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Abstract

Recently Cash, Kiltz, and Shoup [20] showed a variant of the Cramer-Shoup (CS) public
key encryption (PKE) scheme [21] whose chosen-ciphertext (CCA) security relies on the com-
putational Diffie-Hellman (CDH) assumption. The cost for this high security is that the size of
ciphertexts is much longer than the CS scheme. In this paper, we show how to achieve CCA-
security under the CDH assumption without increasing the size of ciphertexts. We further show
a more efficient scheme under the hashed Diffie-Hellman (HDH) assumption such that the size
of ciphertexts is the same as that of the Kurosawa-Desmedt (KD) scheme [42]. Note that the
CDH and HDH assumptions are weaker than the decisional Diffie-Hellman assumption which
the CS and KD schemes rely on.

Both of our schemes are based on a certain broadcast encryption (BE) scheme while the
Cash-Kiltz-Shoup scheme is based on a different paradigm which is called the Twin DH problem.
As an independent interest, we also show a generic method of constructing CCA-secure PKE
schemes from BE schemes such that the existing CCA-secure constructions can be viewed as
special cases.
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1 Introduction

1.1 Background

Chosen-ciphertext security (CCA-security, for short) [52, 27] is considered as a standard notion
of security for public key encryption (PKE) in practice. Furthermore, this security also implies
universally composable security [16]. So far, many CCA-secure PKE schemes have been proposed
for both theoretical ones [48, 27, 53, 43] and practical ones [21, 55, 22, 18, 42, 15, 1, 41, 38], and their
security are proven under existence of enhanced trapdoor permutations (for theoretical schemes) or
various number theoretic assumptions (for practical schemes). One of the most important research
topics in this field is to design CCA-secure PKE schemes with weaker assumptions and/or better
efficiency. Especially, there have been no CCA-secure PKE scheme under the computational Diffie-
Hellman (CDH) assumption nor even the hashed Diffie-Hellman (HDH) assumption, except for a
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recent work by Cash, Kiltz, and Shoup [20] (see Appendix K) which is an independent work to
ours.1

The main motivation of this work is to construct practical CCA-secure PKE schemes under the
CDH or HDH assumption (with significantly better efficiency than the schemes in [20]). Note that
the CDH and HDH assumptions are weaker than the decisional Diffie-Hellman (DDH) assumption
which the Cramer-Shoup (CS) scheme [21] and the Kurosawa-Desmedt (KD) scheme [42] rely on.

1.2 Our Contribution

In this paper, we present a practical CCA-secure PKE scheme under the CDH assumption such
that the size of a ciphertext is much smaller than that of the scheme (independently) proposed
by Cash, Kiltz, and Shoup [20]. Specifically, ciphertext overhead of our CDH-based scheme is
only three group elements for arbitrary plaintext length, while that of the CDH-based Cash-Kiltz-
Shoup (CKS) scheme is k/ log k+ 2 group elements where k is the security parameter. Indeed, the
ciphertext length of our scheme is the same as that of the CS scheme.

Under the HDH assumption, we also present another practical CCA-secure PKE scheme which
is as efficient as the KD scheme [42] in terms of both computational costs and data sizes, where the
KD scheme is based on the DDH assumption only.2 Surprisingly, our HDH-based scheme is more
or equally advantageous to both the KD scheme and the HDH-based CKS scheme in all aspects
which are mentioned in Table 1 (see Sec. 7). More specifically, our HDH-based scheme provides the
same efficiency as the KD scheme with stronger security, and the same security as the HDH-based
CKS scheme with better efficiency.3

We construct our schemes from the Naor-Pinkas (NP) broadcast encryption (BE) scheme based
on an observation that the Dolev-Dwork-Naor paradigm [27] can be generalized by using BE schemes
with verifiability (see below), while the CKS scheme is based on a different paradigm which is called
the Twin DH problem. As an independent interest, we show that a CCA-secure key encapsulation
mechanism (KEM) can be constructed from any selectively chosen plaintext (CPA) secure verifiable
BE scheme (see Appendix B.3.3) at a slight cost, where we say that a BE scheme is verifiable if
any one of valid receivers can verify whether decryption results of all valid receivers are identical
or not. Interestingly, almost all of existing methods for achieving CCA-security, e.g. [27, 21, 18],
can be also explained from this viewpoint with different verifiable BE schemes. See Sec. 8.5 for
details. Furthermore, it is also possible to construct a new PKE scheme from the Boneh-Gentry-
Waters (BGW) BE scheme [11] (see Sec. 9). This is a further evidence which implies that BE
with verifiability is a powerful tool for obtaining CCA-secure PKE schemes. Moreover, we can
generically convert any CPA-secure BE with verifiability into CCA-secure BE at a slight cost (see
Sec. 10).

1The authors of [20] also cite an earlier version of this paper as an independent work.
2The HDH assumption does not imply the DDH assumption, but the DDH assumption implies the HDH assump-

tion assuming the underlying hash function is a secure key derivation function (KDF) [55].
3Independently to our work, the authors of [20] discovered that a variant of the KD scheme in [38] can be

transformed into another one with the HDH assumption [19] by extending the proof technique in [38] but not the
twin DH problem in [20]. This result is presented in the unpublished full(er) version of [20].
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1.3 Related Works

Chosen-Ciphertext Security. The notion of CCA-security was introduced by Naor and Yung
[48], and this was further extended by Rackoff and Simon [52] and Dolev, Dwork, and Naor [27].
Naor and Yung proposed a generic construction of non-adaptively CCA-secure cryptosystems from
any semantically secure encryption [34] and non-interactive zero knowledge (NIZK) proof [6]. Dolev,
Dwork, and Naor [27] and Sahai [53] later improved this idea and proposed adaptively CCA-secure
constructions. However, it is not known if it is possible to generically construct an NIZK proof
from any semantically secure encryption. Recently, Gertner, Malkin, and Myers [31] showed that
for a large non-trivial class of constructions, it is impossible to construct a CCA-secure scheme
from a CPA-secure scheme in a black box manner.

Cramer and Shoup [21] proposed the first practical CCA-secure scheme under the DDH as-
sumption. Cramer and Shoup [22] further applied their methodology to [34] and [49].

Shoup [55] proposed a general KEM/DEM framework, and extended the CS scheme to be a
hybrid encryption scheme. Kurosawa and Desmedt [42] improved efficiency of the hybrid version
of CS. Abe, Gennaro, Kurosawa, and Shoup [1] established the Tag-KEM/DEM framework, and
explained the security of Kurosawa-Desmedt in this framework. Hofheinz and Kiltz [38] presented
another paradigm for constructing hybrid encryption with strictly weakened KEM. The DDH as-
sumption is still required for these extensions except for one of Hofheinz and Kiltz’s schemes which
depends on the n-linear DDH assumption.

Canetti, Halevi, and Katz [18] proposed a generic method for converting a selectively secure
identity-based encryption (IBE) scheme [54, 10] into a CCA-secure PKE scheme, and Boneh and
Katz [12] improved its efficiency. Kiltz [40] discussed a more relaxed condition for achieving CCA-
security. Boyen, Mei, and Waters [15] proposed practical CCA-secure schemes by using the basic
idea of the Canetti-Halevi-Katz (CHK) paradigm and specific properties of [56] and [7]. Security
of these schemes are proven under the bilinear Diffie-Hellman (BDH) assumption. Kiltz [41] also
proposed another practical CCA-secure scheme whose security is proven under the gap hashed
Diffie-Hellman (GHDH) assumption. With a slight modification (by using hardcore bits), this
scheme can be also provably secure under the gap Diffie-Hellman (GDH) assumption which is
equivalent to the CDH assumption over specific cyclic groups such as bilinear groups.

All of the above-mentioned number theoretic assumptions, i.e. DDH, n-linear DDH, BDH,
GHDH, and GDH assumptions, are strictly stronger than the CDH assumption. In other words,
the CDH assumption is implied by any of these assumptions. See also Appendix A for understanding
the difficulty for constructing CDH-based PKE schemes.

Under the random oracle methodology [4], there exist many practical schemes, e.g. [5, 30].
However, this methodology is known to be problematic [17], and hence, in this paper we do not
consider it.

Very recently, as an independent work to ours (see the footnote in Sec. 1.1), Cash, Kiltz, and
Shoup [20] also proposed CCA-secure PKE schemes (see Appendix K) under the CDH or HDH
assumption by using the Twin DH problem (which is also applicable to a wide range of cryptographic
primitives). However, our proposed schemes are more efficient than theirs in various aspects.

Broadcast Encryption. Broadcast encryption (BE) is a class of encryption schemes where there
exist multiple receivers. For each message transmission, the sender can generate a ciphertext which
can be decrypted by only privileged receivers. Fiat and Naor [29] proposed the first non-trivial
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construction of BE. Naor, Naor, and Lotspiech [46] presented a significantly more efficient scheme.
Dodis and Fazio [24] extended [46] to be a public key scheme. Naor and Pinkas [47] proposed another
public key BE scheme by using ElGamal-like constructions, and Dodis and Fazio [25] improved it to
be secure against adaptive adversaries as well as chosen ciphertext attacks. However, the efficiency
of all these schemes depend on the number of colluders, and are not advantageous to the trivial
scheme if full collusion resistance is required. Boneh, Gentry, and Waters [11] proposed the first
fully collusion resistant (public key) BE scheme whose ciphertext and user decryption keys are of
constant size, and they also showed its CCA-secure version.

1.4 Organization of the Rest of the Paper

In the rest of this paper, we first give definitions for our proposed schemes in Sec. 2 (and Appendix
B), give the overview of our strategy for obtaining a CDH-based CCA-secure PKE scheme in Sec.
3, show the basic construction of our CDH-based CCA-secure PKE scheme in Sec. 4, propose our
full scheme with the CDH assumption and an efficient scheme with the HDH assumption in Secs. 5
and 6, respectively, give a comparison of our proposed schemes with existing practical CCA-secure
PKE schemes in Sec. 7, observe the relationship between BE with verifiability and CCA-secure
PKE in Sec. 8, demonstrate to construct another new CCA-secure PKE scheme from the BGW BE
scheme in Sec. 9 (and Appendix J), and show a generic construction of CCA-secure BE schemes
in Sec. 10 (and Appendix L).

2 Definitions

Throughout this paper, we use definitions which are given in Appendix B. For simplicity, we
define PKE schemes as key encapsulation mechanisms (KEM). It is well-known that by combining
a CCA-secure KEM and a CCA-secure data encryption mechanism (DEM), a CCA-secure PKE
scheme is generically obtained [55], and furthermore, there exist some other flexible methods for
hybrid encryption as well [1, 38]. It is also known that a CCA-secure DEM can be generically
constructed from any pseudorandom functions without redundancy [44]. Therefore, we concentrate
on constructions of CCA-secure KEMs.

3 Our Strategy for CCA-Security from the CDH Assumption

Before going into details, here we give an intuitive explanation of our strategy behind the proposed
construction. By carefully looking into the classical Dolev-Dwork-Naor construction, we notice
that this method can be generalized by using BE schemes with a special property which we call
verifiability. Roughly speaking, we say that a BE scheme has verifiability if any valid receiver can
check equality of decryption results of all valid receivers. See Sec. 8 for details on this observation.

Hence, BE with the CDH assumption would be an appropriate start point for achieving CCA-
security from the CDH assumption. Fortunately, it is known that the NP BE scheme [47] has
one-wayness against chosen plaintext attacks under the CDH assumption (without verifiability).
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3.1 The Naor-Pinkas Broadcast Encryption Scheme

The NP scheme [47], which is constructed based on [2], is as follows. Let G be a multiplicative
group with prime order p, and g ∈ G be a generator. For at most p− 1 potential users and at most
t revoked users, in the setup phase, a polynomial f(x) =

∑
0≤i≤t aix

i is generated where ai
R← Zp

for 0 ≤ i ≤ t, and yi = gai is computed for 0 ≤ i ≤ t. The public key is PK = (G, g, y0, ..., yt).
The center keeps f(x) as the master key, and for each user i ∈ {1, ..., p− 1} he has di = f(i) as his
decryption key.

Assuming that users i1, ..., it are revoked, the sender generates a ciphertext ψ = (gr, (gf(i1))r, ..., (gf(it))r)
and a key K = yr

0 where r
R← Zp. Notice that gf(i) can be computed as

∏
0≤j≤t y

ij
j for any

i ∈ {1, ..., p − 1}. On receiving ψ = (C0, ..., Ct), user i(6∈ {i1, ..., it}) computes Ci = Cdi
0 and re-

covers the session key as K = C
λ(i)
i

∏
1≤j≤tC

λ(ij)
j where λ(x) is the Lagrange coefficient such that

λ(x) =
∏

i′∈{i,i1,...,it}\{x} i
′ · (i′ − x)−1 over Zp.

3.2 Main Difficulty

Since the NP scheme does not have verifiability, we cannot straightforwardly convert it into CCA-
secure PKE. This is the main non-trivial part in our work. In Appendix H.2, two methods for
converting the NP scheme to be BE with verifiability are given, however both methods are not
sufficient to obtain CDH-based CCA-secure PKE.

3.3 Our Solution: Triple Decryption with Three Keys

As mentioned above, the main difficulty of this work is to add verifiability to the NP scheme. Here,
we give a new approach for it which is as follows: Consider a modification of the NP scheme such
that user i is given (f(i), f(rnd), rnd) as his decryption key, where rnd R← Zp. We note that a
legitimate user i can decrypt a ciphertext in two different ways according to two different keys, i.e.
f(i) and f(rnd). If these decryption results are not identical, then the user can detect that the
ciphertext is in an invalid form. Notice that since rnd is random and not known to other users,
it is difficult to generate an invalid ciphertext whose decryption results under f(i) and f(rnd) are
identical.

Unfortunately, the above idea is faulty. Namely, even if user i is revoked and f(i) does not
work for decryption, he still has f(rnd) and can decrypt a ciphertext by using it. Hence, the
modified scheme is not BE any more. Therefore, we further modify the NP scheme as follows: For
at most t revoked users, in the setup phase, a polynomial f(x) =

∑
0≤i≤2t+1 aix

i is generated in
the same manner as the original NP scheme except that its degree is changed to be 2t + 1. The
public key is PK = (G, g, y0, ..., y2t+1). We assume that a user i has two unique identities i and
i, where we denote i = (i, i) ∈ {1, ..., p − 1}2. The center keeps f(x) as the master key, and for
user i = (i, i) ∈ {1, ..., p− 1}2 he publishes di = (f(i), f(i), f(rnd), rnd) as i’s decryption key, where
rnd

R← Zp. Assuming that users i1(= (i1, i1)), ..., it(= (it, it)) are revoked, the sender generates

ψ = (gr, (gf(i1))r, ..., (gf(it))r, (gf(i1))r, ..., (gf(it))r) and K = yr
0 where r R← Zp.

On receiving ψ = (C0, ..., C2t), a user i = (i, i)(6∈ {i1, ..., it}) computes Ci = C
f(i)
0 , Ci =

C
f(i)
0 , and Crnd = C

f(rnd)
0 . We notice that ψ can be decrypted by using any two of Ci, Ci, and

Crnd with the Lagrange interpolation (for example, by using (Ci, Ci), the session key is recovered
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as K = C
λ(i)
i C

λ(i)
i

∏
1≤j≤t(C

λ(ij)
j C

λ(ij)
j+t ) where λ(x) is the Lagrange coefficient such that λ(x) =∏

i′∈{i,i,i1,...,it,i1,...,it}\{x} i
′ · (i′− x)−1 over Zp). Then, user i carries out decryption in three different

ways according to the three different choices of (Ci, Ci), (Ci, Crnd), and (Ci, Crnd). Then, user
i can be convinced of the equality of decryption results for all legitimate subscribers if i’s three
decryption results are identical. Furthermore, when i is revoked, he cannot decrypt a ciphertext at
all even though he still has f(rnd). Now, we obtain a new BE scheme with verifiability from NP
BE, and are ready to convert it into a CCA-secure PKE scheme.

4 The Basic Scheme from the CDH Assumption

In this section, we give the basic construction of our CDH-based CCA-secure KEM by using the
strategy in Sec. 3. This construction yields only one-bit DEM-key space, and in Sec. 5, we modify
it to admit arbitrary DEM-key length without increasing ciphertext overhead. Furthermore, in Sec.
6 we give another modification of the basic scheme which is as efficient as the KD scheme under the
HDH assumption. Here, for clarifying the essential part of our basic idea, we mainly discuss our
construction of a CDH-based one-way KEM (see Sec. B.1.3) which can be easily converted into a
CDH-based CCA-secure KEM with one-bit DEM keys by using a hardcore bit (see, for examples,
[33, 14, 13, 39]). Our one-way KEM is also CCA-secure as it is, under the DDH assumption with
a better reduction cost than the CS scheme [21].

4.1 The One-Way KEM against CCA under the CDH Assumption

Let G be a multiplicative group with prime order p, and g ∈ G be a generator. Then, the construc-
tion of our CDH-based one-way KEM is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 + a1x + a2x
2 + a3x

3 over Zp, and com-
pute yi = gai for 0 ≤ i ≤ 3. The decryption key is f(x), and the public key is PK =
(G, g, y0, y1, y2, y3,TCR), where TCR : G × {0, 1} → Z∗

p is a target collision resistant hash
function.

Encrypt(PK): Pick a random r
R← Zp, and compute

ψ = (gr, gr·f(i), gr·f(i)), K = yr
0

where i = TCR(gr, 0) and i = TCR(gr, 1). The final output is (ψ,K). (Notice that one can
easily compute gf(x) as gf(x) =

∏
0≤i≤3 y

xi

i .)

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), check whether (Cf(i)
0 , C

f(i)
0 ) ?= (C1, C2),

where i = TCR(C0, 0) and i = TCR(C0, 1). If not, output ⊥. Otherwise, output K = Ca0
0 .

Theorem 1. Let G be a multiplicative group with prime order p, and TCR be a (τ, εtcr) target
collision resistant hash function. Then, the above scheme is (τ −o(τ), εcdh +2εtcr +3qD/(p−3), qD)
one-way under the (τ, εcdh) CDH assumption on G, and is (τ − o(τ), εddh + 2εtcr + 3qD/(p− 3), qD)
CCA-secure under the (τ, εddh) DDH assumption on G.
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Proof. Here, we mainly give the proof for one-wayness of the proposed KEM under the CDH
assumption. The proof for CCA-security under the DDH assumption can be straightforwardly
done in the almost same manner.

Assume we are given an adversary A which breaks one-wayness of the above KEM with running
time τ , advantage ε, and qD decryption queries. We use A to construct another adversary B which
solves the CDH problem. Define adversary B as follows:

1. For a given CDH instance (g, gα, gβ), B picks a target collision resistant hash function TCR
randomly, and computes i? = TCR(gβ, 0) and i? = TCR(gβ, 1).

2. B sets y0 = gα, and picks a random rnd from Z∗
p\{i?, i?}. B also picks randoms ui? , ui? , and

urnd from Zp.

3. Let f(x) = α+
∑3

i=1 aix
i be a polynomial over Zp such that

f(i?) = ui? , f(i?) = ui? , f(rnd) = urnd.

Note that each ai can be expressed as a linear combination of α, ui? , ui? and urnd by using
Lagrange formula. B then computes yi = gai for i = 1, 2, 3 by using y0 = gα (see Appdendix
B.5).

4. B inputs public key PK = (G, g, y0, y1, y2, y3,TCR) and challenge ciphertext ψ? = (gβ, (gβ)ui? , (gβ)ui? )
to A. We note that this is a correct ciphertext and its corresponding encapsulated key is
K? = yβ

0 = gαβ .

5. When A makes decryption query ψ = (C0, C1, C2), B proceeds as follows:

(a) If C0 = gβ , then B responds ⊥.

(b) If C0 6= gβ and TCR(C0, b) = [i?, i? or rnd] for b = 0 or 1, then B aborts and outputs a
random element in G.

(c) If C0 6= gβ and TCR(C0, b) 6= [i?, i? nor rnd] for both b = 0 and 1, B computes Cui?

0 , Cui?

0

and Curnd
0 . Let TCR(C0, 0) = i and TCR(C0, 1) = i, and f1, f2, and f3 be polynomials

over Zp with degree three, such that

(f1(i), f1(i), f1(i?), f1(i?)) = (logC0
C1, logC0

C2, ui? , ui?)
(f2(i), f2(i), f2(i?), f2(rnd)) = (logC0

C1, logC0
C2, ui? , urnd)

(f3(i), f3(i), f3(rnd), f3(i?)) = (logC0
C1, logC0

C2, urnd, ui?).

Then, B calculates C0
f1(0) by using the Lagrange interpolation from (C1, C2, C

ui?

0 , C
ui?

0 )
(see Appdendix B.5). Similarly, B computes C0

f2(0) and C0
f3(0) from (C1, C2, C

ui?

0 , Curnd
0 )

and (C1, C2, C
urnd
0 , C

ui?

0 ), respectively. B responds C0
f1(0) if C0

f1(0) = C0
f2(0) = C0

f3(0),
or “⊥” otherwise.

6. Finally, A outputs a data encryption key K ′, and B outputs the same value as the solution
of the given CDH instance.
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Let Win denote the event that K ′ = gαβ , Abort denote the event that A submits a ciphertext
ψ = (C0, C1, C2) such that C0 6= gβ and TCR(C0, b) = [i?, i? or rnd] for b = 0 or 1, and Invalid
denote the event that A submits a ciphertext ψ = (C0, C1, C2) such that B does not abort, C0

f1(0) =
C0

f2(0) = C0
f3(0), but (C1, C2) 6= (Cf(i)

0 , C
f(i)
0 ) where f(x) =

∑
0≤i≤3 aix

i.
Then, B’s success probability in solving the CDH problem is estimated as follows:

Pr[B(g, gα, gβ)→ gαβ ] ≥ Pr[Win|Abort ∧ Invalid] Pr[Abort ∧ Invalid]
≥ Pr[Win]− Pr[Abort]− Pr[Invalid].

The proof completes by proving following lemmas.

Lemma 1. Pr[Abort] ≤ 2εtcr + 2qD
p−3 .

Proof. Assume we are given an adversary A with Pr[Abort] = pA. Then, we can construct another
adversary B′ which finds a collision in TCR as follows. For a randomly given TCR instance (C, b),
B′ generates decryption key f(x) and public key PK = (G, g, y0, y1, y2, y3,TCR), and computes
challenge ciphertext ψ? = (C,Cui? , Cui? ), where ui? = f(TCR(C, 0)) and ui? = f(TCR(C, 1)). B′

also picks a random rnd from Z∗
p\{i?, i?}, and gives PK and ψ? to A.

Since rnd is information-theoretically hidden to A, for a query ψ = (C0, C1, C2) [TCR(C0, 0) or
TCR(C0, 1)] = rnd happens with probability at most 2/(p − 3). Therefore, the probability that A
submits a ciphertext ψ = (C0, C1, C2) such that C0 6= C and [TCR(C0, 0) or TCR(C0, 1)] = [i? or i?]
is at least pA− 2qD/(p− 3). Since b is also information-theoretically indistinguishable, [TCR(C0, 0)
or TCR(C0, 1)] = TCR(C, b) happens with probability at least 1/2(pA − 2qD/(p − 3)). Hence, we
have εtcr ≥ 1/2(pA − 2qD/(p− 3)). ut

Lemma 2. Pr[Invalid] ≤ qD
p−3 .

Proof. Suppose ψ = (C0, C1, C2) is a ciphertext such that B does not abort, C0
f1(0) = C0

f2(0) =
C0

f3(0), but (C1, C2) 6= (Cf(i)
0 , C

f(i)
0 ). Then, we notice that f1 and f2 which are polynomials with

degree three have four intersections, and consequently they have to be identical. Similarly, we have
that f1 = f2 = f3. This implies that for [Invalid = true], A has to generate a polynomial f1(6= f)
with degree three (without knowing rnd) such that

(f1(i), f1(i), f1(i?), f1(i?), f1(rnd)) = (logC0
C1, logC0

C2, f(i?), f(i?), f(rnd)).

Since f1 and f have at most three intersections and two of them are (i?, f(i?)) and (i?, f(i?)),
there is only one intersection other than these two points. Further rnd is randomly chosen from
Z∗

p\{i?, i?}. Therefore for any fixed f1, Prrnd[f1(rnd) = f(rnd)] = 1/(p − 3). This means that
Pr[Invalid] ≤ qD/(p− 3). ut

ut
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4.2 The Construction of the CCA-Secure KEM

Now, we give the concrete construction of our CCA-secure KEM under the CDH or HDH assump-
tion. This is a simple modification from the above one-way KEM, and the difference is that in the
modified scheme h(K) for some function h is used as the data encryption key instead of K. If h
is a hardcore bit function with h : G → {0, 1}, then the resulting scheme is a CCA-secure KEM
under the CDH assumption with a single-bit key. If h is a hash function with h : G → {0, 1}ν ,
it then becomes a CCA-secure KEM under the HDH assumption with ν-bit data encryption keys.
Then, the security of the modified scheme is addressed as follows:

Theorem 2. Let G be a multiplicative group with prime order p, and TCR be a (τ, εtcr) target
collision resistant hash function. Then, the above scheme is (p−1

1 (τ − o(τ)), p−1
2 (εcdh + 2εtcr +

3qD/(p−3)), qD) CCA-secure under the (τ, εcdh) CDH assumption on G and h is a (p1, p2) hardcore
bit function in G, and is (τ − o(τ), εhdh + 2εtcr + 3qD/(p − 3), qD) CCA-secure under the (τ, εhdh)
HDH assumption on G and h.

The proof of the theorem is almost the same as that of Theorem 1 (see also Appendix C). We
can also directly construct a CCA-secure PKE scheme (with one-bit plaintexts) under the CDH
assumption without using the KEM/DEM framework. The full description of the scheme is given
in Appendix C.

4.3 Improved Reduction Cost with the DDH Assumption

As addressed in Theorem 1, our proposed KEM in Sec. 4.1 is already CCA-secure under the DDH
assumption. It is remarkable that the reduction cost (with respect to the DDH assumption) of
our basic scheme is significantly better (more precisely, by a factor of two) than of conventional
schemes with the DDH assumption, i.e. the CS scheme [21] and its variants [55, 42].

5 The Full Scheme from the CDH Assumption

Our basic scheme in Sec. 4 yields only a one-bit DEM key. To obtain a k-bit DEM key, we must
use k independent copies of the basic scheme which results in k times larger ciphertext size.

In this section, we show our full scheme which yields a k-bit DEM key without increasing the
size of ciphertexts. It is obtained by using a random polynomial f(x) of degree k + 2. Remeber
that deg f(x) = 3 in the basic scheme. Let G be a multiplicative group with prime order p, and
g ∈ G be a generator. Then, the construction of the scheme is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 +a1x+ · · ·+ak+2x
k+2 over Zp, and compute

yi = gai for 0 ≤ i ≤ k + 2. The decryption key is f(x), and the public key is PK =
(G, g, y0, y1, ..., yk+2,TCR, h), where TCR : G×{0, 1} → Z∗

p is a target collision resistant hash
function, and h : G→ {0, 1} is a hardcore bit function for the Diffie-Hellman key in G.4

Encrypt(PK): Pick a random r
R← Zp, and compute

ψ = (gr, gr·f(i), gr·f(i)), K = (h(yr
0)||h(yr

1)||...||h(yr
k−1))

4h is a random string R if it is the Goldreich-Levin bit [33], where the size of R is equal to that of a group element.

9



where i = TCR(gr, 0) and i = TCR(gr, 1). The final output is (ψ,K). (Notice that one can
easily compute gf(x) as gf(x) =

∏
0≤i≤k+2 y

xi

i .)

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), check whether (Cf(i)
0 , C

f(i)
0 ) ?= (C1, C2),

where i = TCR(C0, 0) and i = TCR(C0, 1). If not, output ⊥. Otherwise, output K =
(h(Ca0

0 )||h(Ca1
0 )||...||h(Cak−1

0 )).

Theorem 3. Let G be a multiplicative group with prime order p, TCR be a (τ, εtcr) target collision
resistant hash function, and h be a (p1, p2) hardcore bit function for the Diffie-Hellman key in G.
Then, the above scheme is (p−1

1 (τ)−o(p−1
1 (τ)), k ·p−1

2 (εcdh)+2εtcr+qD(2k/(p−3)+1/(p−k−2)), qD)
CCA-secure under the (τ, εcdh) CDH assumption on G.

The proof of the above theorem is a natural extension of that of Theorem 1 along with a standard
hybrid argument. See Appendix D for the full description of the proof.

6 Efficient CCCA-Secure KEM from the HDH Assumption

In this section, we give another modification of our basic scheme which is CCCA-secure [38] under
the HDH assumption. (See Appendix B.1.4 for the definition of CCCA security.) This scheme is
comparably efficient to the KD scheme [42] with both a weaker assumption and a better reduction
cost. As shown in [38], a CCA-secure PKE scheme can be constructed by combining any CCCA-
secure KEM and authenticated symmetric key encryption [3] as a DEM. Let G be a multiplicative
group with prime order p, and g ∈ G be a generator. Then, the construction of our CCCA-secure
KEM is as follows:

Setup(1k): Generate a random polynomial f(x) = a0 + a1x+ a2x
2 over Zp, and compute yj = gaj

for 0 ≤ j ≤ 2. The decryption key is f(x), and the public key is PK = (G, g, y0, y1, y2,TCR, h),
where TCR : G → Z∗

p is a target collision resistant hash function and h : G → {0, 1}ν is a
hash function.

Encrypt(PK): Pick a random r
R← Zp, and compute

ψ = (gr, gr·f(i)), K = h(yr
0)

where i = TCR(gr). The final output is (ψ,K). (Notice that one can easily compute gf(x) as
gf(x) =

∏
0≤j≤2 y

xj

j .)

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1), check whether C
f(i)
0

?= C1, where i =
TCR(C0). If not, output ⊥. Otherwise, output K = h(Ca0

0 ).

Theorem 4. Let G be a multiplicative group with prime order p, and TCR be a (τ, εtcr) target
collision resistant hash function. Then, the above scheme is (τ − o(τ), εhdh + εtcr + qD(µ+ 4/(p−
2)), qD, µ) CCCA-secure under the (τ, εhdh) HDH assumption on G and h.

The proof of the above theorem is given in Appendix E.
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Table 1: Efficiency comparison for CCA-secure PKE schemes. Some figures are borrowed from [15, 41]. For efficiency,
we count the number of pairings, multi(or sequential)-exponentiations [51], regular-exponentiations, and other group
operations (“ops” denotes group operations) used for encryption and decryption. All symmetric operations (such
as hash function/MAC/KDF) are ignored. Ciphertext overhead represents the difference between ciphertext and
plaintext length, and |g| and |mac| are the length of a group element and an authentication tag, respectively. The
key size is measured in two parameters: the size of the system parameters (which are fixed for every public key) plus
the size of public key pk, and the size of decryption key dk. Here we only take into account the number of group
elements for pk, and the number of elements in Zp or G1 for dk. In the table, we let k′ = k/ log k where k is the
security parameter, i.e. DEM-key length.

Security Ciphertext Encryption Decryption Key size Redection
Assumption Overhead #pairings + #[multi,regular]-exp (+ #ops) (pk/dk) Cost

CS [21] DDH 3|g| 0 + [1, 3] 0 + [1, 1] 5/5 1
2

KD [42] DDH 2|g|+ |mac| 0 + [1, 2] 0 + [1, 0] 4/4 1
2

BDH 2|g| 0 + [1, 2] 1 + [0, 1] 4/3 1
BMW [15] ↓ ↓ ↓ 3 + [0, 1] 4/1 1
Kiltz [41] GHDH 2|g| 0 + [1, 2] 0 + [1, 0] 3/2 1

CDH (k′ + 2)|g| 0 + [k′ + 1, k′ + 1] 0 + [1‡, 0] 2k′ + 3/2k′ + 2 −†
CKS [20]

HDH 3|g| 0 + [2, 2] 0 + [1, 0] 5/4 1

Ours §5 CDH 3|g| 0 + [2‡, k′ + 1] 0 + [1‡, 0] k′ + 4/k′ + 3 −†

Ours §6 HDH 2|g|+ |mac| 0 + [1, 2] 0 + [1, 0] 4/3 1
Ours §9 2`-BDHE 2|g| 0 + [0, 3] + ` 3 + [0, 0] + ` 4` + 1/1 1
† This depends on the underlying hardcore bit function. ‡ Relatively more expensive computation is needed for each exponentiation.

7 Comparison

Table 1 shows a comparison of our schemes with other CCA-secure schemes, i.e. Cramer-Shoup (CS)
[23], Kurosawa-Desmedt (KD) [42], Boyen-Mei-Waters (BMW) [15], Kiltz [41], and Cash-Kiltz-
Shoup (CKS) [20]. In the comparison, we utilize a redundancy-free CCA-secure DEM [36, 37, 35, 50]
for constructing a CCA-secure hybrid encryption scheme from a CCA-secure KEM.

As seen in Table 1, our proposed scheme in Sec. 5 yields both provable security under the CDH
assumption and short ciphertext length which is comparable to other practical schemes. Comparing
with the CDH-based CKS scheme, our scheme in Sec. 5 is superior in both computational costs
and data sizes, and especially, the ciphertext overhead of our scheme, i.e. three group elements, is
much shorter than that of the CKS scheme, i.e. k/ log k + 2 group elements, since k/ log k ' 18
for 128-bit security. See also Appendix K for the detailed description of the CKS scheme. In
the comparison, we assume that log k hardcore bits can be extracted from a single DH key [33].
Furthermore, the ciphertext overhead of our scheme is the same as that of the CS scheme. Our
scheme in Sec. 6 is as efficient as the KD scheme with a weaker underlying assumption and a better
reduction cost, and is as secure as the HDH-based CSK scheme with a shorter ciphertext size and
a cheaper computational cost for encryption.

8 CCA-Security from BE with Verifiability

In this section, we observe that it is possible to construct a CCA-secure PKE scheme from an
arbitrary verifiable BE scheme where we say that a BE is verifiable if any one of valid receivers
can verify whether decryption results of all valid receivers are identical or not, and that security of
many existing CCA-secure PKE schemes can also be explained from this viewpoint. This observa-
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tion implies that a promising approach for achieving CCA-security is to concentrate on designing
verifiable BE schemes. In fact, our proposed schemes are constructed based on this approach.

8.1 The Generic Conversion

Given a verifiable BE scheme Π′ = (Setup′,Encrypt′,Decrypt′) which is CPA-secure against
selective adversaries, we construct a CCA-secure KEM Π = (Setup,Encrypt,Decrypt). In the
construction, we use a strong one-time signature scheme Σ = (Gen,Sign,Verify) in which the
verification key generated by Gen(1k) has length k. We assume that the maximum number of
potential users in Π′ is n, and a sender can revoke t users where there exists an injective mapping
(or a target collision resistant hash function) INJ : {0, 1}k → P and P is the set of all subsets
S ⊆ {1, ..., n} with |S| = n − t. Notice that for existence of such an injective mapping, it is
necessary that nCt ≥ 2k. A more detailed discussion on typical parameter choice is given in Sec.
8.3. The construction of Π is as follows:

Setup(1k): Choose n and t (which is a possible parameter choice for Π′) such that nCt ≥ 2k. Run
Setup′(1k, n, t) to obtain (d1, ..., dn, PK), and pick an injective mapping INJ : {0, 1}k → P.
The decryption key is dk = (d1, ..., dn) and the public key is PK = (PK, INJ).

Encrypt(PK): Run Gen(1k) to obtain verification key vk and signing key sk (with |vk| = k),
and compute Svk = INJ(vk), (ψ,K) ← Encrypt′(Svk, PK) and σ ← Sign(sk, ψ). The final
output is ((ψ, vk, σ),K).

Decrypt(dk, ψ, PK): For a ciphertext (ψ, vk, σ), check whether Verify(vk, ψ, σ) ?= 1. If not,
output ⊥. Otherwise, compute Svk = INJ(vk) and output K ← Decrypt′(Svk, i, di, ψ, PK)
where i ∈ Svk.

CCA-security of the above construction can be proven in a similar manner to [18]. We give an
intuitive explanation for the security. Let A be an algorithm which can break CCA-security of Π.
Then, it is possible to construct another algorithm B which can break Π′ by using A as follows:
B runs (vk?, sk?) ← Gen(1k), and commits S? = INJ(vk?) as the subset of users which will be
attacked. For given public key PK of Π′, B passes (PK, INJ) to A as a public key of Π. When
A submits decryption query (ψ, vk, σ), B responds to it by simply decrypting the ciphertext with
decryption key di such that i ∈ INJ(vk)\S? ⊆ {1, ..., n}. We note that there always exists at least
one such a decryption key unless vk = vk?, and vk 6= vk? holds with an overwhelming probability
if σ is a valid signature. Let (ψ?,K?) be a challenge ciphertext of Π′ from the challenger. Then,
B gives ((ψ?, vk?, σ?),K?) to A as a challenge ciphertext of Π where σ? ← Sign(sk?, ψ?). A formal
security proof is given in Appendix F.

Theorem 5. If Π′ is a (τ, εcpa, n, t) semantically secure and (τ, εvfy, n, t(, qD)) publicly (or pri-
vately) verifiable broadcast encryption scheme such that nCt ≥ 2k, and Σ is a (τ, εuf ) strongly
unforgeable one-time signature scheme, then Π is a (τ − o(τ), εcpa + εvfy + 1

2εuf , qD) CCA-secure
key encapsulation mechanism.

8.2 Extended Constructions

Here, we address extensions of the above basic construction.
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Ext. 1: Removing One-Time Signatures. It is possible to remove the one-time signature,
which may be a large ciphertext overhead, from the above basic construction by similar methods as
[12] and [15]. Especially, by using the method of [15], ciphertext length can be significantly reduced
if the underlying BE scheme has a specific form in which a ciphertext consists of two components
ψ = (C0, C1) and C0 is independent to the subset of privileged users. By applying this method,
a ciphertext of the modified construction becomes only ψ where (ψ,K) ← Encrypt′(SC0 , PK),
SC0 = INJ(C0), and INJ is an injective mapping (or a target collision resistant hash function). More
precisely, Encrypt′ first picks random C0 and then decides the privileged users SC0 .

Ext. 2: Extension for Broadcast Encryption with Dynamic Join. It is trivial to extend
the basic construction for BE with dynamic join (see Appendix G). If the underlying scheme is such
a BE scheme, the decryption key dk = (d1, .., dn) is replaced with master key mst, and decryption
for ciphertext (ψ, vk, σ) is carried out by using di (i ∈ Svk) where di ← Setup2(i, PK,mst). This
technique can be effective for compressing a decryption key.

Ext. 3: Compressing Decryption Key. As another method for compressing a decryption key,
we can modify the setup algorithm of the basic construction as follows:

Setup(1k): Run Setup′(1k, n + 1, t) to obtain (d1, ..., dn+1, PK), and pick an injective mapping
INJ : {0, 1}k → P where P is the set of all S ⊆ {1, ..., n+ 1} with |S| = n− t+ 1 and 1 ∈ S.
The decryption key is dk = d1 and the public key is PK = (PK, INJ).

The encryption algorithm is as it is, and any ciphertext can be decrypted by using only d1 since
1 ∈ INJ(vk) always holds.

8.3 Typical Parameter Choices for n and t

For the existence of injective mapping INJ : {0, 1}k → P, nCt ≥ 2k is necessary. A typical parameter
choice for this is n = 2k and t = k, and in this case we have that 2kCk =

∏
1≤i≤k(k · i−1 + 1) ≥ 2k.

By using Stirling’s formula,5 a tighter estimation can be obtained: 2kCk ' (π · k)
−1
2 22k.

If n ≥ 2k, then we can set t = 1 or t = n− 1. This parameter choice is possible only when the
underlying BE scheme allows dynamic join.

8.4 Relation to the IBE-to-PKE (TBE-to-PKE) Transform

We notice that the above generic conversion is identical to the CHK paradigm [18] except that
the underlying primitive of CHK, i.e. IBE, is replaced with BE in our construction, and IBE can
be viewed as a special case of BE with a single receiver and exponentially many potential users.
This means that CHK is even applicable to weaker primitives than IBE, and can provide a variety
of constructions of CCA-secure schemes. Kiltz [40] also showed that IBE is not always necessary
for CHK and a weaker primitive which is called tag-based encryption (TBE) [45] is sufficient, and
demonstrated to construct a concrete TBE scheme without using IBE-related techniques. There
are also other CCA-secure schemes whose security can be explained via the TBE framework, e.g.
[21, 15, 41]. Our proposed method is considered as a generic construction of TBE with a weaker
primitive, i.e. BE with verifiability, than IBE.

5n! ' (2π · n)
1
2 (n

e
)n, where e is the base of natural logarithm.
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Table 2: Relation among broadcast encryption and public key encryption schemes. The column “(n, t)” denote
a possible and typical parameter setting for each underlying broadcast encryption scheme, and poly(k) and exp(k)
denote polynomial and exponential functions for the security parameter k, respectively. For verifiability, related
cryptographic tools are described, and

√
means that the underlying broadcast encryption has verifiability as it is.

Extensions which can be used for the conversion are addressed in the next column (see Sec. 8.2).

BE Scheme (n, t) Verifiability Extensions ⇒ PKE Scheme

Trivial BE (poly(k), n/2) NIZK − DDN [27]
DDH Ext. 1, 2 a variant of CS [21]

NP [47] (exp(k), 1) GHDH Ext. 1, 2 ⇒ Kiltz [41]
Sec. 3.3 Ext. 1, 2 Ours §4

IBE (exp(k), n − 1)
√

Ext. 2 CHK [18]
BGW [11] (poly(k), n/2)

√
Ext. 1, 2 Ours §9

8.5 Relations among Existing BE and PKE Schemes

Many existing CCA-secure PKE schemes can be explained via our observation in Sec. 8.1 with
different underlying BE schemes, and relations among existing BE and CCA-secure PKE schemes
are summarized in Table 2. We give more detailed explanations for this in Appendix H.

9 Another New CCA-Secure Scheme from Boneh-Gentry-Waters

Based on the methodology in Sec. 8, we can construct yet another new practical CCA-secure KEM
from the BGW BE scheme [11]. This can be a further evidence that BE with verifiability is a
powerful tool for constructing CCA-secure PKE. The proposed scheme yields tight security reduc-
tion to the 2`-BDHE problem [8, 11] for relatively small `, short ciphertexts and short decryption
keys. The full description of the scheme is given in Appendix J. Unfortunately, this scheme is not
significantly advantageous to other schemes, but it is still comparably efficient to other practical
schemes (see Table 1). For a practical implementation, we set ` = 67 which implies that |P| > 2128

(see Sec. 8.3).

10 A Generic Construction of CCA-Secure Broadcast Encryption

By using our methodology (with Ext. 3), it is also generically possible to construct a CCA-secure
BE scheme from CPA-secure one with public verifiability. The conversion is fairly simple, and the
resulting CCA-secure scheme can be practical. When applying this to the BGW BE scheme, we can
have a new CCA-secure BE scheme with verifiability whose computational cost is slightly better
than the previous scheme [11]. More detailed explanation is given in Appendix L.
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A Two Naive and Faulty Ideas for CDH-Based PKE

Here, we give two naive (and faulty) ideas for achieving CDH-based CCA-secure PKE, and show
that these ideas do not work. These discussions would be helpful for understanding the technical
hurdles of designing a CDH-based CCA-secure PKE scheme.

Cramer-Shoup + Hardcore Bits. The first naive idea is to modify the CS scheme by using a
hardcore bit. More specifically, if it is possible to prove the one-wayness of CS encryption under
the CDH assumption, then by “condensing” it into one-bit (i.e. a hardcore bit) we can obtain
CCA-security from the CDH assumption. However, unfortunately it is not easy to prove the one-
wayness of CS encryption under the CDH assumption. Recall the proof of CCA-security of the
CS scheme under the DDH assumption. In the security proof, the simulator generates a complete
decryption key by himself, and embeds the given DDH instance into only the challenge ciphertext.
If the given instance is a Diffie-Hellman (DH) tuple, the adversary will correctly guess the plaintext
of the challenge ciphertext. Otherwise, the adversary can output only a random bit. Therefore,
by observing the adversary’s behavior, the simulator can distinguish if the given instance is a DH-
tuple or not. Then, we notice that it is difficult to modify this security proof to be another one
under the CDH assumption even for one-wayness. Namely, for constructing a challenge ciphertext,
all of four components of the DDH instance are required, and it is hard to generate it from the
CDH instance since it lacks one component of the DDH instance. Therefore, this proof strategy
cannot be straightforwardly extended for proving the one-wayness of CS encryption under the CDH
assumption.

ElGamal + Naor-Yung. The second idea is to enhance a CDH-based semantically secure PKE
to be CCA-secure one by using the Naor-Yung paradigm [48, 27, 53]. Since unlike the CS scheme,
one-wayness of the ElGamal scheme [28] can be proven under the CDH assumption (against only
chosen plaintext attacks), we can easily modify it to be a CDH-based semantically secure PKE
scheme by using a hardcore bit. Then, it seems that we can have a CDH-based CCA-secure PKE
scheme from this semantically secure PKE and the Naor-Yung paradigm. However, this is not true.
Namely, it is not known if it is possible to construct an NIZK proof under the CDH assumption, and
consequently, the Naor-Yung paradigm is not applicable under only this assumption. Therefore,
this idea does not work either.
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B Definitions

Here, we give definitions for our proposed schemes.

B.1 Key Encapsulation Mechanisms

B.1.1 The Model

A KEM consists of the following three algorithms:

Setup(1k) Takes as input the security parameter 1k and outputs a decryption key dk and a public
key PK.

Encrypt(PK) Takes as input a public key PK and outputs a pair (ψ,K) where ψ is a ciphertext
and K ∈ K is a data encryption key.

Decrypt(dk, ψ, PK) Takes as input the private key dk, a ciphertext ψ, and the public key PK,
and outputs the data encryption key K ∈ K. The key K can then be used to decrypt the
DEM part of hybrid encryption.

We require that if (dk, PK) R← Setup(1k) and (ψ,K) R← Encrypt(PK) then Decrypt(dk, ψ, PK) =
K.

B.1.2 Chosen-Ciphertext Security

CCA-security of a KEM is defined using the following game between an attack algorithm A and a
challenger. Both the challenger and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a public key PK. The
challenger also runs algorithm Encrypt to obtain (ψ?,K?) R← Encrypt(PK) where K? ∈ K.
Next, the challenger picks a random b ∈ {0, 1}. It sets K0 = K? and picks a random K1 in
K. It then gives the public key PK and the challenge ciphertext (ψ?,Kb) to algorithm A.

Query. Algorithm A adaptively issues decryption queries ψ1, ..., ψqD . For query ψi(6= ψ?), the
challenger responds with Decrypt(dk, ψi, PK).

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvKEMA denote the probability that A wins the game.

Definition 1. We say that a KEM is (τ, ε, qD) CCA-secure if for all τ -time algorithms A who make
a total of qD decryption queries, we have that |AdvKEMA − 1/2| < ε.

B.1.3 One-Wayness against CCA

One-wayness of a KEM is defined in a similar manner. Both the challenger and A are given 1k as
input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a public key PK. The
challenger also runs algorithm Encrypt to obtain (ψ?,K?) R← Encrypt(PK) where K? ∈ K.
It then gives the public key PK and the challenge ciphertext ψ? to algorithm A.
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Query. Algorithm A adaptively issues decryption queries ψ1, ..., ψqD . For query ψi(6= ψ?), the
challenger responds with Decrypt(dk, ψi, PK).

Guess. Algorithm A outputs its guess K ′ ∈ K for K? and wins the game if K? = K ′.

Let AdvOWA denote the probability that A wins the game.

Definition 2. We say that a KEM is (τ, ε, qD) one-way if for all τ -time algorithms A who make a
total of qD decryption queries, we have that AdvOWA < ε.

B.1.4 Constrained Chosen-Ciphertext Security

In [38], Hofheinz and Kiltz proposed a relaxed notion of CCA security, which is called Constrained
CCA (CCCA) security. According to their new composition theorem for hybrid encryption, CCCA
security for KEM is sufficient for constructing a CCA-secure PKE scheme if authenticated encryp-
tion [3] is used as DEM [38]. CCCA-security for KEM is defined as follows: Both the challenger
and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a public key PK. The
challenger also runs algorithm Encrypt to obtain (ψ?,K?) R← Encrypt(PK) where K? ∈ K.
Next, the challenger picks a random b ∈ {0, 1}. It sets K0 = K? and picks a random K1 in
K. It then gives the public key PK and the challenge ciphertext (ψ?,Kb) to algorithm A.

Query. Algorithm A adaptively issues decryption queries (ψ1, pred1(·)), ..., (ψqD , predqD(·)). For
query (ψi(6= ψ?), predi(·)), the challenger responds with K(or “⊥”)= Decrypt(dk, ψi, PK)
if predi(K) = 1. It returns “⊥” ohtherwise.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Here, function predi : K → {0, 1} is called predicate, and according to pred1, ..., predqD , uncertainty
uncertA is estimated as

uncertA = max
E

1
qD

∑
1≤i≤qD

Pr
K∈K

[predi(K) = 1 when A runs with E],

where E is an environment which interacts with A. There are also some small restrictions for A and
E, but these are omitted here. More rigorous definition is given in [38]. Let AdvKEM′

A denote the
probability that A wins the game.

Definition 3. We say that a KEM is (τ, ε, qD, µ) CCCA-secure if for all τ -time algorithms A who
make a total of qD decryption queries with uncertA ≤ µ, we have that |AdvKEM′

A − 1/2| < ε.

B.2 Number Theoretic Assumptions

B.2.1 The CDH, HDH, and DDH Assumptions

Let G be a multiplicative group with prime order p. Then, the CDH problem on G is stated as
follows. Let A be an algorithm, and we say that A has advantage ε in solving the CDH problem on
G if

Pr[A(g, gα, gβ) = gαβ ] ≥ ε,
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where the probability is over the random choice of generators g in G, the random choice of α and
β in Zp, and the random bits consumed by A.

Definition 4. We say that the (τ, ε)-CDH assumption holds on G if no τ -time algorithm has
advantage at least ε in solving the CDH problem on G.

Occasionally we drop the τ and ε and refer to the CDH in G.
The hashed Diffie-Hellman (HDH) problem on G and function h : G → D is stated as follows.

Let A be an algorithm, and we say that A has advantage ε in solving the HDH problem on G and
h if

1
2
· |Pr[A(g, gα, gβ, h(gαβ)) = 0]− Pr[A(g, gα, gβ , T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g in G, the random choice of α and
β in Zp, the random choice of T ∈ D, and the random bits consumed by A.

Definition 5. We say that the (τ, ε)-HDH assumption holds on G and h if no τ -time algorithm has
advantage at least ε in solving the HDH problem on G and h. Especially, we say that the (τ, ε)-DDH
assumption holds on G if (τ, ε)-HDH assumption holds on G and h and h : G → G is the identity
function.

Occasionally we drop the τ and ε and refer to the HDH in G and h (or the DDH in G).

Important Implications. It is important to note that the HDH assumption is strictly weaker
than the DDH assumption for appropriately chosen h. If h is a key derivation function [23], then the
DDH assumption immediately implies the HDH assumption (but not vice versa). Furthermore, if h
is a hardcore bit for the Diffie-Hellman key [33, 14, 13, 39], then the CDH assumption is equivalent
to the HDH assumption. Obviously, the CDH assumption is weaker than both the HDH and DDH
assumptions.

B.2.2 Hardcore Bits for the Diffie-Hellman Key

Let A be a τ -time algorithm which has advantage ε in solving the HDH problem on G and h : G→
{0, 1}.

Definition 6. We say that function h : G→ {0, 1} is a (p1, p2) hardcore bit function in G if there
exists a p1(τ)-time algorithm B which for any given A, can solve the CDH problem with advantage
p2(ε) for some polynomials p1 and p2.

See [33, 14, 13, 39] for examples of hardcore bit functions for the Diffie-Hellman key.

B.2.3 The Bilinear Diffie-Hellman Exponent (BDHE) assumption

Let G1 (with prime order p) and G2 be bilinear groups where there exists a bilinear mapping
e : G1 × G1 → G2 such that e(ga, gb) = e(g, g)ab for all integer a and b. Then, the decisional
n-bilinear Diffie-Hellman exponent (n-BDHE) problem on G1 is stated as follows. Let A be an
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algorithm that outputs {0, 1}, and we say that A has advantage ε in solving decision n-BDHE in
G1 if

1
2
· |Pr[A(h, g, gα, g(α2), ..., g(αn), g(αn+2), ..., g(α2n), e(g(αn+1), h)) = 0]

−Pr[A(h, g, gα, g(α2), ..., g(αn), g(αn+2), ..., g(α2n), T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g, h in G1, the random choice of α in
Zp, the random choice of T ∈ G2, and the random bits consumed by A.

Definition 7. We say that the (decision) (τ, ε, n)-BDHE assumption holds on G1 if no τ -time
algorithm has advantage at least at least ε in solving the (decision) n-BDHE problem on G1.

Occasionally we drop the τ and ε and refer to the (decision) n-BDHE in G1.

B.3 Public Key Broadcast Encryption Schemes

Here, we review definitions for public key BE schemes. For simplicity, we define encryption schemes
as key encapsulation mechanisms, and borrow the same notations as [11] with some slight modifi-
cations.

B.3.1 The Model

A BE scheme consists of the following three algorithms:

Setup(1k, n, t) Takes as input the security parameter 1k, the number of receivers n, and the max-
imum number of revoked users t (t < n). It outputs n private keys d1, ..., dn and a public key
PK.

Encrypt(S, PK) Takes as input a subset S ⊆ {1, ..., n} with |S| ≥ n− t, and a public key PK. It
outputs a pair (ψ,K) where ψ is called the header and K ∈ K is a message encryption key.

Let M be a message to be broadcast to the set S and let CM be the encryption of M under
the symmetric key K. The broadcast to users in S consists of (S, ψ, CM ). The pair (S, ψ) is
often called the full header and CM is often called the broadcast body.

Decrypt(S, i, di, ψ, PK) Takes as input a subset S ⊆ {1, ..., n}, a user index i ∈ {1, ..., n} and the
private key di for user i, a header ψ, and the public key PK. If i ∈ S and |S| ≥ n− t, then
the algorithm outputs the message encryption key K ∈ K. The key K can then be used to
decrypt the broadcast body CM and obtain the message body M .

The standard key encapsulation mechanism (KEM) is a special case of BE with n = 1 and t = 0.
As usual, we require that the scheme be correct, namely that for all S ⊆ {1, ..., n} and all i ∈ S, if

((d1, ..., dn), PK) R← Setup(1k, n, t) and (ψ,K) R← Encrypt(S, PK) then Decrypt(S, i, di, ψ, PK) =
K.
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B.3.2 Chosen-Ciphertext Security

We define CCA-security of a BE scheme against a static adversary. Security is defined using the
following game between an attack algorithm A and a challenger. Both the challenger and A are
given 1k, n and t, the total number of potential users and the maximum number of revoked users,
respectively, as inputs.

Init. Algorithm A begins by outputting a set S? ⊆ {1, ..., n} of receivers that it wants to attack,
where |S?| ≥ n− t.

Setup. The challenger runs Setup(1k, n, t) to obtain private keys d1, ..., dn and a public key PK.
The challenger also runs algorithm Encrypt to obtain (ψ?,K?) R← Encrypt(S?, PK) where
K? ∈ K. Next, the challenger picks a random b ∈ {0, 1}. It sets K0 = K? and picks a random
K1 in K. It then gives (ψ?,Kb) to algorithm A.

Query. Algorithm A adaptively issues decryption queries q1, ..., qD where a decryption query con-
sists of the triple (u,S, ψ) where ψ 6= ψ?, S ⊆ S? and u ∈ S. The challenger responds with
K (or ⊥) = Decrypt(S, u, du, ψ, PK).

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvBrA,n,t denote the probability that A wins the game when the challenger is given n and t.

Definition 8. We say that a broadcast encryption scheme is (τ, ε, n, t, qD) CCA-secure if for all τ -
time algorithms A who make a total of qD decryption queries, we have that |AdvBrA,n,t − 1/2| < ε.
Especially, we say that a broadcast encryption scheme is (τ, ε, n, t) semantically secure if it is
(τ, ε, n, t, 0) CCA-secure.

The above models an attack where at most t users not in set S? collude to try and expose a
broadcast intended for users in S? only. The set S? is chosen by the adversary before it sees the
public key PK. The parameter t is often called the collusion threshold, and we say a BE scheme
is fully collusion resistant if t = n − 1. Notice that there are many useful schemes which are not
fully collusion resistant [47, 25, 26], and our conversion method for obtaining CCA-security can be
applied to even these schemes. In other words, full collusion resistance of BE is not necessary for
providing CCA-security, while in the original CHK requires fully collusion resistant IBE.

It is possible to extend the above model for BE with dynamic join, where the number of actual
users is not fixed at the setup phase, but only its upper bound n is known. See Appendix G for
the formal definition of BE with dynamic join.

B.3.3 Verifiability

For achieving CCA-security, we need an important property for underlying BE, which we call
verifiability. Roughly speaking, we say that a BE scheme has verifiability if a valid receiver of a
broadcasted message can verify if his decryption result is the same as that for any other receiver.
Verifiability is a useful property for preventing a dishonest sender from distributing invalid data
(e.g. video with worse quality) for a specific subset of privileged users. We can define two flavors
of verifiability: public verifiability and private verifiability. Their difference is that in a publicly
verifiable BE scheme, a receiver can verify equality of keys without using his decryption key, and
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on the other hand, it is necessary in a privately verifiable scheme. Both notions of verifiability are
sufficient for our requirement.

Though BE schemes do not generally have verifiability, in principle it is not hard to add this
property. Namely, it is generically possible to add verifiability by using NIZK proofs, assuming
only existence of enhanced trap-door permutations. Notice that this NIZK proof does not need
simulation-soundness which is required for a general construction of CCA-secure public key encryp-
tion [48, 53]. Namely, an NIZK proof which is used for providing verifiability may be malleable.
Furthermore, BGW already has verifiability as it is, and NP BE can be efficiently modified to have
this property in at least three different ways (see Sec. 3.3 and Appendix H.2). However, we should
also honestly mention that it turns hard to construct a BE with verifiability when using only BE
in a black-box manner.

Public Verifiablity. For public verifiability, we define adversary A’s advantage AdvVfyA,n,t as

AdvVfyA,n,t = Pr[∃i, j ∈ S?, Decrypt(S?, i, di, ψ
?, PK) 6= Decrypt(S?, j, dj , ψ

?, PK)|

((d1, ..., dn), PK) R← Setup(1k, n, t); (S?, ψ?) R← A((d1, ..., dn), PK)].

Definition 9. We say that a broadcast encryption scheme is (τ, ε, n, t) publicly verifiable if for all
τ -time algorithms A, we have that AdvVfyA,n,t < ε.

Private Verifiablity. We can also define private verifiability in a similar manner, and this is
formally addressed as follows: Private verifiability of BE is defined using the following game between
an attack algorithm A and a challenger. Both the challenger and A are given 1k, n and t, the total
number of potential users and the maximum number of revoked users, respectively, as inputs.

Setup. The challenger runs Setup(1k, n, t) to obtain private keys d1, ..., dn and a public key PK,
and gives A the public key PK.

Query. Algorithm A adaptively issues decryption queries q1, ..., qqD where a decryption query con-
sists of the triple (u,S, ψ) where |S| ≥ n − t and u ∈ S. The challenger responds with
Decrypt(S, u, du, ψ, PK).

Forge. Algorithm A outputs an encapsulated key (S?, ψ?) with |S?| ≥ n− t and wins the game if
there is a pair of users i, j ∈ S? such that Decrypt(S?, i, di, ψ

?, PK) 6= Decrypt(S?, j, dj , ψ
?, PK).

Let AdvVfy′A,n,t denote the probability that A wins the game when the challenger is given n and t.

Definition 10. We say that a broadcast encryption scheme is (τ, ε, n, t, qD) privately verifiable if
for all τ -time algorithms A who make a total of qD decryption queries, we have that AdvVfy′A,n,t < ε.

One may think that the notion of private verifiability is too weak in practice since this does
not model collusion attacks of valid users in {1, ..., n}. However, for achieving CCA-security by our
proposed method, this notion of verifiability is sufficient. In other words, full verifiability, which
can be required for practical applications, is not necessary for the proposed method. Obviously,
public verifiability implies private verifiability.
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B.4 Other Cryptographic Tools

B.4.1 One-Time Signatures

A signature scheme consists of the following three algorithms:

Gen(1k) Takes as input the security parameter 1k, and outputs a verification key vk and a signing
key sk.

Sign(sk,m) Takes as input a signing key sk and a message m, and outputs a signature σ.

Verify(vk,m, σ) Takes as input a verification key vk, a message m, and a signature σ, and outputs
a bit b ∈ {0, 1}.

We require that for all sk, all m in the message space, and all σ output by Sign(sk,m), we have
Verify(vk,m, σ) = 1.

Next, we define strong unforgery of a (one-time) signature scheme against chosen message at-
tacks. Security is defined using the following game between an attack algorithm A and a challenger.
Both the challenger and A are given 1k as input.

Setup. The challenger runs Gen(1k) to obtain a verification key vk and a signing key sk. It gives
A the verification key vk.

Query. Algorithm A may issue at most one signing query m. The challenger responds with σ
R←

Sign(sk,m).

Forge. Algorithm A outputs (m?, σ?) such that (m?, σ?) 6= (m,σ).

Let AdvOTSA denote the probability that Verify(vk,m?, σ?) = 1.

Definition 11. We say that a signature scheme is (τ, ε) strongly unforgeable if for all τ -time
algorithm A, we have that AdvOTSA < ε.

B.4.2 Target Collision Resistant Hash Functions

Let TCR : X → Y be a hash function (we individually define the range and domain of TCR for each
scheme), A be an algorithm, and A’s advantage AdvTCRA be

AdvTCRA = Pr[TCR(x′) = TCR(x) ∈ Y ∧ x′ 6= x| x R← X ; x′ R← A(x)].

Definition 12. We say that TCR is a (τ, ε) target collision resistant hash function if for all τ -time
algorithm A, we have that AdvTCRA < ε.

It is obvious that any injective mapping can be used as a perfectly secure target collision resistant
hash function.
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B.5 The Lagrange Interpolation and a Remark

Here, we give a concrete description of the Lagrange interpolation as well as an important re-
mark. Let f(x) =

∑
0≤j≤t ajx

j be a polynomial over Zp with degree t where p is a prime, and
(x0, f(x0)), ..., (xt, f(xt)) be t+1 distinct points over f(x). Then, for given (x0, f(x0)), ..., (xt, f(xt))
one can reconstruct f(x) as

f(x) = f(x0)λx0(x) + · · ·+ f(xt)λxt(x),

where for 0 ≤ j ≤ t,

λxj (x) =
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xt)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xt)
.

By a careful calculation, we notice that for a multiplicative group G of prime order p, it is also
possible to reconstruct any gaj for 0 ≤ j ≤ t from (g, (x0, g

f(x0)), ..., (xt, g
f(xt))), where g is any

element of G. In this paper, we often use this fact for security proofs.
Similarly to this, for given (g, ga0 , ..., ga`−1 , (x0, g

f(x0)), ..., (xt−`, g
f(xt−`))), one can reconstruct

any gaj for ` ≤ j ≤ t as well.

C Direct CCA-Secure PKE from the CDH assumption

Here, we give a direct construction of a CCA-secure PKE scheme under the CDH assumption
without depending on the KEM/DEM framework. The difference between the proposed PKE
scheme and the proposed KEM is similar to that between the CS PKE scheme [21] and the Shoup
KEM [55]. See also [1, page 136].

The proposed PKE scheme is the same as the proposed one-way KEM in Sec. 4.1 except that

Setup(1k): Pick also a function h : G → {0, 1}, which is a hardcore bit function for the Diffie-
Hellman key in G. The decryption key is f(x), and the public key is PK = (G, g, y0, y1, y2, y3,TCR, h),
where TCR : G× {0, 1} × {0, 1} → Z∗

p. The message space is {0, 1}.

Encrypt(PK,M): For encrypting a plaintext M ∈ {0, 1}, pick a random r
R← Zp, and compute

ψ = (gr, gr·f(i), gr·f(i), h(yr
0)⊕M)

where i = TCR(gr, h(yr
0)⊕M, 0) and i = TCR(gr, h(yr

0)⊕M, 1). The ciphertext is ψ.

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2, C3), check whether (Cf(i)
0 , C

f(i)
0 ) ?= (C1, C2),

where i = TCR(C0, C3, 0) and i = TCR(C0, C3, 1). If not, output ⊥. Otherwise, output
M = C3 ⊕ h(Ca0

0 ).

The above scheme is CCA-secure PKE [52, 27] under the CDH assumption. A sketch of the
security proof is as follows: Assume we are given an adversary A which breaks CCA-security of the
above PKE scheme. We use A to construct another adversary B which for given (g, gα, gβ) ∈ G3

distinguishes h(gαβ) from a random bit. It should be noticed that existence of such B immediately
implies existence of yet another adversary which solves the CDH problem because h is a hardcore
bit function. For given (g, gα, gβ), B picks a random bit c and a target collision resistant hash
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function TCR, and computes i? = TCR(gβ, c, 0) and i? = TCR(gβ , c, 1). Similarly to the proof of
Theorem 1, B picks rnd, ui? , ui? , and urnd, and computes y0, ..., y3. Then, B inputs public key
PK = (G, g, y0, y1, y2, y3,TCR) to A. For any decryption query from A, B can correctly respond
to it by using (ui? , ui? , urnd, rnd) with an overwhelming probability. As the challenge ciphertext,
B sets ψ? = (gβ , (gβ)ui? , (gβ)ui? , c). Recall that since the message space is {0, 1}, the message pair
which will be challenged is always m0 = 0 and m1 = 1. When A outputs his guess b′, B outputs
c⊕ b′ as his guess for h(gαβ). B’s advantage is negligibly close to A’s advantage.

D Proof of Theorem 3

Assume that for challenge ciphertext (gβ, gβ·f(i?), gβ·f(i?)) such that i? = TCR(gβ, 0) and i? =
TCR(gβ, 1), there exists an adversary A′ which distinguishes (h(yβ

0 )||h(yβ
1 )||...||h(yβ

k−1)) from a ran-
dom k-bit string. Then, by a standard hybrid argument, there also exists another adversary A
which for some j such that 0 ≤ j ≤ k − 1 distinguishes

(h(yβ
0 )||h(yβ

1 )||...||h(yβ
j )||randomk−j−1)

from

(h(yβ
0 )||h(yβ

1 )||...||h(yβ
j−1)||randomk−j)

where random` denotes an `-bit random string.
Now, assume we are given such an adversary A which with running time τ , advantage ε, and

qD decryption queries. We use A to construct another adversary B which for given (g, gα, gβ)
distinguishes h(gαβ) from a random bit. Define adversary B as follows:

1. For given (g, gα, gβ), B picks a target collision resistant hash function TCR, and computes
i? = TCR(gβ, 0) and i? = TCR(gβ , 1).

2. B sets yj = gα, and picks distinct randoms rndj , ..., rndk−1 from Z∗
p\{i?, i?}. B also picks

randoms ui? , ui? , a0, ..., aj−1, and uj , ..., uk−1 from Zp.

3. B calculates yl = gal for 0 ≤ l ≤ j − 1.

4. Then, by using the Lagrange interpolation, B calculates yj+1, ..., yk+2 such that for a function
F (x) =

∏
0≤j≤k+2 y

xj

j , F (i?) = gui? , F (i?) = gui? , and F (rndj) = guj , ..., F (rndk−1) = guk−1

hold.

5. B inputs public key PK = (G, g, y0, y1, ..., yk+2,TCR, h) and challenge ciphertext ψ? =
(gβ, (gβ)ui? , (gβ)ui? ) and K? = (h((gβ)a0)||h((gβ)a1)||...||h((gβ)aj−1)||γ||randomk−j−1) to A
for a random bit γ.

6. When A makes decryption query ψ = (C0, C1, C2), B proceeds as follows:

(a) If C0 = gβ, then B responds ⊥.

(b) If C0 6= gβ and TCR(C0, b) = [i?, i?, rndj , ..., rndk−2 or rndk−1] for b = 0 or 1, then B
aborts and outputs a random bit.

27



(c) If C0 6= gβ and TCR(C0, b) 6= [i?, i?, rndj , ..., rndk−2 nor rndk−1] for both b = 0 and 1, B
computes Cui?

0 , Cui?

0 , C
uj

0 , ..., C
uk−2

0 , and Cuk−1

0 . Let TCR(C0, 0) = i and TCR(C0, 1) = i,
and f1, f2, and f3 be polynomials over Zp with degree k+2 whose coefficient for xl term
is al for 0 ≤ l ≤ j − 1, such that

(f1(i), f1(i), f1(i?), f1(i?), f1(rndj+1), ..., f1(rndk−1)) = (logC0
C1, logC0

C2, ui? , ui? , uj+1, ..., uk−1)
(f2(i), f2(i), f2(i?), f2(rndj), ..., f2(rndk−1)) = (logC0

C1, logC0
C2, ui? , uj , ..., uk−1)

(f3(i), f3(i), f3(i?), f3(rndj), ..., f3(rndk−1)) = (logC0
C1, logC0

C2, ui? , uj , ..., uk−1).

Then, B calculates C0
a1,l , C0

a2,l , C0
a3,l by using the Lagrange interpolation where a1,l,

a2,l, and a3,l denote the coefficients of xl term of f1, f2, and f3 for j ≤ l ≤ k −
1, respectively, and responds (h(Ca0

0 )||...||h(Caj−1

0 )||h(Ca1,j

0 )||...||h(Ca1,k−1

0 )) if C0
a1,j =

C0
a2,j = C0

a3,j , or “⊥” otherwise.

7. Finally, A outputs a bit b as his guess, and B outputs the same bit b as his own guess for
h(gαβ).

Let Win denote the event that A correctly distinguishes the key, Abort denote the event that A
submits a ciphertext ψ = (C0, C1, C2) such that C0 6= gβ and TCR(C0, b) = [i?, i?, rndj , ..., rndk−2

or rndk−1] for b = 0 or 1, and Invalid denote the event that A submits a ciphertext ψ = (C0, C1, C2)
such that B does not abort, C0

a1,j = C0
a2,j = C0

a3,j , but (C1, C2) 6= (Cf(i)
0 , C

f(i)
0 ) where f(x) =∑

0≤i≤k+2 aix
i.

Then, B’s advantage for guessing h(gαβ) is estimated as follows:

1
2
· |Pr[B(g, gα, gβ, h(gαβ)) = 0]− Pr[B(g, gα, gβ , T ) = 0]|

≥ |Pr[Win|Abort ∧ Invalid] Pr[Abort ∧ Invalid]− 1
2
|

≥ |Pr[Win]− Pr[Abort]− Pr[Invalid]− 1
2
|.

Now, we prove following lemmas.

Lemma 3. Pr[Abort] ≤ 2εtcr + 2qDk
p−3 .

Proof. Assume we are given an adversary A with Pr[Abort] = pA. Then, we can construct another
adversary B′ which finds a collision in TCR as follows. For a given TCR instance (C, b), B′ generates
decryption key f(x) and public key PK = (G, g, y0, y1, ..., yk+2,TCR, h), and computes challenge
ciphertext ψ? = (C,Cui? , Cui? ), where ui? = f(TCR(C, 0)) and ui? = f(TCR(C, 1)). B′ also picks
distinct randoms rndj , ..., rndk−1 from Z∗

p\{i?, i?}, and gives PK and (ψ?,K?) to A, where K? is a
correct key under f(x) or a random element of G with probability 1/2.

Since rndj , ..., rndk−1 are information-theoretically hidden to A, for a query ψ = (C0, C1, C2),
[TCR(C0, 0) or TCR(C0, 1)] = [rndj , ..., rndk−2, or rndk−1] happens with probability at most 2(k−
j)/(p − 3). Therefore, the probability that A submits a ciphertext ψ = (C0, C1, C2) such that
C0 6= C and [TCR(C0, 0) or TCR(C0, 1)] = [i? or i?] is at least pA−2qD(k−j)/(p−3). Since b is also
information-theoretically indistinguishable, [TCR(C0, 0) or TCR(C0, 1)] = TCR(C, b) happens with
probability at least 1/2(pA−2qD(k−j)/(p−3)). Hence, we have εtcr ≥ 1/2(pA−2qD(k−j)/(p−3)) ≥
1/2(pA − 2qDk/(p− 3)). ut
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Lemma 4. Pr[Invalid] ≤ qD
p−k−2 .

Proof. Let f0(x) =
∑

0≤l≤j−1 alx
l, and f ′1(x), f

′
2(x), and f ′3(x) be polynomials such that fl(x) =

f0(x) + xj · f ′l (x) for l = 1, 2, 3. Let f ′(x) be a polynomial such that f(x) = f0(x) + xj · f ′(x).
Suppose ψ = (C0, C1, C2) is a ciphertext such that B does not abort, C0

f ′1(0) = C0
f ′2(0) = C0

f ′3(0),
but (C1, C2) 6= (Cf(i)

0 , C
f(i)
0 ). Then, we notice that f ′1 and f ′2 which are polynomials with degree

k − j + 2 have k − j + 3 intersections, and consequently they have to be identical. Similarly, we
have that f ′1 = f ′2 = f ′3. This implies that for [Invalid = true], A has to choose C1 and C2 (without
knowing rndj , ..., rndk−1) such that f ′1 (with degree k − j + 2) satisfies

1. (f ′1(i), f
′
1(i), f

′
1(i

?), f ′1(i
?), f ′1(rndj), ..., f ′1(rndk−1))

= ((logC0
C1 − f0(i)) · i−j , (logC0

C2 − f0(i)) · i−j , f ′(i?), f ′(i?), f ′(rndj), ..., f ′(rndk−1)),

2. f ′1 6= f ′.

Since f ′1 and f ′ have at most k− j+2 intersections and k− j+1 of them are (i?, f ′(i?)), (i?, f ′(i?)),
(rndj+1, f

′(rndj+1)), ..., (rndk−1, f
′(rndk−1)), there is only one remained intersection which must

be (rndj , f
′(rndj)). Therefore, [Invalid = true] happens only when A correctly guesses the value of

rndj (even if A is given rndj+1, ..., rndk−1). Hence, for any invalid query ψ, the probability that B
does not respond “⊥” is at most 1/(p− k + j − 2)(≤ 1/(p− k − 2)). ut

A’s advantage is estimated as at least 1/k times A′’s advantage due to the hybrid argument.

E Proof of Theorem 4

Assume we are given an adversary A which breaks CCCA security of the above KEM with running
time τ , advantage ε, and qD decryption queries with uncertA = µ. We use A to construct another
adversary B which solves the HDH problem. Define adversary B as follows:

1. For a given HDH instance (g, gα, gβ ,K?), B picks a target collision resistant hash function
TCR, and computes i? = TCR(gβ).

2. B sets y0 = gα, and picks a random rnd from Z∗
p\{i?}. B also picks randoms ui? and urnd

from Zp.

3. Then, by using the Lagrange interpolation, B calculates y1 and y2 such that for a function
F (x) =

∏
0≤j≤2 y

xj

j , F (i?) = gui? and F (rnd) = gurnd hold. Notice that letting yj = gaj for
0 ≤ j ≤ 2, F (x) is rephrased as F (x) = gf(x) where f(x) =

∑
0≤i≤2 ajx

j , and therefore, one
can easily computes gaj for 0 ≤ j ≤ 2 by using the Lagrange coefficients for f(x).

4. B inputs public key PK = (G, g, y0, y1, y2,TCR, h) and challenge ciphertext (ψ?(= (gβ , (gβ)ui? )),K?)
to A. We note that this is a correct ciphertext and its corresponding data encryption key is
h(gαβ).

5. When A makes decryption query (ψ(= (C0, C1)), pred(·)), B proceeds as follows:

(a) If C0 = gβ , then B responds ⊥.

(b) If C0 6= gβ and TCR(C0) = [i? or rnd], then B aborts and outputs a random bit.
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(c) If C0 6= gβ and TCR(C0) 6= [i? nor rnd], B computes Cui?

0 and Curnd
0 . Let TCR(C0) = i,

and f ′ be polynomials over Zp with degree two, such that

(f ′(i), f ′(i?), f ′(rnd)) = (logC0
C1, ui? , urnd).

Then, B calculates C0
f ′(0) by using the Lagrange interpolation from (C1, C

ui?

0 , Curnd
0 ).

B responds K = h(C0
f ′(0)) if pred(K) = 1, or “⊥” otherwise.

6. Finally, A outputs a guess b, and B outputs the same value as his own guess for the given
HDH instance.

Let Win denote the event that A correctly distinguishes the key, Abort denote the event that A
submits a ciphertext ψ = (C0, C1) such that C0 6= gβ and TCR(C0) = [i? or rnd], and Invalid
denote the event that A submits a ciphertext ψ = (C0, C1) and predicate pred such that B does
not abort, pred(h(Cf ′(0)

0 )) = 1, and ψ 6= (C0, C
f(i)
0 ) where f(x) =

∑
0≤j≤2 ajx

j .
Then, B’s advantage in solving the HDH problem is estimated as follows:

1
2
· |Pr[B(g, gα, gβ, h(gαβ)) = 0]− Pr[B(g, gα, gβ , T ) = 0]|

≥ |Pr[Win|Abort ∧ Invalid] Pr[Abort ∧ Invalid]− 1
2
|

≥ |Pr[Win]− Pr[Abort]− Pr[Invalid]− 1
2
|.

The proof completes by proving following lemmas.

Lemma 5. Pr[Abort] ≤ εtcr + qD
p−2 .

Proof. Assume we are given an adversary A with Pr[Abort] = pA. Then, we can construct another
adversary B′ which finds a collision in TCR as follows. For a given TCR instance C, B′ generates
decryption key f(x) and public key PK = (G, g, y0, y1, y2,TCR, h) of the above KEM, and computes
challenge ciphertext ψ? = (C,Cf(ui? )), where ui? = TCR(C). B′ also picks a random rnd from
Z∗

p\{i?}, and gives PK and (ψ?,K?) to A, where K? = h(Cf(0)) or a random ν-bit string with
probability 1/2.

Since rnd is information-theoretically hidden to A, for a query ψ = (C0, C1) TCR(C0) = rnd
happens with probability at most 1/(p−2). Therefore, the probability that A submits a ciphertext
ψ = (C0, C1) such that C0 6= C and TCR(C0) = i? is at least pA − qD/(p − 2). Hence, we have
εtcr ≥ pA − qD/(p− 2). ut

Lemma 6. Pr[Invalid] ≤ qD(µ+ 3
p−2).

Proof. Suppose (ψ(= (C0, C1)), pred) is a ciphertext such that B does not abort, pred(h(Cf ′(0)
0 )) =

1, but C1 6= C
f(i)
0 . Then, we notice that for any f(x), i?, and i, the value f ′(0) takes p− 2 different

values according to p− 2 different values for rnd. This can be easily proved by a contradiction as
follows: Fix f(x), i?, i and u 6= f(i). For rnd ∈ (Z∗

p\{i?}), let frnd(x) be a polynomial of degree at
most two such that

frnd(i?) = f(i?), frnd(i) = u, frnd(rnd) = f(rnd).
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Then, we will show that for any (rnd1, rnd2) ∈ (Z∗
p\{i?})2,

frnd1(0) 6= frnd2(0)

if rnd1 6= rnd2. Suppose that frnd1(0) = frnd2(0). Then frnd1(x) = frnd2(x) because they intersect
at three points, x = 0, i? and i. In this case, frnd1(x) = f(x) because they intersect at three points,
x = i?, rnd1 and rnd2. But this is a contradiction because frnd1(i) = u 6= f(i).

Hence, even if A has unlimited computational power, [pred(h(Cf ′(0)
0 )) = 1] happens only when

A’s guess for rnd is correct or it accidentally occurs according to the probability uncertA(= µ)
(more precisely, µ + 2/p(≤ µ + 2/(p − 2)) where 2/p comes from statistical distance between the
distribution of possible values for rnd and the uniform distribution over Zp). ut

F Proof of Theorem 5

Assume we are given an adversary A which breaks CCA-security of Π with running time τ ,
advantage ε, and qD decryption queries. Let (ψ?, vk?, σ?) denote the challenge ciphertext re-
ceived by A during a particular run of the experiment, and let Win denote the event that A
wins the game, Invalid denote the event that A submits a ciphertext (ψ, vk, σ) such that [∃i, j ∈
Svk, Decrypt′(Svk, i, di, ψ, PK) 6= Decrypt′(Svk, j, dj , ψ, PK)], and Forge denote the event that A
submits a ciphertext (ψ, vk, σ) to the decryption oracle such that [vk = vk? and Verify(vk, ψ, σ) =
1].

We use A to construct another adversary B which breaks semantic security of the underlying
BE scheme Π′ (in the sense of Def. 8). Define adversary B as follows:

1. B runs Gen(1k) to generate (vk?, sk?), and outputs the target users S? = INJ(vk?), where
INJ : {0, 1}k → P is an injective mapping.

2. B is given PK and (di)i∈{1,...,n}\S? , where PK is a public key of Π′ and di is a decryption key
of user i of Π′, respectively. B is also given a challenge ciphertext (ψ?,K?). Then, B inputs
(PK, INJ) and (ψ?, vk?, σ?) to A as a public key and a challenge ciphertext of Π, respectively,
where σ? ← Sign(sk?, ψ?).

3. When A makes decryption query (ψ, vk, σ), B proceeds as follows:

(a) If vk = vk?, then B checks whether Verify(vk, ψ, σ) = 1. If so, B aborts and outputs a
random bit. Otherwise, it simply responds ⊥.

(b) If vk 6= vk? and Verify(vk, ψ, σ) = 0, then B responds with ⊥.
(c) If vk 6= vk? and Verify(vk, ψ, σ) = 1, then B computes Decrypt′(Svk, i, di, ψ, PK) for

some i ∈ Svk. Notice that Svk\Svk? is not an empty set if vk 6= vk?.

4. Finally, A outputs a guess b′, and B outputs the same bit as his guess.

Then, B’s success probability AdvBrB,n,t is estimated as follows:

AdvBrB,n,t ≥ Pr[Win|Forge ∧ Invalid] Pr[Forge ∧ Invalid] +
1
2

Pr[Forge]

≥ (
1
2

+ ε− Pr[Invalid]− Pr[Forge]) +
1
2

Pr[Forge] =
1
2

+ ε− Pr[Invalid]− 1
2

Pr[Forge].

Consequently we have that ε ≤ εcpa + εvfy + 1
2εuf .
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G Broadcast Encryption with Dynamic Join

A BE scheme with dynamic join consists of four algorithms: Setup1, Setup2, Encrypt, and
Decrypt which are the same as those for BE (without dynamic join) except that the algorithm
Setup is separated into two independent algorithms: Setup1 and Setup2, such that (PK,mst) R←
Setup1(1k, n, t) and di

R← Setup2(i, PK,mst), where mst is a “master key”. We can simply set
mst = (d1, ..., dn) for any given n where n = O(poly(k)), but for a (polynomially) unbounded
number of potential users, mst can not be this form. This extension is useful for capturing full
functionality of some BE schemes, e.g. [47], which can deal with an exponentially many number of
potential users.

According to this extension, the attack model is slightly changed as follows. In Init. phase,
A also chooses a set of colluders Scol ⊆ {1, ..., n}\S? where |Scol| ≤ t. If t is a polynomial of k, in
Setup. phase the challenger runs Setup1(1k, n, t) and Setup2(i, PK,mst) to obtain (PK,mst)
and (di)i∈Scol

, respectively, and A is given (di)i∈Scol
. If t is a super-polynomial of k, A is given an

oracle which A can adaptively ask di for any i ∈ Scol in any order. This oracle can be accessed in
Query. phase. Let AdvBr′A,n,t denote the probability that A wins the game when the challenger is
given n and t.

Definition 13. We say that a broadcast encryption scheme with dynamic join is (τ, ε, n, t, qD)
CCA-secure if for all τ -time algorithms A who make a total of qD decryption queries, we have that
|AdvBr′A,n,t− 1/2| < ε. Especially, we say that a broadcast encryption scheme with dynamic join is
(τ, ε, n, t) semantically secure if it is (τ, ε, n, t, 0) CCA-secure.

It is obvious that a (τ, ε, n, t, qD) CCA-secure BE scheme (without dynamic join) implies a
(τ, ε, n, t, qD) CCA-secure BE scheme with dynamic join.

H Relations among Existing BE and PKE Schemes

Here, we discuss constructions of existing CCA-secure PKE schemes from the viewpoint of the
methodology in Sec. 8.1. Table 2 summarizes relations among existing BE and CCA-secure PKE
schemes. We explain individual cases in more detail below.

H.1 Dolev-Dwork-Naor from Trivial Broadcast Encryption

A trivial construction of BE with verifiability is as follows. In the setup phase, n key pairs
(di, PKi)1≤i≤n of a semantically secure public key encryption scheme are generated, where n is
the number of potential users. User i is given di as his decryption key, and a sender generates a
ciphertext for privileged receivers S ⊆ {1, ..., n} by using public keys (PKi)i∈S . For verifiability,
we add an NIZK proof for equivalence of the decryption results.

By our construction, the above trivial BE (with n = 2k) is transformed into a CCA-secure
public key encryption scheme as follows. Let dk = (d1, ..., d2k) be the decryption key, and PK =
(PK1, ..., PK2k, INJ, r) be the public key, where INJ is the same injective mapping as the basic
construction with n = 2k and t = k, and r is a common random string for NIZK proofs. For
generating a ciphertext, the sender generates verification key vk and signing key sk of a one-time
signature scheme, computes Svk = INJ(vk) ⊆ {1, ..., 2k}, and generates component ciphertexts
(Ci)i∈Svk

by encrypting the same session key K with (PKi)i∈Svk
, respectively. The sender also
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generates an NIZK proof π for equivalence of the decryption results of (Ci)i∈Svk
by using random

string r, and adds a signature σ for all other components by using signing key sk. The ciphertext
consists of ((Ci)i∈Svk

, vk, π, σ). The receiver first checks validity of σ and π, and if invalid, he then
outputs ⊥. Otherwise, the receiver recovers K by using di where i ∈ Svk. This construction is
strikingly the same as the Dolev-Dwork-Naor scheme.

H.2 Cramer-Shoup and Kiltz from Naor-Pinkas

The description of the NP BE scheme is given in Sec. 3.1. A remarkable property of NP BE is
that it allows exponentially many number of potential users, i.e. n = p− 1, and therefore, we can
set t = 1 for transforming this scheme into CCA-secure public key encryption since p−1C1 = p− 1.

Since NP BE is not verifiable as it is, it is necessary to add a functionality for checking whether
(g, gr, y0,K) is a DH-tuple or not. Here, we mention two different methods to add this functionality
(without using NIZK proofs) with different number theoretic assumptions, and we can have two
different CCA-secure KEMs, i.e. (a variant of) Cramer-Shoup [21] and Kiltz [41], according to
these two methods. However, we stress that it is difficult to prove the security of these schemes
under the CDH assumption. We explain these two schemes in more detail below.

A Variant of Cramer-Shoup from Naor-Pinkas. Here, we first explain a method to add
(private) verifiability to NP BE with the same underlying assumption as the original scheme, i.e.
the DDH assumption.

For this method, in addition to the keys for the original NP BE scheme, the center also generates
(b0, b1, c0, c1)

R← Z4
p, and compute z = ga0b0+b1 and w = ga0c0+c1 . The public key is PK =

(G, g, y0, ..., yt, z, w). The center keeps f(x) and (b0, b1, c0, c1) as the master key, and user i’s
decryption key is (di, b0, b1, c0, c1) where di = f(i). Assuming that users i1, ..., it are revoked, the
sender generates ψ = (gr, (gf(i1))r, ..., (gf(it))r, zr) and K = wr. On receiving ψ = (C0, ..., Ct, D),
user i recovers K = yr

0 as the original scheme, and checks if D ?= K
b0 ·Cb1

0 , and if not, user i outputs
⊥. Otherwise, he outputs K = K

c0 · Cc1
0 as the session key (this rerandomization is necessary for

the security proof).
We next demonstrate a CCA-secure KEM which is derived from the above BE. Extensions Ext.

1 and 2 in Sec. 8.2 are applied in this transformation.

Setup(1k): Generate a polynomial f(x) = a0+a1x, and (b0, b1, c0, c1)
R← Z4

p, and compute y0 = ga0 ,
y1 = ga1 , z = ga0b0+b1 , and w = ga0c0+c1 . The decryption key is dk = (f(x), b0, b1, c0, c1),
and the public key is PK = (G, g, y0, y1, z, w,TCR), where TCR : G→ Z∗

p is a target collision
resistant hash function.

Encrypt(PK): Pick a random r
R← Zp, and compute ψ = (gr, yr

0y
i·r
1 , zr) where i = TCR(gr), and

K = wr. The final output is (ψ,K). (Notice that when viewing it as a ciphertext of BE, this
is a ciphertext for all users except for user i.)

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, D), check whether (Cf(i)
0 , Ca0b0+b1

0 ) ?= (C1, D),
where i = TCR(C0). If not, output ⊥. Otherwise, output K = Ca0c0+c1

0 .

We notice that the above construction is very similar to Cramer-Shoup (especially, “yr
0y

i·r
1 ” in the

ciphertext is the same as a component of Cramer-Shoup’s ciphertext) with slight differences, and
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CCA-security of it can be proven under the DDH assumption in the same manner as Theorem
5 with similar proof techniques to Cramer-Shoup. Security of the above scheme is discussed in
Appendix I in more detail.

In the above, a user can keep (f(x), a0b0 + b1, a0c0 + c1) as his decryption key instead of
(f(x), b0, b1, c0, c1), and this results in shorter size of a decryption key.

Kiltz from Naor-Pinkas. There is yet another method for adding verifiability to NP BE by
using bilinear groups G1 and G2 where there exists a bilinear mapping e : G1×G1 → G2 such that
e(ga, gb) = e(g, g)ab for all integer a and b. By replacing the underlying group G in the original
NP BE with G1 (with order p), one can publicly verify whether (g, gr, y0,K) is a DH-tuple or not
by checking e(g,K) ?= e(gr, y0). However, in this modified scheme, the DDH assumption does not
hold any more, and it is necessary to introduce another number theoretic assumption, i.e. the Gap
Hashed Diffie-Hellman (GHDH) assumption [41]. Then, from this modified NP BE scheme, we can
construct a simple CCA-secure KEM as follows:

Setup(1k): Generate a polynomial f(x) = a0 + a1x, and compute y0 = ga0 and y1 = ga1 . The
decryption key is dk = f(x), and the public key is PK = (G1, g, y0, y1,TCR,H), where
TCR : G1 → Z∗

p is a target collision resistant hash function.

Encrypt(PK): Pick a random r
R← Zp, and compute ψ = (gr, yr

0y
i·r
1 ) where i = TCR(gr), and

K = h(yr
0). The final output is (ψ,K).

Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1), check whether C
f(i)
0

?= C1, where i =
TCR(C0). If not, output ⊥. Otherwise, output K = h(Ca0

0 ).

Surprisingly, the above construction is completely the same as Kiltz [41].

H.3 Canetti-Halevi-Katz from Identity-Based Encryption

As already mentioned in Sec. 8.4, our proposed method is an extension of CHK [18]. Namely, an
IBE scheme can also be viewed as a BE scheme (with dynamic join) with n = |ID| and t = |ID|−1
(i.e. nCt = |ID|), where ID is the identity space, and furthermore verifiability always holds since
there is only one receiver. Hence, it is possible to apply our construction to IBE if |ID| ≥ 2k, and
this construction is identical to the original CHK.

I Security of the Variant of Cramer-Shoup in Appendix H.2

Here, we give an explanation for constructing a DDH adversary B from another adversary A
which breaks CCA-security of the proposed CS-variant in Appendix H.2. For a given instance
(g, g1, g2,K

?) ∈ G4
1 of the DDH problem on G, B picks a target collision resistant hash function

TCR, and computes i? = TCR(g1). B also picks randoms (d, b0, b1, c0, c1) ∈ Z5
p and sets y0 = g2,

y1 = (gd/y0)1/i? , z = yb0
0 g

b1 , and w = yc0
0 g

c1 . The public key PK = (g, y0, y1, z, w,TCR) is given to
A. For any decryption query (C0, C1, D) from A, B computes as

i← TCR(C0), K ← (Cd
0 )

i
i−i? · (C1)

i?

i?−i ,
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and if D 6= K
b0Cb1

0 , returns “⊥”. Otherwise, B returns K = K
c0Cc1

0 .
It should be noticed that TCR(C0) 6= i? holds with an overwhelming probability due to the use

of target collision resistant hash function TCR.
The challenge ciphertext which is given to A is ((g1, gd

1 , (K
?)b0gb1

1 ),Kb) where K0 = (K?)c0gc1
1

and K1
R← G for random b ∈ {0, 1}. B outputs “(g, g1, g2,K

?) is a DH-tuple” if (and only if) A’s
output is identical to b. We notice that if (g, g1, g2,K

?) is a DH-tuple, A’s view is perfectly the
same as the real attack, and therefore, A will correctly guess b with a non-negligible advantage. If
it is a random tuple, the distributions (K?)c0gc1

1 is indistinguishable from a random element in G
from A’s viewpoint, and therefore, A can guess b with only negligible advantage.

J The Proposed CCA-Secure PKE from the BGW BE Scheme

Here, we give the concrete construction of our proposed CCA-secure PKE scheme from the BGW
BE scheme.

J.1 Brief Review of Boneh-Gentry-Waters [11]

Let G1 and G2 be multiplicative cyclic groups with prime order p, and e : G1 × G1 → G2 be
a bilinear mapping such that for all u, v ∈ G1 and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab and
e(g, g) 6= 1 where g ∈ G1 is a generator of G1. The BGW BE scheme is constructed as follows:

Setup(1k, n): Let G1 be a bilinear group with prime order p. Pick a random generator g ∈ G1

and random α ∈ Zp. Compute gi = g(αi) ∈ G1 for i = 1, 2, ..., n, n+ 2, ...., 2n. Pick a random
γ ∈ Zp and set v = gγ ∈ G1. The public key is PK = (g, g1, ..., gn, gn+2, ..., g2n, v) ∈ G2n+1

1 ,
and the decryption keys for user i ∈ {1, ..., n} is set as di = gγ

i ∈ G1. Output (d1, ..., dn, PK).
Notice that the maximum number of revoked users t (t < n) is arbitrary.

Encrypt(S, PK): Pick a random r ∈ Zp, and set K = e(gn+1, g)r ∈ G2. Output (ψ,K) where
ψ = (gr, (v ·

∏
j∈S gn+1−j)r) ∈ G2

1.

Decrypt(S, i, di, ψ, PK): Letting ψ = (C0, C1), check whether e(g, C1)
?= e(v ·

∏
j∈S gn+1−j , C0),

and if not, output ⊥. Otherwise, output K = e(gi, C1)/e(di ·
∏

j∈S\{i} gn+1−j+i, C0).

The decryption algorithm is slightly modified from the original BGW to add verifiability. The
security of this scheme is addressed as follows:

Proposition 1 ([11]). Let G1 be bilinear group with prime order p. For any positive integers n
and t (t < n), the above scheme is (τ, ε, n, t) semantically secure under the decision (τ, ε, n) BDHE
assumption [8, 11] (see Appendix B.2.3) on G1.

We also notice that this BE scheme is unconditionally and publicly verifiable.

J.2 A New CCA-Secure KEM from Boneh-Gentry-Waters

By applying our construction (with extensions Ext. 1 and 2 in Sec. 8.2) to BGW BE, we have
the following CCA-secure KEM:
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Setup(1k): Choose ` ∈ N such that 2`C` ≥ 2k. Generate g, α, g1, ..., g2`, g2`+2, ..., g4`, v as the setup
algorithm of Boneh-Gentry-Waters with n = 2`, and compute Z = e(g2`+1, g) where g2`+1 =
gα2`+1

. The decryption key is dk = gα2`+1
, and the public key is PK = (g, g1, ..., g2`, g2`+2, ..., g4`, v, Z,TCR),

where TCR : G1 → P is a target collision resistant hash function (see Appendix B.4.2) and
P is the set of all S ⊆ {1, ..., 2`} with |S| = `.

Encrypt(PK): Pick a random r ∈ Zp, and set K = Zr ∈ G2. Compute S = TCR(gr), and output
(ψ,K) where ψ = (gr, (v ·

∏
j∈S g2`+1−j)r) ∈ G2

1.

Decrypt(dk, ψ, PK): Letting ψ = (C0, C1), compute S = TCR(C0), and check whether e(g, C1)
?=

e(v ·
∏

j∈S g2`+1−j , C0), and if not, output ⊥. Otherwise, output K = e(dk,C0).

The security of the above scheme is addressed as follows:

Theorem 6. Let G1 be bilinear group with prime order p, and TCR be a (τ, εtcr) target collision
resistant hash function. Then, the above scheme is (τ −o(τ), εbdhe + εtcr, qD) CCA-secure under the
decision (τ, εbdhe, 2`) BDHE assumption on G1 such that 2`C` ≥ 2k.

This theorem can be proven by a straightforward combination of the proofs of Theorem 5 of
this paper and Theorem 3.1 of [11]. Here, we give an intuitive explanation for constructing a
BDHE adversary B from another adversary A which breaks CCA-security of the above KEM. For
a given instance (h, g, gα, ..., g(α2`), g(α2`+2), ..., g(α4`),K?) ∈ G4`+1

1 × G2 of the 2`-BDHE problem
on G1, B picks a target collision resistant hash function TCR, and computes S? = TCR(h). B
also picks a random u ∈ Zp and computes v = gu · (

∏
j∈S? gn+1−j)−1. The public key PK =

(g, g1, ..., g2`, g2`+2, ..., g4`, v,TCR) is given to A where gi = gαi
(1 ≤ i ≤ 4`). For any valid decryp-

tion query (C0, C1) from A, B answers it by using a decryption key di = gu
i · (

∏
j∈S? gn+1−j+i)−1(=

v(αi)) where i ∈ TCR(C0)\S?. It should be noticed that TCR(C0) 6= TCR(h) holds with an over-
whelming probability due to the use of target collision resistant hash function TCR. The challenge
ciphertext which is given to A is (ψ?,K?) where ψ? = (h, hu). B outputs “K? = e(g2`+1, h)” if (and
only if) A’s output is 0.

K The Cash-Kiltz-Shoup KEM from the CDH Assumption

Let G be a multiplicative group with prime order p, and g ∈ G be a generator. Then, the construc-
tion of the CKS KEM [20] is as follows:

Setup(1k): Pick al,j from Zp, and compute yl,j = gal,j for 1 ≤ l ≤ k + 1 and j = 0, 1, where
k is DEM-key length. The decryption key is (al,j)(1≤l≤k+1, j=0,1), and the public key is
PK = (G, g, (yl,j)(1≤l≤k+1, j=0,1),TCR, h), where TCR : G→ Z∗

p is a target collision resistant
hash function, and h : G→ {0, 1} is a hardcore bit function for the Diffie-Hellman key in G.

Encrypt(PK): Pick a random r
R← Zp, and compute

ψ = (gr, ((yl,0
iyl,1)r)1≤l≤k+1), K = (h(yr

1,0)||h(yr
2,0)||...||h(yr

k,0))

where i = TCR(gr). The final output is (ψ,K).
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Decrypt(dk, ψ, PK): For a ciphertext ψ = (C0, C1, ..., Ck+1), check whether Ci·al,0

0 C
al,1

0
?= Cl for

all l such that 1 ≤ l ≤ k + 1, where i = TCR(C0). If not, output ⊥. Otherwise, output
K = (h(Ca1,0

0 )||h(Ca2,0

0 )||...||h(Cak,0

0 )).

The above KEM is CCA-secure under the CDH assumption, and furthermore, assuming that it is
possible to extract log k hardcore bits from a single DH key, sizes for ciphertexts and keys can be
compressed by a factor of approximately 1/ log k (as mentioned in [20]). The above construction
is a natural extension of another scheme with the HDH assumption in the same paper [20], and
basically is constructed by k (or k/ log k) copies of their HDH-based scheme. Since a straightforward
use of k independent encryption with a ciphertext overhead of three group elements results in a
ciphertext overhead with 3k group elements in total, the authors also give an improvement for
reducing it. Namely, in their CDH-based scheme (as described above), two components of one
ciphertext is commonly used by all other encryption operations, and the ciphetext length of the
resulting scheme becomes k + 2 (or k/ log k + 2) group elements. Its security can be proved by a
hybrid argument.

L A Generic Construction of CCA-Secure Broadcast Encryption

Here, we give a generic construction of CCA-secure BE schemes from any CPA-secure one with
public verifiability. We also apply this to the BGW BE scheme, and demonstrate a new CCA-secure
BE scheme with verifiability whose computational cost is slightly better than the previous scheme
[11].

L.1 The Construction

Given a BE scheme Π′ = (Setup′,Encrypt′,Decrypt′) which is CPA-secure against selective ad-
versaries and verifiable, we construct a CCA-secure BE scheme Π = (Setup,Encrypt,Decrypt).
Similarly to the construction in Sec. 8.1, we use a strong-one time signature scheme Σ with the
same notation. We assume that the maximum number of potential users in Π′ is n + δn, and a
sender can revoke t+δt users where there exists an injective mapping (or a target collision resistant
hash function) INJ : {0, 1}k → P and P is the set of all ∆S ⊆ {n+1, ..., n+δn} with |∆S| = δn−δt.
The construction of Π is as follows:

Setup(1k, n, t): Choose δn and δt (where (n+ δn, t+ δt) is a possible parameter choice for Π′) such
that δnCδt ≥ 2k. Run Setup′(1k, n + δn, t + δt) to obtain (d1, ..., dn+δn , PK), and pick an
injective mapping INJ : {0, 1}k → P. The decryption key is dk = (d1, ..., dn) and the public
key is PK = (PK, INJ).

Encrypt(S, PK): Run Gen(1k) to obtain verification key vk and signing key sk (with |vk| = k),
and compute ∆Svk = INJ(vk), (ψ,K) ← Encrypt′(S ∪ ∆Svk, PK) and σ ← Sign(sk, ψ).
The final output is ((ψ, vk, σ),K).

Decrypt(S, i, di, ψ, PK): For a ciphertext (ψ, vk, σ), check whether Verify(vk, ψ, σ) ?= 1. If not,
output⊥. Otherwise, compute ∆Svk = INJ(vk) and outputK ← Decrypt′(S ∪∆Svk, i, di, ψ, PK).

The security of the above construction is addressed as follows.
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Theorem 7. If Π′ is a (τ, εcpa, n+ δn, t+ δt) semantically secure and (τ, εvfy, n+ δn, t+ δt) publicly
verifiable broadcast encryption scheme such that δnCδt ≥ 2k, and Σ is a (τ, εuf ) strongly unforgeable
one-time signature scheme, then Π is (τ − o(τ), εcpa + εvfy + 1

2εuf , n, t, qD) CCA-secure broadcast
encryption scheme.

The proof of the theorem is similar to that of Theorem 5, and omitted here. Extension Ext. 1
in Sec. 8.2 is also applicable to the above construction.

L.2 An Instantiation from Boneh-Gentry-Waters

We give a concrete construction (with Ext. 1) of a CCA-secure BE scheme by using CPA-secure
BGW BE as the underlying scheme. Notations are the same as Appendix J.1.

Setup(1k, n): Choose ` ∈ N such that 2`C` ≥ 2k. Let G1 be a bilinear group with prime order
p. Pick a random generator g ∈ G1 and random α ∈ Zp. Compute gi = g(αi) ∈ G1 for
i = 1, 2, ..., n + 2`, n + 2` + 2, ...., 2(n + 2`). Pick a target collision resistant hash function
TCR : G1 → P, where P is the set of all ∆S ⊆ {n + 1, ..., n + 2`} with |∆S| = `. Pick a
random γ ∈ Zp and set v = gγ ∈ G1. Set Z = e(gn+2`+1, g) where gn+2`+1 = gαn+2`+1

. The
public key is PK = (g, g1, ..., gn+2`, gn+2`+2, ..., g2(n+2`), v, Z,TCR), and the decryption keys
for user i ∈ {1, ..., n} is set as di = gγ

i ∈ G1. Output (d1, ..., dn, PK).

Encrypt(S, PK): Pick a random r ∈ Zp, and set K = Zr ∈ G2. Compute ∆S = TCR(gr), and
output (ψ,K) where ψ = (gr, (v ·

∏
j∈S∪∆S gn+2`+1−j)r) ∈ G2

1.

Decrypt(S, i, di, ψ, PK): Letting ψ = (C0, C1), compute ∆S = f(C0), and check whether e(g, C1)
?=

e(v ·
∏

j∈S∪∆S gn+2`+1−j , C0), and if not, output ⊥. Otherwise, output K = e(gi, C1)/e(di ·∏
j∈S∪∆S\{i} gn+2`+1−j+i, C0).

The security of the above scheme is addressed as follows:

Theorem 8. Let G1 be bilinear group with prime order p, and TCR be a (τ, εtcr) target collision
resistant hash function. Then, for any positive integers n and t (t < n), the above scheme is
(τ − o(τ), εbdhe + εtcr, n, t, qD) CCA-secure under the (τ, εbdhe, n + 2`) decision BDHE assumption
on G1 such that 2`C` ≥ 2k.

The proof of the theorem is similar to that of Theorem 5, and omitted here.

L.3 Comparison

Table 3 summarizes an efficiency comparison among variants of BGW BE [11]. For concreteness,
we can set ` = 67 for 128-bit security, and therefore, can assume that n ≥ |S| � ` holds for many
typical applications. We note that it is possible to add verifiability to both CPA-secure BGW
(CPA-BGW) and its CCA-secure version (CCA-BGW)6 by checking the validity of the ciphertext
(see Appendix J.1), and efficiency of their verifiable schemes is also mentioned in Table 3. We
notice that computational costs for our proposed scheme is slightly better than CCA-BGW with

6In the comparison, we apply BMW-like technique [15] to enhance the efficiency of the original CCA-secure BGW
which is presented in [11].
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Table 3: Efficiency comparison for variants of the Boneh-Gentry-Waters broadcast encryption schemes, assuming
that the maximum number of potential users is n. Notations are basically the same as Table 1.

Security Ciphertext Encryption Decryption Key size Verifi- Security
Assumption Overhead #pairings + #[multi,regular]-exp + #ops (pk/dk) ability Level

n-BDHE 2|g| 0 + [0, 3] + |S| 2 + [0, 0] + |S| 2n + 1/1 − CPA
CPA-BGW [11] ↓ ↓ ↓ 4 + [0, 0] + 2|S| ↓

√
CPA

n + 1-BDHE 2|g| 0 + [1, 2] + |S| 2 + [1, 2] + 2|S| 2n + 3/1 − CCA
CCA-BGW [11] ↓ ↓ ↓ 4 + [1, 1] + 2|S| ↓

√
CCA

Ours n + 2`-BDHE 2|g| 0 + [0, 3] + (|S|+ `) 4 + [0, 0] + 2(|S|+ `) 2n + 4` + 1/1
√

CCA

verifiability, and comparable to that for other less functional schemes, i.e. CPA-secure and/or non-
verifiable schemes. The sizes of the ciphertext and the decryption key of our proposed scheme are
the same as other schemes.
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