (random) x = y as in the second experiment. The parties then run protocol Π
honestly. We denote the probability of events in this probability space by Prreal3 [·]. We use the
superscript real to distinguish this from an ideal-world version of this experiment where the bit b
is chosen uniformly and the parties are given x and y generated accordingly, but now the parties

16



interact with an ideal party computing EQ without abort. We denote the probability of events in
this probability space by Prideal

3 [·].
Consider an execution of the third experiment (in either the real or ideal worlds), in the case

when P1 is malicious. Let guess denote the event that P1 correctly guesses the value of the bit b,
and let out2 denote the output of P2. A simple calculation shows that

Prideal
3 [guess ∧ out2 6= 1] ≤

1

2
+ negl(n). (2)

Now take the following real-world adversary A corrupting P1: upon receiving input x, run Π
honestly but compute ai after receiving each iteration-i message from P2. There are two cases:

• If, at some point, some ai = 1 then abort the protocol (before sending the iteration-i message
on behalf of P1) and output the guess “b = 1”.

• If ai = 0 for all i, then simply run the protocol to the end (including the final message of the
protocol) and output the guess “b = 0”.

We have:

Prreal3 [guess ∧ out2 6= 1] =
1

2
· Prrand[guess ∧ out2 6= 1] +

1

2
· Preq[guess ∧ out2 6= 1]

≥
1

2
· Prrand[a1 = 0 ∧ · · · ∧ ar = 0 ∧ br = 0] +

1

2
· Preq[i

∗ ≤ j∗]

≥
1

2
· (1− negl(n)) +

1

4
=

3

4
− negl(n). (3)

Taken together, Claim 5 and Equations (2) and (3) show that if Π is secure with abort, then it
cannot also be 1

p -secure for any p > 4 + 1
poly(n) .

4.2 Impossibility of 1
p
-Security for General Functions

Our results in Section 3.2 and 3.3 imply that 1
p -security is achievable for any function f : X ×Y →

Z1 × Z2 as long as at least one of X,Y,Z1, Z2 are polynomial size. Here, we give evidence that
this limitation is inherent by showing, under a reasonable cryptographic assumption, that there is
a deterministic, single-output function f : X × Y → Z with |X|, |Y |, |Z| = ω(poly(n)) that cannot
be 1

p -securely computed for any p > 2 + 1
poly(n) . The proof is not difficult, and we would not be

surprised if similar proofs have appeared previously in the literature; however, we were unable to
track down any such references.

The assumption we will need is that exponentially-strong one-way functions exist. (We note,
however, that our proof rules out partial fairness for functions over domains of size 2nǫ

if standard
one-way functions exist.) This is a family of functions {fn : {0, 1}n → {0, 1}n} such that, for some
δ, we have

Pr[A(f(x)) ∈ f−1(f(x))] ≤ 2−δn,

for all A running in time 2δn. This implies that f is one-way (in the standard sense) when its input
is chosen from {0, 1}ω(log n).

Given such an f , we define the function

Swap :
(

{0, 1}ω(log n)
)2
×

(

{0, 1}ω(log n)
)2
→

(

{0, 1}ω(log n)
)2

17



as follows: Swap((x1, y2), (x2, y1)) outputs (x1, x2) iff f(x1) = y1 and f(x2) = y2, and outputs ⊥
otherwise.

Consider an ideal-world computation of Swap, where x1, x2 are chosen uniformly at random,
y1 = f(x1) and y2 = f(x2), and P1 is given (x1, y2) while P2 is given (x2, y1). We can easily observe
that, e.g., an adversarial P1 cannot simultaneously output an inverse of y2 while causing P2 to fail
to output a valid inverse of y1, except with negligible probability. In what follows, we refer to this
event as a win for P1.

In any real-world computation of Swap, however, there must be one party who “gets its output
first” with probability at least 1/2. More formally, say we have an r-iteration protocol computing
Swap where P2 sends the first message and P1 sends the last message, and let ai, for i = 0, . . . , ar,
denote the second component of the value P1 would output if P2 aborts the protocol after sending
its iteration-i message. Similarly, let bi denote the first component of the value that P2 would
output if P1 aborts the protocol after sending its iteration-i message. Each value ai and bi can be
computed in polynomial time after receiving the other party’s iteration-i message. We can therefore
define an adversary P ∗1 that acts as follows:

Run the protocol honestly until the first round in which f(ai) = y2; then abort.

An adversary P ∗2 can be defined analogously. Let i1 be a random variable denoting the first round
in which f(ai) = y2, and let i2 denote the first round in which f(bi) = y1. Since

Pr[i1 ≤ i2] + Pr[i1 > i2] = 1,

while Pr[P ∗1 wins] = Pr[i1 ≤ i2] and Pr[P ∗2 wins] = Pr[i1 > i2], it is clear that either P ∗1 or P ∗2 wins
with probability at least 1/2. Since an adversary wins in the ideal world with negligible probability,
this rules out 1

p -security if 1
2 −

1
p is noticeable.

The above does not contradict the result of [11], or any other work on partial fairness that aims
to solve exactly this problem. The reason is that in previous work on partial fairness the running
time of the honest parties is not bounded by a fixed polynomial, whereas in our setting we require
this to be the case. We add further that in previous work on partial fairness (this is made explicit
in [16]), the decision of how much “effort” honest parties should invest is not determined by the
protocol, but instead is supposed to be determined is some other (unspecified) manner.

Acknowledgments

The second author would like to thank Yehuda Lindell for many enlightening discussions on this
topic, one of which prompted the inclusion of Section 4.1. We thank the authors of [24] for sharing
a copy of their manuscript with us.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In 4th Theory of Cryptography Conference (TCC), volume 4392 of Lecture Notes
in Computer Science, pages 137–156. Springer-Verlag, 2007.

[2] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology — Crypto
’91, volume 576 of Lecture Notes in Computer Science, pages 377–391. Springer, 1992.

18



[3] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Proc. 30th
Annual Symposium on Foundations of Computer Science (FOCS), pages 468–473, 1989.

[4] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. IEEE
Trans. Information Theory, 36(1):40–46, 1990.

[5] M. Blum. How to exchange (secret) keys. ACM Trans. Computer Systems, 1(2):175–193, 1983.

[6] D. Boneh and M. Naor. Timed commitments. In Advances in Cryptology — Crypto 2000,
volume 1880 of Lecture Notes in Computer Science, pages 236–254. Springer, 2000.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[8] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proc. 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145,
2001.

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. 18th
Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.

[10] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In
Advances in Cryptology — Crypto ’89, volume 435 of Lecture Notes in Computer Science,
pages 573–588. Springer, 1990.

[11] I. Damg̊ard. Practical and provably secure release of a secret and exchange of signatures. J.
Cryptology, 8(4):201–222, 1995.

[12] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In Proc. 30th Annual ACM
Symposium on Theory of Computing (STOC), pages 409–418, 1998.

[13] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Comm.
ACM, 28(6):637–647, 1985.

[14] M. Franklin. Complexity and Security of Distributed Protocols. PhD thesis, Columbia Univer-
sity, 1993.

[15] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant protocols
and the public-key model. In Advances in Cryptology — Crypto ’87, volume 293 of Lecture
Notes in Computer Science, pages 135–155. Springer, 1988.

[16] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability
of cryptographic protocols. In 3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 404–428. Springer-Verlag, 2006.

[17] O. Goldreich. Foundations of Cryptography, Volume 2 – Basic Applications. Cambridge Uni-
versity Press, 2004.

[18] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. J. Cryptol-
ogy, 19(3):241–340, 2006.

19



[19] S. Goldwasser and L. Levin. Fair computation and general functions in the presence of immoral
majority. In Advances in Cryptology — Crypto ’90, volume 537 of Lecture Notes in Computer
Science. Springer, 1991.

[20] D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party compu-
tation. In Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), 2008.

[21] J. Katz. On achieving the “best of both worlds” in secure multiparty computation. In Proc.
48th Annual Symposium on Foundations of Computer Science (FOCS), 2007.

[22] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping
a symmetrically-biased coin. In Proc. 24th Annual Symposium on Foundations of Computer
Science (FOCS), pages 23–30, 1983.

[23] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology — Crypto ’91,
volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer, 1992.

[24] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss: Cleve’s bound is tight.
Manuscript available from the authors.

[25] B. Pinkas. Fair secure two-party computation. In Advances in Cryptology — Eurocrypt 2003,
volume 2656 of Lecture Notes in Computer Science, pages 87–105. Springer, 2003.

[26] A. Yao. Protocols for secure computation. In Proc. 27th Annual Symposium on Foundations
of Computer Science (FOCS), pages 162–167, 1986.

20


