
Complexity Analysis of a Fast Modular

Multiexponentiation Algorithm

Haimin Jin1,2, Duncan S. Wong2?, Yinlong Xu1

1 Department of Computer Science
University of Science and Technology of China

China
jhm1213@mail.ustc.edu.cn, ylxu@ustc.edu.cn

2 Department of Computer Science
City University of Hong Kong

Hong Kong, China
duncan@cityu.edu.hk

Abstract. Recently, a fast modular multiexponentiation algorithm for computing
AXBY (mod N) was proposed [15]. The authors claimed that on average their al-
gorithm only requires to perform 1.306k modular multiplications (MMs), where k is
the bit length of the exponents. This claimed performance is significantly better than
all other comparable algorithms, where the best known result by other algorithms
achieves 1.503k MMs only. In this paper, we give a formal complexity analysis and
show the claimed performance is not true. The actual computational complexity of
the algorithm should be 1.556k. This means that the best known modular multiex-
ponentiation algorithm based on canonical-sighed-digit technique is still not able to
overcome the 1.5k barrier.

Keywords: modular multi-exponentiation, modular arithmetic, canonic signed-digit
representation, Hamming weight, Markov chain.

1 Introduction

Modular multi-exponentiation is an arithmetic operation that on input integers
(x1, · · · , xl), (e1, · · · , el) and n, computes

∏l
i=1

xei

i (mod n) for l > 1. This oper-
ation has been used in many number-theoretic cryptosystems [4,12,2,14] and the
efficient implementation of this operation is very important to the performance of
those cryptosystems as multi-exponentiation is one of the most expensive operations
for them.

Fast algorithms for performing modular multiexponentiation are especially im-
portant when l = 2, that is, given integers A, B, X, Y and N , compute C = AXBY

(mod N). Digital Signature Algorithm (DSA) [7], ElGamal digital signature scheme
[4], Schnorr’s signature scheme [12], Camenisch-Shoup public key encryption scheme
[2], Waters’ identity-base encryption [14] and many other cryptographic algorithms

? The work was supported by a grant from CityU (Project No. 7002001).

2 Haimin Jin, Duncan S. Wong and Yinlong Xu

require to perform modular multiexponentiations for l = 2. However, modular multi-
exponentiation is generally a very time-consuming arithmetic operation. To compute
C = AXBY (mod N), the traditional method is to solve the modular exponentia-
tions of AX (mod N) and BY (mod N) individually first and then multiply them
together (followed by a modular reduction). This method is not optimal, even if one
uses an optimal algorithm for the computation of AX (mod N) and BY (mod N).
Any improvement on the computational complexity of this operation will immedi-
ately result in improving the performance of many cryptographic algorithms and
protocols.

There have been many algorithms proposed [4,11,3,13] for performing fast mod-
ular multiexponentiation. Among them, Canonic Signed-Digit (CSD) representation
technique has been commonly used. In [3], Dimitrov, Jullien and Miller proposed two
algorithms, which we call them as DJM-I and DJM-II. The expected number of Mod-
ular Multiplications (MMs) of these algorithms are 1.75k and 1.556k, respectively,
where k is the larger bit length of the two exponents X and Y . Recently, Wu, Lou,
Lai and Chang [15] proposed an improved algorithm (which is termed WLLC in
our paper) of DJM-II by introducing a complement representation method into the
original DJM-II algorithm. They also claimed that the expected number of MMs
can be significantly reduced to 1.306k. Table 1 shows the performance of various
modular multiexponentiation algorithms.

Multi-Exponentiation Algorithms No. of Modular Multiplications (MMs)

Traditional computation 2.000k

ElGamal’s method [4] 1.750k

Yen-Laih-Lenstra [11] 1.625k

DJM-I [3] 1.750k

DJM-II [3] 1.556k

DJM-II with heuristic further reduction [3] 1.534k

Solinas algorithm [13] 1.503k

WLLC [15] 1.306k (to be corrected)

Table 1. Complexity comparison among various modular multi-exponentiation al-
gorithms when l = 2. k is the larger bit length of the two exponents.

Our Results. We show that the expected number of MMs that the WLLC algo-
rithm [15] can achieve is actually 1.556k rather than 1.306k. This result is shown by
providing a formal complexity analysis supported with experimental results. This
also indicates that the complement representation method introduced in WLLC does
not improve the efficiency of DJM-II, while it was originally thought to be in [15].
As of independent interest, we attain a useful theorem which says that the CSD
(Canonic Signed-Digit) binary representation of any k-bit integers with Hamming

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 3

weight at most k
2

has the expected fraction of bits that are zero is about 2

3
which is

interestingly the same if we consider all k-bit integers.

Paper Organization. In the next section, we define several useful mathematical
terms. This is followed by the review of WLLC and an informal comparison with
DJM-II in Sec. 3. In Sec. 4, the formal analysis of the computational complexity
of WLLC is given. It also determines the expected fraction of zero digits of k-bit
integers with Hamming weight ≤ k/2. We conclude the paper in Sec. 5.

2 Mathematical Preliminaries

2.1 Canonic Signed-Digit Binary Representation (CSDBR)

Let B be a k-bit integer. A signed-digit binary representation of B is in the form:

B =
k−1
∑

i=0

di2
i di ∈ {0, 1,−1}. (1)

A Canonic Signed-Digit Binary Representation (CSDBR) is a unique signed-digit
representation which has no consecutive nonzero bits. It is commonly used to increase
the efficiency of computer arithmetic. There are proofs [10,16,1,8] showing that the
expected fraction of bits of an integer in CSDBR that are zeros is about 2

3
.

The Hamming weight of an integer B, denoted Ham(B), is defined to be the
number of nonzero bits in B. It has been well-studied with efficient algorithms
available for finding the CSDBR, which gives the minimal Hamming weight among
all the binary representations. From the fact above, on average, the Hamming weight
of a k-bit integer in CSDBR is about k

3
.

2.2 A Signed-Digit Complex Arithmetic

Gaussian integers are complex numbers of the form a + bi, where a and b are inte-
gers. In 1989, Pekmestzi [9] introduced the following “binary-like” representation of
Gaussian integers:

z =
∑

j

dj2
j dj ∈ {0, 1, i, 1 + i}. (2)

This can be considered as a binary representation with complex digits. The digit
encoding is shown in Table 2.

As an example of using this representation, let z = 2845 + 4584i, then we
have 2845 = (0101100011101)2 , 4584 = (1000111101000)2 and z = (i, 1, 0, 1, 1 +
i, i, i, i, 1, 1+ i, 1, 0, 1). By employing the encoding method of Table 2, we obtain the
following “binary-like” representation of z:

z = (01100010110101011011100010).

4 Haimin Jin, Duncan S. Wong and Yinlong Xu

Complex Digit Binary Code

0 00
1 10
i 01

i + 1 11

Table 2. Digit Encoding of Complex Digits

3 Review of WLLC [15]

As mentioned in the Introduction (Sec. 1), Wu, Lou, Lai and Chang [15] have recently
proposed an improved algorithm of DJM-II. In this paper, we call their algorithm
as WLLC. When comparing DJM-II and WLLC, the WLLC has a conditional com-
plement operation added with the purpose of further reducing the Hamming weight
of the exponents, so to reduce the total number of modular multiplications (MMs).
They claim that by adding this conditional complement operation, the Hamming
weight of the exponents (which are represented as a “binary-like” Gaussian inte-
ger) can further be reduced and result in faster algorithm for computing AXBY

(mod N). For exponents X and Y such that the length of max(X,Y) is k bits long,
the average number of MMs required in DJM-II is 1.556k while it is claimed in [15]
that WLLC only requires 1.306k MMs on average.

Let (X)SD be the CSDBR of X and X the complement of X. Fig. 1 shows
the pseudo-code of the WLLC algorithm. Below is an example (cited from [15]) for
illustrating how this algorithm works.

Example 1. Compute C = A248B31 (mod N), where X = 248 = (11111000)2 ,
Y = 31 = (00011111)2 and k = dlog2(max(X,Y))e = 8. Since Ham(X) > k

2

and Ham(Y) > k
2
, we set X = −(X)SD = −(00001001̄) = (00001̄001) and Y =

−(Y)SD = −(1001̄00000) = (1̄00100000), where 1̄ denotes −1. Therefore, the result
is:

C =A
248

B
31 (mod N)

=A
11111000

B
00011111 (mod N)

=A
100000000−(00001001̄)−1

B
100000000−(1001̄00000)−1 (mod N)

=A
100000000+(00001̄001)−1

B
100000000+(1̄00100000)−1 (mod N)

=(A28

B
28

mod N) × (A00001̄001
B

1̄00100000 mod N) × (A−1
B

−1 mod N) (mod N)

(3)

The Hamming weight of the original X + Y i = (1, 1, 1, 1 + i, 1 + i, i, i, i) is 8. Af-
ter the transformation described in Fig. 1, the Gaussian integer z = (−(X)SD) +
(−(Y)SD)i = (−i, 0, 0, i, 0,−1, 0, 0, 1) which contains only 4 non-zero digits. There-
fore, the total number of MMs (Modular Multiplications) taken (after excluding the
precomputation, i.e. Step 1 in Fig. 1) for getting the result C is 14. This includes

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 5

Input: A, B, X, Y , N

Output: C = AXBY (mod N)
Step 1: Pre-compute

kx = dlog2(X)e; ky = dlog2(Y)e; k = max(kx, ky);
a1 = AB (mod N); a2 = A−1 (mod N); a3 = B−1 (mod N);
a4 = A−1B (mod N); a5 = AB−1 (mod N); a6 = A−1B−1 (mod N);

a7 = A2k

(mod N); a8 = B2k

(mod N); a9 = A2k

B2k

(mod N).
Step 2: If Ham(X) > k

2
then set X = −(X)SD; HWx = 1 else set X = XSD; HWx = 0.

If Ham(Y) > k
2

then set Y = −(Y)SD; HWy = 1 else set Y = YSD; HWy = 0.

Let X =
∑kx

j=0 xj2
j and Y =

∑ky

j=0 yj2
j for xj , yj ∈ {0, 1,−1}.

Step 3: Set Gaussian integer z = X + Y i, that is, z =
∑k

j=0 zj2
j , where zj = xj + yji.

Step 4: Set C = 1.
For j = k down to 0 do

C = C × C (mod N)
switch(zj)

case 1: C = C × A (mod N)
case i: C = C × B (mod N)
case 1 + i: C = C × a1 (mod N)
case −1: C = C × a2 (mod N)
case −i: C = C × a3 (mod N)
case −1 + i: C = C × a4 (mod N)
case 1 − i: C = C × a5 (mod N)
case −1 − i: C = C × a6 (mod N)

Step 5: If (HWx = 1 and HWy = 0) then set C = a7 × C × a2 (mod N)
If (HWx = 0 and HWy = 1) then set C = a8 × C × a3 (mod N)
If (HWx = 1 and HWy = 1) then set C = a9 × C × a6 (mod N)

Step 6: Output C

Fig. 1. The WLLC Algorithm for Computing AXBY (mod N)

12 MMs1 for computing A00001̄001B1̄00100000 (mod N) and two more for computing
the final product, that is, a9 × (A00001̄001B1̄00100000 mod N) × a6 (mod N).

3.1 A Comparison With DJM-II

We now compare the complexity of WLLC with that of the original DJM-II [3]
which is reviewed in Fig. 4, Appendix A. As we can see, for X = 248 = (11111000)2
and Y = 31 = (00011111)2 , their CSDBRs are (X)SD = (100001̄000) and (Y)SD =
(00100001̄), respectively. Hence the Gaussian integer z = (1, 0, 0, i, 0,−1, 0, 0,−i)
and Ham(z) = 4. The reduction of the Hamming weight in DJM-II is also from
8 to 4. As a result, by using the original DJM-II, the number of MMs taken for
Example 1 above is 12.

1 We ignore the MM for computing C = C × C (mod N) when j = k since the value of C is
always equal to one at that moment. As a result, there are 8 MMs corresponding to C = C × C

(mod N) for j = k−1, · · · , 0 (where k = 8) and 4 MMs corresponding to the 4 non-zero digits in
z.

6 Haimin Jin, Duncan S. Wong and Yinlong Xu

Example 2. We now take a look at another example from the WLLC paper
[15], which computes C = A248B15 (mod N). Similarly, X = 248 = (11111000)2
and Y = 15 = (00001111)2 . Since Ham(X) > k

2
but Ham(Y) ≤ k

2
, we com-

pute −(X)SD = (00001̄001) and YSD = (00010001̄), and set the Gaussian inte-
ger z = (0, 0, 0, i,−1, 0, 0, 1 − i). Hence Ham(z) = 3 which yields the total number
of MMs taken for getting the result of C to be 13 (i.e. 11 MMs for computing
A00001̄001B00010001̄ (mod N) and two more for computing the final product, that is,
a7 × (A00001̄001B00010001̄ mod N) × a2 (mod N).

If DJM-II is used, it is easy to verify that the Hamming weight of the Gaussian
integer z is 4 and therefore, the total number of MMs required for computing C is
12.

Remark 1. It is interesting to note that in both of the examples above, DJM-II
performs better than WLLC. The conditional complement operation introduced in
WLLC does not seem to further reduce the Hamming weight of the Gaussian integer
z in any significant way, if there is any, and sometimes, it may be offset by the two
additional MMs for computing the final product.

In [15], the authors also give the computational complexity analysis for the
WLLC algorithm, according to which, they claim that the average number of MMs
is 1.306k, which is much more efficient than all the known algorithms, as shown
in Table 1. In the next section, we show that the actual computational complexity
should be 1.556k which is comparable to that of the original DJM-II algorithm.

4 Complexity Analysis

According to Fig. 1, we can see that on average, the number of MMs taken by WLLC
is

NWLLC ≈ k + (1 − f2

k/2
)k = (2 − f2

k/2
)k (4)

when k is large, where fk/2 denotes the average fraction of zero digits in each of
X and Y of the Gaussian integer z in Step 3 (Fig. 1). In Eq. (4) above, the first
term k corresponds to the total number of C = C ×C (mod N) evaluations in Step
4 (Fig. 1)2. The second term (1 − f2

k/2
)k corresponds to the number of non-zero

digits in the Gaussian integer z which incurs the MM operations in the switch-case
statement of Step 4 (Fig. 1). For large k, the two additional MM operations for
obtaining the final product in Step 5 (Fig. 1) can be ignored. NWLLC is used to
measure the computational complexity of WLLC.

For finding the value of NWLLC , we need to determine the value of fk/2. Note
that although it has been shown [10,16,1,8] that the average fraction of zero digits

2 As before, we ignore the evaluation when j = k since the value of C is always equal to one at
that moment.

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 7

of the CSDBR of k-bit integers is 2

3
, this does not imply that the average fraction

of zero digits of the CSDBR of the subset of k-bit integers under the condition that
their Hamming weight is at most k

2
is also 2

3
.

The subsections below are organized as follows. We first review a CSDBR encod-
ing algorithm in Sec. 4.1. In Sec. 4.2, we formalize the CSDBR encoding algorithm
as a state machine under the Markov chain model. This will facilitate our evaluation
of fk/2. Then, we determine the expected Hamming weight of the CSDBR of k-bit
integers with Hamming weight at most k/2 and this is the value of fk/2. In Sec. 4.3,
we compute the corrected computational complexity for WLLC, that is, the value
of NWLLC .

4.1 A CSDBR Encoding Algorithm

In Fig. 2, we describe a CSDBR encoding algorithm which is derived from [1, Eq. (3)].
Let b = (bkbk−1 . . . b2b1) be a k-bit integer (where bi ∈ {0, 1}, for 1 ≤ i ≤ k.

Input: b = (. . . 0bk . . . bibi−1 . . . b1)
Output: b = (. . . bibi−1 . . . b1) — CSDBR of b

ε0 = · · · = εk+1 := 0
For t = 1 to k+1 do

If bt + εt−1 = 0 then set bt = 0; εt = 0
else if bt + εt−1 = 2 then set bt = 0; εt = 1
else if bt + εt−1 = 1 and bt+1 = 0 then set bt = 1; εt = 0
else if bt + εt−1 = 1 and bt+1 = 1 then set bt = −1; εt = 1

return b

Fig. 2. Arno-Wheeler CSDBR Encoding Algorithm

Let b̂t be the generated CSDBR (i.e. the output bit of the algorithm) of bt. We
can see that the algorithm in Fig. 2 has four states as shown in Table 3.

State Condition b̂t εt

1 bt + εt−1 = 0 0 0
2 bt + εt−1 = 2 0 1
3 bt + εt−1 = 1; bt+1 = 0 1 0
4 bt + εt−1 = 1; bt+1 = 1 -1 1

Table 3. State Definitions and Transition Output

8 Haimin Jin, Duncan S. Wong and Yinlong Xu

4.2 CSDBR Hamming Weight for k-bit Integers with Hamming
Weight at Most k/2

The Arno-Wheeler CSDBR encoding algorithm reviewed in Table 3 has a set of
four states S = {s1, s2, s3, s4}. The process of the Arno-Wheeler CSDBR encoding
algorithm starts in one of these states and moves successively from one state to
another. Each move is called a step. If the chain is currently in state si, then it
moves to state sj at the next step with a probability denoted by pij, for some
1 ≤ i, j ≤ 4, and this probability does not depend upon which states the process
was in before the current state. Therefore, the state transition satisfies the definition
of a Markov chain. The probability pij is called transition probability. The process
can remain in the state it is in, and this occurs with probability pii. A transition
matrix can be composed accordingly. According to the state transition rules (see
Table 3), we have Markov Chain Transition matrix as follows:

S =

1 − a 0 a(1 − a) a2

0 a (1 − a)2 (1 − a)a
1 0 0 0
0 1 0 0

(5)

where a is the probability that any bit equals 1. The stationary distribution is:

w = (w1, w2, w3, w4)

= (
(1 − a)2

a2 − a + 1
,

a2

a2 − a + 1
,

a(1 − a)2

a2 − a + 1
,

(1 − a)a2

a2 − a + 1
)

(6)

The correctness of this distribution can easily be verified from the fact that wS = w
for all ergodic Markov chains ([6, Sec. 11.3]) and w1 + w2 + w3 + w4 = 1.

Let Nk(j) be the frequency of state j (for j = 1, 2, 3, 4 in Table 3) that appears
in the CSDBR transition process. According to the Law of Large Numbers for
Markov Chains ([6, Sec. 11.3]), Nk(j) ≈ wj ∗ k when k → ∞.

Since when j = 1 or 2, the output digit in CSDBR is zero, the fraction Zk of
zero digits in CSDBR is:

Zk =
Nk(1) + Nk(2)

k
= w1 + w2

=
(1 − a)2

a2 − a + 1
+

a2

a2 − a + 1

= 2 −
1

a2 − a + 1
.

(7)

Remark 2. From this equation, we can see that the value of Zk is minimum (i.e.
Zk = 2/3) when a = 1/2.

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 9

Lemma 1. Let E(a) be the expected probability that a non-zero digit appears in a

uniformly distributed k-bit integer with Hamming weight ≤ k/2. E(a) ≈ 1

2
when

k → ∞.

Proof. Let T be the number of k-bit integers with Hamming weight ≤ k
2
. Let i be

the number of non-zero digits. Ci
k is the number of k-bit integers that have the

Hamming weight equal to i.

1. If k is odd, T = C0
k + C1

k + · · · + C
k−1
2

k . Since C0
k + C1

k + · · · + C
k−1
2

k + C
k+1
2

k +

· · · + Ck−1

k + Ck
k = 2k, we have

T = 2k−1 (8)

2. If k is even, T = C0
k +C1

k + · · ·+C
k
2
k . Since C0

k +C1
k + · · ·+C

k
2
−1

k +C
k
2
k +C

k
2
+1

k +

· · · + Ck−1

k + Ck
k , we have

T =
2k + C

k
2
k

2
(9)

Note that Ci
k/T denotes the fraction of the k-bit integers with i non-zero digits

among all the k-bit integers with Hamming weight ≤ k
2
. Given i, for each of those

Ci
k integers with Hamming weight i, a non-zero digit appears with the probability

i
k . Hence the expected fraction of non-zero digits of any uniformly distributed k-bit
integers with Hamming weight ≤ k/2 can be computed as follows:

E(a) =

bk
2
c

∑

i=0

Ci
k

T
·

i

k
(10)

According to [5, Eq. (5.18) on page 166], we know that

∑

i≤m

Ci
k · (

k

2
− i) =

m + 1

2
· Cm+1

k (11)

By applying this to Eq. (10), we have

E(a) =
1

T · k
[
∑

i≤bk
2
c

Ci
k ·

k

2
−

bk
2
c + 1

2
· C

bk
2
c+1

k] (12)

1. If k is odd, T = 2k−1, we have

E(a) =
1

2k−1 · k
·
k

2
· 2k−1 −

bk
2
c + 1

2k · k
· C

bk
2
c+1

k

≈
1

2
(k → ∞)

(13)

10 Haimin Jin, Duncan S. Wong and Yinlong Xu

2. If k is even, T = (2k + C
k
2
k)/2, we have

E(a) =
1

2k + C
k/2

k

2
· k

·
k

2
· 2k−1 −

k
2

+ 1

(2k + C
k/2

k) · k
· C

k
2
+1

k

≈
1

2
(k → ∞)

(14)

For both of the approximations above, we use the fact that

lim
k→∞

C
bk/2c
k

2k−1
= 0. (15)

ut

We now have the following theorem.

Theorem 1. For a uniformly distributed space constituted by all k-bit integers with

Hamming Weight at most k/2, the expected fraction of zero digits in the CSDBR of

integers in the space is 2

3
.

Proof. According to Lemma 1, we have E(a) ≈ 1

2
(k → ∞). Then from Eq. 7, we

have that Zk = 2

3
, when k is large. ut

Experimental Results. We have done an experiment to determine the average
fraction of zero bits in the CSDBR of k-bit integers with Hamming weight at most
k/2. The experimental result is shown in Table 4 and illustrated in Fig. 3.

4.3 Computational Complexity of WLLC

Theorem 2. The computational complexity of WLLC for computing C = AXBY

(mod N) is about 1.556k when k is large, where k = max(dlog2(X)e, dlog2(Y)e).

Proof. According to Theorem 1, the expected fraction of zero digits in the CSDBR
of k-bit integers with Hamming weight ≤ k/2 is 2

3
. This is the value of fk/2, which

is the expected fraction of zero digits in each of X and Y of the Gaussian integer z
in Step 3 (Fig. 1). Now from Eq. (4), we can compute the computational complexity
of WLLC, that is, the value of NWLLC ≈ (2 − (2

3
)2)k = 1.556k when k is large. ut

5 Conclusion

We provided a formal complexity analysis and found that for the CSDBR of k-bit
integers with Hamming weight ≤ k

2
, the expected fraction of zero digits is about 2

3

which is the same as the case when we consider the CSDBR of all k-bit integers.

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 11

Length k Fraction Length k Fraction

4 0.645 5 0.692
6 0.644 7 0.673
8 0.646 9 0.666
10 0.648 11 0.663
12 0.650 13 0.661
14 0.652 15 0.661
16 0.653 17 0.660
18 0.654 19 0.660
20 0.65543 21 0.66044
22 0.65624 23 0.66057
24 0.65694 25 0.66073
26 0.65754 27 0.66090
28 0.65808 29 0.66107
30 0.65855

Table 4. Expected Fraction of Non-zero Digits in CSDBR of k-bit integers with
Hamming weight ≤ k/2

0 5 10 15 20 25 30 35
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7
Experimental Result

fr
ac

tio
n

of
 z

er
o

bi
ts

value of k (bits)

Fig. 3. Expected Fraction of Non-zero Digits in CSDBR of k-bit integers with Ham-
ming weight ≤ k/2 — A Graphical Illustration

Based on this fact, we showed that the computational complexity of the WLLC
algorithm is 1.556k rather than 1.306k (in terms of the number of MMs taken) as it
is originally claimed in [15]. This means that the best modular multi-exponentiation
algorithm based on canonical-sighed-digit technique is still not able to overcome the
1.5k barrier.

12 Haimin Jin, Duncan S. Wong and Yinlong Xu

References

1. S. Arno and F. S. Wheeler. Signed digit representations of minimal Hamming weight. IEEE

Transactions on Computers, 42(8):1007–1010, 1993. (Cited on pages 3, 6, and 7.)
2. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete loga-

rithms. In Advances in Cryptology - CRYPTO 2003, volume 2729/2003, pages 126–144. Springer
Berlin, 2003. Lecture Notes in Computer Science. (Cited on page 1.)

3. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complexity and fast algorithms for multi-
expontations. IEEE Transactions on Computers, 49:141–147, 2000. (Cited on pages 2, 5, 12,
and 13.)

4. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31:469–472, 1985. (Cited on pages 1 and 2.)

5. R. L. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley Publishing
Company, 1989. (Cited on page 9.)

6. C. M. Grinstead and J. L. Snell. Introducation to Probability. American Mathematical Society,
1997. (Cited on page 8.)

7. ITL. Digital signature standard (DSS). Technical Report FIPS 186, National Institute of
Standards and Technology, 1991. (Cited on page 1.)

8. K. Koyama and Y. Tsuruoka. A signed binary window method for fast computing over elliptic
curves. IEICE Trans. Fundamentals, E76-A:55–62, 1993. (Cited on pages 3 and 6.)

9. K. Z. Pekmestzi. Complex number multipliers. In Computers and Digital Techniques, IEE

Proceedings, volume 136, pages 70–75, 1989. (Cited on page 3.)
10. G. W. Reitweisner. Binary arithmetics. Advances in Computers, 1:231–308, 1960. (Cited on

pages 3 and 6.)
11. S.-M.Yen, C.-S. Laih, and A. Lenstra. Multi-exponentiation. In Computers and Digital Tech-

niques, IEE Proceedings, volume 141, pages 325–326, 1994. (Cited on page 2.)
12. C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology

- EUROCRYPT ’89, volume 434, pages 688–689. Springer Berlin, 1990. Lecture Notes in
Computer Science. (Cited on page 1.)

13. J. A. Solinas. Low-weight binary representations for pairs of integers. Technical Report CORR
2001-41, University of Waterloo, 1998. (Cited on page 2.)

14. B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryp-

tology - EUROCRYPT 2005, volume 3494/2005, pages 114–127. Springer Berlin, 2005. Lecture
Notes in Computer Science. (Cited on page 1.)

15. C.-L. Wu, D.-C. Lou, J.-C. Lai, and T.-J. Chang. Fast modular multi-exponentiation using
modified complex arithmetic. Applied Mathematics and Computation, 186:1065–1074, 2007.
(Cited on pages 1, 2, 4, 6, and 11.)

16. C. N. Zhang. An improved binary algorithm for RSA. Computers and Math. with Applications,
25:15–24, 1993. (Cited on pages 3 and 6.)

A Review of DJM-II

Fig. 4 shows the DJM-II algorithm [3]. In the algorithm, we recall that (X)SD

represents the CSDBR of X.

Complexity Analysis of a Fast Modular Multiexponentiation Algorithm 13

Input: A, B, X, Y , N

Output: C = AXBY (mod N)
Step 1: Pre-compute

kx = dlog2(X)e; ky = dlog2(Y)e; k = max(kx, ky);
a1 = AB (mod N); a2 = A−1 (mod N); a3 = B−1 (mod N);
a4 = A−1B (mod N); a5 = AB−1 (mod N); a6 = A−1B−1 (mod N)

Step 2: set X = (X)SD and Y = (Y)SD

Let X =
∑kx

j=0 xj2
j and Y =

∑ky

j=0 yj2
j for xj , yj ∈ {0, 1,−1}.

Step 3: Set Gaussian integer z = X + Y i, that is, z =
∑k

j=0 zj2
j , where zj = xj + yji.

Step 4: Set C = 1.
For j = k down to 0 do

C = C × C (mod N)
switch(zj)

case 1: C = C × A (mod N)
case i: C = C × B (mod N)
case 1 + i: C = C × a1 (mod N)
case −1: C = C × a2 (mod N)
case −i: C = C × a3 (mod N)
case −1 + i: C = C × a4 (mod N)
case 1 − i: C = C × a5 (mod N)
case −1 − i: C = C × a6 (mod N)

Step 5: Output C

Fig. 4. DJM-II [3]

	Complexity Analysis of a Fast Modular Multiexponentiation Algorithm
	Haimin Jin1,2, Duncan S. Wong2, Yinlong Xu1

