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1 Introduction

The weil and Tate pairings have been widely used to construct pairing based

cryptography [20]. Since the Tate pairing can be computed more efficiently than

the Weil pairing, the researchers have mainly considered the Tate pairing com-

putations [10, 1] and presented some variants based on the Tate pairing, such

as the eta pairing [3], the ate pairing [12, 16] and the R-ate pairing [15]. Ver-

cauteren gives an efficient method to find an optimal pairing for fast paring

computations [11] and Hess states an integral framework that covers all known

efficiently-computable pairing functions based on the Tate pairing [22].

The Tate pairing or its variants are preferable in practical implementations

although the Weil pairing was widely used to construct pairing based protocols.

The computation of the variants based on the Tate pairing involves the Miller

iteration loop and the final exponentiation to get a unique value. Many useful

optimizations for Miller’s algorithm [18] are proposed for computing the variants
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of the Tate pairing except the work of [19, 17, 14, 7]. The Weil pairing computa-

tion does not need the final exponentiation while it involves two Miller iteration

loops.

In this paper, we investigate how to speed up the Weil pairing computations

with Frobenius endomorphisms. Similar to the ate pairing, the new variants

based on the Weil pairing are proposed with short Miller iteration loops. Com-

puting the new variants of the Weil pairing is twice faster than computing the

standard Weil pairing under several certain conditions. It is clear that the new

variants are computed slower than the optimal pairings . However, it is a novel

approach for speeding up the Weil pairing computation.

The rest of this paper is organized as follows. Section 2 introduces basic

mathematical concepts of the pairings on elliptic curves. Section 3 gives our

main results and Section 4 presents some examples. We draw our conclusion in

Section 5.

2 Mathematical Preliminaries

This section briefly recalls the definition of the Tate pairing, the ate pairing and

the Weil pairing.

2.1 Tate Pairing

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be an

elliptic curve defined over Fq and O be the point at infinity. #E(Fq) is denoted

as the order of the rational points group E(Fq) and r is a large prime satisfying

r|#E(Fq). Let k be the embedding degree, i.e., the smallest positive integer such

that r|qk − 1 .

Let P ∈ E[r] and Q ∈ E(Fqk). For each integer i and point P , let fi,P be a

rational function on E such that

(fi,P ) = i(P )− (iP )− (i− 1)(O).

Let D be a divisor [21] which is linearly equivalent to (R)− (O) with its support

disjoint from (fr,P ) . The Tate pairing [8] is a bilinear map

ẽ : E[r]× E(Fqk)/rE(Fqk) → F∗qk/(F∗qk)r,

ẽ(P, R) = fr,P (D).
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Assume that all Miller functions are normalized in this paper [22, 11]. One can

define the reduced Tate pairing [4] as

e(P, R) = fr,P (R)
qk−1

r

Notice that fr,P (R)a(qk−1)/r = far,Q(R)(q
k−1)/r for any integer a [9].

2.2 Ate pairing and Twisted Ate pairing

We recall the definition of the (twisted) ate pairing and its variants from [12, 16,

23] in this subsection. The ate pairing extends the eta pairing [3] on ordinary

elliptic curves.

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be

an ordinary elliptic curve over Fq. Let r be a large prime satisfying r | #E(Fq).

Denote the trace of Frobenius by t, i.e., #E(Fq) = q + 1− t. Let T = t− 1 ≡ q

(mod r). Let πq be the Frobenius endomorphism, πq : E → E : (x, y) 7→ (xq, yq).

Denote Q ∈ G2 = E[r] ∩Ker(πq−[q]) and P ∈ G1 = E[r] ∩Ker(πq − [1]). Let

N = gcd(T k−1, qk−1) > 0 and T k−1 = LN , where k is its embedding degree.

Then the ate pairing is defined as fT,Q(P ) and

e(Q,P )L = fT,Q(P )c(qk−1)/N ,

where c =
∑k−1

i=0 Sk−1−iqi mod N .

Let E′ over Fq be a twist of degree d of E, i.e., E′ and E are isomorphic over

Fqd and d is minimal with this property. Let m = gcd(k, d) and e = k/m. Denote

Te = T e ≡ qe (mod r). Then the twisted ate pairing is defined as fTe,P (Q) and

e(P, Q)L = fTe,P (Q)ct(q
k−1)/N ,

where ct =
∑m−1

i=0 T e(m−1−i)qei mod N .

The ate pairing and twisted ate pairing are both non-degenerate provided

that r - L. Denote Ti = T i ≡ qi (mod r) and Tei = (T e)i ≡ (qe)i (mod r).

Then the ate pairing and twisted ate pairing can be generalized as fTe,Q(P ) and

fTei,P (Q) respectively [23]. The generalized version of the (twisted) ate pairing

provides more choices in practical implementations.

2.3 Weil Pairing

Using the same notation as previous, one may make a few slight modifications

and then define the Weil pairing. Let k be the minimal positive integer such that
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E[r] ⊂ E(Fqk). According to the results in [2], if r - q − 1 and (r, q) = 1, then

E[r] ⊂ E(Fqk) if and only if r|qk − 1, i.e., the embedding degree for the Weil

pairing is equal to the embedding degree for the Tate pairing in this case.

Suppose that P, Q ∈ E[r] and P 6= Q. Let DP and DQ be two divisors which

are linearly equivalent to (P ) − (O) and (Q) − (O), respectively. Let fr,P and

fr,Q be two rational functions on E such that (fr,P ) = rDP and (fr,Q) = rDQ.

Then the Weil pairing is a map [19]

er : E[r]× E[r] → µr,

er(P, Q) = (−1)r fr,P (Q)
fr,Q(P )

.

For good efficiency, one can define the powered Weil pairing [17, 14] as

êr(P, Q) = er(P, Q)(q
l−1),

where l is a divisor of k. Notice that the denominator elimination technique can

be applied when computing the powered Weil pairing.

3 Main Results

In this section, The main results of this paper are summarized in the following

theorem.

Theorem 1. Let Fq be a finite field with q = pm elements, where p is a prime.

Let E be an ordinary elliptic curve over Fq, r a large prime satisfying r | #E(Fq)

and let t denote the trace of Frobenius, i.e., #E(Fq) = q+1−t. Let T = t−1 ≡ q

(mod r). Let πq be the Frobenius endomorphism, πq : E → E : (x, y) 7→ (xq, yq).

Denote Q ∈ G2 = E[r] ∩Ker(πq−[q]) and P ∈ G1 = E[r] ∩Ker(πq − [1]). Let

E′ over Fq be a twist of degree d of E. Let m = gcd(k, d) and e = k/m. Denote

Si = Tei ≡ T ei ≡ (qe)i (mod r), where 0 < i < k − 1. Let a be the smallest

integer such that Sa
i ≡ 1 (mod r). Let L be an integer such that Sa

i − 1 = Lr.

Then for such P and Q, the Weil pairing satisfies

er(P, Q)L = (
fSi,P (Q)
fSi,Q(P )

)c,

where c =
∑a−1

j=0 Sa−1−j
i qej ≡ aqei(a−1) (mod r).
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Proof. It is obvious from the definition of the Weil pairing that

er(P, Q)L = (
fr,P (Q)
fr,Q(P )

)L =
fLr,P (Q)
fLr,Q(P )

.

Applying the identity Lr = Sa
i − 1 into the above equation, we obtain

er(P, Q)L =
fSa

i −1,P (Q)
fSa

i −1,Q(P )
=

fSa
i ,P (Q)

fSa
i ,Q(P )

. (1)

The second equality holds since P and Q are two points in E[r] [6]. By Lemma

2 in [3, 12], we see that

fSa
i ,P = f

Sa−1
i

Si,P
f

Sa−2
i

Si,SiP
· · · fSi,S

a−1
i P (2)

Lemma 5 in [12] and the discussions in [16, 23] yield that fSi,S
j
i P (Q) = fSi,P (Q)qej

with 0 ≤ j ≤ a− 1. Then

fSa
i ,P (Q) = (fSi,P (Q))

Pa−1
j=0 S

(a−1−j)
i qej

(3)

By using the same argument for fsa
i ,P (Q), we have

fSa
i ,Q(P ) = (fSi,Q(P ))

Pa−1
j=0 S

(a−1−j)
i qej

. (4)

Substituting (3) and (4) into the equation (1), we have

er(P, Q)L = (
fSi,P (Q)
fSi,Q(P )

)c,

where c =
∑a−1

j=0 Sa−1−j
i qej ≡ aqei(a−1) (mod r). This completes the whole

proof.

Some remarks on Theorem 1 are given as follows.

Remark 1. If r - L, then the new pairings are non-degenerate. If the curve has a

quadratic twist, we only obtain a trivial pairing since Si = ±1 mod r.

Remark 2. A series of the variants based on the Weil pairing can be obtained as

i varies. Also, the length of the Miller loops for the new pairing depends on the

bit-length of Si = T ei ≡ qei (mod r).

Remark 3. We define the powered variants of the Weil pairing as ( fSi,P (Q)

fSi,Q(P ) )
ql−1

which enables the denominator elimination technique.
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4 Applications

In this section, we apply Theorem 1 for obtaining some new variants based on

the Weil pairing with short Miller iteration loops on pairing-friendly curves.

Cyclotomic family with k = 8 The authors give a family of curves with

k = 8 and D = 1 which makes the quartic twist possible [13]. Its parametrization

is given by

p = (125− 82x− 15x2 + 8x3 − 3x4 + 2x5 + x6)/180

r = (25− 8x2 + x4)/450

Notice that this family of elliptic curves has a quartic twist, i.e., d = 4. Since

k = 8, we have e = k
(k,d) = 2. Thus, we can choose Si = (p2)3 ≡ (x2 − 4)/3

(mod r) for defining the new variants of the Weil pairing with short Miller loops.

In practical implementations, ( fSi,P (Q)

fSi,Q(P ) )
p4−1 can be used for good efficiency. The

Miller loop of the new variants only will be half of that required for the Weil

pairing.

Cyclotomic family with k = 18 The authors give a family of curves with

k = 8 and D = 3 which makes the sextic twist possible [13]. Its parametrization

is given by

p = (2401 + 1763x + 343x2 + 259x3 + 188x4 + 37x5 + 7x6 + 5x7 + x8)/21

r = (343 + 37x3 + x6)/343

Notice that this family of elliptic curves has a sextic twist, i.e., d = 6. Since

k = 18, we have e = k
(k,d) = 3. Thus, we can choose Si = (p3)5 ≡ x3 + 18

(mod r) for defining the new variants of the Weil pairing with short Miller loops.

In practical implementations, ( fSi,P (Q)

fSi,Q(P ) )
p9−1 can be used for good efficiency.

Similar to the previous examples, the Miller loop of the new variants only will

be half of that required for the Weil pairing.

Barreto-Naehrig curves The authors give a family of curves with k = 12

[5]. There exists a twist of degree d = 6 for the family. Its parametrization is

given by

p = 36x4 + 36x3 + 24x2 + 6x + 1

r = 36x4 + 36x3 + 18x2 + 6x + 1

Since k = 18 and d = 6, it follows that e = k
(k,d) = 2. Thus, we can choose

Si = (p2)4 ≡ 36x3 + 18x2 + 6x + 1 (mod r) for defining the new variants of
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the Weil pairing. The bit length of Si is 3/4 of that of r which provides a

faster pairing than the Weil pairing. Also, using the techniques in [15] which are

extended in [24, 22, 11], we could construct the new variants based on the Weil

pairing which has the same Miller loops as the twisted R-ate pairing, i.e., the

length of the Miller loops for computing the new variants can be half of that

required for the Weil pairing.

5 Conclusions

In this paper, we propose some variants of the Weil pairing. The new variants are

computed twice faster than the standard Weil pairing, while they are slower than

the optimal pairings based on the Tate pairing. We provide a novel approach

to speed up the Weil pairing computation. It is possible to further optimize the

results.
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