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Abstract. In this paper, a super-optimal pairing based on the Weil

pairing is proposed with great efficiency. It is the first approach to reduce

the Miller iteration loop when computing the variants of the Weil pairing.

The super-optimal pairing based on the Weil pairing is computed rather

fast, while it is slightly slower than the previous fastest pairing on the

corresponding elliptic curves.
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1 Introduction

In 1985, Victor Miller discovered a polynomial-time algorithm for computing

the Weil pairing on elliptic curves in an unpublished (but widely distributed

and cited) manuscript [19]. Since pairings on elliptic/hyperelliptic curves may

find many interesting cryptographic applications [22], much attention has been

paid to Miller’s algorithm in recent years.

Many optimizations from different angles have been devised for practical

implementations [7, 1]. One of the most efficient techniques is to reduce the

iteration loops in Miller’s algorithm. Inspired by the main idea, the researchers

have proposed some variants of the Tate pairing with great efficiency, such as the
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eta pairing [3], the ate pairing and its variants [12, 18, 30], as well as the R-ate

pairing [14].

Computing the traditional Tate/Weil pairings requires log2 r Miller iteration

loops with r the order of the corresponding groups. In [29], an optimal pairing

is defined if it can be computed in log2 r/ϕ(k) basic Miller iteration loops with

k the embedding degree. If the number of the Miller iteration loops is smaller

than log2 r/ϕ(k), the corresponding pairing is called super-optimal. Motivated

by GLV methods [9], Scott constructs a super-optimal pairing based on the Tate

pairing in [23]. Hess presents an integral framework that covers all known fast

pairing functions based on the Tate pairing [11].

However, there exist no references to shortening the Miller iteration loops in

the Weil pairing computation for good efficiency. In this paper, we first investi-

gate to speed up the computation of the Weil pairing with short Miller iteration

loops under several certain conditions and then obtain some amazing results.

Computing the pairings on elliptic curves with the embedding degree k = 2 has

many conveniences, which was described clearly in [24]. Also, point compression

techniques can be used [8]. Thus this paper is also devoted to computing the

pairings in this case.

We present a novel derivation of the super-optimal pairing based on the Tate

pairing in [23]. On the basis of the results, we construct some new variants of

the Weil pairing which are also super-optimal. Using the super-optimal pairings

based on the Weil pairing, the loop length in Miller’s algorithm will be half

the length of that required for the standard Tate/Weil pairing. It is the first

approach to reduce the Miller iteration loops when computing the variants based

on the Weil pairing, although computing the new pairings is slightly slower than

computing the previous fastest pairings on the corresponding curves.

The rest of this paper is organized as follows. Section 2 introduces the basic

pairing and a family of non-supersingular elliptic curves with non-trivial auto-

morphisms. Section 3 gives the main results and Section 4 applies them into

pairing computations. Section 5 analyzes the efficiency of the proposed algo-

rithm and compares it with the previous other methods. Section 6 draws the

conclusions.
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2 Preliminaries

This section briefly recalls the definitions of the Tate pairing and the Weil pairing

which were used to evaluate the elliptic curve discrete logarithm problem in [6,

17] and describes Miller’s algorithm to compute the pairings. Then we introduce

a family of elliptic curves with non-trivial automorphisms for interest.

2.1 Tate Pairing

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be an

elliptic curve defined over Fq, and let O be the point at infinity. Let r be a prime

such that r|#E(Fq), where #E(Fq) is denoted as the order of E(Fq). Let k be

the embedding degree. Assume that r2 does not divide qk − 1 and k is greater

than 1. E[r] is denoted as the r−torsion group of E.

Let P ∈ E[r] and R ∈ E(Fqk). Let DP be the divisor which is linearly

equivalent to (P )− (O). For every integer i and point P , let fi,P be a function

such that (fi,P ) = i(P )− (iP )− (i− 1)(O). In particular, (fr,P ) = rDP . Let µr

be the r-th roots of unity in F∗qk . Then the reduced Tate pairing is defined as

follows [4]

e : E[r]× E(Fqk) → µr,

e(P, R) = fr,P (R)
qk−1

r .

Notice that fr,P (R)a(qk−1)/r = far,P (R)(q
k−1)/r for any integer a.

2.2 Weil Pairing

Using the same notation as previous, one may make a few slight modifications

and then define the Weil pairing. Let k be the minimal positive integer such that

E[r] ⊂ E(Fqk). According to the results in [2], if r - q − 1 and (r, q) = 1, then

E[r] ⊂ E(Fqk) if and only if r|qk − 1, i.e., the embedding degree for the Weil

pairing is equal to the embedding degree for the Tate pairing in this case.

Suppose that P, Q ∈ E[r] and P 6= Q. Let DP and DQ be two divisors which

are linearly equivalent to (P ) − (O) and (Q) − (O), respectively. Let fr,P and

fr,Q be two rational functions on E with (fr,P ) = rDP and (fr,Q) = rDQ. Then

the Weil pairing is a map [20]

er : E[r]× E[r] → µr,
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er(P, Q) = (−1)r fr,P (Q)
fr,Q(P )

.

For fast pairing computations, one can define the powered Weil pairing [16,

15] as

êr(P, Q) = er(P, Q)(q
d−1),

where d is a divisor of k. Notice that the denominator elimination technique can

be used when computing the powered Weil pairing. Particularly, one may define

the powered Weil pairing as êr(P, Q) = er(P, Q)(q−1) in the case of k = 2.

2.3 Miller’s Algorithm

In this subsection, we briefly recall how the Tate pairing can be computed in

polynomial time using Miller’s algorithm [19].

Let P ∈ E[r] and R ∈ E(Fqk). Let lS,T be the equation of the line through

points S and T , and let vT be the equation of the vertical line through point T .

Then for i, j ∈ Z, we have

fi+j,P (Q) = fi,P (Q)fj,P (Q)
liP,jP (Q)
v(i+j)P (Q)

.

Miller’s algorithm is described in Algorithm 1.

Algorithm 1: Miller’s algorithm

Input: r =
Pn

i=0 li2
i, where li ∈ {0, 1}. P ∈ E[r]

and R ∈ E(Fqk ), R 6= P .

Output: e(P, R)

1. T ← P , f ← 1

2. for i = n− 1, n− 2, · · · , 1, 0 do

2.1 f ← f2 · lT,T (R)

v2T (R)
, T ← 2T

2.2 if li = 1 then

2.3 f ← f · lT,P (R)

vT+P (R)
, T ← T + P

3. return f (qk−1)/r
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2.4 A Family of Elliptic Curves with Non-trivial Automorphisms

Let p be a large prime. Consider the underlying non-supersingular elliptic curves

over Fp

E1 : y2 =x3 + B,where p ≡ 1 mod 3,

E2 : y2 =x3 + Ax,where p ≡ 1 mod 4.

Both them have efficiently-computable endomorphisms which were applied

in fast point multiplication [9] and the computation of the Tate pairing [23]. In

fact, these endomorphisms are also non-trivial automorphisms which were used

in speeding up the discrete log computation [5]. It is worth remarking that only

the two non-supersingular elliptic curves with j-invariant j = 0 or 1728 have

non-trivial automorphisms (see Silverman [27] page 103).

The conveniences of using pairing-friendly curves with k = 2 in pairing com-

putations are discussed clearly in [24]. Therefore, we will mainly consider the

first curve E1 with k = 2 for speeding up the computation of the pairings in this

paper. It should be clear that the results generalize easily to the second curve

E2. Notice that some suitable curves like E1 with low embedding degrees have

been constructed in [23, 28] and can be applied in pairing based cryptography.

Suppose that β is an element of order three in Fp. A non-trivial automorphism

of the above curve E1 is defined as

φ : E1 → E1,

(x, y) → (βx, y).

Since this automorphism φ is also an isogeny, its dual isogeny is defined as

φ̂ : E1 → E1,

(x, y) → (β2x, y).

It is easily seen that φ̂◦φ = [1], φ2 = φ̂ and #kerφ = 1 (see Silverman [27] pages

84-86). Note that φ̂ is also a non-trivial automorphism on the first curve E1.

We cite some useful facts from [9]. Let P ∈ E1(Fp) be a point of prime order

r, where r2 does not divide the order of E1(Fp). Then φ and φ̂ act restrictively on

the subgroup <P> as multiplication maps [λ] and [λ̂] respectively, i.e., φ(P ) =

λP , where λ and λ̂ are the two roots of the equation: x2 + x + 1 = 0 (mod r).

Note that λP = φ(P ) can be computed using one multiplication in Fp.
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Let E
′
1 be the twisted elliptic curve of E1 with the equation E

′
1 : y2 =

x3 + B/D3, where D is a quadratic non-residue in F∗p. Then E
′
1(Fp) has a sub-

group < Q′ > of order r since the embedding degree k is 2. Two non-trivial

automorphisms φ′ and φ̂′ of E
′
1 can be defined as

φ′ : E
′
1 → E

′
1, φ̂′ : E

′
1 → E

′
1,

(x, y) → (βx, y), (x, y) → (β2x, y).

Assume that r2 does not divide #E′
1(Fp). By using the same argument as above,

φ′ and φ̂′ act restrictively on the subgroup <Q′> as multiplication maps [λ̂] and

[λ] respectively, where λ̂ and λ are defined same as above. In practice, it can be

checked that λQ′ = φ̂′(Q′) and λ̂Q′ = φ′(Q′) using straightforward calculations.

However, we can give an explicit explanation in the following (see Lemma 4).

There exists an isomorphism

ψ : E
′
1 → E1,

(x, y) → (Dx, yD
3
2 )

defined over Fp2 . Put Q=ψ(Q′). Then Q is a point in E1(Fp2)[r]. Since < Q > is

isomorphic to < Q′ >, it leads to λQ = φ̂(Q) if λQ′ = φ̂′(Q′). This observation

is the key to construct the super-optimal pairing based on the Weil pairing.

3 Main Results

In this section, we present some novel pairings which are super-optimal. The

main results of this paper are summarized in the following theorems.

Theorem 1. Let p be a large prime such that p ≡ 1 (mod 3). Let E1 be a non-

supersingular curve over Fp with the equation: y2 = x3 + B, B ∈ F∗p. Let k = 2

be the embedding degree. Two non-trivial automorphisms of E1 are defined as

φ : E1 → E1,(x, y) → (βx, y) and φ̂ : E1 → E1,(x, y) → (β2x, y) respectively.

Let P ∈ E1(Fp)[r] be a point satisfying φ(P ) = λP , where λ is a root of the

equation: x2 + x+1 = 0 (mod r). Let a be an integer such that ar = λ2 + λ +1.

lφ(P ),φ̂(P ) is denoted as the equation of the line through points φ(P ) and φ̂(P ).

Then for R ∈ E1(Fpk), we have

e(P, R)a = (fλ,P (R)λ+1 · fλ,P (φ̂(R)) · lφ(P ),φ̂(P )(R))
p2−1

r .
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Note that there does exist such an integer a since λ2 + λ + 1 = 0 (mod r).

We also remark that e(P, R)a is equal to a fixed power of the reduced Tate

pairing and keeps non-degeneracy provided that r does not divide a. The proof

of Theorem 1 is based on three short lemmas as follows.

Lemma 1. Using the notation of Theorem 1, we have

e(P, R)a = (fλ2+λ,P (R) · l−P,P (R))
pk−1

r .

Proof. It is obvious from the definition of the reduced Tate pairing that

e(P, R)a = fr,P (R)
a(pk−1)

r = far,P (R)
pk−1

r .

Applying the identity ar = λ2 + λ + 1 into the above equation, we obtain

e(P, R)a = far,P (R)
pk−1

r = fλ2+λ+1,P (R)
pk−1

r .

According to (λ2 + λ)P = −P , we see that

(fλ2+λ+1,P ) = (fλ2+λ,P · f1,P · l−P,P ).

Since f1,P = 1 up to a scalar multiple in F∗p, it follows that

e(P, R)a = fλ2+λ+1,P (R)
pk−1

r = (fλ2+λ,P (R) · l−P,P (R))
pk−1

r

This completes the proof of Lemma 1.

Lemma 2. Using the notation of Theorem 1, we can choose fλ2+λ,P l−P,P such

that

(fλ2+λ,P · l−P,P ) = (fλ+1
λ,P · fλ,λP · lφ(P ),φ̂(P )).

Proof. Note that (fi,P ) = i(P )− (iP )− (i− 1)(O) and (λ2 + λ)P = −P . Then

(fλ2+λ,P · l−P,P ) =(fλ2,P · fλ,P ·
lλ2P,λP

l(λ2+λ)P,−(λ2+λ)P
· l−P,P )

=(fλ2,P · fλ,P · lλ2P,λP ).

Since λP = φ(P ) and λ2P = φ2(P ) = φ̂(P ), we have

lλ2P,λP = lλP,λ2P = lφ(P ),φ̂(P ).

Also, (see Lemma 2 in [3])

(fλ2,P ) = (fλ
λ,P · fλ,λP ).
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Hence

(fλ2+λ,P · l−P,P ) = (fλ2,P · fλ,P · lλ2P,λP ) = (fλ+1
λ,P · fλ,λP · lφ(P ),φ̂(P ))

which completes the proof.

Lemma 3. For P ∈ E1[r] and R ∈ E1(Fpk), we have fλ,λP (R) = fλ,P (φ̂(R)),

with φ̂ defined as above.

Proof. By definition, (fλ,λP ) = λ(λP )−(λ2P )−(λ−1)(O). Note that φ(P ) = λP

and #kerφ = deg[1] = 1 (see [27] Chapter III pages 85-86). Since φ is an

automorphism of the curve and thus separable of degree 1, we get

φ∗(fλ,λP ) =φ∗(λ(λP )− (λ2P )− (λ− 1)(O))

=λ(P )− (λP )− (λ− 1)(O)

=(fλ,P ).

On the other hand, φ∗(fλ,λP ) = (fλ,λP ◦ φ). Hence, we have (up to a scalar

multiple in F∗p)
fλ,λP ◦ φ = fλ,P .

Applying φ̂ to the above equality yields

fλ,λP ◦ φ ◦ φ̂ = fλ,P ◦ φ̂.

Since φ ◦ φ̂ = [1], we have

fλ,λP = fλ,P ◦ φ̂.

This completes the proof.

Using the above lemmas, we will give a proof of Theorem 1 as follows.

Proof ( of Theorem 1). Since P ∈ E1(Fp)[r], Lemma 3 gives

fλ,λP (R) = fλ,P (φ̂(R)).

Substituting the above equality into Lemma 2, we get

fλ2+λ,P (R) · l−P,P (R) = fλ+1
λ,P (R) · fλ,P (φ̂(R)) · lφ(P ),φ̂(P )(R).

By applying the above equation to Lemma 1, we have

e(P, R)a =(fλ2+λ,P (R) · l−P,P (R))
pk−1

r

=(fλ,P (R)λ+1 · fλ,P (φ̂(R)) · lφ(P ),φ̂(P )(R))
pk−1

r .

This completes the whole proof of Theorem 1.
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By Theorem 1, we can define the super-optimal pairing based on the Tate

pairing, which is similar to the main results in [23]. In connection with Theorem

1, we will construct some super-optimal pairings based on the Weil pairings in

the following.

Theorem 2. Let p be a prime such that p ≡ 1 (mod 3). Let E1 be a non-

supersingular curve over Fp with the equation: E1 : y2 = x3 + B,B ∈ F∗p. The

quadratic twist E′
1 is given by the equation E′

1 : y2 = x3 + B/D3, where D

is a quadratic non-residue in F∗p. Assume that the embedding degree k of E is

2. Let r be a large prime which satisfies r|#E1(Fp), r|#E
′
1(Fp), r2 - #E1(Fp)

and r2 - #E
′
1(Fp). Let P ∈ E1(Fp)[r] and Q′ ∈ E′

1(Fp)[r]. An isomorphism is

defined as ψ : E
′
1 → E1, (x, y) → (Dx, D

3
2 y). Put Q = ψ(Q′). Two non-trivial

automorphisms φ and φ̂ of E1 are defined as (x, y) → (βx, y) and (x, y) →
(β2x, y), respectively. Let λ be the root of the equation x2+x+1 = 0 (mod r) such

that λP = φ(P ) and λQ = φ̂(Q). Let a be an integer such that ar = λ2 + λ + 1.

Then for such P and Q, we have

êr(P, Q)a = ((
fλ,P (Q)
fλ,Q(P )

)λ+1 · fλ,P (φ̂(Q))
fλ,Q(φ(P ))

)p−1.

On the same basis of the discussions for Theorem 1, one may show that there

does exist such an integer a. Notice that êr(P, Q)a equals a fixed power of the

Weil pairing. In addition, the non-degeneracy of êr(P, Q)a holds if êr(P, Q) is

non-degenerate and r does not divide a. In practical implementations, P and Q

are often taken from the specific subgroups for fast pairing computations. Here

we take P ∈ E1[r] ∩Ker(φ− [λ]) and Q ∈ E1[r] ∩Ker(φ̂− [λ]).

The proof of Theorem 2 needs the following lemma.

Lemma 4. Using the notation of Theorem 2, we have λ(Q) = φ̂(Q).

Proof. The isomorphism

ψ : E
′
1 → E1,

(x, y) → (Dx, D
3
2 y)

maps Q′ ∈ E
′
1(Fp)[r] to be in E1(Fp2)[r]. Then we see that < Q > is isomorphic

to < Q′ >. Let Q′ = (xQ′ , yQ′). Then Q = (DxQ′ , D
3
2 yQ′). We have

λQ = λψ(Q′) = ψ(λQ′).
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Since λ is a root of the equation x2 + x + 1 = 0 (mod r), λQ′ must satisfy

λQ′ = φ̂′(Q′) or λQ′ = φ′(Q′), where φ̂′ and φ′ are denoted in the previous

Section 2.4. We will show that λQ′ = φ̂′(Q′) as follows.

Assume that λQ′ = φ′(Q′). This implies that

λQ = λψ(Q′) = ψ(λQ′) = (βDxQ′ , yQ′D
3
2 ) = φ(Q).

Notice that E1[r] can be viewed as a 2-dimensional vector space and φ : E1[r] →
E1[r] be a linear map, whose characteristic polynomial is g(x) = x2 +x+1. It is

not too hard to see that {P, Q} is a basis for E1[r]. According to φ(P ) = λ(P )

and φ(Q) = λ(Q), it is immediate that φ(S) = λS for every point S ∈ E1[r],

a contradiction to the characteristic polynomial g(x) = x2 + x + 1 of φ [21].

Therefore, λQ = φ̂(Q). This completes the proof of Lemma 4.

It should be noted that, in general, S ∈ E1(Fp2)[r] does not satisfy λ(S) =

φ(S). In light of the above discussion, one arrives then at the following proof of

Theorem 2.

Proof ( of Theorem 2). By using the same argument for fr,P (Q) in Theorem 1,

we obtain then

fr,Q(P ) = fλ,Q(P )λ+1 · fλ,Q(φ(P )) · lφ(Q),φ̂(Q)(P ).

According to Theorem 1, we have fr,P (Q) = fλ,P (Q)λ+1·fλ,P (φ̂(Q))·lφ(Q),φ̂(P )(Q).

It is easy to see that lφ(Q),φ̂(Q)(P ) equals −(lφ(Q),φ̂(P )(Q)). Altogether,

êr(P, Q)a =(
fλ,P (Q)λ+1 · fλ,P (φ̂(Q)) · lφ(Q),φ̂(P )(Q)

fλ,Q(P )λ+1 · fλ,Q(φ(P )) · lφ(Q),φ̂(Q)(P )
)p−1

=((
fλ,P (Q)
fλ,Q(P )

)λ+1 · fλ,P (φ̂(Q))
fλ,Q(φ(P ))

)p−1.

This completes the whole proof of Theorem 2.

Similar to the super-optimal pairing based on the Tate pairing, the new

pairings in Theorem 2 can be named as the super-optimal pairing based on the

Weil pairing. Notice that computing the new pairings only needs log2 λ Miller

iteration loops, which is generally a half of the number of the Miller loops for

computing the standard Tate/Weil pairings.



11

4 Novel Algorithms for Computing the Pairings

On the basis of the information provided by Theorem 1, we can give an efficient

algorithm for computing the super-optimal pairing based on the Tate pairing.

Since it is totally similar to Algorithm 4 in [23], we do not repeat it for simplicity.

By Theorem 2, we establish an algorithm for computing the super-optimal

pairing based on the Weil pairing in Algorithm 2. Let ω = a+bi ∈ Fp2 . Then the

conjugate of ω can be defined as a + bi = a− bi. Thus 1
fλ,Q(P ) can be replace by

its conjugate fλ,Q(P ) according to the observations in [25]. Therefore one may

share the same Miller variable f when computing fλ,P (Q)
fλ,Q(P ) . By using the same

techniques, we can compute fλ,P (φ̂(Q))
fλ,Q(φ(P )) . Finally, we employ Montgomery’s trick

to compute the scalar multiplications of P and Q′ in affine coordinates. The

above techniques are clearly discussed in [24, 10].

Algorithm 2: Computations of êr(P, Q)a using automorphisms

Input:λ =
Pn

i=0 li2
i , where li ∈ {0, 1}. P ∈ E1(Fp)[r] and Q′ ∈ E′

1(Fp)[r]. Q = ψ(Q′).

Output: êr(P, Q)a

1. T ← P , T ′ ← Q′, f1 ← 1, f2 ← 1,

2. for i = n− 1, n− 2, · · · , 1, 0 do

2.1 f1 ← f2
1 · lT,T (Q) · lψ(T ′),ψ(T ′)(P ), f2 ← f2

2 · lT,T (φ̂(Q)) · lψ(T ′),ψ(T ′)(φ(P )),

T ← 2T , T ′ ← 2T ′

2.2 if li = 1 then

2.3 f1 ← f1 · lT,P (Q) · lψ(T ′),ψ(Q′)(P ), f2 ← f2 · lT,P (φ̂(Q)) · lψ(T ′),ψ(Q′)(φ(P )),

T ← T + P , T ′ ← T ′ + Q′

3. f1 ← fλ+1
1 ,

4. return (f1 · f2)
(p−1)

5 Efficiency Consideration

Now the performance of the proposed algorithm is considered in this section.

We neglect the cost of field additions and subtractions, as well as the cost of

multiplication by small constants. The computational cost of one multiplication

and one inverse in F∗p is denoted as M and I, respectively. Assume that the

computational cost of one inverse in F∗p is 10M . We also count one square as



12

one multiplication in F∗p. One square and one multiplication in Fp2 is equal to

2M and 3M , respectively. For convenient comparisons, we consider the pairing

computation on the same curve in [23].

If affine coordinates are employed, one point doubling requires 1I + 4M and

one point addition requires 1I +3M in E(Fp) respectively [13]. We first consider

the cost of Line 2.1 in Algorithm 2. Computing directly 2T and 2T ′ requires 2I+

8M . However, due to Montgomery’s trick, computing these two point doublings

reduces to 1I + 11M . Four line evaluations requires 4M . The remained in Line

2.1 requires 16M for computing two squares and four multiplications in Fp2 .

Thus Line 2.1 in one iteration loop needs 41M if 1I = 10M . It follows that the

total cost for Line 2.1 is equal to 41 · 80 = 3280M .

It is not difficult to show that the total cost of Line 2.3 requires 35M . The ex-

ponentiation in Line 3 requires 80·2 = 160M using the Lucas laddering algorithm

[26]. By now, we cost 3280 + 35 + 160 = 3475M . There are one multiplication

in Fp2 in Line 4 of Algorithm 2, which requires 3M . The exponentiation (p− 1)

requires five multiplications and one inverse in F∗p since the Frobenius map can

be used here. Thus the total contribution of Line 4 is 3 + 15 = 18M . Therefore

the total cost for Algorithm 2 is 3475 + 18 = 3493M .

Finally, we compare the new algorithm with other methods at the same levels

of security in Table 1. From the table, we conclude that the super-optimal pairing

based on the Weil pairing can be computed rather fast, while it is slightly slower

than the super-optimal pairing based on the Tate pairing.

Table 1. Cost comparisons of the proposed algorithms

Algorithm Cost of Multiplications in F∗p
Algorithm 2 3493M

Algorithm 4 in [23] 3329M

Miller’s algorithm in IBE Scheme [24] 4070M

6 Conclusion

In this paper, some efficient algorithms have been proposed for computing the

variants of the Weil pairing on a family of non-supersingular curves with non-
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trivial automorphisms. It is the first step to speed up the variants based on the

Weil pairing by using short Miller iteration loops. Our results show that the

super-optimal pairing based on the Weil pairing is computed rather fast, while

it is slightly slower than the previous fastest pairing. It is possible to further

optimize the results and extend them into hyperelliptic curves. Finally, it should

be remarked that there may exist other methods to reduce the Miller loop for

the Weil pairing computation.
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